# **Jacobs**

## 2024 Annual Groundwater Monitoring Report

Northwest Pipe Company 12005 North Lombard Street Portland, Oregon 97203 ECSI No. 138

August 2024





Project No: NWP21002

Document Title: 2024 Annual Groundwater Monitoring Report

Document No.:

Revision: 0

Date: August 2024

Client Name: Northwest Pipe Company
Project Manager: Brandon Jones-Stanley

Author: Jacobs

File Name: 2024\_NWP\_GW\_AnnualReport\_082224.docx

Jacobs 2020 SW Fourth Avenue 3rd Floor Portland, OR 97201 United States T +1.503.235.5000 www.jacobs.com

© Copyright 2023 Jacobs Engineering Group Inc. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

#### **Document History and Status**

| Revision | Date | Description | Ву | Review | Approved |
|----------|------|-------------|----|--------|----------|
|          |      |             |    |        |          |
|          |      |             |    |        |          |
|          |      |             |    |        |          |
|          |      |             |    |        |          |
|          |      |             |    |        |          |
|          |      |             |    |        |          |

## **Executive Summary**

This report presents the results of groundwater monitoring conducted in 2024 at the Northwest Pipe Company (Northwest Pipe) facility (the Site) at 12005 North Lombard Street, Portland, Oregon. Shallow groundwater in a portion of the southeast area of Northwest Pipe's property (the Southeast Area) contains volatile organic compounds (VOCs) at concentrations that exceed the U.S. Environmental Protection Agency (EPA) Record of Decision (ROD) Table 17 cleanup levels (CULs) for groundwater at the Portland Harbor Superfund site. Northwest Pipe has conducted investigations and focused remedial actions to address environmental conditions at the Site since it began operations at the property in 1982. As established in the *Remedial Investigation and Source Control Evaluation*, finalized in 2021, monitored natural attenuation (MNA) is the remedy and source control measure selected for VOCs in groundwater at the Site. Groundwater monitoring is intended to confirm that natural attenuation of VOCs in the shallow groundwater continues to be an effective remedy and source control measure.

In accordance with the MNA Work Plan (Jacobs 2022) approved by the Oregon Department of Environmental Quality on September 20, 2022, groundwater monitoring was conducted annually for the MNA network on May 13 through 16, 2024Data obtained were used to evaluate MNA at the Site following the protocol outlined in the EPA guidance document *Performance Monitoring of MNA Remedies for VOCs in Ground Water* (2004). Prior sampling at the Site established the Southeast Area conceptual site model that groundwater contamination is limited to the shallow aquifer and VOCs do not extend below the confining layer. Groundwater in the shallow aquifer discharges toward Terminal 4 Slip 1 of the Willamette River, approximately 1,000 feet downgradient from the Southeast Area. Groundwater monitoring performed since 2016 shows that concentrations in groundwater samples from wells closest to the river are consistently below ROD CULs.

Groundwater monitoring conducted in 2024 at the Site continues to confirm that natural attenuation of VOCs in the shallow groundwater at the Southeast Area is occurring, is effective, and is protective (that is, there are no adverse effects in the form of VOCs at concentrations above the Portland Harbor ROD CULs reaching the river). The most recent groundwater data confirm the long-standing conceptual site model by way of the following:

- The Northwest Pipe groundwater source area has been remediated.
- Groundwater monitoring at the Site indicates that the groundwater plume is stable and decreasing, consistent with EPA guidance.
- Potential human health and ecological risks are addressed by MNA.
- Groundwater flow observations in 2024 continue to show a low hydraulic gradient, and corresponding long travel time, across the Southeast Area and the Port property allowing for contaminant concentrations to be reduced by reductive dechlorination.
- Analysis for geochemical indicators of natural attenuation demonstrates the geochemical environment continues to be favorable to degradation of Site-related VOCs by reductive dechlorination to maintain plume stability and decrease plume extent.
- New wells installed in 2022 on the Port property provide additional information on the lateral extent of the plume and increase the area monitored under the MNA program. The addition of three monitoring wells further allows for an early warning of the potential migration of VOCs toward the Willamette River, in the unlikely event that it would occur.
- Groundwater quality analysis demonstrates the plume is not migrating beyond previously determined boundaries.

i

 Concentrations of VOCs remaining in groundwater are relatively low, and there is consistent evidence in monitoring data collected since 2016 that groundwater containing VOCs does not reach the Willamette River above protective levels established in the ROD.

The groundwater monitoring work completed in 2024 confirms that MNA is satisfying the source control objective for the Site. Accordingly, groundwater monitoring will continue annually as scheduled in the approved MNA Work Plan.

## Contents

| Acron      | yms an | nd Abbreviations                                                                                              | v   |
|------------|--------|---------------------------------------------------------------------------------------------------------------|-----|
| 1.         | Intro  | oduction                                                                                                      | 1-1 |
| 2.         | Grou   | ındwater Monitoring Network and Function                                                                      | 2-1 |
|            | 2.1    | Monitoring Network                                                                                            | 2-1 |
|            | 2.2    | Groundwater Monitoring Frequency                                                                              | 2-3 |
| 3.         | 2024   | 4 Groundwater Monitoring Summary                                                                              | 3-1 |
|            | 3.1    | Groundwater-level Measurements                                                                                | 3-1 |
|            | 3.2    | Water Quality Sampling Summary                                                                                | 3-1 |
|            | 3.3    | Data Quality Review                                                                                           | 3-1 |
| 4.         | Revi   | ew of Southeast Area Conceptual Site Model                                                                    | 4-1 |
|            | 4.1    | Hydrologic Setting                                                                                            | 4-1 |
|            | 4.2    | Geochemical Environment                                                                                       | 4-2 |
| 5.         | Mon    | itored Natural Attenuation Data Evaluation                                                                    | 5-1 |
|            | 5.1    | VOC Concentrations in the Southeast Area                                                                      | 5-1 |
|            | 5.2    | Evidence of Plume Stability                                                                                   | 5-2 |
|            |        | 5.2.1 Evaluation of Plume Stability Using EPA Criteria (1999)                                                 | 5-2 |
|            |        | 5.2.2 Evaluation of Plume Stability Using Criteria in EPA (1998)                                              | 5-3 |
|            |        | 5.2.3 Site Specific Attenuation Rate Estimates                                                                |     |
|            | 5.3    | Protectiveness of MNA Remedy                                                                                  | 5-5 |
| 6.         | Cond   | clusions                                                                                                      | 6-1 |
| 7.         | Refe   | rences                                                                                                        | 7-1 |
| Apper      | ndixes | (provided in electronic format)                                                                               |     |
| Α          | Field  | Sampling Sheets and Notes                                                                                     |     |
| В          |        | ytical Laboratory Reports                                                                                     |     |
| C          |        | Quality Evaluations                                                                                           |     |
| D          | Bulk   | Attenuation Rate Constant Calculations                                                                        |     |
| Table      | 5      |                                                                                                               |     |
| 2-1<br>2-2 |        | Construction Details for MNA Program pling Frequency by Well                                                  |     |
| 3-1        | Grou   | indwater and Willamette River Elevation Measurements                                                          |     |
| 3-2        |        | indwater Quality Field Parameters                                                                             |     |
| 3-3        |        | Indwater Quality Analytical Data for Natural Attenuation Parameters                                           |     |
| 3-4<br>4-1 |        | Indwater Quality Analytical Data for Volatile Organic Compounds  Pretation of Points Awarded During Screening |     |
| 4-1<br>4-2 |        | ytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradatio                         | on  |
| _          |        | esses                                                                                                         |     |
| 5-1        | Calc   | ulation of Site-Specific Attenuation Rate Estimates                                                           |     |
|            |        |                                                                                                               |     |

## Figures

1-1 Vicinity Map

### 2024 Annual Groundwater Monitoring Report

| 2-1 | MNA Monitoring Network                                                               |
|-----|--------------------------------------------------------------------------------------|
| 3-1 | Groundwater Elevation Contour Map Southeast Area, May 13, 2024                       |
| 4-1 | Selected Hydrologic Features from 1897 Map Digitized onto Current Aerial             |
| 4-2 | Geologic Cross Sections Parallel (A-A') and Perpendicular (B-B') to Groundwater Flow |
| 5-1 | VOCs in Groundwater 2001 through 2005                                                |
| 5-2 | Southeast Area VOC Concentrations October 2016 through May 2024                      |
| 5-3 | Port of Portland VOC Concentrations October 2016 through May 2024                    |
| 5-4 | VOC Trend Plots in the Southeast Area (2016 - 2024)                                  |

- 5-5 VOC Trend Plots in the New Port Wells (2022 2024)
- 5-6 VOC Trend Plots in Previously Existing Port Wells (2016 2024)
- 5-7 Evaluation of Willamette River Stage and Site Groundwater Levels over Time
- 5-8 Trends in Molar Concentrations for Selected Wells (2016 2024)
- 5-9 VOC Molar Concentrations for Selected Wells (2024)

## **Acronyms and Abbreviations**

°C degree(s) Celsius

μg/L microgram(s) per liter μmol/L micromole(s) per liter

A annually

bgs below ground surface

CUL cleanup level
DCE dichloroethene

DEQ Oregon Department of Environmental Quality

EPA U.S. Environmental Protection Agency

ft/day foot per day ft/ft foot per foot

mg/kg milligram(s) per kilogram

mg/L milligram(s) per liter

MNA monitored natural attenuation

OAR Oregon Administrative Rule

PCE tetrachloroethene
Port Port of Portland

Q quarterly

RBC risk-based concentration
RI Remedial Investigation

ROD Record of Decision

SA semiannually

SAP Sampling and Analysis Plan SCE Source Control Evaluation

Site Northwest Pipe Company Portland property including the locality of the facility

TCE trichloroethene

TOC total organic carbon
USGS U.S. Geological Survey

VOC volatile organic compound

#### 1. Introduction

Jacobs has prepared this report presenting the results of groundwater monitoring conducted in 2024 at the Northwest Pipe Company (Northwest Pipe) facility (the Site) at 12005 North Lombard Street, Portland, Oregon. Shallow groundwater in a portion of the Southeast Area (Figure 1-1) of the Northwest Pipe Portland property contains volatile organic compounds (VOCs) at concentrations that exceed the U.S. Environmental Protection Agency (EPA) Record of Decision (ROD) Table 17 cleanup levels (CULs) for groundwater at the Portland Harbor Superfund site. This report presents the results of groundwater monitoring associated with the Southeast Area completed in 2024 in accordance with the *Monitored Natural Attenuation Work Plan* (Jacobs 2022) approved by the Oregon Department of Environmental Quality (DEQ) on September 20, 2022. This report presents an evaluation of the data and discussion regarding the ability of natural attenuation to prevent adverse effects from VOCs to the Willamette River at concentrations above the Portland Harbor ROD CULs. This report was prepared following the guidance for evaluating monitored natural attenuation (MNA) provided in the EPA document *Performance Monitoring of MNA Remedies for VOCs in Ground Water* (2004).

Northwest Pipe has conducted investigations and focused remedial actions to address environmental conditions at the Site since it began operations at the property in 1982. The investigations and remedial actions conducted have provided environmental data defining the nature and extent of constituents at the Site and documented the effectiveness of the targeted remedial actions taken by Northwest Pipe. A Remedial Investigation (RI) and Source Control Evaluation (SCE) were conducted under the 2004 *Voluntary Agreement for Remedial Investigation and Source Control Evaluation* (DEQ agreement LQDVC-NWR-04-01). The RI/SCE, finalized in 2021, documented the environmental investigations and remedial actions conducted at the Site over more than 30 years (Jacobs 2021b). As established in the RI/SCE, MNA is the remedy and source control measure selected for VOCs in groundwater at the Site. Groundwater monitoring is intended to confirm that natural attenuation of VOCs in the shallow groundwater continues to be an effective remedy under DEQ's Hazardous Substance Remedial Action Rules (Oregon Administrative Rule [OAR] 340-122-0040) and source control measure under the EPA and DEQ Joint Source Control Strategy (DEQ and EPA 2005).

This annual groundwater monitoring report focuses on the 2024 monitoring of VOCs in the Southeast Area shallow groundwater in accordance with the MNA Work Plan (Jacobs 2022). This report is organized as follows:

- Section 1—Introduction
- Section 2—Groundwater Monitoring Network and Function
- Section 3—2024 Groundwater Monitoring Summary
- Section 4—Review of Southeast Area Conceptual Site Model
- Section 5— MNA Data Evaluation
- Section 6—Conclusions
- Section 7—References

## 2. Groundwater Monitoring Network and Function

The VOCs of concern include tetrachloroethene (PCE) and its breakdown products trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), and vinyl chloride. The purpose of the groundwater monitoring at Northwest Pipe is to confirm that natural attenuation of VOCs in the shallow groundwater at the Southeast Area is occurring, is effective, and is protective (that is, there are no adverse effects in the form of VOCs at concentrations above the Portland Harbor ROD CULs reaching the river). This section describes how the groundwater monitoring network and sampling frequency were enhanced as outlined in the approved MNA Work Plan (Jacobs 2022) to facilitate this goal.

#### 2.1 Monitoring Network

Monitoring well locations were selected using criteria presented in EPA's *Performance Monitoring MNA Remedies for VOCs in Ground Water* (EPA 2004). Three new monitoring wells (MW-10, MW-11, and MW-12) were installed at the Site in March 2022 after DEQ email approval on January 26, 2022. The well network for long-term MNA monitoring is depicted on Figure 2-1. The network includes the three new wells and previously existing wells, and is based on the following rationale to fulfill the criteria in EPA quidance (2004):

- Upgradient uncontaminated groundwater relative to the zone of contamination Well MW-02 is in the
  upgradient portion of the Site and meets the requirement for an uncontaminated area because over
  its monitoring history it has had low or non-detectable VOC concentrations. MW-02 data also are used
  as representing background concentrations, leading to a conservative evaluation of geochemical
  changes across the Site.
- Source area/main plume core Well MW-06 is in the general area of a former aboveground storage tank, a suspected source area. Well MW-06 has historically had higher levels of VOC concentrations compared to other wells and likely represents conditions in the plume core. Well MW-03 is in the plume core closer to the Northwest Pipe property boundary.
- Cross-gradient Well MW-01 and MW-04 monitor VOC concentrations along the eastern margin of the plume in the plume core area. The proposed network also includes Well T4S1MW-22 and T4S1MW-23, both wells are on Port of Portland (Port) property and monitor the lateral extent of VOC concentrations on both the eastern and western margins of the plume.
- Uncontaminated downgradient parts of the aquifer Wells T4S1MW-03S and T4S1MW-09 on Port
  property are uncontaminated and show groundwater quality prior to discharge to the Willamette River
  Terminal 4 Slip 1.
- Distinct geochemical zones The geochemistry of groundwater on the Site differs from that on the Port's site, as described in Section 4.2. The network includes wells in the Southeast Area (MW-O1 through MW-O6), some of which have elevated VOC concentrations. Wells on the Port property (MW-10, MW-11, MW-12, T4S1MW-22, T4S1MW-23, T4S1MW-09, and T4S1MW-03S) have lower- to nondetectable VOC concentrations. These wells are used to monitor three geochemical zones: one for the Southeast Area, one with low VOC concentrations on the Port property, and one with nondetectable concentrations on the Port property.
- Groundwater flow characterization Groundwater-level monitoring includes three more wells in addition to those targeted for sampling (Tables 2-1 and 3-1). This network of monitoring wells provides a sufficient basis to confirm that the already well-documented flow direction remains consistent with past observations.
- High-permeability zones No high-permeability zones have been identified within the plume area other than the area monitored by MW-05, where slug testing and water level response during purging

and sampling have identified a localized pocket of higher permeability in the shallow aquifer than encountered in other nearby wells.

The construction information for the monitoring wells selected for the MNA program are summarized in the Sampling and Analysis Plan (SAP) included in the MNA Work Plan (Jacobs 2022). Figure 2-1 shows the MNA monitoring well network.

Table 2-1. Well Construction Details for MNA Program

|            | Screened Interval Coordinates (feet bgs) |                |            | Total Depth   | Well Use in MNA |                                  |
|------------|------------------------------------------|----------------|------------|---------------|-----------------|----------------------------------|
| Well       | Northing (feet)                          | Easting (feet) | Screen Top | Screen Bottom | (feet bgs)      | Network                          |
| MW-01      | 7621115.44                               | 715674.70      | 14         | 24            | 25              | Water Quality and<br>Water Level |
| MW-02      | 7620821.90                               | 715683.93      | 10.5       | 20.5          | 22              | Water Quality and<br>Water Level |
| MW-03      | 7620850.03                               | 715487.66      | 14.5       | 24.5          | 26              | Water Quality and<br>Water Level |
| MW-04      | 7621087.85                               | 715497.29      | 16.5       | 26.5          | 27              | Water Quality and<br>Water Level |
| MW-05      | 7621060.97                               | 715816.63      | 17.5       | 27.5          | 28              | Water Quality and<br>Water Level |
| MW-06      | 7621020.40                               | 715649.12      | 18.5       | 28.5          | 29              | Water Quality and<br>Water Level |
| MW-10      | 715211.03                                | 7620361.85     | 9.0        | 29.0          | 29              | Water Quality and<br>Water Level |
| MW-11      | 715191.86                                | 7620738.32     | 15.0       | 35.0          | 35              | Water Quality and<br>Water Level |
| MW-12      | 715222.46                                | 7621019.27     | 15.0       | 30.0          | 30              | Water Quality and<br>Water Level |
| T4S1MW-02S | 7621214.97                               | 714998.33      | 20         | 30            | 30              | Water Level Only                 |
| T4S1MW-03S | 7620492.60                               | 714732.19      | 20         | 30            | 30              | Water Quality and<br>Water Level |
| T4S1MW-09  | 7620519.44                               | 714609.19      | 20         | 30            | 30              | Water Quality and<br>Water Level |
| T4S1MW-10  | 7620514.97                               | 714448.17      | 10         | 20            | 20              | Water Level Only                 |
| T4S1MW-22  | 7621091.96                               | 715327.08      | 13         | 23            | 30              | Water Quality and<br>Water Level |
| T4S1MW-23  | 7620347.24                               | 715358.39      | 15         | 25            | 30              | Water Quality and<br>Water Level |
| T4S1MW-25  | 7620880.20                               | 714518.94      | 10         | 20            | 20              | Water Level Only                 |

Note:

Coordinate System: North American Datum 1983 State Plane Oregon North (U.S. feet)

bgs = below ground surface

#### 2.2 Groundwater Monitoring Frequency

In accordance with EPA guidance (2004), the sampling frequency of the monitoring program is designed to accomplish the following:

- Provide timely warning of impacts on receptors.
- Detect VOC releases to groundwater that warn of possible plume expansion.
- Detect changes in plume size and concentration.
- Determine temporal variability of data.
- Detect changes in geochemistry that warn of changes in attenuation.
- Yield data necessary to reliably evaluate progress toward VOC reduction objectives.

In accordance with EPA guidance, quarterly monitoring was conducted for the three new monitoring wells in 2022 and 2023 to establish baseline conditions, observe seasonal trends including response to recharge, and estimate attenuation rates for key constituents (EPA 2004). Quarterly monitoring for the three new wells, and semiannual monitoring for the other wells in the MNA network, was conducted for 2 years in accordance with the approved MNA Work Plan (Jacobs 2022). In 2024, the monitoring frequency transitioned to annual sampling for all wells in accordance with the approved MNA Work Plan (Jacobs 2022). Groundwater depth-to-water measurements are performed on all wells in the monitoring program (Table 2-1) prior to purging and sample collection. The approved monitoring schedule is presented in Table 2-2.

Table 2-2. Sampling Frequency by Well

| Well       | 2022  | 2023 | 2024 | 2025 | 2026 |
|------------|-------|------|------|------|------|
| MW-01      | SA    | SA   | Α    | Α    | А    |
| MW-02      | SA    | SA   | Α    | Α    | А    |
| MW-03      | SA    | SA   | Α    | Α    | А    |
| MW-04      | SA    | SA   | Α    | Α    | А    |
| MW-05      | SA    | SA   | Α    | Α    | А    |
| MW-06      | SA    | SA   | Α    | Α    | А    |
| MW-10      | Q;. , | Q    | Α    | Α    | А    |
| MW-11      | Q     | Q    | Α    | Α    | А    |
| MW-12      | Q     | Q    | Α    | Α    | А    |
| T4S1MW-03S | SA    | SA   | Α    | Α    | А    |
| T4S1MW-09  | SA    | SA   | Α    | Α    | А    |
| T4S1MW-22  | SA    | SA   | Α    | Α    | А    |
| T4S1MW-23  | SA    | SA   | Α    | Α    | А    |

A = annually

Q = quarterly

SA = semiannually

## 3. 2024 Groundwater Monitoring Summary

In accordance with the approved MNA Work Plan, groundwater monitoring was conducted annually for all wells in the MNA network. The annual monitoring event was conducted May 13 through 16, 2024. Groundwater monitoring parameters for long-term monitoring included VOCs and natural attenuation parameters. Time-sensitive parameters (that is, pH, temperature, specific conductance, dissolved oxygen, oxidation-reduction potential, and turbidity) were measured in the field at the time of sample collection. Field notes and groundwater sampling logs are included in Appendix A.

#### 3.1 Groundwater-level Measurements

Groundwater level measurements were made at each well listed in Table 3-1 prior to purging and sampling. A potentiometric contour map for May 13, 2024, is presented on Figure 3-1.

#### 3.2 Water Quality Sampling Summary

Groundwater samples were collected using EPA low-flow sampling techniques. Parameters measured in the field at the time of sample collection are reported on Table 3-2. Collected samples were submitted for analysis to EMAX Laboratories, Inc. in Torrance, California. Groundwater laboratory analysis was performed for selected VOCs (PCE, TCE, cis-1,2-DCE, and vinyl chloride) to provide the agency-requested updated information on plume stability and to evaluate fate and transport. Analysis for geochemical indicators of natural attenuation (chloride, nitrate as nitrite, sulfate, total organic carbon [TOC], ferrous iron, carbon dioxide, and methane) was conducted to provide further evidence of site conditions favorable for natural enhanced reductive dechlorination. Copies of the analytical laboratory reports for groundwater samples are provided in Appendix B. In 2024, all monitoring wells were sampled in accordance with the SAP (Table 2-2). All wells were functional and accessible for water quality sampling. One field duplicate was collected at MW-12. No deviations from the SAP were noted.

### 3.3 Data Quality Review

A data quality evaluation was prepared for each monitoring event in 2024 (Appendix C). The completed data quality review procedure for each event included the following activities:

- Reviewing the case narrative, when available, from the laboratory report, noting any issues that were identified by the laboratory.
- Calculating hold times and comparing them with EPA's recommended maximum hold times.
   For the measured analytes, the hold times were calculated from information presented in the analytical laboratory reports.
- Reviewing the notes and definitions from the laboratory report, which are at the end of each report. Notes were reviewed to determine whether any sample results needed to be qualified. If results were qualified, the note and analyte were listed in the associated technical memoranda included as Appendix C.

For 2024 analytical reports received from the laboratory, the data quality evaluations present the number and type of samples per event, the sampling dates, qualified data (listed by the issue encountered), the parameter, and the sample locations and dates affected (Appendix C). The data sets were determined to be usable with the addition of selected flags. The precision and accuracy of the data, as measured by field and laboratory quality control indicators, demonstrate that the SAP goals for project use were met. Natural

attenuation parameters are presented in Table 3-3, and VOC data are presented in Table 3-4. VOC data are screened against ROD CULs selected from Table 17 of the *Portland Harbor ROD* (EPA 2017) (Table 3-4). CULs were selected from Remedial Action Objectives 4 and 8 associated with migration of contaminated groundwater. CULs reflect changes from the *Errata for Portland Harbor ROD* (EPA 2018) and Errata #2 for *Portland Harbor ROD* (EPA 2020).

## 4. Review of Southeast Area Conceptual Site Model

The Southeast Area of the Site has been the subject of environmental investigation and monitoring since the late 1980s. Contamination in shallow soil at a localized area within what is now referred to as the Southeast Area was discovered in 1989, evidently associated with a former aboveground tank that had been located near current monitoring well MW-06 (Dames & Moore 1989). The tank and associated contaminated soil were subsequently removed in coordination with DEQ oversight (Crosby & Overton 1989). Follow-up investigations in the Southeast Area identified VOCs in shallow groundwater. The VOCs of concern in the Southeast Area are PCE and its breakdown products TCE, cis-1,2-DCE, and vinyl chloride. Although TCE is a breakdown product of PCE, it was also used as a commercially available solvent; its presence may be attributable, in part, to the historical use of products containing TCE. Groundwater contamination is limited to the shallow aquifer, and Geoprobe sampling at the Site determined that VOCs do not extend below the confining layer, the top of which is situated at approximately 28 feet bgs (Jacobs 2021b). Groundwater in the shallow aquifer discharges to Terminal 4 Slip 1 of the Willamette River, approximately 1,000 feet downgradient from the Southeast Area. Groundwater monitoring has shown that concentrations in groundwater samples from wells closest to the river are below ROD CULs.

#### 4.1 Hydrologic Setting

The Site occupies a former alluvial floodplain of the Willamette River, as shown in an 1897 U.S. Geological Survey (USGS) map of the area (USGS 1897) (selected hydrographic features from which are depicted on Figure 4-1). The historical location of a former alluvial channel, identified by the USGS as Gatton Creek, was offsite to the east of the Site and flowed south to the area now occupied by Terminal 4 Slip 1. Dredged material consisting of silty sand was used to fill and level the area in early 1941 (OSC 1945). The Linnton USGS 7.5-minute topographic map indicates that the current topography of the Site is relatively flat (USGS 1961). Surface elevations range from 30 to 35 feet above mean sea level, with elevations in the northern part of the Site slightly lower than in the southern part. Native surface soil at the Site has been covered by fill, modified by re-grading and construction, and capped by pavement or structures. Fill and fluvial/lacustrine deposits extend from the ground surface to at least 258 feet bgs and are composed of interbedded silt, sand, and gravel layers, consisting of the following distinct zones:

- A shallow zone of fine sand and silty sand fill material (0 to 28 feet bgs), saturated in its lower half under unconfined conditions and underlain by a low-permeability confining layer. Elevated VOC concentrations have been determined to be limited to this shallow unconfined aquifer (Jacobs 2021b).
- An upper confining layer of low-permeability silt with sparsely interbedded sand from approximately 28 feet to 161 feet bgs. The top of this confining layer represents the historical ground surface prior to site filling and development. Principal sandy horizons within the upper confining layer are from 98 to 118 feet bgs and from 129 to 133 feet bgs.
- A deep, confined, water-bearing zone of sand and gravel from 161 feet to 221 feet bgs, in which the Site's production well is screened.
- A deep confining layer from 221 to at least 258 feet bgs (maximum depth of the Site's production well).

Following the guidance presented by EPA (2004), cross sections through the monitoring network in the general direction of groundwater flow and perpendicular to groundwater flow were developed and are presented on Figure 4-2. The subsurface information gained from the new wells installed in 2022 served to supplement the understanding of the subsurface geology along the flow path on the Port property. Figure 4-2 shows that somewhat greater variability in subsurface conditions was identified on the

Northwest Pipe property compared to that identified on the Port property, particularly in wells MW-05 and MW-06. The lower hydraulic conductivity associated with the finer grained material present in the subsurface slows groundwater movement on the Northwest Pipe property. The elevation of the bottom of the shallow aquifer was similar in all the borings along and perpendicular to the flow path and is observed at approximately 5 to 8 feet elevation (North American Vertical Datum of 1988).

In 2024, the depth to groundwater in the shallow aquifer ranged from 8.36 feet to 11.25 feet bgs on the Northwest Pipe property and from 7.29 feet to 18.23 feet bgs on the Port property (Table 3-1). These depths are consistent with the historical range for the Northwest Pipe property of 6 to 14 feet bgs (Jacobs 2021b). The depth to groundwater is shallower in the central part of the Site. A groundwater divide occurs between the IT Slip north–northwest of the Site and the Terminal 4 Slip 1 southwest of the Site, with groundwater occurring deeper on the northern and southern edges of the Site. The groundwater flow direction in the southeastern portion of the Site is consistently south–southwest toward Slip 1; though the gradient is generally flat and localized, temporal flow directions between wells can vary. Groundwater levels in the shallow aquifer are influenced by the Willamette River stage closer to the slip and recharge from precipitation closer to the Site. Groundwater depth measurements and water quality sampling performed in 2024 captures wet season conditions. The seasonality of groundwater VOC concentrations was evaluated in 2023, and the wet season was selected for monitoring as groundwater was observed to have consistently higher VOC concentrations than other times of the year (Jacobs, 2024).

The hydraulic gradient across the Site is low but increases approaching Slip 1. In May 2024, the hydraulic gradient across the Southeast Area had a transient northerly component, measured between MW-01 and MW-05, of 0.0004 foot per foot (ft/ft) and a transient westerly component, measured between MW-04 and MW-03, of 0.002 ft/ft. The gradient leaving the Southeast Area and across approximately a third of the flow path on the Port property was calculated between wells MW-03 and MW-11 at 0.002 ft/ft. Between wells MW-11 and T4S1MW-03S, gradient further increased to 0.007 ft/ft. These gradients are consistent with those previously observed across the Southeast Area and Port property (Jacobs 2021b, Jacobs 2023, and Jacobs 2024). The addition of well MW-11 served to better refine the conceptual site model by supporting that the gradient increases gradually along the flow path and more quickly closer to Slip 1. This low hydraulic gradient, and corresponding long travel time, across the Southeast Area and the Port property allows contaminant concentrations to be reduced by reductive dechlorination. Short duration periods of hydraulic gradient reversal or stagnation localized to the Southeast Area further slow groundwater movement toward Slip 1 and serve to prolong the exposure of contaminant concentrations to optimal reducing conditions as discussed in Section 4.2. The effect of localized horizonal hydraulic gradients on VOC transport is discussed in Section 5.2.2.

#### 4.2 Geochemical Environment

Reductive dechlorination is most effective in the range corresponding to sulfate reduction and methanogenesis (which occurs through the reduction of carbon dioxide) (EPA 1998, 2004). Groundwater chemistry that indicates sulfate-reducing or methanogenic conditions in the Southeast Area include the following:

- Low dissolved oxygen concentrations, typically less than 0.5 milligram per liter (mg/L)
- Low oxidation-reduction potential, typically less than 50 millivolts and preferably below -100 millivolts
- Low concentrations of nitrate, typically less than 1 mg/L
- Presence of ferrous iron (Fe<sup>2+</sup>), which results from the reduction of ferric iron (Fe<sup>3+</sup>), at concentrations greater than 1 mg/L

Natural attenuation parameters were measured in 2005 and from 2016 through 2024 to evaluate the potential for reductive dechlorination based on geochemical conditions at the Site (Table 3-3). The dissolved oxygen and oxidation-reduction potential levels measured at Site monitoring wells typically meet the criteria for sulfate-reducing or methanogenic conditions listed previously. Additionally, the pH of groundwater measured at the Site is within the range amenable to microorganism survival, and the alkalinity is sufficient for buffering the pH against acids naturally produced by bacteria during biodegradation.

The natural attenuation data also were evaluated using EPA's screening worksheet to assess the potential for reductive dechlorination based on geochemical conditions (EPA 1998). The evaluation was performed using data from MW-02 for background conditions for both the 2005 and 2016 through 2024 data sets. For data representing the plume core of VOCs, wells MW-01, MW-04, and MW-06 were selected for 2005, and wells MW-05 and MW-06 were selected for 2016 through 2024. Although the evaluation and determinations about the presence of ongoing biodegradation are intended for use with data from the plume core (EPA 1998), the potential for reductive dechlorination on the Port property outside of the zone of highest contaminants was also evaluated for the upgradient portion of the Port property. Wells MW-10, MW-11, and MW-12 were evaluated to represent the upgradient portion of the Port property using 2022 and 2024 data.

The points awarded during the screening performed in the worksheet are interpreted as presented in Table 4-1 (EPA 1998).

Table 4-1. Interpretation of Points Awarded during Screening

| Score    | Interpretation                                                           |
|----------|--------------------------------------------------------------------------|
| 0 to 5   | Inadequate evidence for anaerobic biodegradation of chlorinated organics |
| 6 to 14  | Limited evidence for anaerobic biodegradation of chlorinated organics    |
| 15 to 20 | Adequate evidence for anaerobic biodegradation of chlorinated organics   |
| >20      | Strong evidence for anaerobic biodegradation of chlorinated organics     |

Note:

biodegradation = reductive dechlorination

Table 4-2 contains the worksheet along with scores assigned to the Northwest Pipe property and the upgradient portions of the Port property for 2016 through 2024. The total score of 21 for the Northwest Pipe data falls within the "strong evidence" category identified by EPA for VOC degradation via reductive dechlorination (EPA 1998) (Table 4-1), indicating that geochemical conditions at the Site are well-suited to reductive dechlorination and consistent with the observed limited migration of VOCs. The upgradient portion of the Port property receives a total score of 17, falling within the category of "adequate evidence" category identified by EPA for VOC degradation via reductive dechlorination (EPA 1998) (Table 4-1), indicating that geochemical conditions are still conducive to reductive dechlorination. Data provided by the new wells installed in 2022 provide the evidence that reductive dechlorination is continuing on the Port property. This evaluation shows MNA is an effective and protective remedy for the groundwater in the Southeast Area and that the geochemical environment supports VOC degradation via reductive dechlorination.

Table 4-2. Analytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradation Processes

|                                      | Concentration in<br>Most<br>Contaminated |                                                                                  |                | Northwest<br>Pipe | Port of<br>Portland<br>Upgradient |
|--------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|----------------|-------------------|-----------------------------------|
| Analysis                             | Zonea                                    | Interpretation                                                                   | Value          | 2016 to 2024      | 2022 to 2024                      |
| Dissolved<br>Oxygen                  | < 0.5 mg/L                               | Tolerated; suppresses the reductive pathway at higher concentrations             | 3              | 3                 | 0                                 |
| Nitrate                              | < 1 mg/L                                 | At higher concentrations, may compete with reductive pathway                     | 2              | 2                 | 2                                 |
| Iron II                              | > 1 mg/L                                 | Reductive pathway possible                                                       |                | 3                 | 3                                 |
| Sulfate                              | < 20 mg/L                                | At higher concentrations, may compete with reductive pathway                     | 2              | 2                 | 2                                 |
| Sulfide                              | > 1 mg/L                                 | Reductive pathway possible 3                                                     |                | ND                | ND                                |
| Methane                              | > 0.5 mg/L                               | Ultimate reductive Breakdown 3 product                                           |                | 3                 | 3                                 |
| Oxidation-<br>reduction<br>Potential | < 50 millivolts                          | Reductive pathway likely                                                         | 2              | 1                 | 1                                 |
| рН                                   | 5 < pH < 9                               | Optimal range for reductive pathway                                              | 0              | 0                 | 0                                 |
| TOC                                  | > 20 mg/L                                | Carbon and energy source; drives dechlorination; can be natural or anthropogenic | 2              | 0                 | 0                                 |
| Temperature                          | >20°C                                    | At T > 20°C, biochemical process is accelerated                                  | 1              | 0                 | 0                                 |
| Carbon Dioxide                       | > 2x<br>background <sup>a</sup>          | Ultimate oxidative breakdown product                                             | 1              | 1                 | 0                                 |
| Alkalinity                           | > 2x<br>background <sup>a</sup>          | Results from interaction between carbon dioxide and aquifer minerals             | 1              | ND                | ND                                |
| Chloride                             | > 2x<br>background <sup>a</sup>          | Breakdown product of organic chlorine                                            | 2              | 0                 | 0                                 |
| Hydrogen                             | > 1 nM                                   | Reductive pathway possible                                                       | 3              | ND                | ND                                |
| TCE                                  | -                                        | Breakdown product of PCE                                                         | 2 <sup>b</sup> | 2                 | 2                                 |
| DCE                                  | -                                        | Breakdown product of TCE                                                         | 2 <sup>b</sup> | 2                 | 2                                 |
| Vinyl Chloride                       | -                                        | Breakdown product of DCE                                                         | 2 <sup>b</sup> | 2                 | 2                                 |
|                                      |                                          | Total Score                                                                      | •              | 21                | 17                                |

## Table 4-2. Analytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradation Processes

#### Notes:

<sup>a</sup> Data from MW-02 are used to indicate background conditions. MW-05 and MW-06 are used for 2016 to 2024. Wells MW-10, MW-11, and MW-12 were evaluated to represent the upgradient portion of the Port property using 2022 and 2024 data.

<sup>b</sup> Points awarded only if it can be shown that the compound is a breakdown product (that is, not a constituent of the source material). The presence of TCE and further breakdown products, combined with the limited migration distance away from the area of highest concentration, indicate that TCE, DCE, and vinyl chloride are breakdown products.

#### Notes:

ND = Not determined. Assigned a value of zero; the actual value, if data were available, may be higher.

°C = degree(s) Celsius

nM = nanomoles per liter

Source Area Remediation

Soil associated with a former aboveground tank located near current monitoring well MW-06 (Dames & Moore 1989) was remediated in 1989. Following excavation, confirmation sampling was performed, and low levels of PCE were detected in soil. Confirmation soil sample results ranged from below the reporting limit of 0.005 milligram per kilogram (mg/kg) in two samples to a maximum of 0.17 mg/kg PCE from the eastern wall of the excavation. This work was done in communication with DEQ, which considered the site a low-priority project (DEQ 1989). Although it was done several years before DEQ issued its risk-based decision-making guidance, the post-remedial action confirmation samples showed PCE levels in soil after remediation were well below potentially applicable risk-based decision-making values. Because this potential source area has been remediated in the past, the source area was capped in 2009/2010, and no other on-site potential source area has been identified in more than 25 years of investigation at the Site, the source control element of an on-site MNA remedy (EPA 2004) has been met.

## 5. Monitored Natural Attenuation Data Evaluation

This annual groundwater report was developed in accordance with MNA guidance (EPA 2004) and the MNA Work Plan (Jacobs 2022). This report presents groundwater data collected in 2024 which, including data collected before that, provide evidence in support of the MNA decision for VOCs in Southeast Area groundwater.

#### 5.1 VOC Concentrations in the Southeast Area

Low-level VOC concentrations in the Southeast Area have decreased substantially since monitoring began in the early 2000s, and recent concentrations demonstrate that MNA is an effective source control measure and remedial action for groundwater. Samples in the Southeast Area were collected from six wells in the area from 2001 through 2005, 2007, and 2016 through 2024. Groundwater sampling using Geoprobes was conducted in 2001, 2002, and 2004. Four Port wells were included in the monitoring program from 2016 through 2021, and an additional three wells located on the Port property have been monitored since their installation in 2022.

Historical VOC concentrations in groundwater in the Southeast Area collected from 2001 through 2005 are shown on Figure 5-1. The highest historical concentrations of PCE occurred near MW-06 and MW-01 close to the location of the former aboveground tank, with lower concentrations detected both upgradient (MW-05) and downgradient (MW-03 and MW-04) of these wells. Groundwater monitoring resumed in 2016.

VOC concentrations in monitoring wells for both the Northwest Pipe property and Port property from 2016 through 2024 are shown on Figures 5-2 and 5-3, respectively. Trend plots for this time period are presented on Figures 5-4, 5-5, and 5-6. These data show the wells with the highest VOC concentrations are consistently wells MW-05 and MW-06. By comparison, MW-01, MW-03, and MW-04 have shown consistently moderate concentrations, and MW-02 and the Port property wells have concentrations near or less than the laboratory reporting limits for VOCs.

In September 2022, MW-02 exhibited values of cis-1,2-DCE and vinyl chloride approximately 1 order of magnitude greater than those usually observed. Concentrations of cis-1,2-DCE and vinyl chloride were conversely an order of magnitude lower than usual at well MW-06, approximately 200 feet to the east of MW-02. This trend continued through 2023 and 2024 and also included increases in PCE and TCE at MW-02 and reciprocal decreases in PCE and TCE at MW-06. These observations suggest the core of the plume may have moved slightly west of its usual location closer to MW-06. To assess what may have caused this condition, Willamette River stage height measurements were compared for 2022, 2023, and 2024 to average conditions between 2007 and 2024. The data for 2022 show a month-and-a-half period of unusually high river stage, from early June to mid-July, and a similar elevated high river stage occurred in May 2023 (Figure 5-7). Both periods of high river stage ended in a steep decline (steeper than typical). In 2023, the steep decline is followed by lower-than-typical river stages until September. In 2024, the spring river level was lower than normal, similar to 2021 levels. In a review of Site water levels, groundwater elevations were found to be elevated to a range of 20 to 21 ft for both 2022 and 2023 measurements versus the more typical 17 to 18 ft elevations measured from 2019 through 2021 (Figure 5-7). Despite the lower-than-normal river stage levels in spring 2024, the groundwater elevations of site wells continued to be elevated in May 2024 around 22.5 ft. The unusual high river stages would cause a general rise in water levels both in Willamette River tributaries as well as in aquifers hydraulically connected to the river. Then, when the river stage underwent its unusually steep decline, that would have caused a stronger-than-normal westerly gradient in the aquifer underlying the site. Although not

definitive, this sequence of events and the resulting higher than normal water levels across the Site could have caused the plume core to be pulled slightly west.

Wells MW-10, MW-11, and MW-12 on the Port property were installed approximately perpendicular to the groundwater flow path at the downgradient edge of the plume. The VOC concentrations observed in 2022 and 2024 support that these wells are near the leading edge of the plume just prior to where reductive dechlorination is anticipated to have degraded concentrations below laboratory reporting limits. The data obtained from these wells suggest the centerline of the plume is in the area monitored by MW-11 and MW-12. These wells improve the confidence in the assessment of the lateral extent of the plume and increases the lateral area monitored as requested by DEQ (DEQ 2021). The addition of three monitoring wells further allows for an early warning of potential changes in groundwater quality that may have relevance to the evaluation of protectiveness of the MNA remedy with respect to the Willamette River.

Data collected from 2016 through 2024 exhibit normal and expected temporal variability in concentrations. However, the maximum value of the most highly concentrated VOC identified in data (PCE in MW-05; 4,400 micrograms per liter [ $\mu$ g/L] measured in May 2019) is less than half the maximum concentration previously detected in groundwater at the site (PCE in GP-1; 9,800  $\mu$ g/L measured in 2001). This reduction in the concentration of PCE is consistent with a stable or decreasing plume that is controlled by the natural attenuation processes.

#### 5.2 Evidence of Plume Stability

Jacobs reviewed EPA documents and other supporting information on plume stability in the context of MNA decision-making to evaluate the stability of the Southeast Area VOC plume.

#### 5.2.1 Evaluation of Plume Stability Using EPA Criteria (1999)

As stated in *Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites,* "sites where the contaminant plumes are no longer increasing in extent, or are shrinking, would be the most appropriate candidates for MNA remedies" (EPA 1999). The factors that characterize plume stability outlined by EPA (1999) are as follows:

- The plume area is not expanding.
- The geochemical environment is favorable to degradation of site-related constituents.

When defining the plume area, EPA (1999) states that a plume boundary is more realistically defined by a zone rather than a line, and concentration fluctuations occurring within this zone likely result from factors such as analytical, seasonal, or spatial variations, and may or may not be indicative of a trend in plume migration. One way to counter this variability is presented in later EPA guidance (2004), which states that data from downgradient limits of a plume should be considered in a group of wells to determine stable or decreasing trends compared to previous sampling rounds (EPA 2004).

The Southeast Area plume meets the metrics for stability presented in these documents as evidenced by VOC concentrations in the plume's margin, in downgradient wells, and in the soil gas investigation performed in 2021 (Jacobs 2021a). The results of the soil gas sampling indicate that the downgradient migration of VOCs in groundwater is limited because nearly all the passive soil gas sampler results on Port property showed no detectable chlorinated ethenes. Furthermore, wells at the plume margins (such as MW-03 and T4S1MW-22) have shown clearly decreasing trends in the concentrations of parent VOCs. The wells closest to Terminal 4 Slip 1 (T4S1MW-03S and T4S1MW-09) have not had detectable VOCs since Northwest Pipe began consistent groundwater monitoring in 2016.

As described in Section 4.2, trends in concentrations in wells within the plume interior exhibit temporal variability. According to EPA (2004), contaminant concentrations at individual sampling points may exhibit fluctuations, including small-scale expansion and shrinkage in response to groundwater flow mechanics and biological degradation rates throughout the year. In addition, VOC concentrations in individual wells may fluctuate with changes in plume configuration caused by oscillations in groundwater flow (EPA 2004). Concentrations in MW-03 are a good example of this characteristic. Although some concentrations were higher in 2016 than previously measured in 2005, concentrations of PCE and TCE have been consistently decreasing since monitoring resumed in 2016. Likewise, cross-gradient wells T4S1MW-22 and T4S1MW-23 both show much lower concentrations in recent monitoring than were found in historical samples, as do wells closer to the source area, MW-01 and MW-04. Minor variations in concentration in the plume interior are expected, commonly observed, and are consistent with a stable to decreasing condition as long as the areal extent of the plume does not expand.

After eliminating the effect of the molecular weights of the different constituents by converting concentration data to micromoles per liter, the downward trends of PCE and TCE to their breakdown products (cis-1,2-DCE and vinyl chloride) are illustrated in wells MW-06 and MW-03 (Figure 5-8). PCE is a definitive parent compound, while TCE may be a parent compound or a breakdown product of PCE. The presence and increasing magnitude of the breakdown products of PCE and TCE are evidence that reductive dechlorination is active in the Southeast Area.

Figure 5-9 presents the molar concentrations for May 2024 parallel to groundwater flow along the centerline of the plume. This plot includes the three highest-concentration wells in the Southeast Area (MW-05, MW-06, and MW-03), new well MW-11 on the Port property, and a Port well closest to Terminal 4 Slip 1 (T4S1MW-03S). Molar concentrations of PCE and TCE are highest in MW-05 and decrease progressively from MW-06 to MW-03 to MW-11 and are nondetect, or estimated in the case of PCE, at the well closest to the slip at T4S1MW-03S. Vinyl chloride and cis-1,2-DCE are also highest in MW-05, but lower in MW-06 than MW-03. VOC concentrations are substantially reduced on the Site, and all average VOC molar concentrations are less than 0.05 micromole per liter beyond MW-11, over 700 feet from Slip 1. VOCs are below detection limits and ROD CULs in Port well T4S1MW-03S (and neighboring well T4S1MW-09), over 100 feet distant from the slip. This pattern shows effective and protective degradation of the plume of VOCs by natural attenuation processes.

#### 5.2.2 Evaluation of Plume Stability Using Criteria in EPA (1998)

EPA's *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water* (1998) states the determination of plume stability should be based on the following:

- Contaminant properties, including volatility, sorptive properties, and biodegradability
- Aquifer properties, including hydraulic gradient, hydraulic conductivity, porosity, and concentrations
  of native organic material in the aquifer matrix (fractional organic carbon, or foc)
- The location of the plume and contaminant source relative to potential receptor exposure points (that is, the distance between the leading edge of the plume and the potential receptor exposure points)

The first point in support of plume stability is addressed by the screening worksheet described in Section 4.1, also included in EPA (1998), which integrates the contaminant properties, including volatility, sorptive properties,  $f_{oc}$  (from the second point), and biodegradability. When screened, site data scored in the "strong evidence" category, indicating that geochemical conditions at the Site support reductive dechlorination and are consistent with the data demonstrating limited migration of VOCs.

Regarding the second point in EPA's (1998) protocol in support of plume stability, aquifer properties were investigated using aquifer testing in November 2016 to provide additional site-specific information on

aquifer hydraulic characteristics and better determine the groundwater flow velocity at the site (Jacobs 2021b). Single-well rising head tests, commonly referred to as slug-withdrawal tests, were performed on three of the six monitoring wells on the Site (MW-05, MW-06, and MW-03) and two Port wells (T4S1MW-22 and T4S1MW-03S). The typical hydraulic conductivity for the shallow aquifer along the flow path ranges from approximately 2 to 25 feet per day (ft/day). The hydraulic conductivity of MW-05 was calculated to be higher than the typical range (130 ft/day), indicating that this well is screened in a localized zone of higher hydraulic conductivity. The higher hydraulic conductivity at this well is reflected in observations of minimal drawdown during sampling; however, this zone of higher hydraulic conductivity is bounded by lower conductivity in the downgradient direction and that lower conductivity will ultimately determine the rate of flow through this area (Jacobs 2021b). The average hydraulic conductivity over the flow path is 12.5 ft/day.

The net groundwater flow direction is consistently south to southwest toward Terminal 4 Slip 1 on the Port property, downgradient of the Southeast Area. The hydraulic gradient increases approaching Terminal 4 Slip 1, from an average of 0.005 ft/ft from the boundary of the Site through the middle of the Port property, transitioning to an average of 0.01 ft/ft near the slip (Jacobs 2021b)<sup>1</sup>. Water levels on the Port property, particularly closer to the Terminal 4 Slip 1, are more susceptible to influence from river stage because of closer proximity to surface water. This effect is most pronounced in wells located closest to the Terminal 4 Slip 1. On the Northwest Pipe property, the hydraulic gradient appears to be nearly flat and more variable than further south, but flow is predominantly southerly as well. The observed variability in hydraulic gradient appears to be caused by a combination of the gradual gradient and short-term aquifer response to changes in river stage or precipitation events. The groundwater flow direction in the area of MW-04, to the east of the high-concentration area, appears to vary seasonally with westerly and, infrequently, northerly flow directions. The decrease in hydraulic gradient (an average of 0.0006 ft/ft) across the Southeast Area compared to the Port property, causes slower groundwater flow compared to the Port property. Groundwater levels farther away from surface water, such as at the Southeast Area, have less sensitivity to changes in river stage. Actual groundwater movement during short periods of hydraulic gradient reversal are minimal because of the combination of low hydraulic gradient, low hydraulic conductivity, and the brief duration of gradient reversal. When considering retardation of VOCs dissolved in groundwater caused by sorption/desorption onto organic carbon in the aquifer matrix, the movement of VOCs would be much less even than that suggested by calculations of groundwater flow.

Using these site-specific parameters, groundwater velocity can be calculated for the Southeast Area using a version of Darcy's Law:

$$v = K * i/n$$

where:

v = groundwater velocity (ft/day)
 K = hydraulic conductivity (ft/day)
 i = hydraulic gradient (ft/ft)
 n = effective porosity (unitless)

The average hydraulic conductivity (12.5 ft/day), hydraulic gradient (0.005 ft/day), and typical effective porosity based on soil type (0.2) results in a groundwater velocity across the Southeast Area and the northern Port property of 0.31 ft/day.

<sup>&</sup>lt;sup>1</sup> 2024 hydraulic gradient observations were approximately 0.002 ft/ft across the Northwest Pipe property and the middle of the Port property, and 0.007 ft/ft closer to Slip 1. The hydraulic gradient values used in this analysis have been maintained at average levels to be conservative.

Regarding the third point in the EPA (1998) protocol in support of plume stability, the slow rate of groundwater flow and the distance from the Southeast Area to the river (1,370 feet from MW-06 to Terminal 4 Slip 1) provides sufficient distance between the leading edge of the plume and the potential receptor exposure point at the river, thereby addressing the third point in EPA (1998) establishing plume stability. Therefore, data for the Southeast Area support all three points, thus verifying plume stability as described in EPA guidance (1998).

According to the evaluation presented in this work plan by the metrics outlined in EPA guidance on MNA, the VOC plume in the Southeast Area is stable.

#### **5.2.3** Site Specific Attenuation Rate Estimates

Using the data from 2024, bulk attenuation rates were calculated using the method presented in *Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies* (EPA 2002). Bulk attenuation rates are based on concentration versus distance attenuation and "are used for estimating if a plume is expanding, showing relatively little change, or shrinking due to the combined effects of dispersion, biodegradation, and other attenuation processes" (EPA 2002). The rate constants for each VOC were derived by plotting the natural log of the 2024 concentration versus the distance along the centerline of the groundwater plume for wells MW-05, MW-06, MW-03, MW-11, and T4S1MW-03S (Appendix D). The negative of the slope of the linear trendline for each constituent was then multiplied by the contaminant velocity. The contaminant velocity is the groundwater velocity divided by the retardation factor. For these calculations, the retardation factor was estimated based on effective porosity (typical value, 0.2), soil bulk density (typical value, 1.7 kilograms per Liter), fraction of organic carbon (average of three shallow aquifer formation samples collected in boring MW-06, 0.000843), and partition coefficients for each constituent (literature values) (see Appendix D for calculation). The resulting attenuation rates are presented in Table 5-1.

|                                            |                                  | 2024 Concentrations (μg/L) |        |             |                |  |
|--------------------------------------------|----------------------------------|----------------------------|--------|-------------|----------------|--|
| Wells Along Flow Path                      | Distance Along<br>Flow Path (ft) | PCE                        | TCE    | cis-1,2-DCE | vinyl chloride |  |
| MW-05                                      | 76                               | 240                        | 36     | 920         | 130            |  |
| MW-06                                      | 248                              | 150                        | 23     | 45          | 0              |  |
| MW-03                                      | 483                              | 4                          | 6      | 57          | 4              |  |
| MW-11                                      | 808                              | 0.6                        | 0.5    | 26.0        | 7.6            |  |
| T4S1MW-03S*                                | 1,320                            | 0.0330                     | 0.0300 | 0.0200      | 0.0200         |  |
| Slope of linear trendline (per foot)       |                                  | -0.0075                    | -0.006 | -0.0075     | -0.0048        |  |
| Groundwater seepage velocity (ft/day)      |                                  | 0.31                       | 0.31   | 0.31        | 0.31           |  |
| Retardation factor                         |                                  | 4.05                       | 1.93   | 1.90        | 1.21           |  |
| Contaminant seepage velocity (ft/day)      |                                  | 0.076                      | 0.160  | 0.164       | 0.256          |  |
| Estimated Bulk Attenuation Rate (per day)  |                                  | 0.0007                     | 0.0005 | 0.0006      | 0.0004         |  |
| Estimated Bulk Attenuation Rate (per year) |                                  | 0.21                       | 0.17   | 0.21        | 0.14           |  |

Note:

#### 5.3 Protectiveness of MNA Remedy

The possible transport pathways from the source area to potential receptors include the following: (1) shallow groundwater discharge to surface water, (2) contact with shallow groundwater during excavation activities, and (3) volatilization of VOCs from shallow groundwater to indoor and outdoor air.

<sup>\*</sup>Concentrations at T4S1MW-03S are below detection limits, with the exception of PCE, which is estimated.

Conclusions from the human health risk screening for groundwater as presented in the RI/SCE (Jacobs 2021b) are that maximum VOC concentrations in groundwater do not pose an unacceptable risk to human health or the environment, as summarized for each pathway below:

- Groundwater Discharge to Surface Water Groundwater samples collected at wells closest to the river have not exceeded ROD CULs, indicating that there is no unacceptable risk to human health from the groundwater-to-surface-water pathway. Groundwater samples collected at wells closest to the river have not exceeded DEQ Level II screening level values for potential aquatic, bird, or mammalian receptors, indicating that there is no unacceptable risk to ecological receptors from a groundwater-to-surface-water pathway. Furthermore, the soil gas investigation conducted in 2021 indicate that the groundwater-to-surface-water (Willamette River at Terminal 4 Slip 1) transport pathway is incomplete (Jacobs 2021a).
- Shallow Groundwater in a Potential Excavation –Data generated since groundwater monitoring resumed in 2016 (and continues to the present) confirm that the risk posed by recent and current concentrations is below the DEQ hazard index target of 1. This data reflects current risk at the Site by accounting for continued and active degradation of VOCs. Contact with groundwater through excavation work is controlled by the Site's Contaminated Media Management Plan (included as an appendix to the RI/SCE [Jacobs 2021b]). The media management plan includes worker notification, health and safety precautions, and proper management and disposal of groundwater encountered during a potential excavation.
- Volatilization from Shallow Groundwater to Indoor and Outdoor Air Maximum detected concentrations for groundwater samples collected from Site monitoring wells and Geoprobe samples were compared to DEQ groundwater vapor intrusion risk-based concentrations (RBCs), groundwater outdoor air RBCs, and groundwater in an excavation RBCs. None of the VOC concentrations, either historical or current, exceeded indoor or outdoor air occupational worker RBCs.

The risk assessment presented in the RI/SCE (Jacobs 2021b) concluded that no excess human health or ecological risk exists from VOCs in the Southeast Area of the Site. In addition, given the ongoing process of reductive dechlorination, VOC concentrations in the Southeast Area of the Site are continuing to attenuate below levels of potential concern before reaching surface water.

### 6. Conclusions

Groundwater monitoring conducted in 2024 at Northwest Pipe confirms that natural attenuation of VOCs in the shallow groundwater at the Southeast Area is occurring, is effective, and is protective (that is, there are no adverse effects in the form of VOCs at concentrations above the Portland Harbor ROD CULs). The most recent groundwater data confirms the long-standing conceptual site model by way of the following:

- The Northwest Pipe groundwater source area has been remediated.
- Groundwater monitoring at the site indicates that the groundwater plume is stable or decreasing, consistent with EPA guidance.
- Potential human health and ecological risk are addressed by MNA.
- Groundwater flow observations in 2024 continue to show the plume is stable.
- Analysis for geochemical indicators of natural attenuation demonstrates the geochemical environment continues to be favorable to degradation of site-related VOCs by reductive dechlorination to maintain plume stability.
- New wells installed in 2022 on the Port property provide additional information on the lateral extent of the plume and additional insight on groundwater flow conditions in the area. The addition of three monitoring wells further allows for an early warning of the potential migration of contaminants toward the Willamette River, in the unlikely event that this would occur.
- Analysis indicates the plume is not migrating beyond previously-documented boundaries.
- Concentrations of VOCs remaining in Site groundwater are relatively low, and there is consistent
  evidence in monitoring data collected since 2016 that groundwater containing VOCs above protective
  levels established in the ROD does not reach the Willamette River.

MNA is currently satisfying the source control objective for the Site and is an effective remedy under DEQ's Hazardous Substance Remedial Action Rules (OAR 340-122-0040) and source control measure under the EPA and DEQ Joint Source Control Strategy (DEQ and EPA 2005). Long-term groundwater monitoring will continue annually as scheduled in the approved MNA Work Plan. Based on the seasonality of the data, the high-water conditions of the second quarter will be targeted for annual monitoring going forward.

## 7. References

Crosby & Overton. 1989. Letter from Hubert Willer, Project Manager, Crosby & Overton, to William Dana, Oregon DEQ. August 11.

Dames & Moore. 1989. Phase I and Phase II Property Transfer Assessment, Northwest Pipe and Casing Company Site, Portland, Oregon. March 9.

Jacobs. 2021a. Passive Soil Gas Investigation Results and Proposed Well Locations Memorandum. August.

Jacobs. 2021b. *Remedial Investigation and Source Control Evaluation*. Revised. Prepared for Northwest Pipe Company, ECSI #138, Portland, Oregon. October.

Jacobs. 2022. . Prepared for Northwest Pipe Company, ECSI #138, Portland, Oregon. April.

Jacobs. 2023. 2022 Annual Groundwater Monitoring Report. Prepared for Northwest Pipe Company, ECSI #138, Portland, Oregon. August.

Jacobs. 2024. 2023 Annual Groundwater Monitoring Report. Prepared for Northwest Pipe Company, ECSI #138, Portland, Oregon. March.

Oregon Department of Environmental Quality (DEQ). 1989. Letter from Michael Downs, Administrator, Environmental Cleanup Division, DEQ, to William Tagmyer, President, Northwest Pipe & Casing Co. November 17.

Oregon Department of Environmental Quality (DEQ). 2021. Letter from Jim Orr, Project Manager, to Stephanie Heldt-Sheller, Corporate Environmental Manager of Northwest Pipe Company. Re: DEQ Comments for NWP August 19, 2021 Report for Passive Soil Gas Investigation and Proposed Well Locations ECSI #138, December 7.

Oregon Department of Environmental Quality and U.S. Environmental Protection Agency (DEQ and EPA). 2005. *Portland Harbor Joint Source Control Strategy*. Final. Guidance document issued jointly by the Oregon Department of Environmental Quality and Environmental Protection Agency Region 10. December.

Oregon Shipbuilding Corporation (OSC). 1945. *Record Breakers*. Accessed October 4, 2021. http://www.armed-guard.com/recbr1.html.

U.S. Environmental Protection Agency (EPA). 1998. *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water*. United States Environmental Protection Agency Office of Research and Development. EPA/600/R- 98/128. September.

U.S. Environmental Protection Agency (EPA). 1999. *Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites*. Office of Solid Waste and Emergency Response. Directive 9200.4-17P. April.

U.S. Environmental Protection Agency (EPA). 2002. *Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies*. National Risk Management Research Laboratory. EPA/540/S-02/500. November.

- U.S. Environmental Protection Agency (EPA). 2004. *Performance Monitoring of MNA Remedies for VOCs in Ground Water*. Office of Research and Development. EPA/600/R-04/027. April.
- U.S. Environmental Protection Agency (EPA). 2017. *Record of Decision, Portland Harbor Superfund Site. Portland, Oregon*. U.S. EPA Region 10, Seattle, Washington. January.
- U.S. Environmental Protection Agency (EPA). 2018. *Errata for Portland Harbor Superfund Site Record of Decision, Version 1.0*. April 3.
- U.S. Environmental Protection Agency (EPA). 2020. *Errata #2 for Portland Harbor Superfund Site Record of Decision ROD Table 17*. January 14.
- U.S. Geological Survey (USGS). 1897. U.S. Geological Survey Map; Oregon-Washington, Portland Quadrangle. Edition of Nov. 1897. Reprinted June 1901.
- U.S. Geological Survey (USGS). 1961. U.S. Geological Survey Map; Portland, Washington-Oregon; N4530-W12230/15.

**Tables** 

**Table 3-1**Groundwater and Willamette River Elevation Measurements
Northwest Pipe Company Portland Plant

|          | Measurement Point           | Ground Surface              |                  | Depth to Water | Elevation    |
|----------|-----------------------------|-----------------------------|------------------|----------------|--------------|
| Well ID  | Elevation <sup>1</sup> (ft) | Elevation <sup>1</sup> (ft) | Measurement Date | (ft bgs)       | (f           |
| MW-01    | 30.64                       | 30.99                       | 10/25/2016       | 12.96          | 17.6         |
|          |                             |                             | 1/10/2017        | 11.60          | 19.0         |
|          |                             |                             | 1/30/2017        | 11.23          | 19.4         |
|          |                             |                             | 4/25/2017        | 9.64           | 21.0         |
|          |                             |                             | 7/24/2017        | 11.05          | 19.5         |
|          |                             |                             | 12/4/2018        | 13.89          | 16.7         |
|          |                             |                             | 5/7/2019         | 12.76          | 17.8         |
|          |                             |                             | 10/7/2019        | 13.87          | 16.7         |
|          |                             |                             | 4/21/2020        | 12.88          | 17.7         |
|          |                             |                             | 10/20/2020       | 14.15          | 16.4         |
|          |                             |                             | 4/13/2021        | 12.28          | 18.3         |
|          |                             |                             | 10/26/2021       | 13.89          | 16.7         |
|          | 33.82                       | 34.17                       | 4/11/2022        | 11.97          | 21.8         |
|          | 33.02                       | 3 1.17                      | 9/12/2022        | 12.81          | 21.0         |
|          |                             |                             | 3/20/2023        | 11.78          | 22.0         |
|          |                             |                             | 8/21/2023        | 12.94          | 20.8         |
|          |                             |                             | 5/13/2024        | 11.25          | 22.5         |
| MW-02    | 27.66                       | 27.97                       | 10/25/2016       | 10.04          | 17.6         |
| 10100 02 | 27.00                       | 27.57                       | 1/10/2017        | 8.70           | 18.9         |
|          |                             |                             | 1/30/2017        | 8.22           | 19.4         |
|          |                             |                             | 4/25/2017        | 6.66           | 21.0         |
|          |                             |                             | 7/24/2017        | 8.16           | 19.5         |
|          |                             |                             | 12/4/2018        | 10.98          | 16.6         |
|          |                             |                             | 5/7/2019         | 9.84           | 17.8         |
|          |                             |                             | 10/7/2019        | 10.92          | 16.7         |
|          |                             |                             | 4/21/2020        | 9.97           | 17.6         |
|          |                             |                             |                  |                | 16.4         |
|          |                             |                             | 10/20/2020       | 11.23          |              |
|          |                             |                             | 4/13/2021        | 9.36           | 18.3         |
|          | 20.05                       | 24.46                       | 10/26/2021       | 10.95          | 16.7         |
|          | 30.85                       | 31.16                       | 4/11/2022        | 9.06           | 21.7         |
|          |                             |                             | 9/12/2022        | 9.91           | 20.9         |
|          |                             |                             | 3/20/2023        | 8.85           | 22.0         |
|          |                             |                             | 8/21/2023        | 10.02          | 20.8         |
|          | 20.45                       | 20.20                       | 5/13/2024        | 8.36           | 22.4         |
| MW-03    | 29.15                       | 29.38                       | 10/25/2016       | 11.63          | 17.5         |
|          |                             |                             | 1/10/2017        | 10.20          | 18.9         |
|          |                             |                             | 1/30/2017        | 9.69           | 19.4         |
|          |                             |                             | 4/25/2017        | 8.09           | 21.0         |
|          |                             |                             | 7/24/2017        | 9.82           | 19.3         |
|          |                             |                             | 12/4/2018        | 12.66          | 16.4         |
|          |                             |                             | 5/7/2019         | 11.42          | 17.7         |
|          |                             |                             | 10/7/2019        | 12.59          | 16.5         |
|          |                             |                             | 4/21/2020        | 11.56          | 17.5         |
|          |                             |                             | 10/20/2020       | 12.89          | 16.2         |
|          |                             |                             | 4/13/2021        | 10.91          | 18.2         |
|          |                             |                             | 10/26/2021       | 12.49          | 16.6         |
|          | 32.34                       | 32.57                       | 4/11/2022        | NM             | NI           |
|          |                             |                             | 9/12/2022        | 11.49          | 20.8         |
|          |                             |                             | 3/20/2023        | 10.23          | 22.1         |
|          |                             |                             | 8/21/2023        | 11.62          | 20.7         |
|          |                             |                             | 5/13/2024        | 9.96           | 22.3         |
| MW-04    | 30.12                       | 30.77                       | 10/25/2016       | 12.50          | 17.6         |
|          |                             |                             | 1/10/2017        | 11.07          | 19.0         |
|          |                             |                             | 1/30/2017        | 10.62          | 19.5         |
|          |                             |                             | 4/25/2017        | 9.00           | 21.1         |
|          |                             |                             | 7/24/2017        | 10.64          | 19.4         |
|          |                             |                             | 12/4/2018        | 13.49          | 16.6         |
|          |                             |                             | 5/7/2019         | 12.29          | 17.8         |
|          |                             |                             |                  |                |              |
|          |                             |                             | 10/7/2019        | 13.46          | 16.6         |
|          |                             |                             |                  | 13.46<br>12.42 | 16.6<br>17.7 |

**Table 3-1**Groundwater and Willamette River Elevation Measurements
Northwest Pipe Company Portland Plant

|                    | Measurement Point           | Ground Surface              |                  | Depth to Water | Elevatio     |
|--------------------|-----------------------------|-----------------------------|------------------|----------------|--------------|
| Well ID            | Elevation <sup>1</sup> (ft) | Elevation <sup>1</sup> (ft) | Measurement Date | (ft bgs)       | (f           |
| MW-04              | 30.12                       | 30.77                       | 4/13/2021        | 11.76          | 18.3         |
|                    |                             |                             | 10/26/2021       | 13.38          | 16.7         |
|                    | 33.30                       | 33.95                       | 4/11/2022        | 11.43          | 21.8         |
|                    |                             |                             | 9/12/2022        | 12.34          | 20.9         |
|                    |                             |                             | 3/20/2023        | 11.11          | 22.1         |
|                    |                             |                             | 8/21/2023        | 12.52          | 20.7         |
|                    |                             |                             |                  |                |              |
| NAVA/ OF           | 30.38                       | 30.74                       | 5/13/2024        | 10.75          | 22.5         |
| MW-05              | 30.38                       | 30.74                       | 10/25/2016       | 12.70          | 17.6         |
|                    |                             |                             | 1/10/2017        | 11.38          | 19.0         |
|                    |                             |                             | 1/30/2017        | 10.98          | 19.4         |
|                    |                             |                             | 4/25/2017        | 9.44           | 20.9         |
|                    |                             |                             | 7/24/2017        | 10.82          | 19.5         |
|                    |                             |                             | 12/4/2018        | 13.60          | 16.7         |
|                    |                             |                             | 5/7/2019         | 12.51          | 17.8         |
|                    |                             |                             | 10/7/2019        | 13.58          | 16.8         |
|                    |                             |                             | 4/21/2020        | 12.64          | 17.7         |
|                    |                             |                             | 10/20/2020       | 13.86          | 16.5         |
|                    |                             |                             | 4/13/2021        | 12.05          | 18.3         |
|                    |                             |                             | 10/26/2021       | 13.62          | 16.7         |
|                    | 33.57                       | 33.93                       | 4/11/2022        | 11.78          | 21.7         |
|                    |                             |                             | 9/12/2022        | 12.55          | 21.0         |
|                    |                             |                             | 3/20/2023        | 11.58          | 21.9         |
|                    |                             |                             | 8/21/2023        | 12.70          | 20.8         |
|                    |                             |                             | 5/13/2024        | 11.06          | 22.5         |
| MW-06              | 29.82                       | 30.06                       | 10/25/2016       | 12.16          | 17.6         |
| 10100-00           | 23.82                       | 30.00                       | 1/10/2017        | 10.80          | 19.0         |
|                    |                             |                             |                  |                |              |
|                    |                             |                             | 1/30/2017        | 10.38          | 19.4         |
|                    |                             |                             | 4/25/2017        | 8.79           | 21.0         |
|                    |                             |                             | 7/24/2017        | 10.27          | 19.          |
|                    |                             |                             | 12/4/2018        | 13.11          | 16.7         |
|                    |                             |                             | 5/7/2019         | 11.96          | 17.8         |
|                    |                             |                             | 10/7/2019        | 13.06          | 16.          |
|                    |                             |                             | 4/21/2020        | 12.08          | 17.          |
|                    |                             |                             | 10/20/2020       | 13.35          | 16.4         |
|                    |                             |                             | 4/13/2021        | 11.47          | 18.3         |
|                    |                             |                             | 10/26/2021       | 13.08          | 16.          |
|                    | 33.01                       | 33.25                       | 4/11/2022        | 11.15          | 21.8         |
|                    |                             |                             | 9/12/2022        | 12.00          | 21.0         |
|                    |                             |                             | 3/20/2023        | 10.95          | 22.0         |
|                    |                             |                             | 8/21/2023        | 12.15          | 20.8         |
|                    |                             |                             | 5/13/2024        | 10.42          | 22.5         |
| MW-10 <sup>2</sup> | 22.47                       | 22.54                       |                  |                |              |
| IVIVV-10           | 32.17                       | 32.51                       | 4/11/2022        | 11.00          | 21.:         |
|                    |                             |                             | 6/29/2022        | 10.02          | 22.:         |
|                    |                             |                             | 9/12/2022        | 11.92          | 20.2         |
|                    |                             |                             | 12/6/2022        | 12.12          | 20.0         |
|                    |                             |                             | 3/20/2023        | 10.49          | 21.          |
|                    |                             |                             | 8/21/2023        | 11.97          | 20.          |
|                    |                             |                             | 5/13/2024        | 10.41          | 21.          |
| MW-11 <sup>2</sup> | 32.06                       | 32.43                       | 4/11/2022        | 11.30          | 20.          |
|                    |                             |                             | 6/29/2022        | 10.00          | 22.          |
|                    |                             |                             | 9/12/2022        | 11.78          | 20.          |
|                    |                             |                             | 12/6/2022        | 12.08          | 19.          |
|                    |                             |                             | 3/20/2023        | 10.35          | 21.          |
|                    |                             |                             |                  |                |              |
|                    |                             |                             | 8/21/2023        | 11.92          | 20.          |
| 2                  |                             |                             | 5/13/2024        | 10.26          | 21.          |
| MW-12 <sup>2</sup> | 35.42                       | 36.30                       | 4/11/2022        | 13.76          | 21.          |
|                    |                             |                             | 6/29/2022        | 13.25          | 22.          |
|                    |                             |                             | 0/25/2022        |                |              |
|                    |                             |                             | 9/12/2022        | 14.81          |              |
|                    |                             |                             |                  |                | 20.0<br>20.0 |

**Table 3-1**Groundwater and Willamette River Elevation Measurements
Northwest Pipe Company Portland Plant

| · · ·              | Measurement Point           | Ground Surface              |                  | Depth to Water | Elevation <sup>1</sup> |
|--------------------|-----------------------------|-----------------------------|------------------|----------------|------------------------|
| Well ID            | Elevation <sup>1</sup> (ft) | Elevation <sup>1</sup> (ft) | Measurement Date | (ft bgs)       | (ft)                   |
| MW-12 <sup>2</sup> | 35.42                       | 36.30                       | 8/21/2023        | 14.97          | 20.45                  |
|                    |                             |                             | 5/13/2024        | 13.17          | 22.25                  |
| T4S1MW-02S         | 35.27                       | 35.59                       | 10/25/2016       | 18.35          | 16.92                  |
|                    |                             |                             | 1/10/2017        | 16.52          | 18.75                  |
|                    |                             |                             | 1/30/2017        | 16.10          | 19.17                  |
|                    |                             |                             | 4/25/2017        | 14.15          | 21.12                  |
|                    |                             |                             | 7/24/2017        | 16.39          | 18.88                  |
|                    |                             |                             | 12/4/2018        | 19.39          | 15.88                  |
|                    |                             |                             | 5/7/2019         | 17.89          | 17.38                  |
|                    |                             |                             | 10/7/2019        | 19.29          | 15.98                  |
|                    |                             |                             | 4/21/2020        | 17.98          | 17.29                  |
|                    |                             |                             | 10/20/2020       | 19.51          | 15.76                  |
|                    |                             |                             | 4/13/2021        | 17.22          | 18.05                  |
|                    |                             |                             | 10/26/2021       | 19.23          | 16.04                  |
|                    | 38.46                       | 38.78                       | 4/11/2022        | 16.89          | 21.57                  |
|                    |                             |                             | 9/12/2022        | 18.00          | 20.46                  |
|                    |                             |                             | 3/20/2023        | 16.63          | 21.83                  |
|                    |                             |                             | 8/21/2023        | 18.22          | 20.24                  |
|                    |                             |                             | 5/13/2024        | 16.36          | 22.10                  |
| T4S1MW-03S         | 32.91                       | 33.36                       | 10/25/2016       | 19.04          | 13.87                  |
|                    |                             |                             | 1/10/2017        | 18.04          | 14.87                  |
|                    |                             |                             | 1/30/2017        | 17.61          | 15.30                  |
|                    |                             |                             | 4/25/2017        | 15.65          | 17.26                  |
|                    |                             |                             | 7/24/2017        | 18.09          | 14.82                  |
|                    |                             |                             | 12/4/2018        | 19.85          | 13.06                  |
|                    |                             |                             | 5/7/2019         | 18.75          | 14.16                  |
|                    |                             |                             | 10/7/2019        | 19.75          | 13.16                  |
|                    |                             |                             | 4/21/2020        | 18.91          | 14.00                  |
|                    |                             |                             | 10/20/2020       | 19.85          | 13.06                  |
|                    |                             |                             | 4/13/2021        | 18.48          | 14.43                  |
|                    |                             |                             | 10/26/2021       | 19.61          | 13.30                  |
|                    | 36.09                       | 36.54                       | 4/11/2022        | 22.75          | 13.34                  |
|                    |                             |                             | 9/12/2022        | 18.94          | 17.15                  |
|                    |                             |                             | 3/20/2023        | 17.94          | 18.15                  |
|                    |                             |                             | 8/21/2023        | 18.95          | 17.14                  |
|                    |                             |                             | 5/13/2024        | 17.85          | 18.24                  |
| T4S1MW-09          | 33.47                       | 33.75                       | 10/25/2016       | 19.33          | 14.14                  |
| 02                 | 33.17                       | 55.75                       | 1/10/2017        | 18.47          | 15.00                  |
|                    |                             |                             | 1/30/2017        | 18.10          | 15.37                  |
|                    |                             |                             | 4/25/2017        | 16.46          | 17.01                  |
|                    |                             |                             | 7/24/2017        | 18.51          | 14.96                  |
|                    |                             |                             | 12/4/2018        | 19.99          | 13.48                  |
|                    |                             |                             | 5/7/2019         | 19.01          | 14.46                  |
|                    |                             |                             | 10/7/2019        | 19.88          | 13.59                  |
|                    |                             |                             | 4/21/2020        | 19.11          | 14.36                  |
|                    |                             |                             | 10/20/2020       | 19.93          | 13.54                  |
|                    |                             |                             | 4/13/2021        | 18.68          | 14.79                  |
|                    |                             |                             | 10/26/2021       | 19.77          | 13.70                  |
|                    | 36.65                       | 36.93                       | 4/11/2022        | 18.52          | 18.13                  |
|                    | 30.03                       | 30.33                       | 9/12/2022        | 19.18          | 17.47                  |
|                    |                             |                             | 3/20/2023        |                |                        |
|                    |                             |                             |                  | 18.26          | 18.39                  |
|                    |                             |                             | 8/21/2023        | 19.22          | 17.43                  |
|                    |                             |                             | 5/13/2024        | 18.23          | 18.42                  |

**Table 3-1**Groundwater and Willamette River Elevation Measurements
Northwest Pipe Company Portland Plant

|              | Measurement Point           | Ground Surface              |                        | Depth to Water | Elevation      |
|--------------|-----------------------------|-----------------------------|------------------------|----------------|----------------|
| Well ID      | Elevation <sup>1</sup> (ft) | Elevation <sup>1</sup> (ft) | Measurement Date       | (ft bgs)       | (ft            |
| Γ4S1MW-10    | 22.22                       | 22.53                       | 10/25/2016             | 8.16           | 14.06          |
|              |                             |                             | 1/10/2017              | 7.44           | 14.78          |
|              |                             |                             | 1/30/2017              | 7.20           | 15.02          |
|              |                             |                             | 4/25/2017              | 5.65           | 16.57          |
|              |                             |                             | 7/24/2017              | 7.57           | 14.65          |
|              |                             |                             | 12/4/2018              | 8.75           | 13.47          |
|              |                             |                             | 5/7/2019               | 8.02           | 14.20          |
|              |                             |                             | 10/7/2019              | 8.67           | 13.55          |
|              |                             |                             | 4/21/2020              | 8.01           | 14.21          |
|              |                             |                             | 10/20/2020             | 8.71           | 13.51          |
|              |                             |                             | 4/13/2021              | 7.61           | 14.61          |
|              |                             |                             | 10/26/2021             | 8.56           | 13.66          |
|              | 25.40                       | 25.71                       | 4/11/2022              | 7.31           | 18.09          |
|              |                             |                             | 9/12/2022              | 8.03           | 17.37          |
|              |                             |                             | 3/20/2023              | 7.23           | 18.17          |
|              |                             |                             | 8/21/2023              | 8.10           | 17.30          |
|              |                             |                             | 5/13/2024              | 7.29           | 18.11          |
| Γ4S1MW-17    | 31.06                       | 31.34                       | 10/25/2016             | 14.89          | 16.17          |
|              |                             |                             | 1/10/2017              | 13.43          | 17.63          |
|              |                             |                             | 1/30/2017              | 12.87          | 18.19          |
|              |                             |                             | 4/25/2017              | 11.31          | 19.75          |
|              |                             |                             | 7/24/2017              | 13.75          | 17.31          |
|              |                             |                             | 12/4/2018              | 16.68          | 14.38          |
|              |                             |                             | 5/7/2019               | 14.81          | 16.25          |
|              |                             |                             | 10/7/2019              | 16.51          | 14.55          |
|              |                             |                             | 4/21/2020              | 16.44          | 14.62          |
|              |                             |                             | 10/20/2020             | 16.86          | 14.20          |
|              |                             |                             | 4/13/2021              | 15.95          | 15.11          |
|              | 34.24                       | 34.52                       | 10/26/2021             | 16.89          | 17.35          |
|              |                             |                             | Well abandoned         |                |                |
| Γ4S1MW-22    | 32.95                       | 33.30                       | 10/25/2016             | 15.46          | 17.49          |
|              |                             |                             | 1/10/2017              | 13.95          | 19.00          |
|              |                             |                             | 1/30/2017              | 13.44          | 19.51          |
|              |                             |                             | 4/25/2017              | 11.78          | 21.17          |
|              |                             |                             | 7/24/2017              | 13.63          | 19.32          |
|              |                             |                             | 12/4/2018              | 16.50          | 16.45          |
|              |                             |                             | 5/7/2019               | 15.34          | 17.61          |
|              |                             |                             | 10/7/2019              | 16.47          | 16.48          |
|              |                             |                             | 4/21/2020              | 15.34          | 17.61          |
|              |                             |                             | 10/20/2020             | 16.74          | 16.21          |
|              |                             |                             | 4/13/2021              | 14.85          | 18.10          |
|              |                             |                             | 10/26/2021             | 16.39          | 16.56          |
|              | 36.14                       | 36.49                       | 4/11/2022              | 14.31          | 21.83          |
|              | 50.14                       | 50.43                       | 9/12/2022              | 15.29          | 20.85          |
|              |                             |                             | 3/20/2023              | 14.00          | 20.83          |
|              |                             |                             |                        |                |                |
|              |                             |                             | 8/21/2023<br>5/13/2024 | 15.47<br>13.70 | 20.67          |
| TAC1NANA/ 22 | 21 21                       | 21 45                       | 5/13/2024              | 13.70          | 22.44          |
| Γ4S1MW-23    | 31.21                       | 31.45                       | 10/25/2016             | 13.72          | 17.49          |
|              |                             |                             | 1/10/2017              | 12.44          | 18.77          |
|              |                             |                             | 1/30/2017              | 11.82          | 19.39          |
|              |                             |                             | 4/25/2017<br>7/24/2017 | 10.45<br>12.34 | 20.76<br>18.87 |
|              |                             |                             |                        |                |                |

**Table 3-1**Groundwater and Willamette River Elevation Measurements
Northwest Pipe Company Portland Plant

|                               | Measurement Point           | Ground Surface              |                  | Depth to Water | Elevation |
|-------------------------------|-----------------------------|-----------------------------|------------------|----------------|-----------|
| Well ID                       | Elevation <sup>1</sup> (ft) | Elevation <sup>1</sup> (ft) | Measurement Date | (ft bgs)       | (ft)      |
| T4S1MW-23                     |                             |                             | 12/4/2018        | 14.98          | 16.23     |
|                               |                             |                             | 5/7/2019         | 13.72          | 17.49     |
|                               |                             |                             | 10/7/2019        | 14.89          | 16.32     |
|                               |                             |                             | 4/21/2020        | 13.90          | 17.31     |
|                               |                             |                             | 10/20/2020       | 15.20          | 16.01     |
|                               |                             |                             | 4/13/2021        | 13.30          | 17.91     |
|                               |                             |                             | 10/26/2021       | 14.81          | 16.40     |
|                               | 34.39                       | 34.63                       | 4/11/2022        | 12.99          | 21.40     |
|                               |                             |                             | 9/12/2022        | 13.90          | 20.49     |
|                               |                             |                             | 3/20/2023        | 12.51          | 21.88     |
|                               |                             |                             | 8/21/2023        | 13.86          | 20.53     |
|                               |                             |                             | 5/13/2024        | 12.40          | 21.99     |
| T4S1MW-25                     | 30.95                       | 31.38                       | 10/25/2016       | 15.11          | 15.84     |
|                               |                             |                             | 1/10/2017        | 13.46          | 17.49     |
|                               |                             |                             | 1/30/2017        | 12.95          | 18.00     |
|                               |                             |                             | 4/25/2017        | 11.16          | 19.79     |
|                               |                             |                             | 7/24/2017        | 13.54          | 17.41     |
|                               |                             |                             | 12/4/2018        | 16.03          | 14.92     |
|                               |                             |                             | 5/7/2019         | 14.57          | 16.38     |
|                               |                             |                             | 10/7/2019        | 15.88          | 15.07     |
|                               |                             |                             | 4/21/2020        | 14.68          | 16.27     |
|                               |                             |                             | 10/20/2020       | 16.02          | 14.93     |
|                               |                             |                             | 4/13/2021        | 14.00          | 16.95     |
|                               |                             |                             | 10/26/2021       | 15.79          | 15.16     |
|                               | 34.14                       | 34.57                       | 4/11/2022        | 13.75          | 20.39     |
|                               |                             |                             | 9/12/2022        | 14.77          | 19.37     |
|                               |                             |                             | 3/20/2023        | 13.45          | 20.69     |
|                               |                             |                             | 8/21/2023        | 14.92          | 19.22     |
|                               |                             |                             | 5/13/2024        | 13.30          | 20.84     |
| Willamette River <sup>3</sup> |                             |                             | 10/25/2016       |                | 5.03      |
|                               |                             |                             | 1/10/2017        |                | 6.82      |
|                               |                             |                             | 1/30/2017        |                | 6.07      |
|                               |                             |                             |                  |                |           |
|                               |                             |                             | 4/25/2017        |                | 14.88     |
|                               |                             |                             | 7/24/2017        |                | 4.00      |
|                               |                             |                             | 12/4/2018        |                | 2.20      |
|                               |                             |                             | 5/7/2019         |                | 6.02      |
|                               |                             |                             | 10/7/2019        |                | -0.01     |
|                               |                             |                             | 4/21/2020        |                | 2.97      |
|                               |                             |                             | 10/20/2020       |                |           |
|                               |                             |                             |                  |                | 2.42      |
|                               |                             |                             | 4/13/2021        |                | 3.20      |
|                               |                             |                             | 10/26/2021       |                | 3.67      |
|                               |                             |                             | 4/11/2022        |                | 3.86      |
|                               |                             |                             | 6/29/2022        |                | 11.24     |
|                               |                             |                             | 9/12/2022        |                | 2.56      |
|                               |                             |                             | 12/6/2022        |                | 3.19      |
|                               |                             |                             |                  |                |           |
|                               |                             |                             | 3/20/2023        |                | 3.65      |
|                               |                             |                             | 8/21/2023        |                | 3.46      |
|                               |                             |                             | 5/13/2024        |                | 5.94      |

ft bgs = feet below ground surface

NGVD29 = National Geodetic Vertical Datum of 1929

NAVD88 = North American Vertical Datum of 1988

<sup>&</sup>lt;sup>1</sup>Elevations prior to April 2022 are in NGVD29, after April 2022, elevations are in NAVD88.

<sup>&</sup>lt;sup>2</sup>MW-10, MW-11, and MW-12 were installed in March 2022. Wells are sampled quarterly.

<sup>&</sup>lt;sup>3</sup>The Willamette River stage measurement for the second semi-annual event of 2022 was measured at the Morrison Bridge river gauge (USGS 14211720) on 9/12/2022 at 11:50 AM.

**Table 3-2**Groundwater Quality Field Parameters
Northwest Pipe Company Portland Plant

| 14/-11     | Date             | Temperature | -11   | Specific<br>Conductance | Dissolved Oxygen | Oxidation Reduction | Turbidity       |
|------------|------------------|-------------|-------|-------------------------|------------------|---------------------|-----------------|
| Well       | Sampled          | (°C)        | рН    | (μS/cm)                 | (mg/L)           | Potential (mV)      | (NTU)           |
|            | pe Company Wells |             | 6.42  | 252                     | 0.26             |                     | 6.0             |
| MW-01      | 10/26/2016       | 15.9        | 6.42  | 352                     | 0.26             | 6                   | 6.8             |
|            | 2/2/2017         | 16.0        | 6.64  | 385                     | 0.01             | -36                 | 3.1             |
|            | 5/1/2017         | 15.5        | 6.56  | 423                     | 0.12             | 36                  | 3.0             |
|            | 7/26/2017        | 17.2        | 6.46  | 513                     | 0.08             | 66                  | 1.0             |
|            | 12/6/2018        | 15.0        | 6.61  | 460                     | 0.47             | -32                 | 1.0             |
|            | 5/9/2019         | 16.4        | 6.48  | 889                     | 0.92             | 93                  | 1.7             |
|            | 10/9/2019        | 11.7        | 6.46  | 458                     | 0.32             | -16                 | 1.9             |
|            | 4/23/2020        | 15.5        | 6.37  | 401                     | 0.74             | 97                  | 3.1             |
|            | 10/22/2020       | 15.7        | 6.45  | 500                     | 0.32             | 53                  | 3.6             |
|            | 4/15/2021        | 15.5        | 6.53  | 449                     | 0.16             | -9                  | 4.2             |
|            | 10/28/2021       | 16.6        | 6.49  | 443                     | 0.45             | 46                  | 8.0             |
|            | 4/13/2022        | 11.4        | 6.85  | 406                     | 0.34             | 102                 | 0.1             |
|            | 9/15/2022        | 16.9        | 6.32  | 496                     | 0.42             | 45                  | 3.3             |
|            | 3/22/2023        | 15.9        | 6.47  | 461                     | 0.12             | -136                | 3.8             |
|            | 8/23/2023        | 18.3        | 6.42  | 62*                     | 0.20             | 175                 | 3.1             |
|            | 5/15/2024        | 17.0        | 2.61* | 519                     | 0.17             | 288                 | 3.3             |
| MW-02      | 10/26/2016       | 16.8        | 6.90  | 197                     | 0.24             | -138                | 0.7             |
|            | 2/1/2017         | 15.4        | 6.97  | 202                     | 0.09             | -136                | 8.2             |
|            | 4/27/2017        | 15.0        | 7.11  | 240                     | 0.20             | -142                | 8.1             |
|            | 7/25/2017        | 20.1        | 6.74  | 244                     | 0.07             | -141                | 1.0             |
|            | 12/5/2018        | 15.8        | 7.10  | 265                     | 0.36             | -167                | 1.6             |
|            | 5/8/2019         | 17.1        | 7.03  | 501                     | 0.52             | -136                | 4.6             |
|            | 10/8/2019        | 13.7        | 6.87  | 246                     | 0.26             | -106                | 0.9             |
|            | 4/22/2020        | 15.2        | 6.94  | 484                     | 0.15             | -170                | <5 <sup>1</sup> |
|            | 10/21/2020       | 17.4        | 6.96  | 332                     | 0.52             | -139                | 0.5             |
|            | 4/14/2021        | 15.8        | 6.80  | 291                     | 0.95             | -116                | 0.5             |
|            | 10/27/2021       | 17.7        | 7.05  | 281                     | 1.21             | -155                | 0.8             |
|            | 4/13/2022        | 11.5        | 7.31  | 284                     | 0.23             | -129                | 0.0             |
|            | 9/14/2022        | 19.6        | 7.36  | 302                     | 0.13             | -138                | 1.9             |
|            |                  | 16.4        | 7.30  | 246                     | 0.06             | -148                |                 |
|            | 3/22/2023        |             |       | 57*                     |                  |                     | 4.4             |
|            | 8/23/2023        | 19.5        | 7.04  |                         | 0.05             | -157                | 1.1<br>3.6      |
| N 414 / O2 | 5/15/2024        | 17.5        | 6.84  | 229                     | 0.00             | -99                 |                 |
| MW-03      | 10/26/2016       | 16.4        | 6.61  | 281                     | 0.32             | -88                 | 2.6             |
|            | 2/2/2017         | 15.9        | 6.76  | 321                     | 0.26             | -68                 | 3.2             |
|            | 5/1/2017         | 15.5        | 6.56  | 334                     | 0.07             | -43                 | 3.5             |
|            | 7/27/2017        | 17.0        | 6.55  | 360                     | 0.08             | -69                 | 2.6             |
|            | 12/7/2018        | 14.6        | 6.74  | 372                     | 1.02             | -43                 | 5.8             |
|            | 5/9/2019         | 15.8        | 6.67  | 691                     | 0.44             | -37                 | 6.3             |
|            | 10/9/2019        | 12.2        | 6.49  | 342                     | 0.80             | -33                 | 4.6             |
|            | 4/23/2020        | 14.8        | 6.60  | 276                     | 0.26             | -74                 | 10.6            |
|            | 10/22/2020       | 15.3        | 6.67  | 345                     | 0.31             | -85                 | 3.6             |
|            | 4/15/2021        | 15.4        | 6.65  | 339                     | 0.23             | -19                 | 16.5            |
|            | 10/28/2021       | 16.6        | 6.58  | 309                     | 0.46             | -46                 | 6.7             |
|            | 4/14/2022        | 10.3        | 7.20  | 333                     | 0.29             | -50                 | 11.7            |
|            | 9/14/2022        | 16.1        | 6.85  | 346                     | 0.25             | -59                 | 15.4            |
|            | 3/22/2023        | 14.1        | 6.76  | 274                     | 0.20             | -146                | 15.5            |
|            | 8/23/2023        | 16.9        | 6.77  | 58*                     | 0.08             | -81                 | 7.4             |
|            | 5/15/2024        | 15.6        | 6.52  | 253                     | 0.51             | 387*                | 1.1             |
| MW-04      | 10/26/2016       | 14.8        | 6.34  | 323                     | 0.28             | -59                 | 4.1             |
|            | 2/1/2017         | 14.3        | 6.39  | 440                     | 0.32             | -45                 | 1.3             |
|            | 4/27/2017        | 13.0        | 6.60  | 337                     | 0.22             | -59                 | 5.0             |
|            | 7/26/2017        | 15.1        | 6.42  | 374                     | 0.13             | -66                 | 8.1             |
|            | 12/6/2018        | 14.3        | 6.53  | 403                     | 0.53             | -48                 | 1.3             |
|            | 5/8/2019         | 14.5        | 6.47  | 777                     | 0.92             | -30                 | 1.4             |
|            |                  |             |       |                         |                  |                     |                 |

**Table 3-2**Groundwater Quality Field Parameters
Northwest Pipe Company Portland Plant

| Well                   | Date<br>Sampled | Temperature<br>(°C)  | pН   | Specific<br>Conductance<br>(µS/cm) | Dissolved Oxygen<br>(mg/L) | Oxidation Reduction Potential (mV) | Turbidity<br>(NTU) |
|------------------------|-----------------|----------------------|------|------------------------------------|----------------------------|------------------------------------|--------------------|
| MW-04                  |                 |                      |      |                                    |                            | <u>`</u>                           |                    |
| VIVV-U4                | 4/22/2020       | 14.4                 | 6.38 | 673                                | 0.75                       | -41<br>22                          | 1.2                |
|                        | 10/21/2020      | 15.4                 | 6.33 | 467                                | 0.39                       | -32                                | 0.5                |
|                        | 4/14/2021       | 14.6                 | 6.60 | 300                                | 0.41                       | 32                                 | 0.6                |
|                        | 10/27/2021      | 16.2                 | 6.28 | 316                                | 0.54                       | 1                                  | 1.0                |
|                        | 4/13/2022       | 9.8                  | 6.68 | 267                                | 0.31                       | 60                                 | 0.0                |
|                        | 9/15/2022       | 15.5                 | 6.42 | 289                                | 0.46                       | -41                                | 0.8                |
|                        | 3/22/2023       | 13.8                 | 6.44 | 212                                | 0.53                       | -132                               | 0.4                |
|                        | 8/22/2023       | 15.9                 | 6.51 | 273                                | 0.19                       | -69                                | 1.1                |
| **** 05                | 5/16/2024       | 14.7                 | 6.62 | 267                                | 0.29                       | -44                                | 11.1               |
| ∕IW-05                 | 10/26/2016      | 15.5                 | 6.50 | 375                                | 0.17                       | -52                                | 1.2                |
|                        | 2/2/2017        | 15.7                 | 6.59 | 426                                | 0.33                       | 77                                 | 1.8                |
|                        | 5/1/2017        | 15.4                 | 6.60 | 360                                | 0.11                       | -40                                | 0.5                |
|                        | 7/27/2017       | 18.0                 | 6.46 | 390                                | 0.11                       | 19                                 | 2.2                |
|                        | 12/7/2018       | 13.5                 | 6.71 | 386                                | 0.62                       | <b>-7</b>                          | 1.0                |
|                        | 5/9/2019        | 16.7                 | 6.39 | 748                                | 0.79                       | 97                                 | 1.2                |
|                        | 10/9/2019       | 12.7                 | 6.42 | 394                                | 0.31                       | -19                                | 0.3                |
|                        | 4/23/2020       | 16.0                 | 6.35 | 354                                | 0.63                       | -10                                | 0.9                |
|                        | 10/22/2020      | 16.5                 | 6.48 | 431                                | 0.25                       | -36                                | 0.7                |
|                        | 4/15/2021       | 16.6                 | 6.25 | 404                                | 0.19                       | -1                                 | 0.4                |
|                        | 10/28/2021      | 17.0                 | 6.33 | 386                                | 0.20                       | -18                                | 0.6                |
|                        | 4/14/2022       | 11.7                 | 7.15 | 341                                | 0.24                       | -78                                | 0.7                |
|                        | 9/15/2022       | 17.6                 | 6.57 | 301                                | 0.23                       | -22                                | 1.7                |
|                        | 3/23/2023       | 14.9                 | 6.72 | 295                                | 0.16                       | -123                               | 0.9                |
|                        | 8/24/2023       | 17.0                 | 6.59 | 326                                | 0.09                       | -66                                | 4.7                |
|                        | 5/16/2024       | 16.7                 | 6.68 | 366                                | 0.05                       | -68                                | 2.3                |
| ∕IW-06                 | 10/26/2016      | 15.9                 | 6.47 | 266                                | 0.15                       | -76                                | 2.7                |
|                        | 2/2/2017        | 15.5                 | 6.54 | 299                                | 0.20                       | -47                                | 2.8                |
|                        | 5/1/2017        | 15.7                 | 6.35 | 310                                | 0.13                       | 20                                 | 4.4                |
|                        | 7/27/2017       | 16.6                 | 6.27 | 322                                | 0.07                       | -9                                 | 10.7               |
|                        | 12/7/2018       | 14.3                 | 6.61 | 395                                | 0.66                       | -49                                | 13.4               |
|                        | 5/9/2019        | 17.8                 | 6.42 | 712                                | 0.70                       | 31                                 | 36.1               |
|                        | 10/9/2019       | 12.0                 | 6.38 | 339                                | 0.14                       | -36                                | 2.1                |
|                        | 4/23/2020       | 15.6                 | 6.24 | 282                                | 0.36                       | 20                                 | 5.7                |
|                        | 10/22/2020      | 15.4                 | 6.47 | 358                                | 0.21                       | -46                                | 0.5                |
|                        | 4/15/2021       | 16.3                 | 6.23 | 386                                | 0.18                       | -21                                | 7.7                |
|                        | 10/28/2021      | 16.1                 | 6.21 | 379                                | 0.81                       | -6                                 | 2.0                |
|                        | 4/14/2022       | 11.3                 | 6.93 | 444                                | 0.42                       | 14                                 | 0.4                |
|                        | 9/15/2022       | 16.6                 | 6.31 | 426                                | 0.24                       | -1                                 | 0.5                |
|                        | 3/23/2023       | 14.8                 | 6.41 | 383                                | 0.27                       | -130                               | 2.5                |
|                        | 8/24/2023       | 16.1                 | 6.41 | 62*                                | 0.05                       | 62                                 | 2.7                |
|                        | 5/16/2024       | 16.0                 | 6.35 | 296                                | 0.41                       | 81                                 | 1.9                |
| Vorthwest Dir          |                 | s on Port of Portlan |      |                                    | 0.71                       | <u> </u>                           | 1.5                |
| логитwest Рід<br>ЛW-10 |                 |                      | 7.17 |                                    | 0.27                       | -109                               | 0 1                |
| 114A-TO                | 4/12/2022       | 11.0                 |      | 285                                |                            |                                    | 8.2<br>48.0        |
|                        | 6/29/2022       | 15.8                 | 6.81 | 122                                | 1.08                       | 65                                 | 48.0               |
|                        | 9/13/2022       | 15.4                 | 7.28 | 282                                | 0.11                       | -111                               | 0.5                |
|                        | 12/6/2022       | 13.7                 | 6.97 | 269                                | 0.42                       | -116                               | 1.0                |
|                        | 3/21/2023       | 15.0                 | 7.02 | 275                                | 0.11                       | -167                               | 10.1               |
|                        | 6/6/2023        | 16.5                 | 6.21 | 263                                | 0.22                       | -114                               | 5.6                |
|                        | 8/23/2023       | 15.9                 | 7.01 | 286                                | 0.12                       | -141                               | 8.5                |
|                        | 11/14/2023      | 14.1                 | 6.74 | 256                                | 0.17                       | -136                               | 3.5                |
|                        | 5/14/2024       | 16.6                 | 6.96 | 300                                | 0.00                       | -152                               | 5.9                |

**Table 3-2**Groundwater Quality Field Parameters
Northwest Pipe Company Portland Plant

| Well MW-11       | 4/12/2022<br>6/29/2022<br>9/13/2022<br>12/6/2022<br>3/21/2023<br>6/6/2023<br>8/23/2023<br>11/14/2023<br>5/14/2024 | 9.7<br>15.4<br>15.2<br>13.7<br>14.1<br>15.3<br>15.2 | 6.85<br>6.76<br>6.77<br>6.83<br>6.88 | (μS/cm)  226 263 268 241 | (mg/L)<br>0.24<br>0.00 | Potential (mV) -7 -17 | (NTU)<br>1.4 |
|------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|--------------------------|------------------------|-----------------------|--------------|
|                  | 6/29/2022<br>9/13/2022<br>12/6/2022<br>3/21/2023<br>6/6/2023<br>8/23/2023<br>11/14/2023<br>5/14/2024              | 15.4<br>15.2<br>13.7<br>14.1<br>15.3                | 6.76<br>6.77<br>6.83<br>6.88         | 263<br>268               | 0.00                   |                       |              |
| MW-12            | 9/13/2022<br>12/6/2022<br>3/21/2023<br>6/6/2023<br>8/23/2023<br>11/14/2023<br>5/14/2024                           | 15.2<br>13.7<br>14.1<br>15.3                        | 6.77<br>6.83<br>6.88                 | 268                      |                        | -1/                   | 2.0          |
| MW-12            | 12/6/2022<br>3/21/2023<br>6/6/2023<br>8/23/2023<br>11/14/2023<br>5/14/2024                                        | 13.7<br>14.1<br>15.3                                | 6.83<br>6.88                         |                          | 0.10                   |                       | 2.9          |
| MW-12            | 3/21/2023<br>6/6/2023<br>8/23/2023<br>11/14/2023<br>5/14/2024                                                     | 14.1<br>15.3                                        | 6.88                                 | 241                      | 0.16                   | -54                   | 1.9          |
| WW-12            | 6/6/2023<br>8/23/2023<br>11/14/2023<br>5/14/2024                                                                  | 15.3                                                |                                      | 222                      | 0.88                   | -83                   | 2.4          |
| MW-12            | 8/23/2023<br>11/14/2023<br>5/14/2024                                                                              |                                                     |                                      | 238                      | 0.08                   | -138                  | 4.9          |
| MW-12            | 11/14/2023<br>5/14/2024                                                                                           | 15 7                                                | 6.16                                 | 211                      | 0.26                   | -78                   | 4.4          |
| MW-12            | 5/14/2024                                                                                                         |                                                     | 6.79                                 | 58*                      | 0.20                   | -49                   | 18.4         |
| MW-12            |                                                                                                                   | 13.7                                                | 6.48                                 | 266                      | 0.30                   | -72                   | 3.5          |
| MW-12            |                                                                                                                   | 17.4                                                | 6.82                                 | 252                      | 0.05                   | -100                  | 6.4          |
|                  | 4/12/2022                                                                                                         | 9.2                                                 | 6.70                                 | 266                      | 0.88                   | -27                   | 9.4          |
|                  | 6/29/2022                                                                                                         | 14.9                                                | 6.63                                 | 203                      | 2.17                   | 18                    | 19.5         |
|                  | 9/13/2022                                                                                                         | 15.4                                                | 6.92                                 | 280                      | 1.87                   | -25                   | 2.8          |
|                  | 12/6/2022                                                                                                         | 14.2                                                | 6.56                                 | 295                      | 3.63                   | -11                   | 1.7          |
|                  | 3/21/2023                                                                                                         | 12.2                                                | 6.58                                 | 228                      | 2.36                   | -132                  | 2.3          |
|                  | 6/6/2023                                                                                                          | 14.3                                                | 6.12                                 | 241                      | 1.56                   | 41                    | 5.7          |
|                  | 8/22/2023                                                                                                         | 15.9                                                | 6.49                                 | 250                      | 1.81                   | 16                    | 10.8         |
|                  | 11/14/2023                                                                                                        | 13.8                                                | 6.05                                 | 269                      | 1.97                   | 11                    | 1.6          |
|                  | 5/15/2024                                                                                                         | 13.8                                                | 6.31                                 | 301                      | 0.65                   | 14                    | 6.8          |
| Port of Portland |                                                                                                                   |                                                     |                                      |                          |                        |                       |              |
| T4S1MW-03S       | 10/25/2016                                                                                                        | 14.2                                                | 6.42                                 | 245                      | 0.86                   | 72                    | 0.5          |
|                  | 2/1/2017                                                                                                          | 14.3                                                | 6.65                                 | 111                      | 5.19                   | 145                   | 0.8          |
|                  | 4/26/2017                                                                                                         | 13.2                                                | 6.62                                 | 87                       | 8.96                   | 167                   | 1.6          |
|                  | 7/25/2017                                                                                                         | 16.0                                                | 6.46                                 | 164                      | 4.46                   | 115                   | 0.3          |
|                  | 12/5/2018                                                                                                         | 13.4                                                | 6.53                                 | 203                      | 0.63                   | 161                   | 0.2          |
|                  | 5/8/2019                                                                                                          | 14.5                                                | 6.55                                 | 338                      | 2.34                   | 145                   | 0.3          |
|                  | 10/7/2019                                                                                                         | 11.2                                                | 6.26                                 | 171                      | 0.47                   | 47                    | 0.3          |
|                  | 4/21/2020                                                                                                         | 14.3                                                | 6.32                                 | 181                      | 3.11                   | 207                   | 0.5          |
|                  | 10/20/2020                                                                                                        | 14.6                                                | 6.10                                 | 151                      | 0.81                   | 125                   | 0.2          |
|                  | 4/13/2021                                                                                                         | 15.0                                                | 6.60                                 | 148                      | 5.15                   | 70                    | 0.6          |
|                  | 10/26/2021                                                                                                        | 14.8                                                | 6.35                                 | 164                      | 0.73                   | 102                   | 0.3          |
|                  | 4/11/2022                                                                                                         | 8.5                                                 | 6.52                                 | 181                      | 5.44                   | 146                   | 2.8          |
|                  | 9/14/2022                                                                                                         | 16.1                                                | 6.65                                 | 168                      | 2.13                   | 74                    | 0.7          |
|                  | 3/20/2023                                                                                                         | 11.1                                                | 6.66                                 | 218                      | 3.10                   | 505                   | 0.5          |
|                  | 8/21/2023                                                                                                         | 18.3                                                | 6.70                                 | 50*                      | 1.62                   | 109                   | 1.4          |
|                  | 5/14/2024                                                                                                         | 15.2                                                | 6.49                                 | 230                      | 3.69                   | 111                   | 0.7          |
| T4S1MW-09        | 10/25/2016                                                                                                        | 14.9                                                | 6.51                                 | 278                      | 3.27                   | -53                   | 1.6          |
|                  | 2/1/2017                                                                                                          | 14.9                                                | 6.67                                 | 234                      | 2.87                   | -41                   | 0.9          |
|                  | 4/26/2017                                                                                                         | 14.3                                                | 6.51                                 | 200                      | 0.98                   | -20                   | 4.2          |
|                  | 7/25/2017                                                                                                         | 16.0                                                | 6.45                                 | 216                      | 1.77                   | 96                    | 1.8          |
|                  | 12/5/2018                                                                                                         | 14.8                                                | 6.76                                 | 176                      | 1.49                   | 187                   | 0.5          |
|                  | 5/8/2019                                                                                                          | 14.4                                                | 6.26                                 | 393                      | 5.52                   | 194                   | 1.2          |
|                  | 10/7/2019                                                                                                         | 12.1                                                | 6.46                                 | 201                      | 1.42                   | 64                    | 0.5          |
|                  | 4/21/2020                                                                                                         | 15.5                                                | 6.41                                 | 200                      | 4.38                   | 182                   | 0.7          |
|                  | 10/20/2020                                                                                                        | 17.6                                                | 6.20                                 | 211                      | 1.63                   | 89                    | 0.1          |
|                  | 4/13/2021                                                                                                         | 16.6                                                | 6.50                                 | 188                      | 3.15                   | 52                    | 0.3          |
|                  | 10/26/2021                                                                                                        | 15.4                                                | 6.59                                 | 225                      | 1.19                   | 151                   | 0.4          |
|                  | 4/11/2022                                                                                                         | 10.7                                                | 6.48                                 | 171                      | 4.20                   | 66                    | 0.4          |
|                  | 9/14/2022                                                                                                         | 16.3                                                | 6.48                                 | 171<br>198               | 4.20<br>2.86           | 91                    | 0.8          |
|                  |                                                                                                                   |                                                     |                                      |                          |                        | 434                   |              |
|                  | 3/20/2023                                                                                                         | 11.5                                                | 6.74<br>6.57                         | 201                      | 7.30                   |                       | 0.8          |
|                  | 8/22/2023<br>5/14/2024                                                                                            | 15.2<br>15.8                                        | 6.57<br>6.66                         | 199<br>148               | 2.82<br>2.56           | 102<br>-30            | 2.3<br>3.5   |

**Table 3-2**Groundwater Quality Field Parameters
Northwest Pipe Company Portland Plant

| Well      | Date<br>Sampled | Temperature<br>(°C) | рН   | Specific<br>Conductance<br>(µS/cm) | Dissolved Oxygen<br>(mg/L) | Oxidation Reduction<br>Potential (mV) | Turbidity<br>(NTU) |
|-----------|-----------------|---------------------|------|------------------------------------|----------------------------|---------------------------------------|--------------------|
| T4S1MW-22 | 10/25/2016      | 15.7                | 6.35 | 217                                | 0.33                       | 97                                    | 4.0                |
|           | 2/1/2017        | 14.4                | 6.40 | 255                                | 0.30                       | 132                                   | 1.2                |
|           | 4/27/2017       | 15.0                | 6.36 | 232                                | 1.20                       | 169                                   | 1.4                |
|           | 7/26/2017       | 16.0                | 6.25 | 242                                | 0.88                       | 117                                   | 0.7                |
|           | 12/6/2018       | 15.0                | 6.47 | 281                                | 0.63                       | 149                                   | 0.3                |
|           | 5/8/2019        | 15.8                | 6.22 | 651                                | 1.13                       | 123                                   | 1.2                |
|           | 10/8/2019       | 12.4                | 6.16 | 321                                | 0.26                       | 42                                    | 1.0                |
|           | 4/22/2020       | 15.7                | 6.26 | 522                                | 0.85                       | 138                                   | 0.6                |
|           | 10/21/2020      | 16.1                | 6.25 | 290                                | 0.22                       | 104                                   | 0.4                |
|           | 4/14/2021       | 15.7                | 6.14 | 261                                | 1.13                       | 50                                    | 0.2                |
|           | 10/27/2021      | 16.4                | 6.20 | 262                                | 0.28                       | 98                                    | 0.3                |
|           | 4/13/2022       | 10.1                | 6.65 | 254                                | 0.99                       | 120                                   | 0.0                |
|           | 9/13/2022       | 16.9                | 6.27 | 299                                | 0.34                       | 98                                    | 1.2                |
|           | 3/21/2023       | 15.5                | 6.46 | 244                                | 0.24                       | -202                                  | 0.2                |
|           | 8/22/2023       | 17.4                | 6.36 | 248                                | 0.45                       | 104                                   | 0.7                |
|           | 5/13/2024       | 17.4                | 6.31 | 256                                | 1.52                       | 112                                   | 0.6                |
| T4S1MW-23 | 10/25/2016      | 15.1                | 6.49 | 165                                | 0.90                       | 39                                    | 1.2                |
|           | 2/1/2017        | 14.2                | 6.54 | 177                                | 1.31                       | 51                                    | 1.4                |
|           | 4/27/2017       | 14.9                | 6.53 | 161                                | 1.12                       | 92                                    | 1.9                |
|           | 7/26/2017       | 18.0                | 6.57 | 165                                | 1.47                       | 61                                    | 0.6                |
|           | 12/6/2018       | 13.8                | 6.67 | 182                                | 1.14                       | 80                                    | 1.0                |
|           | 5/9/2019        | 14.6                | 6.37 | 438                                | 1.34                       | 101                                   | 1.5                |
|           | 10/8/2019       | 12.0                | 6.31 | 202                                | 1.79                       | 33                                    | 1.0                |
|           | 4/22/2020       | 15.1                | 6.32 | 469                                | 1.24                       | 123                                   | 1.6                |
|           | 10/21/2020      | 16.3                | 6.35 | 291                                | 1.19                       | 87                                    | 1.1                |
|           | 4/14/2021       | 15.8                | 6.51 | 225                                | 1.39                       | 30                                    | 0.8                |
|           | 10/27/2021      | 15.7                | 6.30 | 236                                | 1.66                       | 88                                    | 0.2                |
|           | 4/12/2022       | 10.1                | 6.69 | 219                                | 2.23                       | 102                                   | 0.2                |
|           | 9/13/2022       | 16.7                | 6.57 | 246                                | 2.44                       | 97                                    | 0.8                |
|           | 3/21/2023       | 15.6                | 7.20 | 300                                | 0.07                       | -222                                  | 8.5                |
|           | 8/22/2023       | 16.7                | 6.63 | 250                                | 0.70                       | -26                                   | 7.9                |
|           | 5/15/2024       | 17.0                | 6.62 | 215                                | 0.78                       | -6                                    | 10.7               |

pH was analyzed at the laboratory due to field meter malfunction for MW-02, MW-04, T4S1MW-03S, and T4S1MW-09 for the April 2021 event.

°C = degrees Celsius mg/L = milligrams per liter mV = millivolts

 $\mu \text{S/cm}$  = microsiemens per centimeter

NTU = Nephelometric Turbidity Units

<sup>&</sup>lt;sup>1</sup>Hach 2100Q was not reading values below 5; cause of this was not determined.

<sup>&</sup>lt;sup>2</sup>MW-10, MW-11, and MW-12 were installed in March 2022. Wells are sampled quaterly.

<sup>\*</sup>Field probe may have been malfunctioning for selected readings, leading to erroneous values. For future monitoring events, the calibration of the probe will be rechecked, and, if necessary, a functional probe will be obtained, when erroneous measurements are observed.

**Table 3-3**Groundwater Quality Analytical Data for Natural Attenuation Parameters
Northwest Pipe Company Portland Plant

|           | _                     |              |                | ivaturai At  | CHAULION FOI | ameters (mg/L)<br>Iron, | Ferrous           | Carbon               |          |
|-----------|-----------------------|--------------|----------------|--------------|--------------|-------------------------|-------------------|----------------------|----------|
| Sample ID | Sample Date           | Chloride     | Nitrate-N      | Sulfate      | тос          | dissolved               | Iron <sup>1</sup> | Dioxide <sup>1</sup> | Methane  |
|           | pe Company Wells      | Cilionae     | Withate-W      | Juliate      | 100          | uissoiveu               | 11011             | Dioxide              | Wiethane |
| /W-01     | 10/26/2016            | 2.46         | 0.370 J        | 10.1         | 1.00         | 1.59                    |                   | 81.0                 | 1.25     |
| VIVV-OI   | 2/2/2017              | 3.69         | 0.061          | 4.71         | 0.84         | 3.01                    |                   | 68.2                 | 1.74     |
|           | 5/1/2017              | 4.00         | 0.029          | 3.57         | 1.34         | 1.53                    |                   | 82.6                 | 3.12     |
|           | 7/26/2017             | 5.29         | 4.22           | 29.3         | 1.28         | 0.01                    |                   | 10.3                 | 0.177    |
|           | 12/6/2018             | 2.50         | 0.20           | 8.50         | 1.20         |                         | 4.72              | 50                   | 0.62     |
|           | 5/9/2019              | 2.70         | 0.50 U         | 12.0         | 1.20         |                         | 0.08              | 95                   | 0.31     |
|           | 10/9/2019             | 2.50         | 0.60           | 11.0         | 1.30         |                         | 2.69              | 80                   | 0.990    |
|           | 4/23/2020             | 2.40         | 1.10 J         | 12.0         | 1.20         | <br>                    | 0.00              | 72                   | 0.330    |
|           | 10/22/2020            | 2.00         | 0.93           | 14.0         | 1.30         |                         | 0.18              | 70                   | 0.420    |
|           | 4/15/2021             | 2.50 U       | 0.63           | 13.0 J       | 1.20         |                         | 0.00              | 90                   | 0.420    |
|           | 10/28/2021            | 2.30         | 0.27           | 7.60         | 0.99         |                         | 0.71              | 85                   | 0.110    |
|           | 4/13/2022             | 2.40         | 0.27           | 8.90         | 1.40         |                         | 0.00              | 60                   | 0.0500   |
|           | 9/15/2022             | 2.40         | 3.30           | 18.0         | 1.40         |                         | 0.00              | 95                   | 0.0300   |
|           | 3/22/2023             | 3.25         | 0.178          | 6.72         | 1.40         |                         | 0.59              | 140                  | 2.80     |
|           | 8/23/2023             |              | 5.59           | 31.0         | 1.13         |                         | 0.39              |                      | 0.069    |
|           |                       | 3.88         |                | 27.6         |              |                         | 0.04              | 100                  |          |
| ЛW-02     | 5/15/2024             | 4.65         | 3.17           |              | 1.39         |                         |                   | 95                   | 0.06     |
| VIVV-UZ   | 10/26/2016            | 1.98         | 0.023 J        | 4.15<br>8.09 | 1.48         | 5.45<br>5.20            | <del></del>       | 29.6<br>17.6         | 3.68     |
|           | 2/1/2017<br>4/27/2017 | 2.50<br>2.47 | 0.390<br>0.310 |              | 1.23<br>1.60 | 5.39<br>1.34            |                   | 17.6<br>15.6         | 3.30     |
|           |                       |              |                | 5.37         |              |                         |                   |                      | 3.42     |
|           | 7/25/2017             | 3.14         | 0.270          | 5.88         | 1.52         | 5.91                    |                   | 19.3                 | 5.33     |
|           | 12/5/2018             | 2.90         | 0.020 U        | 2.50         | 1.60         |                         | 4.94              | 34                   | 7.30     |
|           | 5/8/2019              | 2.90 U       | 0.044 J        | 0.92 J       | 1.30         |                         | 3.64              | 40                   | 7.20     |
|           | 10/8/2019             | 2.90 J       | 0.020 U        | 1.50 J       | 1.40         |                         | 2.52              | 30                   | 7.70     |
|           | 4/22/2020             | 3.60         | 0.510          | 0.80 J       | 1.50         |                         | 2.35              | 17                   | 4.80     |
|           | 10/21/2020            | 2.90         | 0.024 J        | 1.40         | 1.40         |                         | 2.84              | 40                   | 4.50     |
|           | 4/14/2021             | 4.30         | 0.130 U        | 1.60         | 1.50         |                         | 6.00              | 50                   | 5.30     |
|           | 10/27/2021            | 2.70         | 0.037 J        | 1.30 J       | 1.20         |                         | 6.48              | 30                   | 4.30     |
|           | 4/13/2022             | 2.80         | 0.057 J        | 1.50         | 1.70         |                         | 1.85              | 40                   | 3.50     |
|           | 9/14/2022             | 2.70         | 0.110 J        | 3.40         | 1.60         |                         | 5.13              | 45                   | 1.80     |
|           | 3/22/2023             | 2.75         | 0.0724 J       | 1.81         | 1.41         |                         | 2.53              | 40                   | 8.50     |
|           | 8/23/2023             | 3.00         | 0.124          | 6.35         | 1.52         |                         | 4.84              | 40                   | 6.40     |
|           | 5/15/2024             | 3.64         | 0.106          | 3.96         | 1.47         |                         | 3.20              | 45                   | 7.90     |
| MW-03     | 10/26/2016            | 3.61         | 0.018 J        | 10.2         | 1.27         | 6.14                    |                   | 53.6                 | 1.48     |
|           | 2/2/2017              | 3.92         | 0.018          | 10.4         | 0.93         | 4.46                    |                   | 44.1                 | 0.734    |
|           | 5/1/2017              | 5.47         | 0.0028 U       | 12.1         | 1.27         | 3.32                    |                   | 53.9                 | 0.748    |
|           | 7/27/2017             | 5.19         | 0.011          | 9.48         | 1.33         | 6.31                    |                   | 57.6                 | 2.67     |
|           | 12/7/2018             | 3.80         | 0.02 U         | 10           | 1.50         |                         | 2.96              | 45                   | 2.20     |
|           | 5/9/2019              | 4.30         | 0.2 U          | 9.40         | 1.30         |                         | 2.72              | 60                   | 2.30     |
|           | 10/9/2019             | 4.20         | 0.031 J        | 10           | 1.60         |                         | 3.12              | 60                   | 2.60     |
|           | 4/23/2020             | 4.10         | 0.29           | 7.30         | 1.40         |                         | 1.27              | 23                   | 1.70     |
|           | 10/22/2020            | 3.10         | 0.08 J         | 7.00         | 1.40         |                         | 5.18              | 40                   | 1.10     |
|           | 4/15/2021             | 4.50         | 0.13 U         | 9.10         | 1.40         |                         | 2.77              | 55                   | 0.490    |
|           | 10/28/2021            | 3.30         | 0.2            | 7.70         | 1.40         |                         | 2.58              | 50                   | 0.390    |
|           | 4/14/2022             | 3.30         | 0.031 J        | 12.0         | 1.40         |                         | 2.32              | 45                   | 0.190    |
|           | 9/14/2022             | 3.30         | 0.03 U         | 9.00         | 1.50         |                         | 5.86              | 55                   | 0.110    |
|           | 3/22/2023             | 3.33         | 0.0802 J       | 7.29         | 1.07         |                         | 4.82              | 40                   | 0.760    |
|           | 8/23/2023             | 8.10         | 0.05 U         | 5.34         | 1.21         |                         | 4.88              | 40                   | 2.20     |
|           | 5/15/2024             | 16.00        | 0.0519 J       | 4.28         | 1.17         |                         | 0.25              | 55                   | 0.17     |
| ∕IW-04    | 10/26/2016            | 3.00         | 0.043 J        | 5.70         | 1.21         | 12.9                    |                   | 104                  | 1.46     |
|           | 2/1/2017              | 4.90         | 0.0028 U       | 4.42         | 1.09         | 9.75                    |                   | 98.4                 | 1.86     |
|           | 4/27/2017             | 4.52         | 0.011          | 2.35         | 1.40         | 9.83                    |                   | 82.0                 | 1.21     |
|           | 7/26/2017             | 4.10         | 0.023          | 2.55         | 0.720        | 10.0                    |                   | 82.9                 | 1.78     |
|           | 12/6/2018             | 3.30         | 0.046 J        | 4.10         | 1.70         |                         | 2.96              | 80                   | 2.90     |
|           | 5/8/2019              | 3.40 U       | 0.058 J        | 3.70         | 1.30         |                         | 10.1              | 85                   | 1.40     |
|           | 10/8/2019             | 3.20         | 0.053 J        | 3.90         | 1.50         |                         | 2.95              | 150                  | 2.70     |
|           | 4/22/2020             | 3.70         | 0.29           | 3.90         | 1.40         |                         | 2.00              | 55                   | 0.620    |
|           | 10/21/2020            | 2.70         | 0.024 J        | 4.10 N       | 1.40         |                         | 1.59              | 95                   | 0.700    |
|           | 4/14/2021             | 4.00         | 0.031 U        | 3.50         | 1.20         |                         | 0.39              | 50                   | 0.100    |
|           | , ,                   |              | ·              |              |              |                         |                   |                      |          |
|           | 10/27/2021            | 5.30         | 0.1 J          | 5.10         | 1.20         |                         | 3.18              | 60                   | 0.370    |

**Table 3-3**Groundwater Quality Analytical Data for Natural Attenuation Parameters
Northwest Pipe Company Portland Plant

|                    | -                      |                |                             | ivaturai Ai  | tenuation Para |                    | Ferrous          | Carbon               |                |
|--------------------|------------------------|----------------|-----------------------------|--------------|----------------|--------------------|------------------|----------------------|----------------|
| Sample ID          | Sample Date            | Chlorido       | Nitrata N                   | Sulfate      | тос            | Iron,<br>dissolved | rerrous<br>Iron¹ | Dioxide <sup>1</sup> | Methane        |
|                    | Sample Date            | Chloride       | Nitrate-N                   |              |                |                    |                  |                      |                |
| √W-04              | 9/15/2022              | 15.0           | 0.03 U                      | 3.00         | 1.40           |                    | 2.22             | 65<br>50             | 0.110          |
|                    | 3/22/2023<br>8/22/2023 | 9.36<br>14.0   | 0.05 U<br>0.05 U            | 4.28<br>6.13 | 1.13<br>1.77   |                    | 0.21<br>2.96     | 50<br>60             | 0.073<br>0.470 |
|                    | 5/16/2024              | 10.4           | 0.0588 J                    | 3.75         | 1.77           |                    | 2.90             | 40                   | 1.20           |
| MW-05              | 10/26/2016             | 5.36           | 0.038 J                     | 20.5         | 1.67           | 4.46               | 2.91             | 75.1                 | 1.16           |
| VIVV-US            | 2/2/2017               | 7.03           | 0.57                        | 20.5         | 1.50           | 0.0137 U           |                  | 73.1<br>74.9         | 0.887          |
|                    | 5/1/2017               | 7.03<br>4.87   | 0.0028 U                    | 11.9         | 1.33           | 4.17               |                  | 50.5                 | 2.31           |
|                    | 7/27/2017              | 6.53           | 1.05                        | 20.9         | 1.28           | 2.14               |                  | 63.8                 | 1.19           |
|                    | 12/7/2018              | 3.50           | 0.02 U                      | 7.10         | 1.60           |                    | 1.85             | 40                   | 1.19           |
|                    | 5/9/2019               | 4.80           | 1.0                         | 17.00        | 1.50           |                    | 0.05             | 60                   | 0.17           |
|                    | 10/9/2019              | 5.20           | 0.15 J                      | 12.0         | 1.90           |                    | 3.78             | 65                   | 3.0            |
|                    | 4/23/2020              | 6.00           | 2.4                         | 18.0         | 1.80           |                    | 2.18             | 42                   | 0.63           |
|                    | 10/22/2020             | 4.30           | 0.48                        | 12.0         | 1.90           |                    | 2.94             | 75                   | 1.20           |
|                    | 4/15/2021              | 6.50           | 0.26 U                      | 22.0         | 1.70           |                    | 0.33             | 85                   | 0.28           |
|                    | 10/28/2021             | 4.10           | 0.66                        | 13.0         | 1.70           |                    | 3.62             | 75                   | 0.94           |
|                    | 4/14/2022              | 3.80           | 0.03 U                      | 5.90         | 1.90           |                    | 1.62             | 60                   | 1.20           |
|                    | 9/15/2022              | 5.00           | 0.9                         | 7.70         | 1.20           |                    | 0.700            | 55                   | 0.35           |
|                    | 3/23/2023              | 4.63           | 0.05 U                      | 1.66         | 1.05           |                    | 3.54             | 55                   | 9.20           |
|                    | 8/24/2023              | 5.08           | 0.595                       | 8.61         | 1.64           |                    | 3.30             | 55                   | 5.10           |
|                    | 5/16/2024              | 4.85           | 0.0548 J                    | 2.1          | 1.71           |                    | 3.14             | 60                   | 4.80           |
| MW-06              | 10/26/2016             | 5.07           | 0.016 J                     | 5.17         | 1.25           | 7.29               |                  | 57.1                 | 2.28           |
|                    | 2/2/2017               | 6.12           | 0.0028 U                    | 9.27         | 1.15           | 6.10               |                  | 60.5                 | 0.623          |
|                    | 5/1/2017               | 6.20           | 0.0028 U                    | 13.9         | 1.27           | 3.53               |                  | 81.8                 | 0.206          |
|                    | 7/27/2017              | 5.18           | 0.0084 J                    | 13.7         | 1.05           | 3.24               |                  | 78.6                 | 0.214          |
|                    | 12/7/2018              | 5.20           | 0.02 U                      | 8.70         | 1.50           |                    | 1.87             | 55                   | 3.5            |
|                    | 5/9/2019               | 5.80           | 0.13 U                      | 17.0         | 1.50           |                    | 1.41             | 90                   | 0.37           |
|                    | 10/9/2019              | 5.50           | 0.039 J                     | 9.40         | 1.80           |                    | 4.40             | 80                   | 3.1            |
|                    | 4/23/2020              | 6.30           | 0.23                        | 14.0         | 1.50           |                    | 1.56             | 34                   | 0.61           |
|                    | 10/22/2020             | 5.50           | 0.021 J                     | 9.50         | 1.70           |                    | 4.88             | 95                   | 1.2            |
|                    | 4/15/2021              | 8.20           | 0.096 U                     | 15.0         | 1.50           |                    | 1.71             | 110                  | 0.28           |
|                    | 10/28/2021             | 5.40           | 0.12 J                      | 11.0         | 1.40           |                    | 3.18             | 100                  | 0.76           |
|                    | 4/14/2022              | 4.10           | 0.03 U                      | 25.0         | 1.80           |                    | 1.76             | 100                  | 0.58           |
|                    | 9/15/2022              | 2.80           | 0.03 U                      | 22.0         | 1.60           |                    | 1.46             | 150                  | 0.036          |
|                    | 3/23/2023              | 2.62           | 0.05 U                      | 16.4         | 1.25           |                    | 1.04             | 90                   | 0.11           |
|                    | 8/24/2023              | 2.55           | 0.05 U                      | 13.7         | 1.47           |                    | 0.38             | 85                   | 0.23           |
|                    | 5/16/2024              | 2.14           | 0.0524 J                    | 6.44         | 0.928 J        |                    | 0.21             | 75                   | 0.041          |
| MW-06              | 10/26/2016             | 5.05           | 0.017 J                     | 5.36         | 1.15           | 7.4                |                  | 59.5                 | 2.04           |
| Duplicate          | 2/2/2017               | 5.95           | 0.003 J                     | 9.09         | 1.12           | 6.09               |                  | 62.3                 | 0.666          |
|                    | 5/1/2017               | 6.21           | 0.0028 U                    | 14.0         | 1.40           | 3.6                |                  | 82.3                 | 0.265          |
|                    | 7/27/2017              | 5.21           | 0.01                        | 13.6         | 1.16           | 3.22               |                  | 80.0                 | 0.382          |
|                    | 12/7/2018              | 5.20           | 0.02 U                      | 8.80         | 1.50           |                    | 1.87             | 55                   | 4.1            |
|                    | 5/9/2019               | 5.70           | 0.14 U                      | 17.0         | 1.60           |                    | 1.41             | 90                   | 0.35           |
|                    | 10/9/2019              | 5.50           | 0.035 J                     | 9.70         | 2.10           |                    | 4.40             | 80                   | 2.9            |
|                    | 4/23/2020              | 6.30           | 0.23                        | 13.0         | 1.40           |                    | 1.56             | 44                   | 0.59           |
|                    | 10/22/2020             | 5.40           | 0.02 U                      | 9.30         | 1.70           |                    | 4.88             | 95                   | 1.3            |
|                    | 4/15/2021              | 8.30           | 0.093 U                     | 15.0         | 1.60           |                    | 1.71             | 110                  | 0.23           |
|                    | 10/28/2021             | 5.30           | 0.16 J                      | 11.0         | 1.40           |                    | 3.18             | 100                  | 0.8            |
|                    | 4/14/2022              | 4.10           | 0.03 U                      | 25.0         | 1.80           |                    | 1.76             | 100                  | 0.057          |
|                    | 9/15/2022              | 2.80           | 0.03 U                      | 23.0         | 1.50           |                    | 1.46             | 150                  | 0.018          |
|                    | 3/23/2023              | 2.60           | 0.05 U                      | 16.8         | 1.22           |                    | 1.04             | 90                   | 0.077          |
| Northwest Pi       | pe Company Wells       | on Port of Poi | tland Property <sup>1</sup> |              |                |                    |                  |                      |                |
| MW-10 <sup>2</sup> | 4/12/2022              | 2.60           | 0.03 U                      | 2.00         | 2.50           |                    | 1.77             | 35                   | 1.2            |
|                    | 6/29/2022              | 1.60           | 0.20                        | 5.40         | 0.79           |                    | 0                | 7.4                  | 0.0011         |
|                    | 9/13/2022              | 1.80           | 0.03 U                      | 1.80         | 2.00           |                    | 6.08             | 40                   | 0.86           |
|                    | 12/6/2022              | 2.30           | 0.03 U                      | 2.10         | 2.50           |                    | 2.02             | 30                   | 1              |
|                    | 3/21/2023              | 2.72           | 0.05 U                      | 3.53         | 2.01           |                    | 4.22             | 50                   | 2.9            |
|                    | 6/6/2023               | 2.16           | 0.05 U                      | 3.79         | 2.40           |                    | 8.52             | 45                   | 3.1            |
|                    | 8/23/2023              | 2.37           | 0.05 U                      | 4.81         | 2.28           |                    | 6.32             | 35                   | 2.6            |
|                    | 11/14/2023             | 2.63           | 0.05 U                      | 1.86         | 2.19           |                    | 2.64             | 30                   | 4.6            |
|                    | 5/14/2024              | 2.28           | 0.05 U                      | 2.02         | 2.24           |                    | 3.30             | 30                   | 4.9            |

**Table 3-3**Groundwater Quality Analytical Data for Natural Attenuation Parameters *Northwest Pipe Company Portland Plant* 

|                      | _                                    |              |              | Natural A    | tenuation Para |                    | Ferrous           | Carbon               |                  |
|----------------------|--------------------------------------|--------------|--------------|--------------|----------------|--------------------|-------------------|----------------------|------------------|
| Sample ID            | Sample Date                          | Chloride     | Nitrata N    | Sulfate      | тос            | Iron,<br>dissolved | Iron <sup>1</sup> | Dioxide <sup>1</sup> | Methane          |
|                      | Sample Date                          |              | Nitrate-N    |              |                |                    |                   |                      |                  |
| MW-10 <sup>2</sup>   | 6/29/2022                            | 1.70         | 0.21         | 5.40         | 0.76           |                    | 0                 | 7.3                  | 0.0012           |
| Duplicate            | 12/6/2022                            | 2.30         | 0.03 UJ      | 2.30         | 2.40           |                    | 2.02              | 30                   | 0.41             |
|                      | 6/6/2023                             | 2.19         | 0.05 U       | 4.46         | 2.40           |                    | 8.52              | 45                   | 3.3              |
|                      | 11/14/2023                           | 2.68         | 0.05 U       | 2.09         | 2.22           |                    | 2.64              | 30                   | 6.2              |
| MW-11 <sup>2</sup>   | 4/12/2022                            | 3.30         | 0.03 U       | 2.80         | 1.30           |                    | 0.48              | 30                   | 1.4              |
|                      | 6/29/2022                            | 4.30         | 0.03 U       | 4.50         | 1.40           |                    | 1.75              | 18                   | 1.9              |
|                      | 9/13/2002                            | 4.20         | 0.072 J      | 4.90         | 1.50           |                    | 2.27              | 45                   | 0.95             |
|                      | 12/6/2022                            | 3.50         | 0.076 J      | 4.10         | 1.40           |                    | 3.17              | 40                   | 1.1              |
|                      | 3/21/2023                            | 4.74         | 0.16         | 4.31         | 1.25           |                    | 3.07              | 45                   | 2.5              |
|                      | 6/6/2023                             | 4.02         | 0.13         | 4.45         | 1.40           |                    | 2.71              | 35                   | 2.9              |
|                      | 8/23/2023                            | 6.30         | 0.22         | 13.4         | 1.20           |                    | 0.97              | 30                   | 0.45             |
|                      | 11/14/2023                           | 15.8         | 0.24         | 0.238        | 1.08           |                    | 2.37              | 30                   | 1.7              |
|                      | 5/14/2024                            | 13.5         | 0.06 J       | 3.12         | 1.08           |                    | 2.75              | 45                   | 1.6              |
| MW-12 <sup>2</sup>   | 4/12/2022                            | 2.50         | 0.09 J       | 4.00         | 1.60           |                    | 1.58              | 35                   | 0.27             |
|                      | 6/29/2022                            | 2.10         | 0.17 J       | 3.50         | 1.20           |                    | 2.41              | 20                   | 0.21             |
|                      | 9/13/2022                            | 2.60         | 0.22         | 3.30         | 1.30           |                    | 5.90              | 70                   | 0.41             |
|                      | 12/6/2022                            | 4.60         | 0.44         | 7.20         | 1.40           |                    | 3.09              | 55                   | 0.33             |
|                      | 3/21/2023                            | 2.66         | 0.30         | 4.95         | 1.07           |                    | 1.82              | 35                   | 0.59             |
|                      | 6/6/2023                             | 3.25         | 0.13         | 4.99         | 1.40           |                    | 1.71              | 55                   | 0.68             |
|                      | 8/22/2023                            | 3.99         | 0.89         | 5.07         | 1.43           |                    | 2.93              | 65                   | 0.52             |
|                      | 11/14/2023                           | 5.81         | 0.93         | 0.93         | 1.13           |                    | 2.02              | 50                   | 1.50             |
|                      | 5/15/2024                            | 4.44         | 0.36         | 4.41         | 1.13           |                    | 2.16              | 60                   | 0.57             |
| MW-12 <sup>2</sup>   | 8/22/2023                            |              | 0.86         | 5.79         | 1.38           |                    | 2.93              | 65                   | 0.49             |
| oivv-12<br>Duplicate | 5/15/2024                            | 4.11<br>4.9  |              |              |                |                    |                   | 60                   |                  |
| •                    |                                      | 4.9          | 0.368        | 5.2          | 1.16           |                    | 2.16              | 60                   | 0.57             |
| Port of Portland     |                                      |              | F 2 I        | 2471         | 0.05.1         | 0.0204.1           |                   | 26.2.1               | 0.0204           |
| Γ4S1MW-03S           | 10/25/2016                           | 5.10 J       | 5.2 J        | 24.7 J       | 0.85 J         | 0.0304 J           |                   | 26.2 J               | 0.0291           |
|                      | 2/1/2017                             | 0.86         | 1.2          | 4.54         | 0.39 J         | 0.01 U             |                   | 13.9                 | 0.0101           |
|                      | 4/26/2017                            | 0.71         | 0.44         | 2.56         | 0.50           | 0.01 U             |                   | 9.6                  | 0.00515          |
|                      | 7/25/2017                            | 1.90         | 3.8          | 12.4         | 0.56           | 0.01 U             |                   | 18.1                 | 0.00495          |
|                      | 12/5/2018                            | 1.60         | 1.2          | 13.000       | 0.82 J         |                    | 0                 | 37.5                 | 0.1              |
|                      | 5/8/2019                             | 1.50 U       | 1.4          | 6.90         | 0.63           |                    | 0.05              | 24                   | 0.00025          |
|                      | 10/7/2019                            | 1.20         | 1.2          | 8.60         | 0.84           |                    | 0.01              | 24                   | 0.16             |
|                      | 4/21/2020                            | 1.30         | 4.8 J        | 15.000       | 0.72           |                    | 0.55              | 15                   | 0.00089          |
|                      | 10/20/2020                           | 1.20         | 1.6          | 11.00        | 0.73           |                    | 0.09              | 26                   | 0.1              |
|                      | 4/13/2021                            | 1.30 U       | 4.6 J        | 6.90         | 0.77 U         |                    | 0.00              | 24                   | 0.0007           |
|                      | 10/26/2021                           | 1.50         | 0.63         | 7.70         | 0.67           |                    | 0.07              | 25                   | 0.08             |
|                      | 4/11/2022                            | 1.10 J       | 3.0          | 10.000       | 0.99           |                    | 0.00              | 32                   | 0.00011          |
|                      | 9/14/2022                            | 1.30 J       | 1.2          | 4.80         | 0.86           |                    | 0.03              | 40                   | 0.00044          |
|                      | 3/20/2023                            | 1.20         | 3.1          | 12.2         | 0.754 J        |                    | 0.02              | 30                   | 0.00068          |
|                      | 8/21/2023                            | 1.73         | 1.2          | 6.90         | 1.09           |                    | 0.00              | 30                   | 0.00068          |
|                      | 5/14/2024                            | 1.21         | 2.5          | 8.96         | 0.812 J        |                    | 0.02              | 35                   | 0.00068          |
| Γ4S1MW-09            | 10/25/2016                           | 2.76 J       | 1.2 J        | 5.97 J       | 1.09 J         | 7.62               |                   | 49.1 J               | 2.64             |
|                      | 2/1/2017                             | 1.70         | 2.9          | 5.66         | 0.61           | 4.41               |                   | 29                   | 1.22             |
|                      | 4/26/2017                            | 1.65         | 1.9          | 5.95         | 0.7            | 2.00               |                   | 27.3                 | 0.0225           |
|                      | 7/25/2017                            | 2.34         | 1.9          | 7.16         | 0.69           | 0.0321 J           |                   | 30.8                 | 0.0225           |
|                      | 12/5/2018                            | 1.80         | 1.2          | 5.60         | 0.66 J         |                    | 0                 | 27.5                 | 0.00025          |
|                      | 5/8/2019                             | 1.60 U       | 1.8          | 7.00         | 0.53           |                    | 0.08              | 26                   | 0.0024           |
|                      | 10/7/2019                            | 1.00 J       | 1.3          | 6.30 J       | 0.55           |                    | 0.01              | 26                   | 0.0036           |
|                      | 4/21/2020                            | 1.30         | 2.7          | 7.70         | 0.55           |                    | 0.02              | 13                   | 0.0069           |
|                      | 10/20/2020                           | 1.40         | 1.7          | 10.0         | 0.83           |                    | 0.21              | 30                   | 0.033            |
|                      | 4/13/2021                            | 1.90 U       | 2.4          | 11.0         | 0.90 U         |                    | 0.11              | 36                   | 0.046            |
|                      |                                      |              |              | 9.30         | 0.75           |                    | 0.09              | 40                   | 0.0025           |
|                      |                                      | 1.80         | 1.9          | 2,30         |                |                    |                   |                      |                  |
|                      | 10/26/2021                           | 1.80<br>1.60 | 1.9<br>1.5 J |              |                |                    |                   |                      |                  |
|                      | 10/26/2021<br>4/11/2022              | 1.60         | 1.5 J        | 5.60         | 0.78           |                    | 0                 | 30                   | 0.0017           |
|                      | 10/26/2021<br>4/11/2022<br>9/14/2022 | 1.60<br>1.50 | 1.5 J<br>1.7 | 5.60<br>6.50 | 0.78<br>0.74   |                    | 0<br>0            | 30<br>36             | 0.0017<br>0.0031 |
|                      | 10/26/2021<br>4/11/2022              | 1.60         | 1.5 J        | 5.60         | 0.78           |                    | 0                 | 30                   | 0.0017           |

**Table 3-3**Groundwater Quality Analytical Data for Natural Attenuation Parameters
Northwest Pipe Company Portland Plant

|           | _           |          |           | Natural At | tenuation Para | ` ` ` `   |                   |                      |           |
|-----------|-------------|----------|-----------|------------|----------------|-----------|-------------------|----------------------|-----------|
|           |             |          |           |            |                | Iron,     | Ferrous           | Carbon               |           |
| Sample ID | Sample Date | Chloride | Nitrate-N | Sulfate    | TOC            | dissolved | Iron <sup>1</sup> | Dioxide <sup>1</sup> | Methane   |
| T4S1MW-22 | 10/25/2016  | 2.80 J   | 0.095 J   | 5.49 J     | 1.19 J         | 0.01 U    |                   | 48.4 J               | 0.0159 J  |
|           | 2/1/2017    | 4.56     | 0.039     | 8.90       | 1.09           | 0.01 U    |                   | 84.5                 | 0.0334    |
|           | 4/27/2017   | 3.38     | 0.92      | 10.0       | 1.18           | 0.01 U    |                   | 49.1                 | 0.00605 L |
|           | 7/26/2017   | 4.78     | 0.36      | 7.90       | 1.15           | 0.01 U    |                   | 60                   | 0.0154 J  |
|           | 12/6/2018   | 6.10     | 0.02 U    | 15.0       | 1.30           |           | 0.00              | 50                   | 0.16      |
|           | 5/8/2019    | 7.90     | 0.11 J    | 11.0       | 1.20           |           | 0.05              | 85                   | 0.041     |
|           | 10/8/2019   | 7.30     | 0.02 U    | 16.0       | 1.60           |           | 0.01              | 60                   | 0.016     |
|           | 4/22/2020   | 5.00     | 0.73      | 7.70       | 1.30           |           | 0.00              | 40                   | 0.023     |
|           | 10/21/2020  | 4.40     | 0.021 J   | 6.50       | 1.50           |           | 0.00              | 50                   | 0.0096    |
|           | 4/14/2021   | 5.40     | 0.20 U    | 9.70       | 1.30           |           | 0.02              | 80                   | 0.018     |
|           | 10/27/2021  | 4.80     | 0.034 J   | 5.30       | 1.30 J         |           | 0.11              | 50                   | 0.0097    |
|           | 4/13/2022   | 6.90     | 0.23      | 5.70       | 1.40           |           | 0.00              | 40                   | 0.0011    |
|           | 9/13/2022   | 6.60     | 0.26      | 7.40       | 1.40           |           | 0.10              | 70                   | 0.0038    |
|           | 3/21/2023   | 3.87     | 0.074 J   | 5.84       | 1.24           |           | 0.08              | 55                   | 0.013     |
|           | 8/22/2023   | 7.09     | 0.25      | 14.5       | 1.45           |           | 0                 | 65                   | 0.016     |
|           | 5/13/2024   | 4.71     | 1.03      | 10.2       | 1.26           |           | 0.05              | 55                   | 0.0098    |
| T4S1MW-23 | 10/25/2016  | 3.92 J   | 0.27 J    | 7.67 J     | 0.65 J         | 0.221     |                   | 52.9 J               | 0.00507 J |
|           | 2/1/2017    | 4.24     | 0.58      | 8.74       | 0.68           | 0.185     |                   | 26.9                 | 0.0379    |
|           | 4/27/2017   | 3.36     | 0.42      | 7.76       | 0.78           | 0.0545 J  |                   | 20.4                 | 0.00712 J |
|           | 7/26/2017   | 4.07     | 0.36      | 4.83       | 1.18           | 0.11      |                   | 27.5                 | 0.0196 J  |
|           | 12/6/2018   | 3.60     | 0.42      | 10.0       | 0.79 J         |           | 0.02              | 26                   | 0.068     |
|           | 5/9/2019    | 13.0     | 0.48 U    | 8.30       | 0.67           |           | 0.08              | 36                   | 0.016     |
|           | 10/8/2019   | 8.50     | 0.40      | 6.60       | 0.78           |           | 0.05              | 28                   | 0.067     |
|           | 4/22/2020   | 28.0     | 1.20      | 7.50       | 0.58           |           | 0.03              | 16                   | 0.0087    |
|           | 10/21/2020  | 30.0     | 0.96      | 8.30       | 0.82           |           | 0.00              | 35                   | 0.0024    |
|           | 4/14/2021   | 14.0 J   | 0.50 J    | 9.30 J     | 0.81 U         |           | 0.00              | 40                   | 0.0031    |
|           | 10/27/2021  | 9.00     | 0.71      | 7.70       | 0.72           |           | 0.10              | 32                   | 0.0027    |
|           | 4/12/2022   | 6.80     | 0.75      | 7.20       | 0.95           |           | 0.16              | 15                   | 0.0029    |
|           | 9/13/2022   | 7.80     | 0.91      | 6.00       | 1.1            |           | 0.00              | 35                   | 0.0062    |
|           | 3/21/2023   | 14.0     | 0.12      | 5.35       | 2.38           |           | 2.88              | 30                   | 0.17      |
|           | 8/22/2023   | 16.0     | 0.38      | 7.75       | 1.93           |           | 2.49              | 40                   | 0.20      |
|           | 5/15/2024   | 9.9      | 0.32      | 6.15       | 1.25           |           | 0.02              | 30                   | 0.14      |

mg/L = milligrams per Liter

TOC = Total Organic Carbon

<sup>&</sup>lt;sup>1</sup> Parameter has been measured in the field since 2017. Carbon dioxide was measured using RSK 175 for the April 2020 and June 2022 sampling event.

 $<sup>^2\</sup>mbox{MW-10},$  MW-11, and MW-12 were installed in March 2022. Wells are sampled quaterly.

J - the analyte was detected, but the analytical laboratory has flagged the associated numerical value as estimated.

U - the analyte was analyzed for but was not detected above the detection limit.

**Table 3-4**Groundwater Quality Analytical Data for Volatile Organic Compounds
Northwest Pipe Company Portland Plant

|                                         |                                              | Volatile Organic Compounds (μg/L) |          |             |          |  |  |  |  |
|-----------------------------------------|----------------------------------------------|-----------------------------------|----------|-------------|----------|--|--|--|--|
|                                         |                                              | PCE                               | TCE      | cis-1,2-DCE | VC       |  |  |  |  |
| Portland Ha                             | arbor ROD Concentrations (μg/L) <sup>1</sup> | 0.24                              | 0.6      | 70          | 0.022    |  |  |  |  |
| Northwest Pipe Company Wells            |                                              |                                   |          |             |          |  |  |  |  |
| MW-01                                   | 10/26/2016                                   | 158                               | 22.8     | 113         | 16.7     |  |  |  |  |
| (1,280 feet to river)                   | 2/2/2017                                     | 71.1                              | 14.9     | 107         | 29.9     |  |  |  |  |
|                                         | 5/1/2017                                     | 61.7                              | 13.0     | 220         | 51.6     |  |  |  |  |
|                                         | 7/26/2017                                    | 197                               | 26.7     | 174         | 8.51     |  |  |  |  |
|                                         | 12/6/2018                                    | 98.0                              | 13       | 160         | 19.0     |  |  |  |  |
|                                         | 5/9/2019                                     | 220                               | 28       | 100         | 3.80     |  |  |  |  |
|                                         | 10/9/2019                                    | 150                               | 18       | 140         | 17.0     |  |  |  |  |
|                                         | 4/23/2020                                    | 260                               | 29       | 110         | 5.2      |  |  |  |  |
|                                         | 10/22/2020                                   | 220                               | 26       | 160         | 22.0     |  |  |  |  |
|                                         | 4/15/2021                                    | 280                               | 24       | 58          | 0.5      |  |  |  |  |
|                                         | 10/28/2021                                   | 130                               | 23       | 120         | 19.0     |  |  |  |  |
|                                         | 4/13/2022                                    | 140                               | 23       | 60          | 3.2 J    |  |  |  |  |
|                                         | 9/15/2022                                    | 210                               | 21       | 74          | 2.9 J    |  |  |  |  |
|                                         | 3/22/2023                                    | 52                                | 15       | 64          | 15       |  |  |  |  |
|                                         | 8/23/2023                                    | 220                               | 21       | 50          | 0.58     |  |  |  |  |
|                                         | 5/15/2024                                    | 110                               | 13       | 70          | 0.76     |  |  |  |  |
| MW-02                                   | 10/26/2016                                   | 0.0598                            | 0.15 U   | 0.15 U      | 0.0652   |  |  |  |  |
| (1,140 feet to river)                   | 2/1/2017                                     | 0.169                             | 0.15 U   | 0.200 J     | 0.0370   |  |  |  |  |
| , , , , , , , , , , , , , , , , , , , , | 4/27/2017                                    | 0.224                             | 0.15 U   | 0.210 J     | 0.0115 J |  |  |  |  |
|                                         | 7/25/2017                                    | 0.451                             | 0.15 U   | 0.410 J     | 0.0190 J |  |  |  |  |
|                                         | 12/5/2018                                    | 0.1 U                             | 0.1 U    | 1.40        | 2.60     |  |  |  |  |
|                                         | 5/8/2019                                     | 0.1 U                             | 0.1 U    | 0.360       | 1.20     |  |  |  |  |
|                                         | 10/8/2019                                    | 0.1 U                             | 0.1 U    | 0.760       | 2.90     |  |  |  |  |
|                                         | 4/23/2020                                    | 0.1 U                             | 0.1 U    | 0.290       | 0.68     |  |  |  |  |
|                                         | 10/21/2020                                   | 0.1 U                             | 0.1 U    | 0.660       | 2.60     |  |  |  |  |
|                                         | 4/14/2021                                    | 0.1 U                             | 0.1 U    | 0.260       | 0.60     |  |  |  |  |
|                                         | 10/27/2021                                   | 0.1 U                             | 0.1 U    | 1.5         | 4.9      |  |  |  |  |
|                                         | 4/13/2022                                    | 0.16 J                            | 0.1 J    | 3.8         | 3.6 J    |  |  |  |  |
|                                         | 9/14/2022                                    | 0.22                              | 0.066 U  | 43          | 36 J     |  |  |  |  |
|                                         | 3/22/2023                                    | 0.27                              | 1.6      | 49          | 26       |  |  |  |  |
|                                         | 8/23/2023                                    | 0.85                              | 0.46     | 160         | 86       |  |  |  |  |
|                                         | 5/15/2024                                    | 2.8                               | 1.2      | 34          | 65       |  |  |  |  |
| MW-03                                   | 10/26/2016                                   | 630                               | 221      | 428         | 22.8     |  |  |  |  |
| (975 feet to river)                     | 2/2/2017                                     | 483                               | 178      | 502         | 20.8     |  |  |  |  |
| (3/3) (27 (3/1/21)                      | 5/1/2017                                     | 657                               | 283      | 847         | 26.1     |  |  |  |  |
|                                         | 7/27/2017                                    | 550                               | 209      | 670         | 29.9     |  |  |  |  |
|                                         | 12/7/2018                                    | 490                               | 160      | 850         | 46.0     |  |  |  |  |
|                                         | 5/9/2019                                     | 370                               | 100      | 860         | 46.0     |  |  |  |  |
|                                         | 10/9/2019                                    | 530                               | 160      | 990         | 62.0     |  |  |  |  |
|                                         | 4/23/2020                                    |                                   |          |             | 42.0     |  |  |  |  |
|                                         | 10/22/2020                                   | 170<br>250                        | 58<br>54 | 730<br>360  | 36.0     |  |  |  |  |
|                                         |                                              |                                   |          |             |          |  |  |  |  |
|                                         | 4/15/2021                                    | 160                               | 42       | 510         | 43.0     |  |  |  |  |
|                                         | 10/28/2021                                   | 130                               | 26       | 300         | 57.0     |  |  |  |  |
|                                         | 4/14/2022                                    | 130                               | 34       | 410         | 70.0 J   |  |  |  |  |
|                                         | 9/14/2022                                    | 68                                | 16       | 200         | 53 J     |  |  |  |  |
|                                         | 3/22/2023                                    | 27                                | 11       | 300         | 44       |  |  |  |  |
|                                         | 8/23/2023                                    | 36                                | 8        | 140         | 39       |  |  |  |  |
|                                         | 5/15/2024                                    | 4.4                               | 6.2      | 57          | 3.8      |  |  |  |  |

**Table 3-4**Groundwater Quality Analytical Data for Volatile Organic Compounds
Northwest Pipe Company Portland Plant

|                            | Volatile Organic Compounds (μg/L)                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ·                          | PCE                                                                                                                                                                                                               | TCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cis-1,2-DCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| ations (μg/L) <sup>1</sup> | 0.24                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 10/26/2016                 | 28.2                                                                                                                                                                                                              | 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 2/1/2017                   | 12.4                                                                                                                                                                                                              | 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 4/27/2017                  | 14.4                                                                                                                                                                                                              | 29.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 7/26/2017                  | 18.5                                                                                                                                                                                                              | 35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 12/6/2018                  | 16.0                                                                                                                                                                                                              | 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 5/8/2019                   | 5.40                                                                                                                                                                                                              | 8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 10/8/2019                  | 10.0                                                                                                                                                                                                              | 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 4/22/2020                  | 4.9                                                                                                                                                                                                               | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 10/21/2020                 | 12.0                                                                                                                                                                                                              | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.70 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 4/14/2021                  | 5.0                                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 10/27/2021                 | 13.0                                                                                                                                                                                                              | 8.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 4/13/2022                  | 6.0                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.50 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 9/15/2022                  | 2.8                                                                                                                                                                                                               | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 3/22/2023                  | 6.4                                                                                                                                                                                                               | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 8/22/2023                  | 1.5                                                                                                                                                                                                               | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 5/16/2024                  | 29                                                                                                                                                                                                                | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 10/26/2016                 | 3,510                                                                                                                                                                                                             | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 2/2/2017                   | 4,150                                                                                                                                                                                                             | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 5/1/2017                   | 949                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 7/27/2017                  | 3,640                                                                                                                                                                                                             | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.58 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 12/7/2018                  | 1,200                                                                                                                                                                                                             | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 5/9/2019                   | 4,400                                                                                                                                                                                                             | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 10/9/2019                  | 2,300                                                                                                                                                                                                             | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 4/23/2020                  | 3,600                                                                                                                                                                                                             | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 10/22/2020                 | 2,400                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.65 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 0/24/2023                  |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                            | 4/15/2021 10/28/2021 4/14/2022 9/15/2022 3/23/2023 8/24/2023 5/16/2024 10/26/2016 2/2/2017 5/1/2017 7/27/2017 12/7/2018 5/9/2019 10/9/2019 4/23/2020 4/15/2021 10/28/2021 4/14/2022 9/15/2022 3/23/2023 8/24/2023 | 4/15/2021       3,700         10/28/2021       2,200         4/14/2022       1,900         9/15/2022       2,600 J         3/23/2023       850         8/24/2023       1,900         5/16/2024       240         10/26/2016       287         2/2/2017       805         5/1/2017       1,280         7/27/2017       810         12/7/2018       430         5/9/2019       980         10/9/2019       520         4/23/2020       920         10/22/2020       560         4/15/2021       810         10/28/2021       590         4/14/2022       360         9/15/2022       230         3/23/2023       180         8/24/2023       170 | 4/15/2021       3,700       170         10/28/2021       2,200       180         4/14/2022       1,900       110         9/15/2022       2,600 J       180         3/23/2023       850       100         8/24/2023       1,900       160         5/16/2024       240       36         10/26/2016       287       60.4         2/2/2017       805       147         5/1/2017       1,280       225         7/27/2017       810       128         12/7/2018       430       110         5/9/2019       980       210         10/9/2019       520       110         4/23/2020       920       160         10/22/2020       560       110         4/15/2021       810       210         10/28/2021       590       120         4/14/2022       360       91         9/15/2022       230       48         3/23/2023       180       50         8/24/2023       170       30 | 4/15/2021       3,700       170       1,800         10/28/2021       2,200       180       760         4/14/2022       1,900       110       960         9/15/2022       2,600 J       180       1,200         3/23/2023       850       100       680         8/24/2023       1,900       160       810         5/16/2024       240       36       920         10/26/2016       287       60.4       1,160         2/2/2017       805       147       1,590         5/1/2017       1,280       225       1,530         7/27/2017       810       128       1,080         12/7/2018       430       110       1,300         5/9/2019       980       210       1,900         10/9/2019       520       110       1,700         4/23/2020       920       160       2,000         10/22/2020       560       110       1,700         4/15/2021       810       210       1,500         4/14/2022       360       91       1,100         9/15/2022       230       48 J       190 J         3/23/2023       180       50 |  |  |  |

**Table 3-4**Groundwater Quality Analytical Data for Volatile Organic Compounds
Northwest Pipe Company Portland Plant

|                                            |                                | Volatile Organic Compounds (μg/L) |        |             |         |  |  |  |
|--------------------------------------------|--------------------------------|-----------------------------------|--------|-------------|---------|--|--|--|
|                                            |                                | PCE                               | TCE    | cis-1,2-DCE | VC      |  |  |  |
| Portland Harbor ROD Conc                   | entrations (μg/L) <sup>1</sup> | 0.24                              | 0.6    | 70          | 0.022   |  |  |  |
| MW-06                                      | 10/26/2016                     | 299                               | 70.9   | 1,130       | 177     |  |  |  |
| Duplicate                                  | 2/2/2017                       | 760                               | 145    | 1,600       | 53.9    |  |  |  |
| (1,200 feet to river)                      | 5/1/2017                       | 1,280                             | 228    | 1,550       | 20.7    |  |  |  |
|                                            | 7/27/2017                      | 728                               | 123    | 1,080       | 22.5    |  |  |  |
|                                            | 12/7/2018                      | 400                               | 110    | 1,400       | 130     |  |  |  |
|                                            | 5/9/2019                       | 1,000                             | 220    | 1,900       | 44.0    |  |  |  |
|                                            | 10/9/2019                      | 600                               | 130    | 1,800       | 150 J   |  |  |  |
|                                            | 4/23/2020                      | 900                               | 160    | 2,000       | 67      |  |  |  |
|                                            | 10/22/2020                     | 620                               | 130    | 1,900       | 170     |  |  |  |
|                                            | 4/15/2021                      | 830                               | 220    | 2,200       | 69      |  |  |  |
|                                            | 10/28/2021                     | 620                               | 130    | 1,500       | 91      |  |  |  |
|                                            | 4/14/2022                      | 350                               | 94     | 980         | 21 J    |  |  |  |
|                                            | 9/15/2022                      | 240 J                             | 68 J   | 290 J       | 3.8     |  |  |  |
|                                            | 3/23/2023                      | 180                               | 50     | 180         | 1.6     |  |  |  |
| Northwest Pipe Company Wells on Port of Po | rtland Property <sup>2</sup>   |                                   |        |             |         |  |  |  |
| MW-10 (570 feet to river)                  | 4/12/2022                      | 0.084 U                           | 0.28   | 4.7         | 1.1     |  |  |  |
|                                            | 6/29/2022                      | 0.54                              | 0.26 U | 0.067 J     | 0.017 J |  |  |  |
|                                            | 9/13/2022                      | 0.084 U                           | 0.19 J | 2.0         | 0.66    |  |  |  |
|                                            | 12/6/2022                      | 0.024 J                           | 0.23   | 4.9         | 0.26    |  |  |  |
|                                            | 3/21/2023                      | 0.03 J                            | 0.5    | 4.7         | 0.073   |  |  |  |
|                                            | 6/6/2023                       | 0.021 J                           | 0.33   | 4.6         | 0.074   |  |  |  |
|                                            | 8/23/2023                      | 0.02 U                            | 0.31   | 2.5         | 0.13    |  |  |  |
|                                            | 11/14/2023                     | 0.02 U                            | 0.18   | 2.4         | 0.15    |  |  |  |
|                                            | 5/14/2024                      | 0.02 U                            | 0.2    | 3.3         | 0.29    |  |  |  |
| MW-10                                      | 6/29/2022                      | 0.46                              | 0.23   | 0.062 J     | 0.016 J |  |  |  |
| Duplicate                                  | 12/6/2022                      | 0.022 J                           | 0.22   | 4.9         | 0.26    |  |  |  |
|                                            | 6/6/2023                       | 0.02 J                            | 0.36   | 4.8         | 0.082   |  |  |  |
|                                            | 11/14/2023                     | 0.02 U                            | 0.19   | 2.5         | 0.15    |  |  |  |
| MW-11 (670 feet to river)                  | 4/12/2022                      | 1.6                               | 0.8    | 46          | 26      |  |  |  |
|                                            | 6/29/2022                      | 1.2                               | 1.1 U  | 64          | 52      |  |  |  |
|                                            | 9/13/2022                      | 2.1                               | 1.1    | 32          | 32      |  |  |  |
|                                            | 12/6/2022                      | 1.8                               | 0.7    | 19          | 19      |  |  |  |
|                                            | 3/21/2023                      | 1.1                               | 0.48   | 31          | 12      |  |  |  |
|                                            | 6/6/2023                       | 0.77                              | 0.44   | 37          | 7.7     |  |  |  |
|                                            | 8/23/2023                      | 1.8                               | 0.66   | 19          | 4.6     |  |  |  |
|                                            | 11/14/2023                     | 2.9                               | 0.63   | 21          | 36      |  |  |  |
|                                            | 5/14/2024                      | 0.6                               | 0.45   | 26          | 7.6     |  |  |  |
| MW-12 (880 feet to river)                  | 4/12/2022                      | 2.8                               | 3.9    | 45          | 7.6     |  |  |  |
|                                            | 6/29/2022                      | 1.8                               | 3.3    | 42          | 6       |  |  |  |
|                                            | 9/13/2022                      | 2.1                               | 3.8    | 44          | 8.6     |  |  |  |
|                                            | 12/6/2022                      | 2.3                               | 4.4    | 34          | 3.8     |  |  |  |
|                                            | 3/21/2023                      | 1.6                               | 3.1    | 25          | 1.9     |  |  |  |
|                                            | 6/6/2023                       | 1.7                               | 3.9    | 40          | 2.0     |  |  |  |
|                                            | 8/23/2023                      | 1.8                               | 4.0    | 30          | 2.3     |  |  |  |
|                                            | 11/14/2023                     | 1.8                               | 4.0    | 29          | 4.3     |  |  |  |
|                                            | 5/15/2024                      | 1.4                               | 2.2    | 37          | 4.4     |  |  |  |
| MW-12 Duplicate                            | 8/23/2023                      | 1.7                               | 3.9    | 30          | 2.2     |  |  |  |
|                                            | 5/15/2024                      | 1.6                               | 2.8    | 33          | 4.0     |  |  |  |

**Table 3-4**Groundwater Quality Analytical Data for Volatile Organic Compounds
Northwest Pipe Company Portland Plant

|                                         |                                             | Volatile Organic Compounds (μg/L) |         |             |          |  |  |  |
|-----------------------------------------|---------------------------------------------|-----------------------------------|---------|-------------|----------|--|--|--|
|                                         |                                             | PCE                               | TCE     | cis-1,2-DCE | VC       |  |  |  |
| Portland Ho                             | rbor ROD Concentrations (μg/L) <sup>1</sup> | 0.24                              | 0.6     | 70          | 0.022    |  |  |  |
| Port of Portland Wells (Upgradie        | nt to Downgradient)                         |                                   |         |             |          |  |  |  |
| T4S1MW-22                               | 10/25/2016                                  | 1.46 J                            | 4.60 J  | 2.77 J      | 0.0499 J |  |  |  |
| (1,010 feet to river)                   | 2/1/2017                                    | 1.28                              | 4.29    | 5.36        | 0.106    |  |  |  |
|                                         | 4/27/2017                                   | 1.43                              | 3.56    | 2.11        | 0.022    |  |  |  |
|                                         | 7/26/2017                                   | 1.71                              | 3.00    | 3.78        | 0.0638   |  |  |  |
|                                         | 12/6/2018                                   | 1.4                               | 4.6     | 5.8         | 0.076 J  |  |  |  |
|                                         | 5/8/2019                                    | 1.8                               | 4.4     | 7.5         | 0.33     |  |  |  |
|                                         | 10/8/2019                                   | 1.3                               | 3.4     | 7.4         | 0.18     |  |  |  |
|                                         | 4/22/2020                                   | 1.1                               | 3.3     | 7.0         | 0.32     |  |  |  |
|                                         | 10/21/2020                                  | 0.94                              | 2.8     | 7.9 J       | 0.17     |  |  |  |
|                                         | 4/14/2021                                   | 1.7                               | 2.7     | 5.0         | 0.14     |  |  |  |
|                                         | 10/27/2021                                  | 1.1                               | 2.7     | 4.8         | 0.20     |  |  |  |
|                                         | 4/13/2022                                   | 1.5                               | 2.6     | 3.6         | 0.20 J   |  |  |  |
|                                         | 9/13/2022                                   | 1.6                               | 2.2     | 3.6         | 0.41     |  |  |  |
|                                         | 3/21/2023                                   | 1.2                               | 2.5     | 3.3         | 0.06     |  |  |  |
|                                         | 8/22/2023                                   | 1.4                               | 2.1     | 1.7         | 0.03 J   |  |  |  |
|                                         | 5/13/2024                                   | 1.7                               | 1.7     | 2.4         | 0.039 J  |  |  |  |
| T4S1MW-23                               | 10/25/2016                                  | 1.59 J                            | 0.15 UJ | 0.700 J     | 0.008 UJ |  |  |  |
| (710 feet to river)                     | 2/1/2017                                    | 0.937                             | 0.41 J  | 0.650       | 0.0188 J |  |  |  |
| , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 4/27/2017                                   | 1.07                              | 0.39 J  | 0.420 J     | 0.008 U  |  |  |  |
|                                         | 7/26/2017                                   | 1.21                              | 0.29 J  | 0.15 U      | 0.008 U  |  |  |  |
|                                         | 12/6/2018                                   | 1.8                               | 0.61    | 1.40        | 0.023 J  |  |  |  |
|                                         | 5/9/2019                                    | 1.9                               | 0.50    | 0.34        | 0.02 U   |  |  |  |
|                                         | 10/8/2019                                   | 1.6                               | 0.40    | 0.58        | 0.02 U   |  |  |  |
|                                         | 4/22/2020                                   | 1.6                               | 0.37    | 0.18 J      | 0.02 U   |  |  |  |
|                                         | 10/21/2020                                  | 1.8                               | 0.33    | 1.50        | 0.02 U   |  |  |  |
|                                         | 4/14/2021                                   | 1.3                               | 0.37    | 0.23        | 0.02 U   |  |  |  |
|                                         | 10/27/2021                                  | 1.3                               | 0.47    | 0.59        | 0.02 U   |  |  |  |
|                                         | 4/12/2022                                   | 1.3                               | 0.41    | 0.89        | 0.032    |  |  |  |
|                                         | 9/13/2022                                   | 1.5                               | 0.29    | 0.17 J      | 0.013 UJ |  |  |  |
|                                         | 3/21/2023                                   | 1.3                               | 0.47    | 0.41        | 0.02 U   |  |  |  |
|                                         | 8/22/2023                                   | 1.2                               | 0.20    | 0.04 J      | 0.02 U   |  |  |  |
|                                         | 5/15/2024                                   | 0.91                              | 0.18    | 0.054       | 0.02 U   |  |  |  |
| T4S1MW-03S                              | 10/25/2016                                  | 0.112 J                           | 0.15 UJ | 0.15 UJ     | 0.008 UJ |  |  |  |
| (160 feet to river)                     | 2/1/2017                                    | 0.230                             | 0.15 U  | 0.15 U      | 0.008 U  |  |  |  |
| (100 Jeet to men)                       | 4/26/2017                                   | 0.117                             | 0.15 U  | 0.15 U      | 0.008 U  |  |  |  |
|                                         | 7/25/2017                                   | 0.0508                            | 0.15 U  | 0.15 U      | 0.008 U  |  |  |  |
|                                         | 12/5/2018                                   | 0.1 U                             | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         | 5/8/2019                                    | 0.1 U                             | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         | 10/7/2019                                   | 0.1 U                             | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         | 4/21/2020                                   | 0.1 U                             | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         | 10/20/2020                                  | 0.1 U                             | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         | 4/13/2021                                   | 0.1 U                             | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         |                                             | 0.1 U<br>0.1 U                    |         |             |          |  |  |  |
|                                         | 10/26/2021                                  |                                   | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                                         | 4/11/2022                                   | 0.084 U                           | 0.066 U | 0.055 U     | 0.013 U  |  |  |  |
|                                         | 9/14/2022                                   | 0.084 U                           | 0.066 U | 0.055 U     | 0.013 U  |  |  |  |
|                                         | 3/20/2023                                   | 0.027 J                           | 0.030 U | 0.02 U      | 0.02 U   |  |  |  |
|                                         | 8/21/2023                                   | 0.030 J                           | 0.030 U | 0.02 U      | 0.02 U   |  |  |  |
|                                         | 5/14/2024                                   | 0.033 J                           | 0.030 U | 0.02 U      | 0.02 U   |  |  |  |

**Table 3-4**Groundwater Quality Analytical Data for Volatile Organic Compounds
Northwest Pipe Company Portland Plant

|                     | Volatile Organic Compounds (μg/L)                  |          |         |             |          |  |  |  |
|---------------------|----------------------------------------------------|----------|---------|-------------|----------|--|--|--|
|                     |                                                    | PCE      | TCE     | cis-1,2-DCE | VC       |  |  |  |
|                     | Portland Harbor ROD Concentrations $(\mu g/L)^{1}$ | 0.24     | 0.6     | 70          | 0.022    |  |  |  |
| T4S1MW-09           | 10/25/2016                                         | 0.0191 J | 0.15 UJ | 0.15 UJ     | 0.0197 J |  |  |  |
| (145 feet to river) | 2/1/2017                                           | 0.0177 J | 0.15 U  | 0.15 U      | 0.0113 J |  |  |  |
|                     | 4/26/2017                                          | 0.005 U  | 0.15 U  | 0.15 U      | 0.008 U  |  |  |  |
|                     | 7/25/2017                                          | 0.0139 J | 0.15 U  | 0.15 U      | 0.008 U  |  |  |  |
|                     | 12/5/2018                                          | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 5/8/2019                                           | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 10/7/2019                                          | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 4/21/2020                                          | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 10/20/2020                                         | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 4/13/2021                                          | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 10/26/2021                                         | 0.1 U    | 0.1 U   | 0.1 U       | 0.02 U   |  |  |  |
|                     | 4/11/2022                                          | 0.084 U  | 0.066 U | 0.055 U     | 0.013 U  |  |  |  |
|                     | 9/14/2022                                          | 0.084 U  | 0.066 U | 0.055 U     | 0.013 U  |  |  |  |
|                     | 3/20/2023                                          | 0.02 J   | 0.03 U  | 0.02 U      | 0.02 U   |  |  |  |
|                     | 8/22/2023                                          | 0.02 U   | 0.03 U  | 0.02 U      | 0.02 U   |  |  |  |
|                     | 5/14/2024                                          | 0.02 U   | 0.03 U  | 0.02 U      | 0.02 U   |  |  |  |

μg/L = micrograms per Liter

Shaded values exceed identified ROD concentrations.

Distances to the river are direct, instead of along flow paths, which can vary.

- B Analyte was found in the blank and sample.
- J the analyte was detected, but the analytical laboratory has flagged the associated numerical value as estimated.
- U the analyte was analyzed for but was not detected above the detection limit.
- UJ the analyte was not detected above the detection limit. However, the detection limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

<sup>&</sup>lt;sup>1</sup>ROD concentrations are selected from Table 17 of the Portland Harbor Record of Decision (U.S. Environmental Protection Agency Region 10, 2017). Values were selected from remedial action objectives (RAOs) 4 and 8 associated with migration of contaminated groundwater. Values reflect changes from ROD Errata #1 (EPA 2018) and #2 (EPA 2020).

<sup>&</sup>lt;sup>2</sup>MW-10, MW-11, and MW-12 were installed in March 2022. Wells are sampled quaterly.

**Figures** 





Northwest Pipe Site Boundary

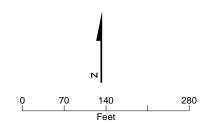
Burgard Industrial Park

Felton Property

0 250 500 1,000 Feet

Figure 1-1. Vicinity Map Northwest Pipe Company Portland, Oregon






MNA Monitoring Network

Groundwater Quality Monitoring Well

Monitoring Well for Water Level Monitoring Only

Northwest Pipe Site Boundary



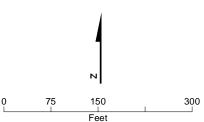
Service Layer Credits: Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community

Figure 2-1. MNA Monitoring Well Network Northwest Pipe Company Portland, Oregon





• Investigation Wells


**Groundwater Elevation Contour** (0.5 ft contour interval, ft NAVD88)

**Groundwater Elevation Contour** (0.05 ft contour interval, to show detail in the NW Pipe Southeast Area, ft NAVD88)

Groundwater Flow Direction

Northwest Pipe Site Boundary

Note: Groundwater levels measured between 10:05 AM and 11:18 AM on May 13, 2024. During this period, the Willamette River stage decreased by 0.25 foot, as measured at the Morrison Bridge river gauge (USGS 14211720).



Service Layer Credits: Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community

Figure 3-1. Groundwater Elevation Contour Map Southeast Area, May 13, 2024 Northwest Pipe Company Portland, Oregon







1897 Surface Water Features

Historical Waterbody Historical Marsh/Mudflat

Historical Gatton Creek<sup>1</sup>

Northwest Pipe Site Boundary

¹The depicted location of historical Gatton Creek is based on its mapped location shown by the U.S. Geological Survey in its 1897 topographic map of the area. However, the historical creek channel may have shifted to the east or west over time, as is common for stream channels, before it was buried by fill placed in the area in the early 1940s.

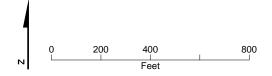
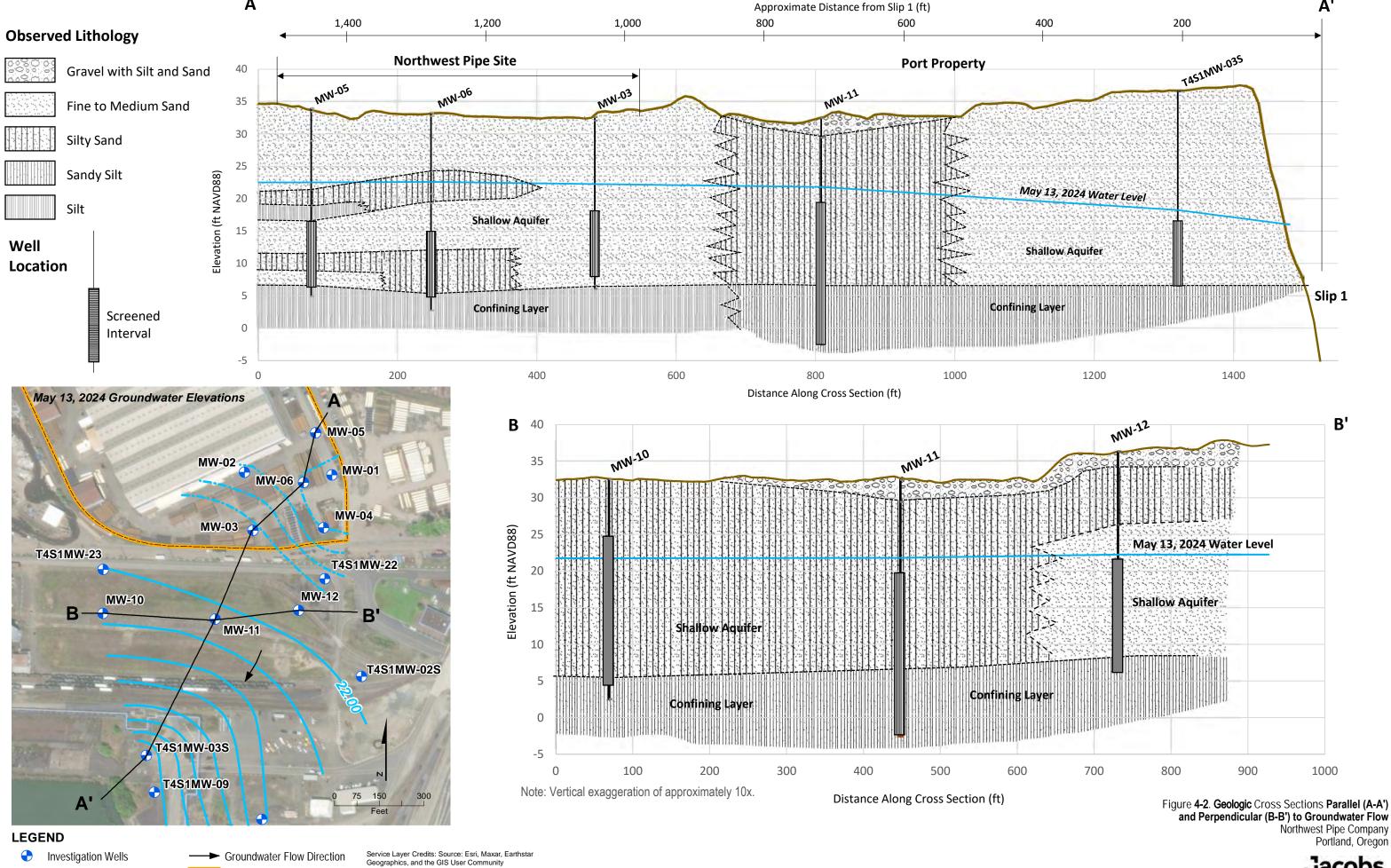
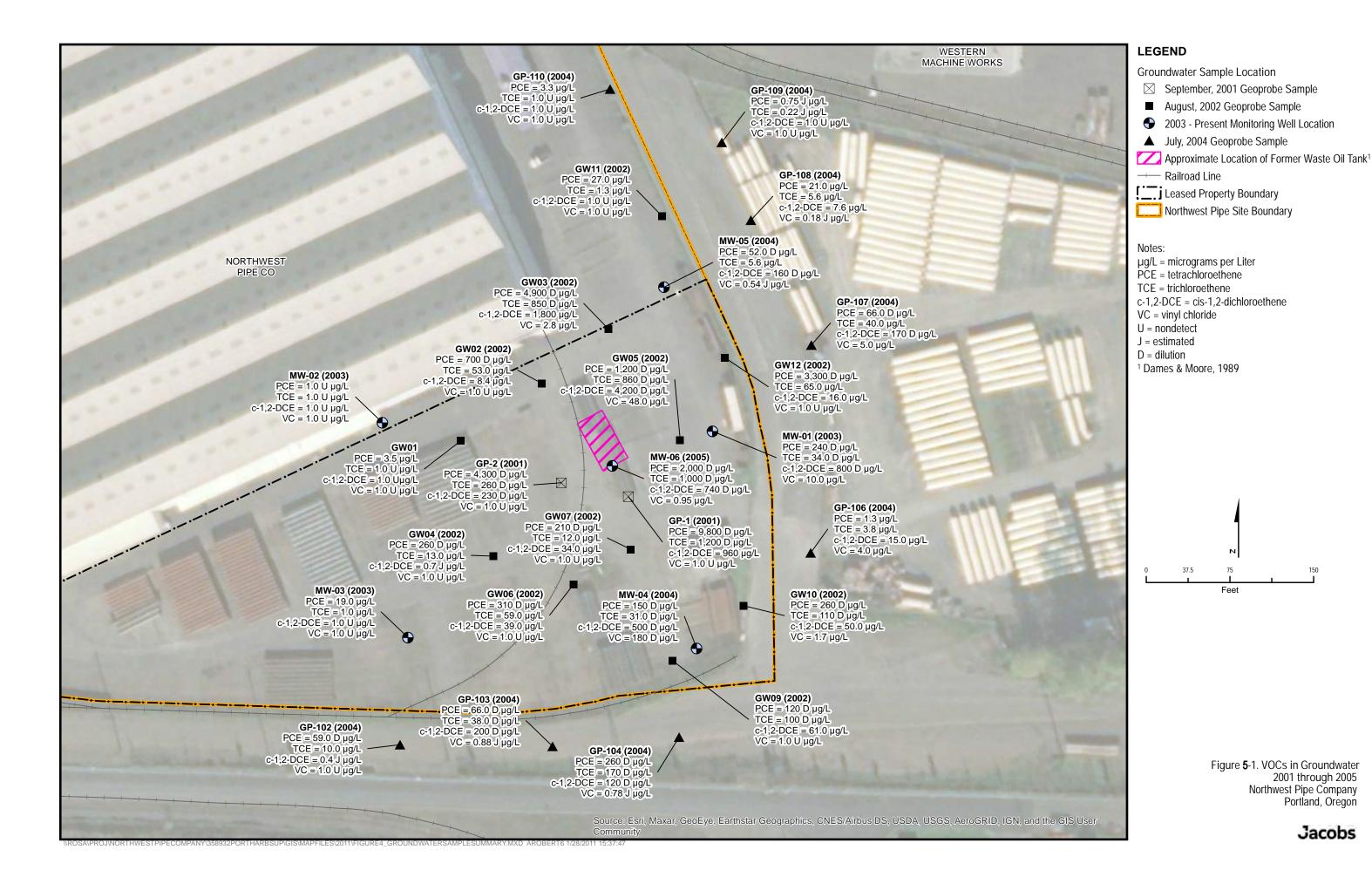
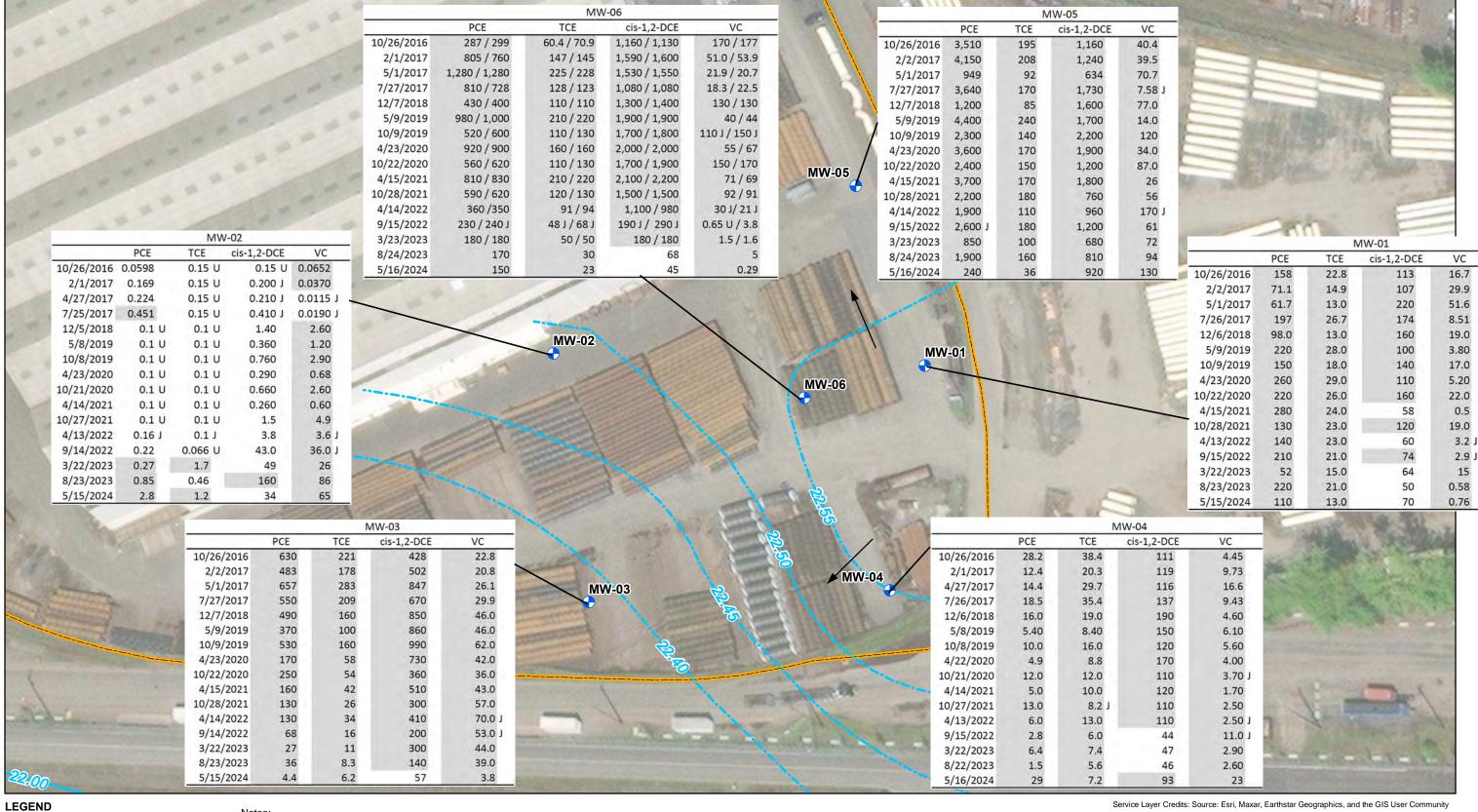




Figure **4**-1. Selected Hydrologic Features from 1897 Map Digitized onto Current Aerial Northwest Pipe Company Portland, Oregon




**Jacobs** 

Northwest Pipe Site Boundary

Groundwater Elevation Contour





Investigation Wells

**Groundwater Elevation Contour** (0.5 ft contour interval, ft NAVD88) **Groundwater Elevation Contour** 

(0.05 ft contour interval, to show detail in the NW Pipe Southeast Area, ft NAVD88)

→ Groundwater Flow Direction Northwest Pipe Facility Boundary

All chlorinated volatile organic compound (VOC) concentrations are reported in micrograms per liter (µg/L).

PCE = Tetrachloroethene; TCE = Trichloroethene; cis-1,2-DCE = cis-1,2-Dichloroethene; VC = Vinyl Chloride D - the sample was diluted for analysis.

U - the analyte was analyzed for but was not detected above the detection limit.

J - the analyte was detected, but the analytical laboratory has flagged the associated numerical value as estimated.

UJ - the analyte was not detected above the detection limit. However, the detection limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Shaded values exceed ROD concentrations selected from Table 17 of the Portland Harbor Record of Decision (U.S. Environmental Protection Agency Region 10, 2017). Values were selected from remedial action objectives (RAOs) 4 and 8 associated with migration of contaminated groundwater. The following values are used: PCE = 0.24, TCE = 0.6, cis-1,2-DCE = 70, and VC = 0.022. All values in µg/L.

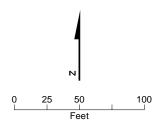




Figure 5-2. Southeast Area VOC Concentrations October 2016 through May 2024 Northwest Pipe Company Portland, Oregon





Investigation Wells **Groundwater Elevation Contour** (0.5 ft contour interval, ft NAVD88) **Groundwater Elevation Contour** (0.05 ft contour interval, to show detail in the NW Pipe Southeast Area, ft NAVD88) Groundwater Flow Direction

Northwest Pipe Facility Boundary

All chlorinated volatile organic compound (VOC) concentrations are reported in micrograms per liter (µg/L).

PCE = Tetrachloroethene; TCE = Trichloroethene; cis-1,2-DCE = cis-1,2-Dichloroethene; VC = Vinyl Chloride

D - the sample was diluted for analysis.

U - the analyte was analyzed for but was not detected above the detection limit.

J - the analyte was detected, but the analytical laboratory has flagged the associated numerical value as estimated.

UJ - the analyte was not detected above the detection limit. However, the detection limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

Shaded values exceed ROD concentrations selected from Table 17 of the Portland Harbor Record of Decision (U.S. Environmental Protection Agency Region 10, 2017). Values were selected from remedial action objectives (RAOs) 4 and 8 associated with migration of contaminated groundwater. The following values are used: PCE = 0.24, TCE = 0.6, cis-1,2-DCE = 70, and VC = 0.022. All values in  $\mu$ g/L.

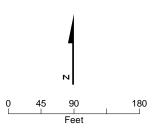



Figure 5-3. Southeast Area VOC Concentrations October 2016 through May 2024 Northwest Pipe Company Portland, Oregon



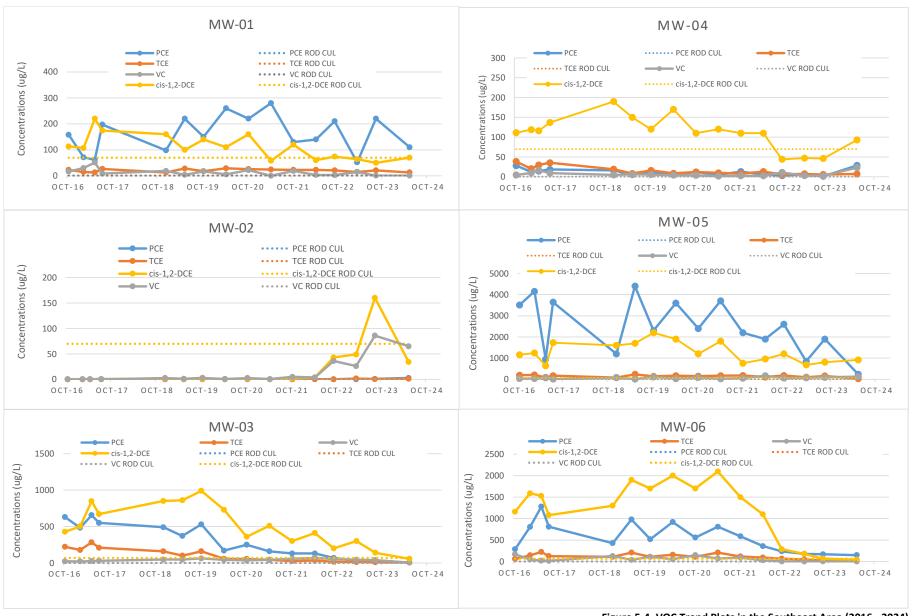
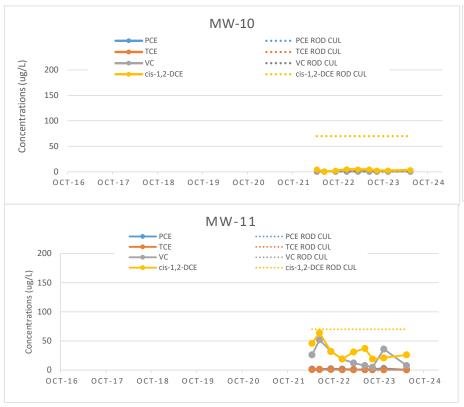




Figure 5-4. VOC Trend Plots in the Southeast Area (2016 - 2024)

Northwest Pipe Company Portland Plant

Portland, Oregon



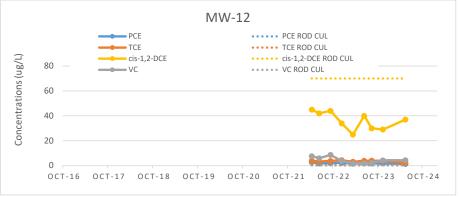



Figure 5-5. VOC Trend Plots in the New Port Wells (2022 - 2024)

Northwest Pipe Company Portland Plant

Portland, Oregon

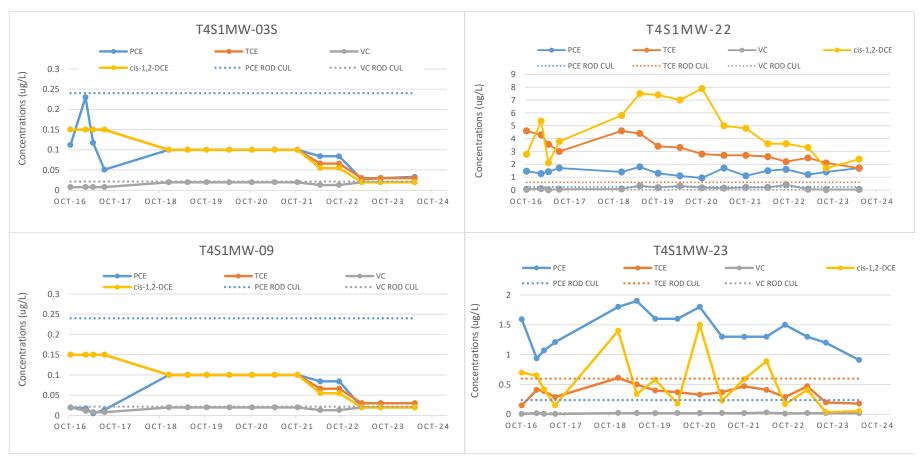
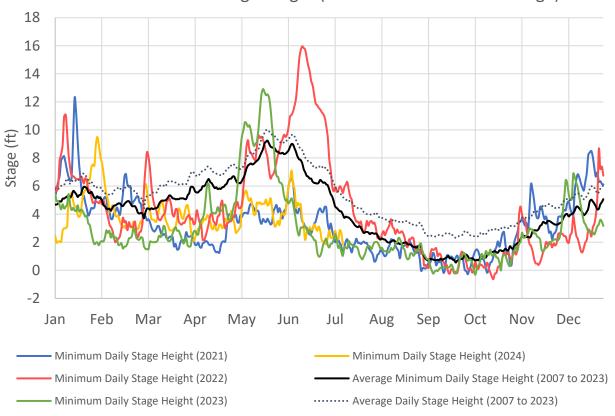




Figure 5-6. VOC Trend Plots in Previously Existing Port Wells (2016 - 2024)

Northwest Pipe Company Portland Plant

Portland, Oregon

# Willamette River Stage Height (Measured at Morrison Bridge)



## **Groundwater Elevation Over Monitoring Period**

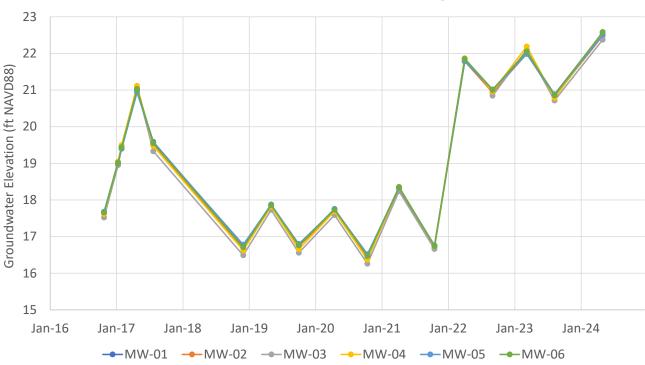



Figure 5-7
Evaluation of Willamette River Stage and Site Groundwater Levels over Time
Northwest Pipe Company
Portland, Oregon

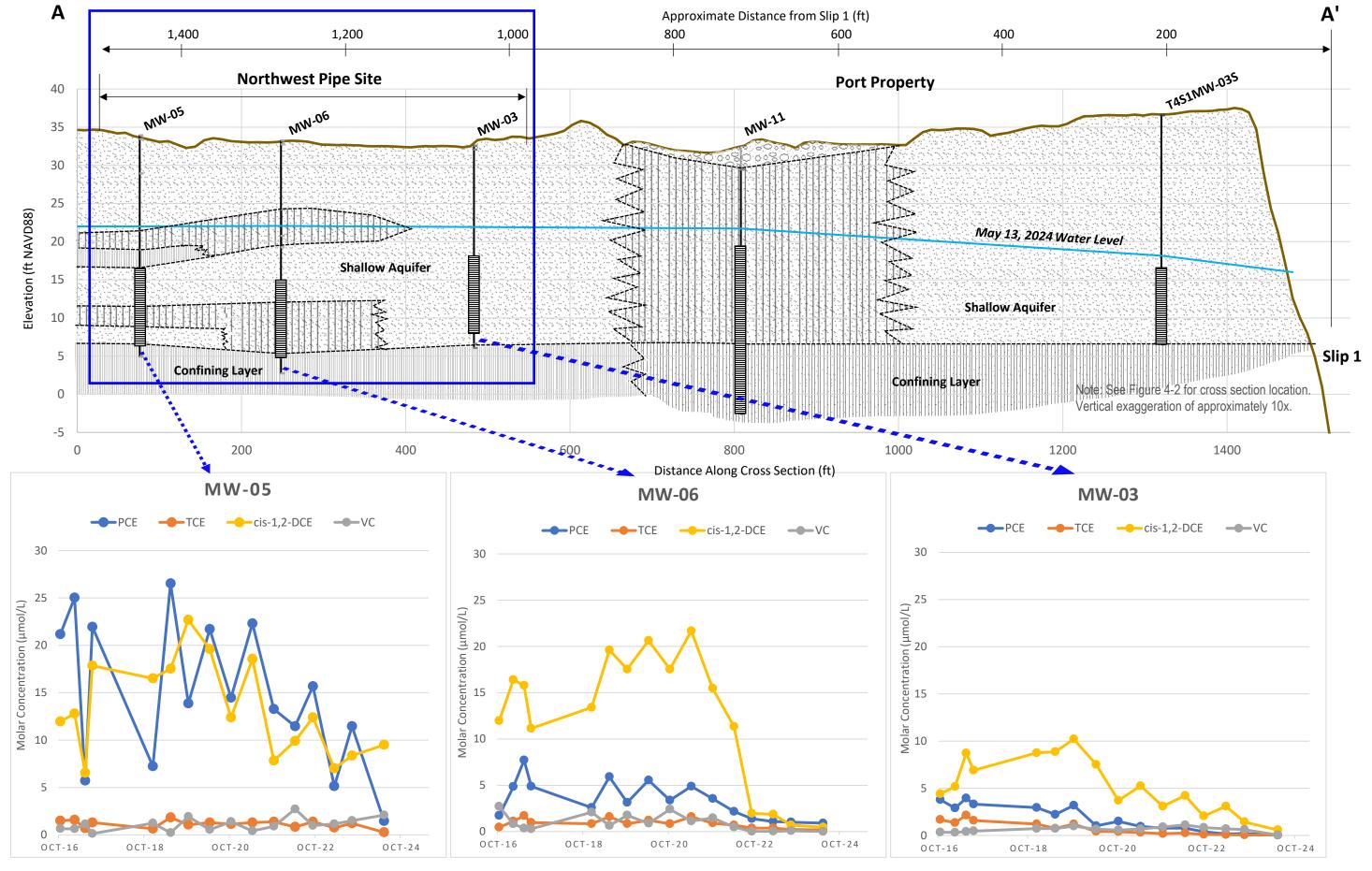
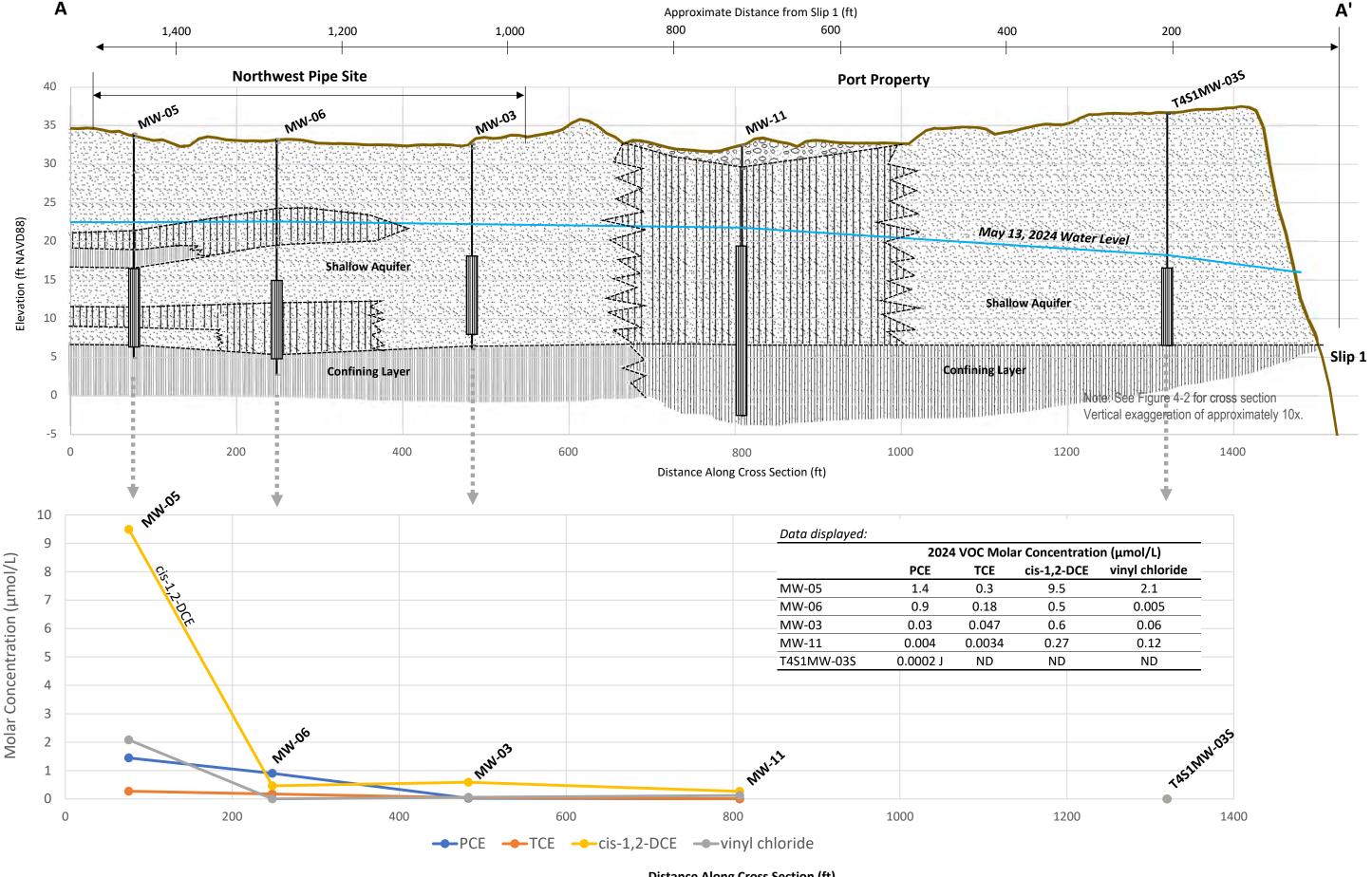




Figure 5-8
Trendsin Molar Concentrations for Selected Wells (2016 - 2024)
Northwest Pipe Company



**Distance Along Cross Section (ft)** 

Figure 5-9 VOC Molar Concentrations for Selected Wells (2024) Northwest Pipe Company Portland, Oregon

Appendix A Field Sampling Sheets and Notes

## JACOBS WELL SAMPLING FIELD LOG

| Project #: NWP22003.A.CS.I | EV.05 |
|----------------------------|-------|
|----------------------------|-------|

Field Team: Torgerson J DeMartino

Total Depth (ft) (-) DTW (ft) 17.40 (X 0.17gal\ft) = Well Casing Volume (gal.) = 2.06

Field Conditions:

Decontamination: Alconox wash, DI wash

### **PURGE INFORMATION**

Purge Method: Transient peristaltic pump with | | new or | dedicated polyethylene/teflon-lined tubing

Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing

Purge water disposal: IDW Drum

Pump Suction Depth (ft): 25 FT, 24 Ft of tubing out
Comments/Exceptions to SAP: of well.

|                                     | Purge<br>Volume<br>(gallons) | Specific<br>Conduct.<br>(µS/cm) | Temp.  | рН      | ORP<br>(mV) | Oxygen<br>(mg/L) | Turbidity<br>(NTUs)   | Flow<br>Rate<br>(gpm) | DTW<br>(ft) | * Clarity/ Color/Remarks |
|-------------------------------------|------------------------------|---------------------------------|--------|---------|-------------|------------------|-----------------------|-----------------------|-------------|--------------------------|
| Target<br>Stabilization<br>Criteria |                              | +/- 3%                          |        | +/- 0.1 | +/- 10      | +/- 0.3          | +/- 10 if ><br>10 NTU | 0.03 -<br>0.08        |             |                          |
| Time                                | 2813                         |                                 |        |         |             |                  |                       |                       |             |                          |
| 10:44                               | Pu.                          | up a                            | J      |         | 1. 1.       |                  |                       |                       | 17.90       |                          |
| 11:14                               | 2.1                          | 233.3                           | 14.6   | 6.50    | 135.4       | 4.42             | 0.98                  | 0.07                  | 18.05       |                          |
| 11:19                               | 2.4                          | 231.7                           | 14.5   | 6.37    | 123.8       | 3.57             | 1.47                  | 0,06                  | 18.02       |                          |
| 11:24                               | 2.7                          | 231.0                           | 15.(   | 6.48    | 116.5       | 3.71             | 0.73                  | 0.06                  | 18.01       |                          |
| 1:29                                | 2.9                          | 230.5                           | 15.1   | 6.39    | 119.4       | 3.61             | 0.76                  | 0.04                  | 18.01       |                          |
| 11:34                               | 3.1                          |                                 |        |         | 200         | 3.69             |                       |                       |             |                          |
| 1                                   |                              |                                 |        |         |             |                  | -                     |                       |             |                          |
| Tdi                                 |                              |                                 |        |         |             |                  |                       |                       |             |                          |
|                                     |                              |                                 |        |         |             |                  |                       |                       |             |                          |
| :                                   |                              |                                 |        |         |             |                  |                       |                       |             |                          |
| 1:40                                | Start Samp                   | oling T                         | 15 I M | WO      | 35-0        | 5142             | 4-6                   | 7                     |             |                          |
|                                     | End Sampl                    | ing                             |        |         | 4           | raj in           |                       |                       |             |                          |

# **Laboratory Analytical Program**

# **Groundwater Sampling**

Project #: NWP22003.A.CS.EV.05

| DATE: 5/19/24 Time: 11:40 Well ID: T45/MW-035 |           |                                         |                   |          |            | T451MW-035 |                  |                                                  |
|-----------------------------------------------|-----------|-----------------------------------------|-------------------|----------|------------|------------|------------------|--------------------------------------------------|
| Sample I.D.                                   |           | ber of S<br>ainers (C<br>Dupli-<br>cate | ircled)<br>Parent | Volume   | Туре       | Pres.      | Shipping<br>Date | Analytical Method                                |
| Organic Constituents                          |           |                                         |                   |          |            |            |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC                     | 3         | 3                                       | (3)               | 40 mL    | Glass      | нсі        |                  | EPA 8260SIM, no headspace                        |
| Metals                                        |           |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         | Fel               | (11) =   | 0.02       | mal        | L                |                                                  |
| Dissolved Ferrous Iron                        |           |                                         | Field             | measurem | ent Only   |            |                  | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon                       | itoring C | onstitu                                 | ents              |          |            |            |                  |                                                  |
| Nitrate, Sulfate, Chloride                    | l ly      | 1                                       | 0                 | 125 mL   | Poly       | None       |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| тос                                           | 1-1-      | 1                                       | 6                 | 250 mL   | Glass      | H2S04      |                  | SM5310                                           |
| Carbon Dioxíde                                | 15-       |                                         | Field             | measuren | 02=35 mg/1 |            |                  | HACH CO2 Test Kit                                |
| Methane                                       | 3         | 3                                       | (3)               | 40 mL    | Glass      | нсі        |                  | RSK 175, no headspace                            |
| Duplicate ID                                  |           | Time:                                   |                   |          |            |            |                  |                                                  |
| Comments:                                     |           |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         |                   |          |            |            |                  |                                                  |
|                                               | 9         |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         |                   |          |            |            |                  |                                                  |
|                                               |           |                                         |                   |          |            |            |                  |                                                  |

JACOBS WELL SAMPLING FIELD LOG Date: 5/14/24 Well I.D.: T45/MW-09 Project #: NWP22003.A.CS.EV.05 Field Team: C Torgerson
Total Depth (ft) 31,50 (-) D (-) DTW (ft) 13.25 (X v.17 gal\ft) = Well Casing Volume (gal.) = 2.25 Field Conditions: Sunny, 584F Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Purge Method: Transient peristaltic pump with | | new or | dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing ~ 22 FT, 3 FT thing out of Pump Suction Depth (ft): Purge water disposal: IDW Drum Comments/Exceptions to SAP: Purge Specific Dissolved Flow Volume Conduct. ORP Temp. Oxygen Turbidity Rate DTW (gallons) (µS/cm) pH (NTUs) (°C) (mV) (mg/L) (gpm) (ft) \* Clarity/ Color/Remarks Target Stabilization +/- 10 if > 0.03 -+/- 3% +/- 0.1 +/- 10 +/- 0.3 **10 NTU** 0.08 Criteria Time PUMP ON 09:10 16.25 2.3 214.8 15.4 6.77 -11.6 2.63 4.73 0.06 18.26 2.5 209.0 15.8 6.44 2.28 2.28 4.05 0.04 18.26 196.7 158 6.64 -29.3 2.73 4.36 0.04 18.26 148.6 154 665-30.7 2.69 3.52 0.04 18.26 10:60 2.1 6.66-29.5 2.56 3.46 0.04 18.26 10:03 147.8

| 1                 |                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| 10:05             | Start Sampling 7451 MW04 - 051424 - 0                                                                               |
| -1                | End Sampling                                                                                                        |
| * <b>VC</b> = Ven | v cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear |

#### **Groundwater Sampling**

| DATE: 5/14/24              | Num        | Diper of Sainers (C | ample<br>ircled)<br>  Parent |                  |          |        | Well ID: | T45/MW89-05K                                     |
|----------------------------|------------|---------------------|------------------------------|------------------|----------|--------|----------|--------------------------------------------------|
| Sample I.D.                | ment       | cate                | Sample                       | Volume           | Туре     | Pres.  | Date     | Analytical Method                                |
| Organic Constituents       |            |                     |                              |                  |          |        |          |                                                  |
| TCE, dis 1,2-DCE, PCE, VC  | 3          | 3                   | 3                            | 40 mL            | Glass    | HCI    |          | EPA 8260SIM, no headspac                         |
| Metals                     |            | F                   |                              |                  |          |        |          |                                                  |
|                            |            | Fo                  | (11) =                       | 0.46             | , mg/L   | -      |          | J. AMILIE                                        |
| Dissolved Ferrous Iron     |            |                     | Field                        | measuren         | ent Only |        |          | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon    | itoring Co | onstitue            | ents                         |                  |          |        |          | Nikrata (200) Pulfata R                          |
| Nitrate, Sulfate, Chloride | 1          | 1                   | 0                            | 125 mL           | Poly     | None   |          | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| тос                        | 1          | 1                   | 1                            | 250 mL           | Glass    | H2S04  |          | SM5310                                           |
| Carbon Dioxide             |            |                     | Field                        | Ce 2<br>measurem |          | 5 Mg/L |          | HACH CO2 Test Kit                                |
| Methane                    | 3          | 3                   | (3)                          | 40 mL            | Glass    | HCI    |          | RSK 175, no headspace                            |
| Duplicate ID               |            | Time:               |                              |                  |          |        |          |                                                  |
| Comments:                  |            |                     |                              |                  |          |        |          |                                                  |
|                            |            |                     |                              |                  | _        |        |          |                                                  |
|                            |            |                     | _                            |                  |          |        | -        |                                                  |
|                            |            |                     |                              |                  |          |        |          |                                                  |
|                            |            |                     |                              |                  |          |        |          |                                                  |
|                            |            |                     |                              |                  |          |        |          |                                                  |
|                            |            |                     |                              |                  |          |        |          |                                                  |

## JACOBS WELL SAMPLING FIELD LOG

|                         |                      | 03.A.CS.E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V.05                  |           |             |                  |                              |               | V           | vate: 5/13/24<br>Vell I.D.: T45/MW-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-------------|------------------|------------------------------|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ield Tean               | 1: C                 | TWJER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | w a                   | + 1       | DEM         | artho            |                              | 75.7          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| otal Dept               | h (ft) Z             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (-) DTW               | (ft) 13   | 70          | X 0.17 g         | al\ft) = We                  | II Casir      | g Volum     | e (gal.) = 1.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  |                              | ( FIE         |             | 10 / /.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Decenter                | inctions:            | 70°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , SW                  | iny       |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Decontam                | ination: A           | lconox wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sh, DI w              | ash       |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~                       | Duran M              | - 41 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |           |             | RGE INFO         | A MATTER STATE OF A STATE OF |               |             | A PER STATE OF THE |
| X                       | Purge Me<br>Purge Me | 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Transient<br>Dedicate | peristalt | ic pump w   | ith     new o    | or   X dedic                 | ated poly     | ethylene/t  | eflon-lined tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | Purge M              | The state of the s | Dedicated             | d Hydrost | ar numn v   | with     new o   | wor  dec                     | dicated po    | olyethylen  | e tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| oump Suc                |                      | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |           |             |                  | or     dedica                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      | ons to SAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fr                    | art       | of          | well             |                              |               | Purge wat   | er disposal: IDW Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - CHILICITE             | 3/Lxcepti            | UNS TO SAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                     | -         |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Purge<br>Volume      | Specific Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                     |           | 7 6657      | Dissolved        | V ARM                        | Flow          | GA 9 (W)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | (gallons)            | (μS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp.<br>(*C)         | рН        | ORP<br>(mV) | Oxygen<br>(mg/L) | Turbidity<br>(NTUs)          | Rate<br>(gpm) | OTW<br>(ft) | * Clarity/ Color/Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Target<br>Stabilization |                      | +/- 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | +/- 0.1   | +/- 10      | +/- 0.3          | +/- 10 if >                  | 0.03 -        | 1.9         | Olarity/ Color/Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Criteria<br>Time        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           | 200         | 17-0.3           | 10 NTU                       | 80.0          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| To the                  | 2                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 200       |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13:45                   | Y                    | MP O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N                     |           |             |                  |                              | 1             | 13.70       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14:24                   | 2.0                  | 259.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170                   | : 22      | 164 11      | 100              | 2.111                        |               |             | TONE THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1701                    | U                    | 651.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.51                 | 6.0       | 106,9       | 1.94             | 244                          | 0.00          | 13.64       | very clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14:29                   | 2.3                  | 261.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.1                  | 1.12      | 111.5       | 1.42             | 1.70                         | Dixo          | 13.64       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                   |           |             |                  |                              | 0.00          | 15.69       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W:34                    | 2.6                  | 259.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.6                  | 6.33      | 110,0       | 1.61             | 0.57                         | 0.00          | 13.64       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14:37                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             | 1.53             |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14.51                   | 216                  | 24.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.50                 | Q133      | 1101-1      | 1.55             | 0.56                         | 0.00          | 13.69       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14:40                   | 3.0                  | 156.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 171                   | 631       | 1114        | 1.52             | 156                          | 066           | 1210        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 10                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CREA                | 0.71      | 111.0       | 1.02             | 0.0                          | 0.01          | 15.61       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  | 1 2/                         |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           | 1           |                  |                              |               |             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 5                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |           |             |                  | 4000                         | -             | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14:45                   | Start San            | npling +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4511                  | MMS       | 2-          | 0513             | 24-6                         | 7             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | End Sam              | nling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |           |             | 1                |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Linu Saill           | Pinia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |           |             |                  |                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### **Groundwater Sampling**

| Time:      | A THE PARTY OF THE |                                                        |                                                                                                                                | Well ID:                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | ainers (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Circled)                                               | Volume                                                                                                                         | Type                                                                                                                                                                                        | Proc                                                                                                                                                                                                                                                                                                                                                                  | Shipping                                                                                                                                                                                                                                                                                                                                        | Analytical Method                                                                                                                                                                                       |  |  |  |
|            | - 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Telling                                                | 13.7.3.11.2                                                                                                                    | .,,,,                                                                                                                                                                                       | Fies.                                                                                                                                                                                                                                                                                                                                                                 | Date                                                                                                                                                                                                                                                                                                                                            | Analytical method                                                                                                                                                                                       |  |  |  |
| 3          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                      | 40 mL                                                                                                                          | Glass                                                                                                                                                                                       | HCI                                                                                                                                                                                                                                                                                                                                                                   | 5/13/21                                                                                                                                                                                                                                                                                                                                         | EPA 8260SIM, no headspace                                                                                                                                                                               |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Felli                                                  | ) = 0.                                                                                                                         | 05 W                                                                                                                                                                                        | 19/1                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
| -          | 7.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                                                                                                                                | HACH DR890- Ferrous Iron                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
| nitoring C | onstitu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ients                                                  |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
| 1          | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | @                                                      | 125 mL                                                                                                                         | Poly                                                                                                                                                                                        | None                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                 | Nitrate (300), Sulfate &<br>Chloride (300.0_28D)                                                                                                                                                        |  |  |  |
| 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                      | 250 mL                                                                                                                         | Glass                                                                                                                                                                                       | H2S04                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | SM5310                                                                                                                                                                                                  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field                                                  | HACH CO2 Test Kit                                                                                                              |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
| 3          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (3)                                                    | 40 mL                                                                                                                          | Glass                                                                                                                                                                                       | нсі                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 | RSK 175, no headspace                                                                                                                                                                                   |  |  |  |
|            | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
| T45        | 3/ MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W22-                                                   | 0513                                                                                                                           | 24-6                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                     | P 1445                                                                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                       |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 4 - 1                                                |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |  |  |  |
|            | Num<br>Conta<br>Equip-<br>ment  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of S Containers (C Equip- ment Cate  3 3  Time: | Number of Sample Containers (Circled) Equip- Dupli- Parent ment cate Sample  3 3 3  FC(11) Field  1 1 6  Field  3 3 (3)  Time: | Number of Sample Containers (Circled) Equip- Dupli- Parent ment cate Sample Volume  3 3 3 40 mL  FC(11) = 0 Field measurem  1 1 1 1 25 mL  1 1 1 250 mL  Field measurem  3 3 3 40 mL  Time: | Number of Sample Containers (Circled) Equip- Dupli- Parent ment cate Sample Volume Type  3 3 3 40 mL Glass  FC(II) = 0.05 w Field measurement Only  nitoring Constituents  1 1 1 1 1 25 mL Poly 1 1 1 1 250 mL Glass  Field measurement Only  1 3 3 3 40 mL Glass  Field measurement Only  Glass  Field measurement Only  Glass  Field measurement Only  Glass  Time: | Number of Sample Containers (Circled) Equip- ment cate Sample Volume Type Pres.  3 3 3 40 mL Glass HCI  FC(II) = 0.05 mg/L  Field measurement Only  nitoring Constituents  1 1 0 125 mL Poly None 1 1 0 250 mL Glass H2S04  Field measurement Only  Sield measurement Only  1 1 Glass H2S04  Field measurement Only  3 3 40 mL Glass HCI  Time: | Number of Sample Containers (Circled) Equip- ment cate Sample Volume Type Pres.  Shipping Date  3 3 3 40 mL Glass HCI 5/13/22/  FC (II) = 0.05 mg/L  Field measurement Only  nitoring Constituents  1 1 |  |  |  |

#### JACOBS WELL SAMPLING FIELD LOG

| 1 - G . X X               | Secretaria:          |                   |                      |         |          |              |                       |                 | _         | Date: 5/15/23                           |
|---------------------------|----------------------|-------------------|----------------------|---------|----------|--------------|-----------------------|-----------------|-----------|-----------------------------------------|
|                           |                      | 03.A.CS.          |                      |         | 1. 7     |              |                       |                 | v         | Nell I.D.: T45/ MW - 23                 |
| rield Teal                | m: 6 1<br>th (ft) 25 | ergerson          | ( ) DTM              | J D     | e Marti  | 100          | al\ft) = W            | ell Casi        | ina Volum | ne (gal.) = 2,/                         |
| otal Dep                  | ur (11) 25           |                   | ( <del>-</del> ) DIV | (11) [2 | 411      | (1011 / 9    | army vi               | 011 000         | ing volum | (90)                                    |
| Field Con                 | ditions:             | GSCF              | SUM                  | ny      |          |              |                       |                 |           |                                         |
| Decontar                  | ination: A           | lconox wa         |                      |         |          |              |                       |                 |           |                                         |
|                           |                      |                   |                      | 111.10  |          | RGE INFO     | .7                    |                 |           |                                         |
| 1                         | Purge Me             |                   |                      |         |          |              |                       |                 |           | eflon-lined tubing                      |
|                           | Purge Me<br>Purge Me |                   |                      |         |          | with     new |                       |                 |           |                                         |
| Pump Suc                  | ction Dept           |                   |                      | _       |          |              |                       |                 |           | er disposal: IDW Drum                   |
| E ASK TALL STATE          | 0102-0913            | ons to SAF        | ),<br>),             | 1 70    | bive c   | ext of       | well                  |                 | 99 (19)   | 7 2/2/2                                 |
| 23111110(1)               | o, Enoopti           | 0.10 00 071       | •                    |         |          |              |                       |                 |           |                                         |
|                           | D                    | 0                 |                      |         |          | Dissolved    |                       | Elem            |           |                                         |
|                           | Purge<br>Volume      | Specific Conduct. | Temp.                |         | ORP      | Oxygen       | Turbidity             | Flow<br>Rate    | DTW       | 220000000000000000000000000000000000000 |
| arget                     | (gallons)            | (μS/cm)           | (°C)                 | рН      | (mV)     | (mg/L)       | (NTUs)<br>+/- 10 if > | (gpm)<br>0.03 - | (ft)      | * Clarity/ Color/Remarks                |
| Stabilization<br>Criteria |                      | +/- 3%            |                      | +/- 0.1 | +/- 10   | +/- 0.3      | 10 NTU                | 0.03            |           |                                         |
| Time                      |                      |                   |                      |         | Sala-18) |              | 220                   | (CA)            |           |                                         |
| 69:10                     | PU                   | MPC               | N                    | 1       | -        |              |                       | 0.00            | 12,47     |                                         |
| 94:35                     | 100                  |                   |                      | 6.69    | 42.0     | 1.29         | 11.5                  | con Z           | 12.60     |                                         |
|                           |                      |                   |                      |         |          |              | The same              | 14 10 11        |           |                                         |
| 09:40                     | 2.4                  | 210.3             | 17.3                 | 6.65    | 4.0      | 0.48         | 14.0                  | 0.06            | 1250      |                                         |
| 9:45                      | 2.7                  | 214.8             | 17.2                 | 6.65    | -5.2     | 0.65         | 11.7                  | 0.06            | 12.50     |                                         |
|                           | 4.0                  |                   |                      |         |          | 0.65         | Car Car               |                 |           |                                         |
| 09:48                     | 2,9                  |                   |                      |         |          |              |                       |                 | 12.50     |                                         |
| 04:51                     | 3.1                  | 214.8             | 17.0                 | 6.62    | -6.2     | 0.78         | 10.7                  | 0.06            | 12.50     |                                         |
| 1                         |                      |                   |                      |         |          |              |                       |                 |           |                                         |
|                           |                      |                   |                      |         |          | -            |                       |                 |           |                                         |
| 1 *                       |                      |                   |                      |         |          |              |                       |                 |           |                                         |
| 13 1                      |                      |                   |                      | 1 22 1  |          |              |                       |                 |           |                                         |
| 1                         |                      |                   |                      |         |          |              |                       |                 |           |                                         |
| y :55                     | Start Sam            | pling ,T          | -U<141               | u)22 -  | 05152    | 4-6          |                       |                 |           |                                         |
| 7-75                      |                      |                   | 1 31/-(1             |         | 0 1172   |              |                       |                 |           | *                                       |
|                           | End Samp             | lina              |                      |         | 1        | 1            | 1                     | 1               |           |                                         |

Groundwater Sampling
Project #: NWP22003.A.CS.EV.05

| DATE: 5/15/24<br>Sample I.D. | Num<br>Conta<br>Equip-<br>ment | ber of S<br>iners (C<br>Dupli-<br>cate | ample<br>ircled) | Volume         | Туре      | Pres. | Shipping<br>Date | Analytical Method                                |
|------------------------------|--------------------------------|----------------------------------------|------------------|----------------|-----------|-------|------------------|--------------------------------------------------|
| Organic Constituents         |                                |                                        |                  |                |           |       |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC    | 3                              | 3                                      | (3)              | 40 mL          | Glass     | HCI   |                  | EPA 8260SIM, no headspac                         |
| Metals                       |                                |                                        |                  |                |           |       |                  |                                                  |
|                              |                                |                                        | Fel              | (11) = 0       | .02 n     | 2/2   |                  |                                                  |
| Dissolved Ferrous Iron       |                                |                                        |                  | measurem       |           |       |                  | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon      | itoring C                      | onstitu                                | ents             |                |           |       |                  |                                                  |
| Nitrate, Sulfate, Chloride   | 1                              | 1                                      | 0                | 125 mL         | Poly      | None  |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| тос                          | 1                              | 1                                      | 0                | 250 mL         | Glass     | H2S04 |                  | SM5310                                           |
| Carbon Dioxide               |                                |                                        | Field            | Ce<br>measurer | nent Only | omg/L |                  | HACH CO2 Test Kit                                |
| Methane                      | 3                              | 3                                      | (3)              | 40 mL          | Glass     | нсі   |                  | RSK 175, no headspace                            |
| Duplicate ID                 |                                | Time:                                  |                  |                |           |       |                  |                                                  |
| Comments:                    |                                |                                        |                  |                |           |       |                  |                                                  |
|                              |                                |                                        |                  |                |           | _     |                  |                                                  |
|                              |                                |                                        |                  |                | _         |       |                  |                                                  |
|                              | _                              |                                        |                  |                |           |       |                  |                                                  |
|                              |                                |                                        |                  |                |           |       |                  |                                                  |
|                              |                                |                                        |                  |                |           |       |                  |                                                  |
|                              |                                |                                        |                  |                |           |       |                  |                                                  |

JACOBS WELL SAMPLING FIELD LOG Date: 5/15/24 Project #: NWP22003.A.CS.EV.05 Well I.D.: MWO( DeMartino Field Team: C Torgerson 3 24.57 (-) DTW (ft) 11.24 (X p.17 gal/ft) = Well Casing Volume (gal.) = 2.3Total Depth (ft) Field Conditions: Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Purge Method: Transient peristaltic pump with | | new or | dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing Pump Suction Depth (ft): a 4 et tubing at of well Purge water disposal: IDW Drum Comments/Exceptions to SAP: Purge Specific Dissolved Flow Volume Conduct. Temp. ORP Oxygen Turbidity DTW Rate (gallons) (µS/cm) pH (°C) (mV) (mg/L) (NTUs) \* Clarity/ Color/Remarks (gpm) (ft) Target +/- 10 if > 0.03 -Stabilization +/- 3% +/- 0.1 +/- 10 +/- 0.3 **10 NTU** 0.08 Criteria Time PUMP ON 10:18 11.28 518.9 17.1 2.71 2810 0.19 4.20 0.07 10:50 516.0 17.1 2.62 266.2 0.17 2.15 0.06 11.28 dear 11:00 17.0 261 : Start Sampling 11:05 End Sampling

Page 1 of 2

\*VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

## **Groundwater Sampling**

| Sample I.D.                | 10.00 A 7.00 | ber of Sainers (C<br>Dupli-<br>cate | ample<br>ircled)<br>Parent | Volume   | Туре              | Pres. | Shipping<br>Date | MWO (  Analytical Method                         |
|----------------------------|--------------|-------------------------------------|----------------------------|----------|-------------------|-------|------------------|--------------------------------------------------|
| Organic Constituents       |              |                                     |                            |          |                   |       |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC  | 3            | 3                                   | (3)                        | 40 mL    | Glass             | HCI   |                  | EPA 8260SIM, no headspace                        |
| Metals                     |              |                                     |                            |          |                   |       |                  |                                                  |
|                            |              |                                     | 1                          | eln)     | = 0.0             | 5 mg/ | L                |                                                  |
| Dissolved Ferrous Iron     |              |                                     | Field                      | measurem | ent Only          |       |                  | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon    | itoring C    | onstitu                             | ents                       |          |                   |       |                  |                                                  |
| Nitrate, Sulfate, Chloride | 1            | 1                                   | 1                          | 125 mL   | Poly              | None  |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| тос                        | 1            | 1                                   | B                          | 250 mL   | Glass             | H2S04 |                  | SM5310                                           |
| Carbon Dioxide             |              |                                     | Field                      | measurem | 02 =<br>nent Only | 45 mg | 12               | HACH CO2 Test Kit                                |
| Methane                    | 3            | 3                                   | (3)                        | 40 mL    | Glass             | HCI   |                  | RSK 175, no headspace                            |
| Duplicate ID               | 1            | Time:                               |                            |          |                   |       |                  |                                                  |
| Comments:                  |              |                                     |                            |          |                   |       |                  |                                                  |
|                            |              |                                     |                            |          |                   |       |                  |                                                  |
|                            |              |                                     |                            |          |                   |       |                  |                                                  |
|                            |              |                                     |                            |          |                   |       |                  |                                                  |
|                            |              |                                     |                            |          |                   |       |                  |                                                  |
|                            |              | -                                   |                            |          |                   |       |                  |                                                  |
|                            |              |                                     |                            |          |                   |       |                  |                                                  |

#### JACOBS WELL SAMPLING FIELD LOG Date: 5/15/24 Project #: NWP22003.A.CS.EV.05 Well I.D.: Mul -02 Field Team: Targerson DeMostino Total Depth (ft) (-) DTW (ft) 3.34 (X 0.17 gal\ft) = Well Casing Volume (gal.) = 2.15 Field Conditions: 72°F SMAY Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Purge Method: Transient peristaltic pump with | | new or | < dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing Pump Suction Depth (ft): 5 FT Purge water disposal: IDW Drum tubing Comments/Exceptions to SAP: Purge Specific Dissolved Flow Volume Conduct. Temp. ORP Turbidity Oxygen Rate DTW (gallons) (µS/cm) (°C) pH (mV) (mg/L) (NTUs) (gpm) (ft) \* Clarity/ Color/Remarks Target +/- 10 if > 0.03 -Stabilization +/- 3% +/- 0.1 +/- 10 +/- 0.3 Criteria 10 NTU 0.08 Time PUMP ON 11:24 8.34 4.75 0.07 8.44 324.3 6.87 17.6 94.2 0.00 2:01 3.92 827.7 =94.0 0.00 23.4 3.62 2:06 2.6 0.06 -965 17.5 0.00 : : : : 12:10 Start Sampling End Sampling \*VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

## Groundwater Sampling

| DATE: 5/15/214  Sample I.D. |           | ber of S<br>iners (C<br>Dupli-<br>cate | ample<br>ircled) | Volume           | Туре               | Pres.  | Shipping<br>Date | MW-07  Analytical Method                         |
|-----------------------------|-----------|----------------------------------------|------------------|------------------|--------------------|--------|------------------|--------------------------------------------------|
| Organic Constituents        |           |                                        |                  |                  |                    |        |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC   | 3         | 3                                      | (3)              | 40 mL            | Glass              | HCI    |                  | EPA 8260SIM, no headspace                        |
| Metals                      |           |                                        |                  |                  |                    |        |                  |                                                  |
| Dissolved Ferrous Iron      |           |                                        | Field            | FeCI<br>measurem | ) = 3<br>nent Only | . 20 m | 3/2              | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon     | itoring C | onstitu                                | ents             |                  |                    |        |                  |                                                  |
| Nitrate, Sulfate, Chloride  | 1         | 1                                      | (A)              | 125 mL           | Poly               | None   |                  | Nitrate (300), Sulfate &<br>Chloride (300,0_28D) |
| тос                         | 1         | 1                                      | (1)              | 250 mL           | Glass              | H2S04  |                  | SM5310                                           |
| Carbon Dioxide              |           |                                        | Field            | measurem         | : ぴち<br>nent Only  | mg/L   |                  | HACH CO2 Test Kit                                |
| Methane                     | 3         | 3                                      | (3)              | 40 mL            | Glass              | HCI    |                  | RSK 175, no headspace                            |
| Duplicate ID                |           | Time:                                  |                  |                  |                    |        |                  | - 1/1/27/1560                                    |
| Comments:                   |           |                                        |                  |                  |                    |        |                  |                                                  |
|                             |           |                                        |                  |                  | -                  |        |                  |                                                  |
|                             |           |                                        |                  |                  |                    |        |                  |                                                  |
| P                           |           |                                        |                  |                  |                    |        |                  |                                                  |
|                             |           |                                        |                  |                  |                    |        |                  |                                                  |
|                             |           |                                        |                  |                  |                    |        |                  |                                                  |

JACOBS WELL SAMPLING FIELD LOG Date: 5/15/24/ Well I.D.: MW-03 Project #: NWP22003.A.CS.EV.05 C Turgerson 3 T De Martino 25.10 (-) DTW (ft) 10.76 (X 0.17 gal\ft) = Well Casing Volume (gal.) = 2.41 Field Team: Total Depth (ft) 75°F, SUMNY Field Conditions: Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Transient peristaltic pump with | | new or | Adedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Purge Method: Dedicated Hydrostar pump with | | new or | | | dedicated polyethylene tubing Purge water disposal: IDW Drum Home whof well Pump Suction Depth (ft): Comments/Exceptions to SAP Specific Dissolved Flow Purge DTW ORP Oxygen **Turbidity** Rate Volume Conduct. Temp. (NTUs) \* Clarity/ Color/Remarks pH (gpm) (ft) (gallons) (µS/cm) (°C) (mV) (mg/L) Target +/- 10 If > 0.03 -+/- 0.1 +/- 10 +/- 0.3 +/- 3% Stabilization **10 NTU** 80.0 Criteria Time 12:40 PUMP ON 10.76 2.4 6.33 44.7 0.40 0.08 10.78 3:10 2.71 10.78 15.9 0.43 1.48 0.06 13:15 247.9 2.7 3.0 15.6 6.55 390.6 0.49 1078 1.27 0.06 13:20 251.8 3:25 3,3 0.06 10.74 : 13:30 MW03-05/5241-0 Start Sampling End Sampling

VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

### **Groundwater Sampling**

| DATE: 5/15/24              |                | ber of Sa<br>iners (C | ample            |                 |                   |       |                  |                                                  |
|----------------------------|----------------|-----------------------|------------------|-----------------|-------------------|-------|------------------|--------------------------------------------------|
| Sample I.D.                | Equip-<br>ment | Dupli-<br>cate        | Parent<br>Sample | 10.000          | Туре              | Pres. | Shipping<br>Date | Analytical Method                                |
| Organic Constituents       |                |                       |                  | 17              |                   |       |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC  | 3              | 3                     | (3)              | 40 mL           | Glass             | нсі   |                  | EPA 8260SIM, no headspac                         |
| Metals                     |                |                       |                  |                 |                   |       |                  |                                                  |
|                            |                |                       | Fe               | (u) -           | 0.2               | 5 mg/ | 1                | 777 202 A 384 774                                |
| Dissolved Ferrous Iron     |                |                       | Field            | measurem        | ent Only          |       |                  | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon    | itoring Co     | onstitue              | ents             |                 |                   |       |                  | AND A (2000) Culfato S                           |
| Nitrate, Sulfate, Chloride | 1_             | 1                     | 6                | 125 mL          | Poly              | None  |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
|                            | 1              | 1                     | 0                | 250 mL          | Glass             | H2S04 |                  | SM5310                                           |
| TOC  Carbon Dioxide        |                |                       | Field            | CO2<br>measurem | = 55<br>nent Only | mg/c  |                  | HACH CO2 Test Kit                                |
| Methane                    | 3              | 3                     | (3)              | 40 mL           | Glass             | нсі   |                  | RSK 175, no headspace                            |
| Duplicate ID               |                | Time:                 |                  |                 |                   |       |                  |                                                  |
| Comments:                  |                |                       |                  |                 |                   |       |                  |                                                  |
|                            |                |                       |                  |                 |                   |       |                  |                                                  |
|                            |                |                       |                  |                 | _                 | -     |                  |                                                  |
|                            |                |                       |                  |                 | _                 |       |                  |                                                  |
|                            | _              |                       |                  |                 |                   | -     |                  |                                                  |
|                            |                |                       |                  |                 |                   |       |                  |                                                  |
|                            |                |                       |                  |                 |                   |       |                  |                                                  |

#### JACOBS WELL SAMPLING FIELD LOG Date: 5/16/24 Project #: NWP22003.A.CS.EV.05 Well I.D .: MW-04 Field Team: Total Depth (ft) 27.39 (-) DTW (ft) 9.99 (X 0.17 gal/ft) = Well Casing Volume (gal.) = 3.0Partly doudy 544F Field Conditions: Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Purge Method: Transient peristaltic pump with | | new or | dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing Pump Suction Depth (ft): tubing out of well Purge water disposal: IDW Drum Comments/Exceptions to SAP Purge Specific Dissolved Flow Volume Conduct. Temp. ORP Oxygen Turbidity Rate DTW (gallons) (µS/cm) pH (°C) (mV) (mg/L) (NTUs) \* Clarity/ Color/Remarks (gpm) (ft) Target +/- 10 if > 0.03 -Stabilization +/- 3% +/- 0.1 +/- 10 +/- 0.3 **10 NTU** Criteria 0.08 Time 07:40 9.45 DUMP ON 0820 007 3.0 14.7 6.51 -34.7 047 12.9 10.11 6.60-41.8 0.34 274.7 11.2 08:25 3.3 6.06 10.11 3.6 -43.3 0.41 268.8 14.7 11.3 0.06 10.11 08:35 14.7 6.62 -43.5 0.29 11.1 0.06 10.11 3.4 266.8 ÷ : 08:40 MW04-05/1624-0 Start Sampling **End Sampling** \*VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

#### **Groundwater Sampling**

| DATE: 5/16/24              |                | ber of Sa<br>ainers (C | ample            |            |           |       |                  |                                                  |
|----------------------------|----------------|------------------------|------------------|------------|-----------|-------|------------------|--------------------------------------------------|
| Sample I.D.                | Equip-<br>ment | Dupil-<br>cate         | Parent<br>Sample | Volume     | Туре      | Pres. | Shipping<br>Date | Analytical Method                                |
| Organic Constituents       |                |                        |                  |            |           |       |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC  | 3              | 3                      | 3                | 40 mL      | Glass     | нсі   |                  | EPA 8260SIM, no headspace                        |
| Metals                     |                |                        |                  |            |           |       |                  |                                                  |
| Dissolved Ferrous Iron     |                |                        |                  | Fc(II)     |           | 91 m  | OLL              | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon    | itoring Co     | onstitue               | ents             |            |           |       |                  |                                                  |
| Nitrate, Sulfate, Chloride | 1              | 1                      | 0                | 125 mL     | Poly      | None  |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| тос                        | 1              | 1                      | 0                | 250 mL     | Glass     | H2S04 |                  | SM5310                                           |
| Carbon Dioxide             |                |                        | Field            | i measurer | nent Only | mg/L  |                  | HACH CO2 Test Kit                                |
| Methane                    | 3              | 3                      | 3                | 40 mL      | Glass     | нсі   |                  | RSK 175, no headspace                            |
| Duplicate ID               |                | Time:                  |                  | 1127       |           |       |                  |                                                  |
| Comments:                  |                |                        |                  |            |           |       |                  |                                                  |
|                            |                |                        |                  |            |           |       |                  |                                                  |
|                            |                |                        |                  |            |           |       |                  |                                                  |
|                            |                |                        |                  |            |           |       |                  |                                                  |
|                            |                |                        |                  |            |           |       |                  |                                                  |
|                            |                |                        |                  |            |           |       |                  |                                                  |
|                            |                |                        |                  |            |           |       |                  |                                                  |

## JACOBS WELL SAMPLING FIELD LOG

| <u> Liberarian</u>    | . Y.Y.L.L.         | 2200              | 23.5    |           |             |                  |                     |                |              | Date: 5/16/24<br>Well I.D.: MW05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------|--------------------|-------------------|---------|-----------|-------------|------------------|---------------------|----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                    | 003.A.CS.         |         |           |             | 1                |                     |                |              | Well I.D.: MWOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Field Tea             | im: C              | Tengers           | () DT   | N (A) II  | 12          | Martin           | (U)                 | Vall Car       | alaa Maluu   | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| otal De               | 7th (it) 2         | 104               | (-) D 1 | A (11) 11 | ,04         | ( > 0.11         | ganit) – v          | veli Cas       | sing volur   | ne (gal.) = 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ield Cor              | ditions:           | 6-50 F            | . 50    | MIV       |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    | lconox wa         |         |           |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         |           | PI          | URGE INF         | ORMATI              | ON             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X                     | Purge M            |                   |         |           | tic pump w  |                  | or M dedic          | ated poly      | ethylene/tef | lon-lined tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | Purge M<br>Purge M |                   |         |           | rsible pump |                  |                     |                | olyethylene  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| umn Cu                |                    |                   |         |           |             | vith     new o   |                     |                | ethylene tub | TO PERSONAL PROPERTY OF THE PERSONAL PROPERTY |
|                       | ction Dept         | π (π):            | 275     | 0+        | - tubin     | g at             | of u                | ell            | Purge wat    | er disposal: IDW Drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| omment                | s/Exception        | ons to SAF        | :       |           |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         |           |             | 1                |                     | 4.0            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | Purge<br>Volume    | Specific Conduct. | Temp.   |           | OPP         | Dissolved        |                     | Flow           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | (gallons)          | (μS/cm)           | (°C)    | pН        | ORP<br>(mV) | Oxygen<br>(mg/L) | Turbidity<br>(NTUs) | Rate<br>(gpm)  | DTW<br>(ft)  | * Clarity/ Color/Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| arget<br>tabilization | 1/190              | +/- 3%            | 1.7     | +/- 0.1   | +/- 10      | +/- 0.3          | +/- 10 if >         | 0.03 -<br>0.08 | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| riteria<br>Time       | a mentil           |                   |         |           | <u> </u>    |                  | 101410              | 0.08           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0:12                  | D                  | UMP               | ON      | /         |             |                  |                     |                | 11,04        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    | 7.15.170          | 11.7    |           | 100         |                  | 0                   | * **           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0:47                  | 2.8                | 359.9             | 16.7    | 6.68      | -623        | 0.10             | 2.97                | 608            | 11,05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0:52                  | 3,1                | 362.7             | 16.6    | 6.66      | -66.2       | 0.05             | 3.62                | 0.06           | 11,05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0:52                  | 3.4                | 365.8             | 16.7    | 6.68      | -67.8       | 0.05             | 2.30                | 0.06           | 11.05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         |           |             | 7. 11 15         |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         | 4         |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                     |                    |                   |         |           |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| :                     |                    |                   |         |           |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         |           |             | -                |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         |           |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |                    |                   |         |           |             |                  |                     |                | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ė,                    |                    |                   |         |           |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| :05                   | Start Sampl        | ing Mi            | 005-0   | 05/62     | 4-10        |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7                     | End Samplin        |                   |         | 17        |             |                  |                     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Groundwater Sampling

| DATE: 5/10/24              |                | ber of Sa<br>iners (C |                  |                |                    |       |                  |                                                  |
|----------------------------|----------------|-----------------------|------------------|----------------|--------------------|-------|------------------|--------------------------------------------------|
| Sample I.D.                | Equip-<br>ment | Dupli-<br>cate        | Parent<br>Sample | Volume         | Туре               | Pres. | Shipping<br>Date | Analytical Method                                |
| Organic Constituents       |                |                       |                  |                |                    |       |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC  | 3              | 3                     | (3)              | 40 mL          | Glass              | нсі   |                  | EPA 8260SIM, no headspace                        |
| Metals                     |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  | Fe(11)         | = 3.10             | y mg  | 1                |                                                  |
| Dissolved Ferrous Iron     |                |                       | Field            | measurem       | ent Only           |       |                  | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Mon    | itoring Co     | nstitue               | nts              |                |                    |       |                  |                                                  |
| Nitrate, Sulfate, Chloride | 1              | 1                     | (1)              | 125 mL         | Poly               | None  |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| тос                        | 1              | 1                     | (D)              | 250 mL         | Glass              | H2S04 |                  | SM5310                                           |
| Carbon Dioxide             |                |                       | Field            | CC<br>measuren | 2 = (<br>nent Only | 60 mg | 14               | HACH CO2 Test Kit                                |
| Methane                    | 3              | 3                     | (3)              | 40 mL          | Glass              | HCI   |                  | RSK 175, no headspace                            |
| Duplicate ID               |                | Time:                 |                  |                |                    |       |                  | Alle Age 2 Land, 1921                            |
| Comments:                  |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  |                |                    |       |                  |                                                  |
|                            |                |                       |                  |                |                    |       |                  |                                                  |

JACOBS WELL SAMPLING FIELD LOG Date: 5/16/24 Well I.D.: MUOGO Project #: NWP22003.A.CS.EV.05 Field Team: Total Depth (ft) 29.00 (-) DTW (ft) 10.115 (X.6.1.7 gal\ft) = Well Casing Volume (gal.) = 3.0 Field Conditions: (CF, Partly clarify Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Transient peristaltic pump with | | new or | x dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing Purge Method: Pump Suction Depth (ft): - 2 Ft toing at of well Purge water disposal: IDW Drum Comments/Exceptions to SAP: Dissolved Flow Purge Specific Conduct. ORP Oxygen Turbidity Rate DTW Volume Temp. (NTUs) \* Clarity/ Color/Remarks (gallons) pH (µS/cm) (°C) (mV) (mg/L) (gpm) (ft) Target +/- 10 if > 0.03 -+/- 0.1 Stabilization +/- 3% +/- 10 +/- 0.3 **10 NTU** 0.08 Criteria Time Pump on 16.45 2963 16.1 632 766 0.40 437 0.08 10.44 09:40 3.3 296.6 15.9 6.32 81.2 0.38 3.05 0.06 10.49 0.06 10.49 296.0 16.0 6.35 81.1 09:45 3.6 0.41 14W06-0516241 09 50 Start Sampling **End Sampling** VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

#### **Groundwater Sampling**

| DATE: 5/16/24              |                | ber of S<br>ainers (C |                  |                   |          |       |                  |                                                  |
|----------------------------|----------------|-----------------------|------------------|-------------------|----------|-------|------------------|--------------------------------------------------|
| Sample I.D.                | Equip-<br>ment | Dupli-<br>cate        | Parent<br>Sample | Volume            | Туре     | Pres. | Shipping<br>Date | Analytical Method                                |
| Organic Constituents       |                |                       |                  |                   |          |       |                  |                                                  |
| TCE, cis 1,2-DCE, PCE, VC  | 3              | 3                     | (3)              | 40 mL             | Glass    | нсі   |                  | EPA 8260SIM, no headspace                        |
| Metals                     |                |                       |                  |                   |          |       |                  |                                                  |
| Dissolved Ferrous Iron     |                |                       |                  | e(II) =           |          |       | L                | HACH DR890- Ferrous Iron                         |
| Natural Attenuation Moni   | toring Co      | nstitue               | nts              |                   |          |       |                  |                                                  |
| litrate, Sulfate, Chloride | 1              | 1                     | 0                | 125 mL            | Poly     | None  |                  | Nitrate (300), Sulfate &<br>Chloride (300.0_28D) |
| ос                         | 1              | 1                     | 6                | 250 mL            | Glass    | H2S04 |                  | SM5310                                           |
| arbon Dioxide              |                |                       | Field r          | Ce) 2<br>measurem | ent Only | 5mg/1 |                  | HACH CO2 Test Kit                                |
| lethane                    | 3              | 3                     | 3                | 40 mL             | Glass    | HCI   |                  | RSK 175, no headspace                            |
| uplicate ID                |                | Time:                 |                  |                   |          |       |                  |                                                  |
| omments:                   |                |                       |                  |                   |          |       |                  |                                                  |
|                            |                |                       |                  |                   |          |       |                  |                                                  |
|                            |                | -                     |                  |                   |          |       |                  |                                                  |
|                            |                |                       |                  |                   |          |       |                  |                                                  |
|                            |                |                       |                  |                   |          |       |                  |                                                  |
|                            |                |                       |                  |                   |          |       |                  |                                                  |
|                            |                |                       |                  |                   |          |       |                  |                                                  |

#### JACOBS WELL SAMPLING FIELD LOG

Well I.D .: MW -10 Project #: NWP22003.A.CS.EV.05 (-) DTW (ft) 10.45 (X 0.17 gal\ft) = Well Casing Volume (gal.) = 3.15 Field Team: Torgerson Total Depth (ft) Field Conditions: 72° F SUMMY Decontamination: Alconox wash, DI wash **PURGE INFORMATION** Purge Method: Transient peristaltic pump with | | new or | dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing Purge water disposal: IDW Drum 22 FT, ~3 FT tubing out Pump Suction Depth (ft): Comments/Exceptions to SAP:

|                                     | Purge<br>Volume<br>(gallons) | Specific<br>Conduct.<br>(µS/cm) | Temp.   | рН          | ORP<br>(mV) | Oxygen<br>(mg/L) | Turbidity<br>(NTUs)   | Flow<br>Rate<br>(gpm) | DTW<br>(ft) | * Clarity/ Color/Remarks |
|-------------------------------------|------------------------------|---------------------------------|---------|-------------|-------------|------------------|-----------------------|-----------------------|-------------|--------------------------|
| Target<br>Stabilization<br>Criteria |                              | +/- 3%                          |         | +/- 0.1     | +/- 10      | +/- 0.3          | +/- 10 if ><br>10 NTU | 0.03 -<br>0.08        | 4           | Tanaharan a              |
| Time                                |                              | REWAY                           | NAME OF |             | 0.0350      | 9.5.0            |                       |                       | 200-1       |                          |
| 2:51                                | PL                           | MD                              | ON      |             |             |                  |                       |                       | 10.45       |                          |
| 13:36                               | 3.1                          | 307.3                           | 16.1    | 7.13        | -109.9      | 0.41             | 13,7                  | 0.08                  | 10.45       |                          |
| 13:41                               | 3.4                          | 30.5                            | 15,9    | 6.86        | -137,4      | 0.00             | 8.86                  | 006                   | 10.45       |                          |
| 13:46                               | 3.7                          | 300.2                           | 16.6    | <b>4.55</b> | .128.8      | 0.00             | 6.21                  | 0.06                  | 10.45       | dear                     |
| 13:51                               | 3.9                          | 299.4                           | 16.6    | 695         | -150.4      | 0,00             | 7.90                  | 0.04                  | 10.45       |                          |
| 13:54                               | 4.0                          | 299.6                           | 16.6    | 6.47        | -152.4      | 0.00             | 6.42                  | 0.04                  | 10.45       |                          |
| 13:57                               | 4.1                          | 294.9                           | 16.6    | 6.46        | -152.4      | 0.00             | 5,66                  | 0.04                  | 10.45       |                          |
|                                     |                              |                                 |         |             |             |                  |                       |                       |             |                          |
|                                     |                              |                                 |         |             |             |                  |                       |                       |             |                          |
|                                     |                              |                                 |         |             |             |                  |                       |                       |             |                          |
| 14:00                               | Start Sam                    | pling                           |         |             |             |                  |                       |                       |             |                          |
| 1                                   | End Sam                      | pling                           |         |             |             |                  |                       |                       |             |                          |

### **Groundwater Sampling**

| Sample I.D.                | Num<br>Conta<br>Equip-<br>ment | ber of Sa<br>iners (C<br>Dupli-<br>cate | ircled)<br>  Parent | Volume    | Туре                          | Pres. | Shipping<br>Date | MW-10  Analytical Method                      |
|----------------------------|--------------------------------|-----------------------------------------|---------------------|-----------|-------------------------------|-------|------------------|-----------------------------------------------|
| Organic Constituents       |                                |                                         |                     |           |                               |       |                  |                                               |
| TCE, cis 1,2-DCE, PCE, VC  | 3                              | 3                                       | 3                   | 40 mL     | Glass                         | HCI   |                  | EPA 8260SIM, no headspace                     |
| Metals                     |                                |                                         |                     |           |                               |       |                  |                                               |
|                            |                                |                                         | F                   | e(II)     | = 3.30                        | o mg/ | 4                |                                               |
| Dissolved Ferrous Iron     |                                |                                         | Field               | measurem  | ent Only                      |       |                  | HACH DR890- Ferrous Iron                      |
| Natural Attenuation Mon    | itoring Co                     | onstitue                                | ents                |           |                               |       |                  |                                               |
| Nitrate, Sulfate, Chloride | 1                              | 1                                       | 1                   | 125 mL    | Poly                          | None  |                  | Nitrate (300), Sulfate & Chloride (300.0_28D) |
| тос                        | 1                              | 1                                       | (1)                 | 250 mL    | Glass                         | H2S04 |                  | SM5310                                        |
| Carbon Dioxide             |                                |                                         | Field               | measurem  | CO <sub>2</sub> =<br>ent Only | 30 M  | 3/4              | HACH CO2 Test Kit                             |
| Methane                    | 3                              | 3                                       | (3)                 | 40 mL     | Glass                         | HCI   |                  | RSK 175, no headspace                         |
| Duplicate ID               |                                | Time:                                   |                     | 3 7 7 7 7 | - 10                          | 3 7 1 |                  | The fire field space                          |
| Comments:                  |                                |                                         |                     |           |                               |       |                  |                                               |
|                            |                                |                                         |                     | _         |                               | _     |                  |                                               |
|                            |                                |                                         |                     |           |                               |       |                  |                                               |
|                            |                                |                                         |                     |           |                               |       |                  |                                               |
|                            |                                |                                         |                     |           |                               |       |                  |                                               |
|                            |                                |                                         |                     |           |                               |       |                  |                                               |
|                            |                                |                                         |                     |           |                               | -     |                  |                                               |
|                            |                                |                                         |                     |           |                               |       |                  |                                               |

#### JACOBS WELL SAMPLING FIELD LOG

Date: 5/14/24

| Project #: NWF | 22003.A.CS.E | CU.V: |      |     |
|----------------|--------------|-------|------|-----|
|                |              |       | <br> | - 7 |
|                |              |       |      |     |

Well I.D.: MW-11

Field Team: C Torgason ち J DeMontine
Total Depth (ft) 35 (-) DTW (ft) 10 29 (Xの17 gal\ft) = Well Casing Volume (gal.) = リン

Field Conditions: 74°F, Sunny

Decontamination: Alconox wash, DI wash

#### **PURGE INFORMATION**

Purge Method: Transient peristaltic pump with | | new or | \ dedicated polyethylene/teflon-lined tubing

Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing

Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing

Pump Suction Depth (ft): 28 FT Houng 3 FT at

Purge water disposal: IDW Drum

Comments/Exceptions to SAP:

|                                    | Purge<br>Volume<br>(gallons) | Specific<br>Conduct.<br>(µS/cm) | Temp. | рН      | ORP<br>(mV) | Dissolved<br>Oxygen<br>(mg/L) | Turbidity<br>(NTUs)   | Flow<br>Rate<br>(gpm) | DTW<br>(ft) | * Clarity/ Color/Remarks |
|------------------------------------|------------------------------|---------------------------------|-------|---------|-------------|-------------------------------|-----------------------|-----------------------|-------------|--------------------------|
| arget<br>stabilization<br>criteria | ÷                            | +/- 3%                          | 13    | +/- 0.1 | +/- 10      | +/- 0.3                       | +/- 10 if ><br>10 NTU | 0.03 -<br>0.08        |             |                          |
| Time                               |                              |                                 | / 1   |         |             |                               |                       |                       |             |                          |
| 14:20                              | D                            |                                 |       |         |             |                               |                       |                       | 10.24       |                          |
| 5:16                               | 4.2                          | 245,0                           | 164   | 666     | -59.1       | 0.07                          | 12.0                  | 0.07                  | 10.30       |                          |
| 5:21                               | 4.5                          | 2454                            | 16.2  | 6.75    | -80.5       | 0.00                          | 7.33                  | 0.06                  | 10.30       |                          |
| 15:26                              | 4.8                          | 255.9                           | 16.5  | 6.87    | -98.8       | 0,00                          | 6,94                  | 0.06                  | 10.30       |                          |
| 15:29                              | 5.0                          | 254.9                           | 18.0  | 6.83    | -99.0       | 0.03                          | 8.74                  | 0.00                  | 10.30       |                          |
| 15:32                              | 5.2                          | 252.2                           | 17.4  | 6.82    | -99.6       | 0.05                          | 639                   | 0.00                  | 10.30       |                          |
|                                    |                              |                                 |       |         |             |                               |                       |                       |             |                          |
| 1                                  |                              |                                 |       |         |             | 1 111                         |                       |                       |             |                          |
| ¥                                  |                              |                                 |       |         |             |                               |                       |                       |             |                          |
| 11.                                |                              |                                 |       |         |             |                               |                       |                       |             |                          |
| 15:35                              | Start San                    | npling                          |       |         |             |                               |                       |                       |             |                          |
| 177                                | End Sam                      | pling                           |       |         |             |                               |                       |                       |             |                          |

\*VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

# Groundwater Sampling Project #: NWP22003.A.CS.EV.05

| Sample I.D.                                     |             | ber of Sainers (C | ample<br>ircled)<br>Parent | Volume              | Туре      | Pres. | Shipping<br>Date | Analytical Method         |
|-------------------------------------------------|-------------|-------------------|----------------------------|---------------------|-----------|-------|------------------|---------------------------|
| Organic Constituents                            |             |                   |                            |                     |           |       |                  |                           |
| TCE, cis 1,2-DCE, PCE, VC                       | 3           | 3                 | (3)                        | 40 mL               | Glass     | HCI   |                  | EPA 8260SIM, no headspace |
| Metals                                          |             |                   |                            |                     |           |       |                  |                           |
| Dissolved Ferrous Iron  Natural Attenuation Mor | nitoring C  | onetitu           | Field                      | e(II)<br>I measuren |           | 75 mg | 1/2              | HACH DR890- Ferrous Iron  |
| Natural Attenuation Mor                         | intorning C | Jonstitt          | Tems                       |                     |           |       |                  | Nitrate (300), Sulfate &  |
| Nitrate, Sulfate, Chloride                      | 1           | 1                 | 6                          | 125 mL              | Poly      | None  |                  | Chloride (300.0_28D)      |
| тос                                             | 1           | 1                 | 6                          | 250 mL              | Glass     | H2S04 | ı                | SM5310                    |
| Carbon Dioxide                                  |             |                   | Field                      | d measure           | nent Only | omg/L |                  | HACH CO2 Test Kit         |
| Methane                                         | 3           | 3                 | 3                          | 40 mL               | Glass     | HCI   |                  | RSK 175, no headspace     |
| Duplicate ID                                    |             | Time              |                            |                     |           |       |                  |                           |
| Comments:                                       |             |                   |                            |                     |           |       |                  |                           |
|                                                 |             |                   |                            |                     |           |       |                  |                           |
|                                                 |             |                   |                            |                     |           | -     | -                |                           |
|                                                 |             |                   |                            |                     |           |       |                  |                           |
|                                                 |             |                   |                            |                     |           |       |                  |                           |
|                                                 |             |                   |                            |                     |           |       |                  |                           |
|                                                 |             |                   |                            |                     |           |       |                  |                           |

#### JACOBS WELL SAMPLING FIELD LOG

Date: 5/15/24 Project #: NWP22003.A.CS.EV.05 Well I.D.: MW-12 C Targerson 4 T DeMartino 30 (-) DTW (ft) 13.21 (X 0.17 gal\ft) = Well Casing Volume (gal.) = 2.8 Field Team: Total Depth (ft) Field Conditions: GOST SURRY Decontamination: Alconox wash, DI wash PURGE INFORMATION Purge Method: Transient peristaltic pump with | | new or | dedicated polyethylene/teflon-lined tubing Purge Method: Dedicated submersible pump with | | new or | | dedicated polyethylene tubing Purge Method: Dedicated Hydrostar pump with | | new or | | dedicated polyethylene tubing Pump Suction Depth (ft): 26 Ft thing, 3.5 Fait Purge water disposal: IDW Drum Comments/Exceptions to SAP: Purge Specific Dissolved Flow Volume Conduct. Temp. ORP Turbidity DTW Oxygen Rate pH (gallons) (µS/cm) (°C) (mV) (mg/L) (NTUs) \* Clarity/ Color/Remarks 4 (gpm) (ft) Target +/- 10 if > 0.03 -Stabilization +/- 3% +/- 0.1 +/- 10 +/- 0.3 **10 NTU** 0.08 Criteria Time 13,21 07:40 PUMP 100 310.5 13.8 6.68 -24.6 6.5 13.2 0.07 13.23 08:19 3080 13.8 6.30 -13.6 0.29 11.6 303.4 13.8 6.21 20.7 6.35 9.73 297.4 13.8 6.27 204 0.52 6.91 006 13.23 3.4 006 13.23 08:29 0.06 300.6 13.8 6.31 13.9 08:37 0.06 13.23 : : MW12-05 1524-0 08:40 Start Sampling **End Sampling** VC = Very cloudy CI = Cloudy SC = Slightly Cloudy VSC = Very Slightly Cloudy AC = Almost Clear C = Clear CC = Crystal Clear

#### **Groundwater Sampling**

| DATE: 5/15/24              | Time: O    | ber of S |                   | 1               |                  | 1     | Well ID:         | NW-12                                         |
|----------------------------|------------|----------|-------------------|-----------------|------------------|-------|------------------|-----------------------------------------------|
| Sample I.D.                |            | iners (C | ircled)<br>Parent | Volume          | Туре             | Pres. | Shipping<br>Date | Analytical Method                             |
| Organic Constituents       |            |          | - 10              | , in the second |                  |       |                  |                                               |
| TCE, cis 1,2-DCE, PCE, VC  | 3          | 3        | 3                 | 40 mL           | Glass            | HCI   |                  | EPA 8260SIM, no headspace                     |
| Metals                     |            |          |                   |                 |                  |       |                  |                                               |
|                            |            |          | Fel               | (1) =           | 2.16             | mg/L  |                  |                                               |
| Dissolved Ferrous Iron     |            |          | Field             | measurem        | ent Only         |       |                  | HACH DR890- Ferrous Iron                      |
| Natural Attenuation Mon    | itoring Ct | mstitu   | ents              |                 |                  |       |                  | 2006 (2000) 27000 (20                         |
| Nitrate, Sulfate, Chloride | 1          | 1        | 6                 | 125 mL          | Poly             | None  |                  | Nitrate (300), Sulfate & Chloride (300.0_28D) |
| тос                        | 1          | 1        | 0                 | 250 mL          | Glass            | H2S04 |                  | SM5310                                        |
| Carbon Dioxide             |            |          | Field             | CO <sub>2</sub> | = 60<br>ent Only | MyL   |                  | HACH CO2 Test Kit                             |
| Methane                    | 3          | 3        | 6                 | 40 mL           | Glass            | HCI   |                  | RSK 175, no headspace                         |
| Duplicate ID MW/co- 04     | 51524-0    | Time:    | 0850              |                 | 1002             |       |                  |                                               |
| Comments:                  |            |          |                   |                 |                  |       |                  |                                               |
|                            |            |          |                   |                 |                  |       |                  |                                               |
|                            |            | -        | -                 |                 |                  |       |                  |                                               |
|                            |            |          |                   |                 | _                |       |                  |                                               |
|                            |            |          |                   |                 |                  |       |                  |                                               |
|                            |            |          |                   |                 |                  |       | ***              |                                               |
|                            |            |          |                   |                 |                  |       |                  |                                               |

| And the           | NWP May GWS                         |                   | 5/13/24         |
|-------------------|-------------------------------------|-------------------|-----------------|
| Jack .            | 1867 1000                           | GINS              |                 |
| Personnel: Car    | water gauging and                   | (100)             | E               |
| evirel. Ca        | (c) reversive                       | -                 |                 |
| Westling Jac      | cob De Martino                      | 1 aborder         |                 |
| 072 M             | 20th Suny                           | luck in will 7    | TM MIWP         |
| 17/30 Meet        | at NWP preparty, a                  | wedget 11+5       | tailet M        |
| 0740 Arrive       | in Part Property,                   | condition of the  | court orice/was |
| 876 Site 6        | wientation, PPE, tra                | wacz sally        | , received =    |
| 0750 Begin 1      | well gauging water !                | evel (ff stoc)    | Notre.          |
| Well ID           | TIME Water L                        |                   | 100.00          |
| T451-MW22         | 1005 18.7                           |                   | =               |
| 111014            | 1000                                |                   |                 |
| 7451-MW025        |                                     |                   | E               |
| MW-11             | 1015 10.2                           |                   |                 |
| MW-10             | 1018 10.4                           |                   | b 4 1.1         |
| T451-MW25.        | 1048 13.                            |                   | Broken lid      |
| 7451-MW035        | 1037 17.9                           |                   | <b>F</b>        |
| TUSI - MWOG       | 1043 1810                           |                   |                 |
| TUS1-NW10         | 1041 7.2                            |                   |                 |
| 72/5/-MW23        | 1027 12.40                          |                   |                 |
| MW-02             | 1104 6.36                           |                   |                 |
| MW.03             | 109 4.96                            |                   |                 |
| MW-OU             | 1114                                |                   |                 |
| MW-01             | 1057 / 11.2                         |                   |                 |
| MW-05             | 100 11.0                            | 6                 |                 |
| MW-06             | 114 10.6                            | 12                |                 |
| 1000 Bagin a      | jauging wells                       |                   |                 |
| 1130 INISH 96     | laging wells take                   | lych              |                 |
| 1200 Finish lu    | neh - drive to Ecope                | ntal to pick up   | Peri Pump       |
| 220 AMONTE        | back at Port TH                     |                   |                 |
| 1345 Pumb a       | n e T2/5/MW-22                      | DTW = 13:70       |                 |
| Calibrate.        | MIDWERT                             |                   |                 |
| 181               | Pro Plus 47516<br>PH 7.0 PH 100 ORP |                   |                 |
| STD PHU.O         | PH 7.0 PH NO ORP                    | 2400 Second 1411- |                 |
| Reading 4.0       | 6.97 10.04 233                      | .2 1.41           | 99.7            |
| 701# 36 EOK       | 3GE 007   3GE 063   4GC             | 1490   46A0218    |                 |
| EVD   5/25        | 15/25 1 5/25 1 121                  | 11/25             |                 |
| HAC               | CH ZICCO 486112                     |                   |                 |
| NTU:              | 10 20 100 800.                      |                   |                 |
| Reaching          | 10.5/ 20-1/ 102 / 787               |                   | <u> </u>        |
|                   | MINI PAE 3000 PIL                   | 309               |                 |
| 20                | 00 gas=0.0,0pm 100                  | ppm isobutilere = | 100.0 ppm       |
| scale: 1 square = | Exp. 6/25                           | 10+ # 2-171-78    | 4               |
| Scalet            | 7                                   |                   |                 |

NWP May GWS 5/13/22/ collected [TUS] MW-22-05/374 [Fe(1):0.05 mg/L, COZ=55 mg/L Drop off IDW Offsite to ship samples at Fedex 445 1500 1530 5/13/24 = 1 2 = 2 = Revenue Com Scale: 1 square =\_

5/14/24 INP May GWM Task: continue aw sampling Personnel: Calch Targerson Jacob DeMartine Weather: 56-76 F, suny 0815 Meet at NWP, check in with Tim Whitson (NWP 0830 check in at Port 74 0840 calibrate equipment 15' Pro Plus, 475/6 DO 100% PH4.0 | PH7.0 | PH 10.0 | OPP 240.0 Spland 1413 STD 94.5 10.0 240.1 1.423 7.0 Reading 4.0 36E012 36E007 36E083 46C1490 46A6Z18 Lot # 5/25 5/25 5/25 12/24 1/25 HACH 2/00Q 48642 NTU 120 100 800 Reading 11.1 21.3 106 796 MINI ZAE 3000 R11309 Zero ges = 0 0 ppm, 100 ppm isobotylene = 100.2 ppm EXP. 6/25, Lot # 2-171-764 09/0 pump on @ TUSIMW-09 collected TH3/MWay -05/424-0 Febris = 0.46 mg/c, coz = 25 mg/c 1005 1044 Dump on B TUS/MW 035: TUSIMWO3, -051424-0, Fe(11) = 0.02 mg/L, coz = 35 mg/L 1140 collected 210 Linch 25 Pump on @ MW-10 collected THS/MW032 @ [MW10-05/4/24-0] Fe(11) = 002 mg/2, 002=30 mg/2 400 1420 sums on c MW-11 535 collated [MWII-05/424-0] Fe(11)= 2.75 mg/L, (02=45 mg/L 1545 Drop off 1000: 1610 Offsite to ship at FedEx CmIs Scale: 1 square = -scale: i square -\_\_\_\_

5/15/24 NWP MAY GWM Task: cartinue aw sampling Perannel: Caleb Tergerson Jacob De Martino Weather: 57-79°F, sunny 0720 Meet at NUD 0780 Checkin at Part 74 0740 - Pump an at MW-12 = Calibrate agripment = 451 Pro Plus 47516 STD PH 4.0 PH 7.0 PH 10.0 OPP 2400 SPCOND 1413 DC /CC% Dealing 3,49 6.99 240.0 99.9 1388 10.01 46A 0218 LOT# 36E0156 36E007. 36E083 46C1490 EXP | 5/25 | 5/25 | 5/25 | 12/24 1/25 = HACH 21000 48642 NTU 10 20 / 100 1 400 Reaching 19.60 16.01 102 792 = MM. RAE Scor R11309 = Zero = 0 0 pm 100 pm substylene = 100.1 ppm -EXP 6/25 Lot # 2-171-784 1500 collect MW 12-051524-0 Fell) = 2/6 ins/4 coz = 60 ing/2 0850 collect dope Tuwico-051524-01 PUMP on at TYSIMW-23 0910 colect THSIMW23-051524-0 Fe(4)=0.02 mg/L, ce2=30 mg/L 0455 104 pump on at mwol collected [MWOI - 051524-0] Felii)=0 mg/c Coz = 95 mg/2 105 pump on at MUXX 1124 collected [MWCZ-051524-0] Felil)=320 mg/L, coz=45 mg/L 1210 140 Pump on at MW3 1330 Willefed [MW03-051524-6] Fe(11) = 0.25 mg/c; CO2 = 55 mg/c 1400 Drup off IDW 1440 offsite to ship samples via Fedex 5/15/24 Contr Scale: 1 square =

5/16/24 NWP May GWM Task: Finish GW campling Personnel: Caleb Torgerson Jacob De Martino Neather: 34-700F, partly cloudy 1730 Meet at MUP, check in with 7 mm Whitsan 0740 pump an at MW-011 Calibrate agripment 181 Pro Plus 47516 Sp(and 1413 Do 100% PHU,0 | PH7.0 | PH10.0 | OPP 240.0 STD 1414 240.2 99,9 1003 Peading UN 7.0 4646218 36E0156 36E027 36E083 460/490 1/25 12/24 EXP | 5/25 | 5/25 | 5/25 HACH 2100Q 48642 NTU 10 20 100 1800 Reading 11.4 21.8 101 406 4 MIRAE 3000 181309 2000 905 = 0.0 ppm 100 ppm 15cbitylene = 98.7 ppm EXP 6/25 Lot # 2-171-784 collect [MWO4-05/624-0] Fecis= 291 mile coz = 40 mg/L 0840 pump on p MWOG: 857 collect [MW06-051624-0] Fe(11) = 8.21 mg/L, Co2 = 75mg/L 0950 pump on emuos: 1012 West [405-05/624-6] Felli) = 3.19 mg/L, coz = 60 mg/L 1105 prop off Jow 140 Pack equivment and samples 1200 Offsic to return equipment and ship samples 1230 5/16/24 Scale: 1 square =\_

# Appendix B Laboratory Analytical Reports

Provided in electronic format

Appendix C Data Quality Evaluations

# Groundwater Data Quality Evaluation for Northwest Pipe Company, Portland, Oregon

PREPARED FOR: Stephanie Heldt-Sheller/Northwest Pipe Company

PREPARED BY:

Bernice Kidd/Jacobs

REVIEWED BY: Mark Fesler/Jacobs

REFERENCE: Northwest Pipe Company GWM Event – May 13 through May 16, 2024

DATE: June 24, 2024

#### Introduction

The objective of this data quality evaluation (DQE) is to assess the representativeness and usability of data quality for groundwater quality samples collected to monitor the groundwater at the Northwest Pipe Company. The rationale for monitoring, the data quality objectives (DQOs), and the method for performing this DQE is provided in the *Monitored Natural Attenuation Evaluation Work Plan*, Northwest Pipe Company, Portland Plant, ECSI No. 138, April 2022 (hereafter referred to as the *NWP WP*).

This DQE report is intended as a general data quality assessment designed to summarize data issues and written using guidance from the U.S. Environmental Protection Agency (USEPA) *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA 2020a) and USEPA *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA 2020b).

#### **Findings**

The overall summaries of the data validation findings are contained in Tables 1 through 4 and summarized in the method sections that follow:

- **Table 1**: Sample Chronology Data Summary. Presents the sample identifiers, methods, sampling dates, received dates, extraction dates, and analysis dates sorted by SDG number.
- **Table 2**: Sample Summary by Chain of Custody Data Summary. Presents the sample identifiers, sampling dates, and SDG sorted by chain-of-custody (COC) number.
- **Table 3**: Overall Flagging Summary. Presents the number of occurrences for each data validation reason by method.

• **Table 4**: Site Completeness by Analyte – Qualified Data. Presents the percent completeness by method, analyte, and matrix.

This DQE report includes 13 normal groundwater samples, four trip blanks (TB), and one field duplicate (FD) collected May 13 through May 16,2024. These samples were reported under four sample delivery groups: 24E128, 24E136, 24E144 and 24E153. A list of samples included in this DQE is presented in Table 1 and Table 2. Four methods were used to analyze the groundwater samples and are provided in Table 1. The analyses were performed by EMAX Laboratories, Inc. in Torrance, California (EMXT). Samples were collected and delivered by overnight carrier to EMXT.

The data were assessed according to the requirements of the NWP WP and included a review of:

- 1. chain of custody documentation;
- 2. holding-time compliance;
- 3. required quality control (QC) samples at the specified frequencies;
- 4. flagging for method blanks and field blanks;
- laboratory control sample/laboratory control sample duplicates (LCS/LCSD);
- 6. matrix spike/matrix spike duplicate (MS/MSD) recoveries;

and other method-specific criteria as defined by the NWP WP.

Field samples were also reviewed to ascertain field compliance and data quality issues. This included the review of a FD.

Data flags were assigned using the *NFGs* as guidance. These flags, as well as the reason for each flag, are entered into the electronic database and can be found in Table 3, no data were qualified for this sampling event. Multiple flags are routinely applied to specific sample method/matrix/analyte combinations, but there will be only one final flag. A final flag is applied to the data and is the most conservative of the applied validation flags. The final flag also includes matrix and blank sample impacts.

The data flags are defined below:

- J = the analyte was detected, but the associated numerical value is considered an estimated quantity.
- R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet QC criteria. The presence or absence of the analyte cannot be verified. No associated value is reported.
- U = the analyte was analyzed for but was not detected above the detection limit.
- UJ = the analyte was not detected above the detection limit. However, the detection limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

#### Overall Flagging Summary

The overall summaries of the data validation findings are summarized in the following sections. No data required qualification for this sampling event.

Temperature

Temperature requirements were met.

#### **Blanks**

Method blanks and TBs were analyzed at the required frequency and were free of contamination that affected the sample results.

**Holding Times** 

All holding-time criteria were met.

Field Duplicates

In accordance with the *NWP WP* one field duplicate (FD) was collected from well MW12, all precision criteria were met.

**Laboratory Control Samples** 

LCS and LCSDs were analyzed at the required frequency and the accuracy and precision criteria were met.

Matrix Spikes

Matrix spikes and matrix spike duplicates were analyzed at the required batch frequency and all accuracy and precision criteria were met.

Calibration

All initial and continuing calibration criteria were met.

Chain of Custody

There were no discrepancies.

#### Overall Assessment

The final activity in the DQE is an assessment of whether the data meets the data quality objectives. The goal of this assessment is to demonstrate that a sufficient number of representative samples were collected and the resulting analytical data can be used to support the decision-making process.

The following summary highlights the data evaluation findings for the above defined events:

- 1. No data were rejected and completeness was 100 percent for all method/matrix/analyte combinations as shown in Table 4.
- 2. No data were qualified due to associated blank contamination.
- 3. The precision and accuracy of the data, as measured by field and laboratory QC indicators, demonstrates that the NWP WP goals for project use were met.
- 4. The field crew followed the *NWP WP* and project documents.

#### Works Cited

Jacobs. 2012. Monitored Natural Attenuation Evaluation Work Plan, Northwest Pipe Company, Portland Plant, ECSI No. 138. April.

U.S. Environmental Protection Agency (USEPA). 2020a. National Functional Guidelines for Organic Superfund Methods Data Review. November.

U.S. Environmental Protection Agency (USEPA). 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. November.

TABLE 1. Sample Chronology - Data Summary

| Laboratory | SDG    | Sample Identification | Method      | Sample Date | Receive Date | Extract Date | Analysis Date |
|------------|--------|-----------------------|-------------|-------------|--------------|--------------|---------------|
| MXT        | 24E128 | T4S1MW22-051324-0     | A5310B      | 5/13/2024   | 5/14/2024    |              | 5/23/2024     |
|            |        | T4S1MW22-051324-0     | E300.0A     | 5/13/2024   | 5/14/2024    |              | 5/14/2024     |
|            |        | T4S1MW22-051324-0     | E300.0A     | 5/13/2024   | 5/14/2024    |              | 5/15/2024     |
|            |        | T4S1MW22-051324-0     | RSK-175     | 5/13/2024   | 5/14/2024    | 5/16/2024    | 5/16/2024     |
|            |        | T4S1MW22-051324-0     | SW8260B-SIM | 5/13/2024   | 5/14/2024    | 5/17/2024    | 5/17/2024     |
|            |        | TB01-051324           | SW8260B-SIM | 5/13/2024   | 5/14/2024    | 5/17/2024    | 5/17/2024     |
|            | 24E136 | MW10-051424-0         | A5310B      | 5/14/2024   | 5/15/2024    |              | 5/22/2024     |
|            |        | MW10-051424-0         | E300.0A     | 5/14/2024   | 5/15/2024    |              | 5/15/2024     |
|            |        | MW10-051424-0         | RSK-175     | 5/14/2024   | 5/15/2024    | 5/16/2024    | 5/16/2024     |
|            |        | MW10-051424-0         | SW8260B-SIM | 5/14/2024   | 5/15/2024    | 5/17/2024    | 5/17/2024     |
|            |        | MW11-051424-0         | A5310B      | 5/14/2024   | 5/15/2024    |              | 5/22/2024     |
|            |        | MW11-051424-0         | E300.0A     | 5/14/2024   | 5/15/2024    |              | 5/15/2024     |
|            |        | MW11-051424-0         | RSK-175     | 5/14/2024   | 5/15/2024    | 5/16/2024    | 5/16/2024     |
|            |        | MW11-051424-0         | SW8260B-SIM | 5/14/2024   | 5/15/2024    | 5/17/2024    | 5/17/2024     |
|            |        | T4S1MW03S-051424-0    | A5310B      | 5/14/2024   | 5/15/2024    |              | 5/22/2024     |
|            |        | T4S1MW03S-051424-0    | E300.0A     | 5/14/2024   | 5/15/2024    |              | 5/15/2024     |
|            |        | T4S1MW03S-051424-0    | RSK-175     | 5/14/2024   | 5/15/2024    | 5/16/2024    | 5/16/2024     |
|            |        | T4S1MW03S-051424-0    | SW8260B-SIM | 5/14/2024   | 5/15/2024    | 5/17/2024    | 5/17/2024     |
|            |        | T4S1MW09-051424-0     | A5310B      | 5/14/2024   | 5/15/2024    |              | 5/22/2024     |
|            |        | T4S1MW09-051424-0     | E300.0A     | 5/14/2024   | 5/15/2024    |              | 5/15/2024     |
|            |        | T4S1MW09-051424-0     | RSK-175     | 5/14/2024   | 5/15/2024    | 5/16/2024    | 5/16/2024     |
|            |        | T4S1MW09-051424-0     | SW8260B-SIM | 5/14/2024   | 5/15/2024    | 5/17/2024    | 5/17/2024     |
|            |        | TB01-051424           | SW8260B-SIM | 5/14/2024   | 5/15/2024    | 5/17/2024    | 5/17/2024     |
|            | 24E144 | MW01-051524-0         | A5310B      | 5/15/2024   | 5/16/2024    |              | 5/23/2024     |
|            |        | MW01-051524-0         | E300.0A     | 5/15/2024   | 5/16/2024    |              | 5/16/2024     |
|            |        | MW01-051524-0         | E300.0A     | 5/15/2024   | 5/16/2024    |              | 5/17/2024     |
|            |        | MW01-051524-0         | RSK-175     | 5/15/2024   | 5/16/2024    | 5/16/2024    | 5/16/2024     |
|            |        | MW01-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/21/2024    | 5/21/2024     |
|            |        | MW01-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/23/2024    | 5/23/2024     |
|            |        | MW02-051524-0         | A5310B      | 5/15/2024   | 5/16/2024    |              | 5/23/2024     |
|            |        | MW02-051524-0         | E300.0A     | 5/15/2024   | 5/16/2024    |              | 5/16/2024     |
|            |        | MW02-051524-0         | RSK-175     | 5/15/2024   | 5/16/2024    | 5/16/2024    | 5/16/2024     |
|            |        | MW02-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/21/2024    | 5/21/2024     |
|            |        | MW02-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/23/2024    | 5/23/2024     |
|            |        | MW03-051524-0         | A5310B      | 5/15/2024   | 5/16/2024    |              | 5/23/2024     |
|            |        | MW03-051524-0         | E300.0A     | 5/15/2024   | 5/16/2024    |              | 5/16/2024     |
|            |        | MW03-051524-0         | E300.0A     | 5/15/2024   | 5/16/2024    |              | 5/17/2024     |

TABLE 1. Sample Chronology - Data Summary

| Laboratory | SDG    | Sample Identification | Method      | Sample Date | Receive Date | <b>Extract Date</b> | Analysis Date |
|------------|--------|-----------------------|-------------|-------------|--------------|---------------------|---------------|
| MXT        | 24E144 | MW03-051524-0         | RSK-175     | 5/15/2024   | 5/16/2024    | 5/16/2024           | 5/16/2024     |
|            |        | MW03-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/29/2024           | 5/29/2024     |
|            |        | MW100-051524-0        | A5310B      | 5/15/2024   | 5/16/2024    |                     | 5/23/2024     |
|            |        | MW100-051524-0        | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/16/2024     |
|            |        | MW100-051524-0        | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/17/2024     |
|            |        | MW100-051524-0        | RSK-175     | 5/15/2024   | 5/16/2024    | 5/16/2024           | 5/16/2024     |
|            |        | MW100-051524-0        | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW100-051524-0        | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/23/2024           | 5/23/2024     |
|            |        | MW100-051524-0MS      | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/17/2024     |
|            |        | MW100-051524-0MS      | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/16/2024     |
|            |        | MW100-051524-0MSD     | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/16/2024     |
|            |        | MW100-051524-0MSD     | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/17/2024     |
|            |        | MW12-051524-0         | A5310B      | 5/15/2024   | 5/16/2024    |                     | 5/23/2024     |
|            |        | MW12-051524-0         | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/16/2024     |
|            |        | MW12-051524-0         | RSK-175     | 5/15/2024   | 5/16/2024    | 5/16/2024           | 5/16/2024     |
|            |        | MW12-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW12-051524-0         | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/23/2024           | 5/23/2024     |
|            |        | T4S1MW23-051524-0     | A5310B      | 5/15/2024   | 5/16/2024    |                     | 5/23/2024     |
|            |        | T4S1MW23-051524-0     | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/17/2024     |
|            |        | T4S1MW23-051524-0     | E300.0A     | 5/15/2024   | 5/16/2024    |                     | 5/16/2024     |
|            |        | T4S1MW23-051524-0     | RSK-175     | 5/15/2024   | 5/16/2024    | 5/16/2024           | 5/16/2024     |
|            |        | T4S1MW23-051524-0     | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/21/2024           | 5/21/2024     |
|            |        | TB01-051524           | SW8260B-SIM | 5/15/2024   | 5/16/2024    | 5/21/2024           | 5/21/2024     |
|            | 24E153 | MW04-051624-0         | A5310B      | 5/16/2024   | 5/17/2024    |                     | 5/23/2024     |
|            |        | MW04-051624-0         | E300.0A     | 5/16/2024   | 5/17/2024    |                     | 5/17/2024     |
|            |        | MW04-051624-0         | RSK-175     | 5/16/2024   | 5/17/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW04-051624-0         | SW8260B-SIM | 5/16/2024   | 5/17/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW05-051624-0         | A5310B      | 5/16/2024   | 5/17/2024    |                     | 5/23/2024     |
|            |        | MW05-051624-0         | E300.0A     | 5/16/2024   | 5/17/2024    |                     | 5/17/2024     |
|            |        | MW05-051624-0         | RSK-175     | 5/16/2024   | 5/17/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW05-051624-0         | SW8260B-SIM | 5/16/2024   | 5/17/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW06-051624-0         | A5310B      | 5/16/2024   | 5/17/2024    |                     | 5/23/2024     |
|            |        | MW06-051624-0         | E300.0A     | 5/16/2024   | 5/17/2024    |                     | 5/17/2024     |
|            |        | MW06-051624-0         | RSK-175     | 5/16/2024   | 5/17/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW06-051624-0         | SW8260B-SIM | 5/16/2024   | 5/17/2024    | 5/17/2024           | 5/17/2024     |
|            |        | MW06-051624-0         | SW8260B-SIM | 5/16/2024   | 5/17/2024    | 5/21/2024           | 5/21/2024     |
|            |        | MW06-051624-0MS       | A5310B      | 5/16/2024   | 5/17/2024    |                     | 5/23/2024     |

TABLE 1. Sample Chronology - Data Summary

| Laboratory | SDG    | Sample Identification | Method      | Sample Date | Receive Date | Extract Date | Analysis Date |
|------------|--------|-----------------------|-------------|-------------|--------------|--------------|---------------|
| EMXT       | 24E153 | MW06-051624-0MSD      | A5310B      | 5/16/2024   | 5/17/2024    |              | 5/23/2024     |
|            |        | TB01-051624           | SW8260B-SIM | 5/16/2024   | 5/17/2024    | 5/17/2024    | 5/17/2024     |

SDG = sample delivery group

EMXT = EMAX Laboratories Inc

TABLE 2. Sample Summary by COC - Data Summary

| CoC Number | Sample Date | Matrix | QAQC<br>Type | Sample Identification | SDG    | Laboratory |
|------------|-------------|--------|--------------|-----------------------|--------|------------|
| 24E128     | 05/13/2024  | WATER  | N            | T4S1MW22-051324-0     | 24E128 | EMXT       |
|            |             |        | ТВ           | TB01-051324           | 24E128 | EMXT       |
| 24E136     | 05/14/2024  | WATER  | N            | MW10-051424-0         | 24E136 | EMXT       |
|            |             |        | N            | MW11-051424-0         | 24E136 | EMXT       |
|            |             |        | N            | T4S1MW03S-051424-0    | 24E136 | EMXT       |
|            |             |        | N            | T4S1MW09-051424-0     | 24E136 | EMXT       |
|            |             |        | ТВ           | TB01-051424           | 24E136 | EMXT       |
| 24E144     | 05/15/2024  | WATER  | N            | MW01-051524-0         | 24E144 | EMXT       |
|            |             |        | N            | MW02-051524-0         | 24E144 | EMXT       |
|            |             |        | N            | MW03-051524-0         | 24E144 | EMXT       |
|            |             |        | FD           | MW100-051524-0        | 24E144 | EMXT       |
|            |             |        | MS           | MW100-051524-0MS      | 24E144 | EMXT       |
|            |             |        | SD           | MW100-051524-0MSD     | 24E144 | EMXT       |
|            |             |        | N            | MW12-051524-0         | 24E144 | EMXT       |
|            |             |        | N            | T4S1MW23-051524-0     | 24E144 | EMXT       |
|            |             |        | ТВ           | TB01-051524           | 24E144 | EMXT       |
| 24E153     | 05/16/2024  | WATER  | N            | MW04-051624-0         | 24E153 | EMXT       |
|            |             |        | N            | MW05-051624-0         | 24E153 | EMXT       |
|            |             |        | N            | MW06-051624-0         | 24E153 | EMXT       |
|            |             |        | MS           | MW06-051624-0MS       | 24E153 | EMXT       |
|            |             |        | SD           | MW06-051624-0MSD      | 24E153 | EMXT       |
|            |             |        | ТВ           | TB01-051624           | 24E153 | EMXT       |

SDG = Sample delivery group EMXT = EMAX Laboratories Inc

#### QAQC Type

FD = Field Duplicate

MS = Matrix Spike

N = Normal

SD = Matrix Spike Duplicate

TB = Trip Blank

# TABLE 3. Overall Flagging Summary No data qualified

TABLE 4. Site Completeness by Analyte - Qualified Data

|             |        |                         |       |          |         | Number          | of Occu        | rrences |                             | _                      |                     |
|-------------|--------|-------------------------|-------|----------|---------|-----------------|----------------|---------|-----------------------------|------------------------|---------------------|
| Method      | Matrix | Analyte                 | Units | Analyses | Detects | Non-<br>detects | Blank<br>Flags | J-Flags | Contractor Total<br>R-Flags | Contractor<br>Complete | Overall<br>ness (%) |
| A5310B      | WATER  | Total Organic Carbon    | MG/L  | 14       | 14      |                 |                | 2       |                             | 100                    | 100                 |
| E300.0A     | WATER  | Chloride                | MG/L  | 14       | 14      |                 |                |         |                             | 100                    | 100                 |
|             |        | Nitrate-N               | MG/L  | 14       | 13      | 1               |                | 5       |                             | 100                    | 100                 |
|             |        | Nitrite-N               | MG/L  | 14       |         | 14              |                |         |                             | 100                    | 100                 |
|             |        | Sulfate                 | MG/L  | 14       | 14      |                 |                |         |                             | 100                    | 100                 |
| RSK-175     | WATER  | Methane                 | UG/L  | 14       | 13      | 1               |                |         |                             | 100                    | 100                 |
| SW8260B-SIM | WATER  | cis-1,2-Dichloroethene  | UG/L  | 14       | 12      | 2               |                |         |                             | 100                    | 100                 |
|             |        | Tetrachloroethene (PCE) | UG/L  | 14       | 12      | 2               |                | 1       |                             | 100                    | 100                 |
|             |        | Trichloroethene (TCE)   | UG/L  | 14       | 12      | 2               |                |         |                             | 100                    | 100                 |
|             |        | Vinyl Chloride          | UG/L  | 14       | 11      | 3               |                | 1       |                             | 100                    | 100                 |

<sup>% =</sup> Percent J-Flags = Estimated results R-Flags = Rejected results

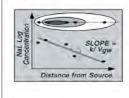
mg/L = milligrams per liter

ug/L = micrograms per liter

# Appendix D Bulk Attenuation Rate Constant Calculations

Provided in electronic format

This appendix documents the data and method used to calculate bulk attenuation rate constants consistent with EPA guidance (EPA 2002). The method used is the Concentration versus Distance calculation, relying on 2024 data from wells located at increasing distances away from the highest concentration well in the monitoring network (MW-05), along the general flow path downgradient.


Calculation and Use of First-Order Rate Constants for Monitored Natural

Attenuation Studies (EPA 2002)

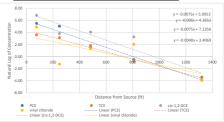
Plot natural log of cond. vs. distance. If the data appear to be first-order, determine the slope of the natural log-transformed data by:

- Transforming the data by taking natural logs and performing a linear regression on the transformed data, or
- Plotting the data on a semi-log plot, taking the natural log of the y intercept minus the natural log of the x intercept and dividing by the distance between the two points.

Multiply this slope by the contaminant velocity (seepage velocity divided by the retardation factor H) to get k.



#### Average of 2023 Concetrations


|                             | Distance along    |         |                |                                  | vinyl                 |  |
|-----------------------------|-------------------|---------|----------------|----------------------------------|-----------------------|--|
| Well                        | flow path         | PCE     | TCE            | cis-1,2-DCE                      | chloride              |  |
| MW-05                       | 76                | 240     | 36             | 920                              | 130                   |  |
| MW-06                       | 248               | 150     | 23             | 45                               | 0                     |  |
| MW-03                       | 483               | 4       | 6              | 57                               | 4                     |  |
| MW-11                       | 808               | 0.6     | 0.5            | 26.0                             | 7.6                   |  |
| T4S1MW-03S                  | 1320              | 0.0330  | 0.0300         | 0.0200                           | 0.0200                |  |
| Slope of linear tren        | dline (per foot)  | -0.0075 | -0.006         | -0.0075                          | -0.0048               |  |
| Groundwater seepage v       | relocity (ft/day) | 0.31    | 0.31           | 0.31                             | 0.31                  |  |
|                             | ardation factor   | 4.05    | 1.93           | 1.90                             | 1.21                  |  |
| Contaminant seepage v       |                   | 0.077   | 0.162          | 0.165                            | 0.258                 |  |
| Bulk Attenuation            | Rate (per day)    | 0.0006  | 0.0005         | 0.0006                           | 0.0004                |  |
| Bulk Attenuation            | Rate (per year)   | 0.21    | 0.17           | 0.21                             | 0.14                  |  |
| Calculation of groundwate   | -                 | v = K > | n              |                                  |                       |  |
| Hydraulic Conductivity, K   | 12.5              | ft/day  | Jacobs, 2021   |                                  |                       |  |
| Hydraulic Gradient, i       | 0.005             | ft/ft   | Jacobs, 2021   |                                  |                       |  |
| Effective Porosity, n       | 0.2               | (-)     | Jacobs, 2021   |                                  |                       |  |
| Groundwater Velocity, v     | 0.31              | ft/day  |                |                                  |                       |  |
| Calculation of Retardation  | on Factors:       | Retard  | ation Factor = | $= 1 + \frac{rho}{n} \times K_c$ | $_{oc} \times f_{oc}$ |  |
| Effective Porosity, n       | 0.2               | (-)     | Jacobs, 2021   |                                  |                       |  |
| Soil Bulk Density, rho      | 1.7               | (kg/L)  | CH2M HILL, 2   | 005                              |                       |  |
| action Organic Carbon, foc  | 0.000843          | (-)     | CH2M HILL, 2   | 005                              |                       |  |
| Partition Coefficient (Koc) |                   |         |                |                                  |                       |  |
| PCE                         | 426               | (L/kg)  |                |                                  |                       |  |
| TCE                         | 130               | (L/kg)  |                |                                  |                       |  |
| DCE                         | 125               | (L/kg)  |                |                                  |                       |  |
| VC                          | 30                | (L/kg)  |                |                                  |                       |  |
|                             |                   |         |                |                                  |                       |  |

Retardation 4.05 1.93 1.90 1.21

PCE TCE DCE VC

Natural Log of Concentration

|            | Distance along |       |       | cis-1,2- | vinyl    |
|------------|----------------|-------|-------|----------|----------|
| Well       | flow path      | PCE   | TCE   | DCE      | chloride |
| MW-05      | 76             | 5.48  | 3.58  | 6.82     | 4.87     |
| MW-06      | 248            | 5.01  | 3.14  | 3.81     | -1.24    |
| MW-03      | 483            | 1.48  | 1.82  | 4.04     | 1.34     |
| MW-11      | 808            | -0.49 | -0.80 | 3.26     | 2.03     |
| T4S1MW-03S | 1320           | -3.41 | -3.51 | -3.91    | -3.91    |



CH2M HLL. 2005. Remedial Investigation/Source Control Evaluation Report, Northwest Pipe Company Site. December.

Jacobs. 2021. Remedial Investigation and Source Control Evaluation. Revised. Prepared for Northwest Pipe Company, ECSI #138, Portland, Oregon. October.

#### Concentrations in ug/L

| Well  | Date       | PCE  | TCE | cis-1,2-DCE | VC   |
|-------|------------|------|-----|-------------|------|
| MW-05 | 8/16/2004  | 52   | 5.6 | 160         | 0.54 |
|       | 1/11/2005  | 190  | 38  | 27          | 72   |
|       | 6/21/2005  | 110  | 18  | 53          | 0.5  |
|       | 9/21/2005  | 1200 | 72  | 160         | 0.5  |
|       | 9/24/2007  | 1400 | 78  | 337         | 0.28 |
|       | 10/26/2016 | 3510 | 195 | 1160        | 40.4 |
|       | 2/1/2017   | 4150 | 208 | 1240        | 39.5 |
|       | 5/1/2017   | 949  | 92  | 634         | 70.7 |
|       | 7/27/2017  | 3640 | 170 | 1730        | 7.58 |
|       | 12/7/2018  | 1200 | 85  | 1600        | 77   |
|       | 5/9/2019   | 4400 | 240 | 1700        | 14   |
|       | 10/9/2019  | 2300 | 140 | 2200        | 120  |
|       | 4/23/2020  | 3600 | 170 | 1900        | 34   |
|       | 10/22/2020 | 2400 | 150 | 1200        | 87   |
|       | 4/15/2021  | 3700 | 170 | 1800        | 26   |
|       | 10/28/2021 | 2200 | 180 | 760         | 56   |
|       | 4/14/2022  | 1900 | 110 | 960         | 170  |
|       | 9/15/2022  | 2600 | 180 | 1200        | 61   |
|       | 3/23/2023  | 850  | 100 | 680         | 72   |
|       | 8/24/2023  | 1900 | 160 | 810         | 94   |
|       | 5/16/2024  | 240  | 36  | 920         | 130  |

| Well  | Date       | PCE  | TCE  | cis-1,2-DCE | VC   |
|-------|------------|------|------|-------------|------|
| MW-06 | 1/11/2005  | 2000 | 1000 | 740         | 0.93 |
|       | 6/21/2005  | 2100 | 1500 | 1300        | 5.7  |
|       | 9/21/2005  | 2800 | 1900 | 1700        | 6.7  |
|       | 9/24/2007  | 1200 | 470  | 638         | 3.1  |
|       | 10/26/2016 | 287  | 60.4 | 1160        | 170  |
|       | 2/1/2017   | 805  | 147  | 1590        | 51   |
|       | 5/1/2017   | 1280 | 225  | 1530        | 21.9 |
|       | 7/27/2017  | 810  | 128  | 1080        | 18.3 |
|       | 12/7/2018  | 430  | 110  | 1300        | 130  |
|       | 5/9/2019   | 980  | 210  | 1900        | 40   |
|       | 10/9/2019  | 520  | 110  | 1700        | 110  |
|       | 4/23/2020  | 920  | 160  | 2000        | 55   |
|       | 10/22/2020 | 560  | 110  | 1,700       | 150  |
|       | 4/15/2021  | 810  | 210  | 2,100       | 71   |
|       | 10/28/2021 | 590  | 120  | 1,500       | 92   |
|       | 4/14/2022  | 360  | 91   | 1,100       | 30   |
|       | 9/15/2022  | 230  | 48   | 190         | 0.65 |
|       | 3/23/2023  | 180  | 50   | 180         | 1.5  |
|       | 8/24/2023  | 170  | 30   | 68          | 5    |
|       | 5/16/2024  | 150  | 23   | 45          | 0.29 |

|       |            |     | ug/ | L           |       |
|-------|------------|-----|-----|-------------|-------|
| Well  | Date       | PCE | TCE | cis-1,2-DCE | VC    |
| MW-03 | 8/29/2003  | 19  | 1   | 1           | 1     |
|       | 8/16/2004  | 21  | 2   | 1           | 1     |
|       | 1/11/2005  | 20  | 1.9 | 0.68        | 0.5   |
|       | 6/21/2005  | 12  | 2.1 | 1           | 0.5   |
|       | 9/21/2005  | 9.7 | 1.8 | 0.79        | 0.5   |
|       | 9/24/2007  | 16  | 3   | 1.7         | 0.001 |
|       | 10/26/2016 | 630 | 221 | 428         | 22.8  |
|       | 2/1/2017   | 483 | 178 | 502         | 20.8  |
|       | 5/1/2017   | 657 | 283 | 847         | 26.1  |
|       | 7/27/2017  | 550 | 209 | 670         | 29.9  |
|       | 12/7/2018  | 490 | 160 | 850         | 46    |
|       | 5/9/2019   | 370 | 100 | 860         | 46    |
|       | 10/9/2019  | 530 | 160 | 990         | 62    |
|       | 4/23/2020  | 170 | 58  | 730         | 42    |
|       | 10/22/2020 |     | 54  | 360         | 36    |
|       | 4/15/2021  | 160 | 42  | 510         | 43.0  |
|       | 10/28/2021 | 130 | 26  | 300         | 57.0  |
|       | 4/14/2022  | 130 | 34  | 410         | 70.0  |
|       | 9/14/2022  | 68  | 16  | 200         | 53    |
|       | 3/22/2023  | 27  | 11  | 300         | 44    |
|       | 8/23/2023  | 36  | 8.3 | 140         | 39    |
|       | 5/15/2024  |     | 6.2 | 57          | 3.8   |

| Well     | Date       | PCE  | TCE  | cis-1,2-DCE | VC     |
|----------|------------|------|------|-------------|--------|
| T4S1MW22 | 9/2/2004   | 12   | 36   | 23          | 0.23   |
|          | 2/4/2005   | 27   | 64   | 36          | 0.97   |
|          | 5/6/2005   | 34   | 83   | 49          | 0.88   |
|          | 10/26/2016 | 1.46 | 4.6  | 2.77        | 0.0499 |
|          | 2/1/2017   | 1.28 | 4.29 | 5.36        | 0.106  |
|          | 4/27/2017  | 1.43 | 3.56 | 2.11        | 0.022  |
|          | 7/26/2017  | 1.71 | 3    | 3.78        | 0.0638 |
|          | 12/6/2018  | 1.4  | 4.6  | 5.8         | 0.076  |
|          | 5/8/2019   | 1.8  | 4.4  | 7.5         | 0.33   |
|          | 10/8/2019  | 1.3  | 3.4  | 7.4         | 0.18   |
|          | 4/22/2020  | 1.1  | 3.3  | 7           | 0.32   |
|          | 10/21/2020 | 0.94 | 2.8  | 7.9         | 0.17   |
|          | 4/14/2021  | 1.70 | 2.70 | 5.00        | 0.140  |
|          | 10/27/2021 | 1.10 | 2.70 | 4.80        | 0.200  |
|          | 3/21/2023  | 1.2  | 2.5  | 3.3         | 0.057  |
|          | 8/22/2023  | 1.4  | 2.1  | 1.7         | 0.031  |
|          | 5/13/2024  | 1.7  | 1.7  | 2.4         | 0.039  |

| MW-11 (670 fe | 4/12/2022  | 1.6  | 0.8  | 46 | 26  |
|---------------|------------|------|------|----|-----|
|               | 6/29/2022  | 1.2  | 1.1  | 64 | 52  |
|               | 9/13/2022  | 2.1  | 1.1  | 32 | 32  |
|               | 12/6/2022  | 1.8  | 0.7  | 19 | 19  |
|               | 3/21/2023  | 1.1  | 0.48 | 31 | 12  |
|               | 6/6/2023   | 0.77 | 0.44 | 37 | 7.7 |
|               | 8/23/2023  | 1.8  | 0.66 | 19 | 4.6 |
|               | 11/14/2023 | 2.9  | 0.63 | 21 | 36  |
|               | 5/14/2024  | 0.61 | 0.45 | 26 | 7.6 |

| Well      | Date       | PCE    | TCE   | cis-1,2-DCE | VC    |
|-----------|------------|--------|-------|-------------|-------|
| T4S1MW03S | 4/21/2004  | 0.77   | 0.29  | 2.3         | 0.5   |
|           | 8/30/2004  | 1.8    | 1.3   | 89          | 5.4   |
|           | 1/31/2005  | 14     | 3.5   | 15          | 1.3   |
|           | 5/5/2005   | 1.9    | 0.42  | 7.6         | 0.5   |
|           | 10/26/2016 | 0.112  | 0.15  | 0.15        | 0.008 |
|           | 2/1/2017   | 0.23   | 0.15  | 0.15        | 0.008 |
|           | 4/26/2017  | 0.117  | 0.15  | 0.15        | 0.008 |
|           | 7/25/2017  | 0.0508 | 0.15  | 0.15        | 0.008 |
|           | 12/5/2018  | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 5/8/2019   | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 10/7/2019  | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 4/21/2020  | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 10/20/2020 | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 4/13/2021  | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 10/26/2021 | 0.1    | 0.1   | 0.1         | 0.02  |
|           | 4/11/2022  | 0.084  | 0.066 | 0.055       | 0.013 |
|           | 9/14/2022  | 0.084  | 0.066 | 0.055       | 0.013 |
|           | 3/20/2023  | 0.027  | 0.03  | 0.02        | 0.02  |
|           | 8/21/2023  | 0.03   | 0.03  | 0.02        | 0.02  |
|           | 5/14/2024  | 0.033  | 0.03  | 0.02        | 0.02  |

| Well     | Date       | PCE    | TCE  | cis-1,2-DCE | VC     |
|----------|------------|--------|------|-------------|--------|
| T4S1MW09 | 4/20/2004  | 0.15   | 0.5  | 0.5         | 0.5    |
|          | 9/1/2004   | 0.5    | 0.5  | 0.5         | 0.5    |
|          | 2/9/2005   | 0.5    | 0.5  | 0.5         | 0.5    |
|          | 5/9/2005   | 0.13   | 0.14 | 0.12        | 0.22   |
|          | 10/26/2016 | 0.0191 | 0.15 | 0.15        | 0.0197 |
|          | 2/1/2017   | 0.0177 | 0.15 | 0.15        | 0.0113 |
|          | 4/26/2017  | 0.005  | 0.15 | 0.15        | 0.008  |
|          | 7/25/2017  | 0.0139 | 0.15 | 0.15        | 0.008  |
|          | 12/5/2018  | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 5/8/2019   | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 10/8/2019  | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 4/22/2020  | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 10/20/2020 | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 4/13/2021  | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 10/26/2021 | 0.1    | 0.1  | 0.1         | 0.02   |
|          | 3/20/2023  | 0.02   | 0.03 | 0.02        | 0.02   |
|          | 8/22/2023  | 0.02   | 0.03 | 0.02        | 0.02   |
|          | 5/14/2024  | 0.02   | 0.03 | 0.02        | 0.02   |