

RISK ASSESSMENT WEST PROPERTY – TASS 2 SITE 10505 NORTH PORTLAND ROAD PORTLAND, OREGON

by Haley & Aldrich, Inc. Portland, Oregon

for City of Portland, Bureau of Environmental Services, TASS Program, and Brownfield Program Portland, Oregon

File No. 0209772-002 13 August 2024

SIGNATURE PAGE FOR

RISK ASSESSMENT
WEST PROPERTY – TASS 2 SITE
10505 NORTH PORTLAND ROAD
PORTLAND, OREGON

PREPARED FOR CITY OF PORTLAND PORTLAND, OREGON

PREPARED BY:

Kevin Woodhouse, R.G. Senior Project Geologist Haley & Aldrich, Inc.

REVIEWED AND APPROVED BY:

Colby Hunt Client Leader

Haley & Aldrich, Inc.

Table of Contents

List of Figures List of Attachments List of Abbreviations					
1. Introduction			on		
2.	Site Description				
	2.1	GEOLO	OGY AND HYDROGEOLOGY	2	
	2.2	CURRE	NT AND FUTURE USE	3	
	2.3	HISTOR	RICAL OPERATIONS AND ACTIVITIES	4	
3.	Cond	Conceptual Site Model			
	3.1	CONTA	AMINANT SOURCE AREAS	6	
			Former Diesel Engine Repair Shop	ϵ	
			Former Materials Storage Area	ϵ	
			Former Retention Pond Area	7	
			South Larsen Site	8	
			Subsurface Methane	8	
	3.2		URE PATHWAYS	8	
		3.2.1	•	3	
			Ecological Receptors	9	
		3.2.3	Methane	9	
	3.3		NING LEVELS	10	
			Soil Screening Levels	10	
			Groundwater Screening Levels	10	
		3.3.3	Soil Vapor Screening Levels	11	
4.	Previous Investigations				
	4.1	UST DE	ECOMMISSIONING – ENVIRO-COMP SERVICES, INC. – JULY 1997	13	
	4.2		II ESA – PNG ENVIRONMENTAL, INC. – DECEMBER 1998	13	
	4.3		II INVESTIGATION – PNG ENVIRONMENTAL, INC. – MAY 1999	14	
	4.4		II ESA – KLEINFELDER, INC. – MAY 2000	15	
	4.5		CHNICAL INVESTIGATION – FUJITANI HILTS & ASSOCIATES, INC. – MAY 2000	17	
	4.6		ORING WELL INSTALLATION – AMEC EARTH & ENVIRONMENTAL, INC. –		
			MBER 2009	17	
	4.7		I LARSEN PROPERTY GROUNDWATER REMEDIATION – ASH CREEK ASSOCIATE	•	
			JANUARY 2011	18	
	4.8		NDWATER MONITORING EVENT – GEOENGINEERS, INC. – JULY 2011	19	
	4.9		MBIA STEEL SOIL STOCKPILE REMOVAL CONFIRMATION SAMPLING – CITY OF		
	4.40		AND BES – MAY AND SEPTEMBER 2020	19	
	4.10		MBIA STEEL SOIL STOCKPILE REMOVAL SOIL EVALUATION – SLR INTERNATION,		
		CORP	DRATION – ILINF 2020	20	

Table of Contents

	4.11	TEST PIT INVESTIGATION – CITY OF PORTLAND BES – OCTOBER 2023	21	
	4.12	SOIL BORING INVESTIGATION – CITY OF PORTLAND BES – NOVEMBER 2023	22	
	4.13	SOIL VAPOR INVESTIGATION – HALEY & ALDRICH – APRIL 2024	22	
5.	Screening Level Risk Assessment			
	5.1	SOIL SCREENING LEVEL RISK ASSESSMENT	24	
		5.1.1 PAHs	24	
		5.1.2 Total Metals	25	
	5.2	GROUNDWATER SCREENING LEVEL ASSESSMENT	25	
	5.3	SOIL VAPOR SCREENING LEVEL ASSESSMENT	25	
	5.4	SCREENING LEVEL RISK ASSESSMENT UNCERTAINTIES	26	
6.	Conclusions			
	6.1	SOIL	27	
	6.2	GROUNDWATER	27	
	6.3	SOIL VAPOR	28	
References				

List of Figures

Figure No. Title

1 Vicinity Map

List of Attachments

Attachment	Title
A	BES Figures
В	Supporting Document Figures
С	TASS 2 Development Plans
D	BES Data Tables 1 through 9

List of Abbreviations

Abbreviation Definition

AMEC Earth & Environmental, Inc.

Ash Creek Associates, Inc.

BES City of Portland, Bureau of Environmental Services

bgs below ground surface
City City of Portland

CSA Coordinated Site Assessment

CMMP Contaminated Media Management Plan

DEQ Oregon Department of Environmental Quality

ECS Enviro-Comp Services, Inc.

ECSI Environmental Cleanup Site Information

ESA Environmental Site Assessment
EPA Environmental Protection Agency

Kleinfelder Kleinfelder, Inc.

LEL Lower Explosive Limit
Hahn Hahn and Associates, Inc.
mg/kg milligrams per kilogram
mg/L milligrams per liter

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl PNG PNG Environmental, Inc.

RA Risk Assessment
RAP Remedial Action Plan
RBC Risk-Based Concentration

RCRA Resource Conservation and Recovery Act

RSL Regional Screening Level RV recreational vehicle

SLR SLR International Corporation
SVOC semi-volatile organic compound
TASS Temporary Alternative Shelter Site

UEL Upper Explosive Limit
UST underground storage tank
VOC volatile organic compound

µg/kg micrograms per kilogram

µg/L microgram per liter

1. Introduction

This Risk Assessment (RA) has been prepared for the City of Portland Bureau of Environmental Services (BES) for the West Property – TASS 2 development. The West Property is located at 10505 North Portland Road in Portland, Oregon (site). The TASS 2 development occupies an approximate 6-acre portion of the 22.5-acre West Property. Throughout this RA, the West Property is referred to as the site, and the TASS 2 development is referred to as TASS 2. The site is currently owned by BES. The TASS 2 development is being developed by the City of Portland (City) Mayor's Office Temporary Alternative Shelter Site (TASS) program. TASS 2 will be the second of two TASS locations in Portland and will be identified as TASS 2. Following temporary use of a portion of the site as TASS 2, the intended use of the site includes an expansion of the City's Columbia Boulevard Wastewater Treatment Plant located east of the site across North Portland Road, and the long-term use of the site will be for industrial purposes.

This RA was provided through the BES Coordinated Site Assessment (CSA) Program Environmental On-Call Contract No. 31001878, as part of the City's Brownfield Program funded by the U.S. Environmental Protection Agency (EPA). This RA is a Tier 1 assessment that compares existing site data to applicable screening levels. This RA documents the risk to human health from current conditions at the site related to the potential exposure pathways for TASS 2 construction and operation. Historical data for the entire site will be discussed; however, the RA will focus on human health and ecological exposure pathways and receptors for the TASS 2 portion of the site only. Additional potential exposure pathways for all future uses across the entire site will be evaluated in a future RA for the entire West Property.

2. Site Description

The site is located at 10505 North Portland Road in Portland, Oregon (Figure 1) and is located on tax lot 1000 of Multnomah County tax map 1N1E05B. The site was previously referred to as the North Larsen Property. The site is now referred to as the "West Property" within the BES CSA Program as the site is the planned western expansion of the Columbia Wastewater Treatment Plant. The site consists of 22.5 acres and is bordered by industrial properties to the west (Columbia Steel) and south (Truck Repair Enterprise), North Portland Road to the east, and the Columbia Slough to the north. A vicinity map is shown on Figure 1. A site plan is included in Attachment A (BES Figure 1).

The site formerly consisted of two tax lots including former tax lot TL22, which included the north-central and northeastern portion of the site, and former tax lot TL107, which included the western and southern portion of the site. The former tax lots are depicted on PNG Environmental, Inc. (PNG) Figure 2, "Site Map" included in Attachment B.

The eastern half of the site is currently developed with gravel parking and storage areas with sparse, overgrown vegetation. The western half of the site is undeveloped with grass vegetation cover. A riparian zone approximately 50 feet wide covers the site's northern border with Columbia Slough. The riparian zone consists mainly of mature trees with herbaceous ground cover and covers the slope from the upland areas of the site down to the water line of the slough.

2.1 GEOLOGY AND HYDROGEOLOGY

The site is approximately 43 feet above mean sea level and is generally flat, with a slight downwards slope north towards the Columbia Slough. Stormwater at the site appears to either infiltrate into the ground surface or surface flow to the south, east, or north.

Near surface soils mapped on the site are primarily comprised of Sauvie-Rafton-Urban land complex on the eastern portion of the site and Sauvie silt loam on the western portion of the site (Natural Resources Conservation Service, 2023). Subsurface conditions encountered at the site during previous investigations consisted of clayey to silty fill soils with varying amounts of debris (concrete, wood, plastic, brick, piping, and rebar). Abundant large concrete and asphalt debris (up to 3 feet in diameter) was encountered in a majority of the test pits excavated at the site by Kleinfelder, Inc. (Kleinfelder) in May 2000 (Kleinfelder, 2000). This debris was encountered generally between 6 to 14 feet below ground surface (bgs). The fill soils appeared to extend to a depth of approximately 21 to 30 feet bgs in some areas of the site.

Monitoring wells installed at the site documented sands (sand and silty sands) and silts (silt and silty sands) down to approximately 60 feet bgs. A gravel layer extends from approximately 60 feet to at least 87 feet (the bottom of the MW-D boring). The AMEC Monitoring Well Installation Report (AMEC Earth & Environmental, Inc. [AMEC], 2009) categorizes the soil intervals into groundwater zones with a shallow zone at approximately 15 to 35 feet bgs, intermediate at approximately 45 to 60 feet bgs, and deep at below approximately 65 feet.

Previous investigations conducted at the site indicate the static groundwater level ranges from approximately 15 to 27 feet bgs, with perched zones present on the central portion of the site at depths of approximately 5 feet bgs. Static groundwater at the site is generally between 20 and 25 feet deep

(GeoEngineers, Inc. [GeoEngineers], 2011). Regional groundwater is expected to flow to the north towards the Columbia Slough and follow the direction of flow to the west. Groundwater elevation contours and flow direction are shown on BES Figure 2 (Attachment A).

2.2 CURRENT AND FUTURE USE

The site is currently vacant, undeveloped, and consists of gravel ground cover. All structures have been demolished. A chain-link fence surrounds the site and consists of sections of permanent and temporary fencing.

The City intends to construct TASS 2 on a portion of the site using (EPA) Brownfield Grant funding. Preliminary plans indicate that TASS 2 will be located on the eastern portion of the West Property occupying the former diesel engine repair shop area and the former materials storage area. The footprint of TASS 2 is shown on the BES Figures included in Attachment A. Preliminary plans indicate TASS 2 will consist of recreational vehicle (RV) parking/storage areas; car parking areas; mobile manufactured housing units; shipping container based or temporary structures for common areas including kitchen areas, trash areas, picnic areas, and gathering areas; and sewage and stormwater infrastructure. Except for stormwater swales and a small, vegetated area along the eastern boundary, the entirety of TASS 2 will be paved following the completion of construction activities. Sewage infrastructure consists of three 1,500-gallon subsurface septic "trash tanks" connected to one 3,000-gallon equalizer tank. The equalizer tank is connected to ten 1,500-gallon subsurface septic holding tanks, which recycle through two 3,000-gallon recycling tanks. The septic holding tanks will be periodically pumped out and the sewage properly disposed of at the Clean Water Services facility located at 2550 SW Hillsboro Highway in Hillsboro, Oregon. Surface grading will slope the site slightly downward to the north, so that surface water at the site will flow to the north toward a curb along the northern edge of the pavement near the north boundary of the site. Stormwater will flow through curb openings to lined stormwater swales along the northern boundary of the site. The lined stormwater swales will discharge to an oil/water separator, which will ultimately discharge to the City storm sewer system. Preliminary development plans for TASS 2 are included in Attachment C. The remainder of the site will remain undeveloped and enclosed with a perimeter fence while TASS 2 is in operation.

Ground-disturbing activities will generally be limited to surface grading of imported gravel fill, installation of subsurface utility lines, subsurface wastewater and stormwater infrastructure, fencing, and surface improvements (i.e., walkways, parking areas, common areas, etc.). The specific locations of these excavations have not yet been determined. Excavations deeper than 18 feet bgs are not anticipated.

Following construction of the project, the entirety of TASS 2 except for the lined stormwater swales and a forested area along the east boundary of TASS 2, will be capped with a minimum of 8 inches of imported aggregate base rock fill underlying a minimum of 4 inches of asphalt paving. A demarcation layer consisting of geotextile fabric will be installed prior to the placement of the aggregate base rock and asphalt cap. The planned project will prevent direct contact of underlying soil by future TASS 2 residential occupants and eliminate exposure to the generally low concentrations of contaminants in soil.

TASS 2 will not be a permanent use of the site and after TASS 2 is discontinued the planned use for the site is for an expansion of the Columbia Wastewater Treatment Plant. The wastewater treatment plant is located on the eastern side of North Portland Road, directly across the road from the site. The design

for the wastewater treatment plant expansion has not been completed and future operations or facility layout and design are unknown at this time. The permanent future use of the site will be industrial use.

2.3 HISTORICAL OPERATIONS AND ACTIVITIES

Historical operations at the site have been summarized from the PNG Phase II Environmental Site Assessment (ESA; PNG, 1999a).

Historical aerial photographs show the site as undeveloped in 1935. Between 1935 and 1944, a lumber mill was constructed on site in former tax lot TL22. The site flooded in June 1948 and subsequent aerial photographs in October 1948 show the lumber mill gone and the site undeveloped.

The site and the property to the south (10145 North Portland Road) were purchased by Karen and Louis Larsen (operating as Larsen Enterprises) in 1961 and were collectively known as the Larsen Property. The Larsens began operating St John Hauling, a truck washing facility, in the southern portion of the site in former tax lot TL107. Wastewater from the truck washing facility was discharged to natural ponds located on the western portion of the site. By 1966, the northeastern portion of the site (former tax lot TL22) was developed with a shop building and vehicle storage area.

In 1967, Widing Transportation purchased the operations of St Johns Hauling while the Larsens retained ownership of the land. By 1972, Widing Transportation had expanded the pond system to include the western portion of former tax lot TL22. In 1975, Widing Transportation replaced the natural ponds with an approximate 3-acre retention pond and aeration treatment system. The retention pond footprints are shown on the Kleinfelder Figure "Site Plan and Test Pit Location Map" included in Attachment B.

By 1980, fill material had brought the elevation to approximately 20 feet above the elevation of Columbia Slough. The western portion of the site was previously at the approximate elevation of the slough. In 1980, Widing Transportation discontinued use of the ponds at the direction of the EPA due to phenols, phthalates, and heavy metals being detected in pond sludge and water samples. The concentrations were below Resource Conservation and Recovery Act (RCRA) hazardous waste levels, and the pond sludge was allowed to be left in place and the pond backfilled with a high-clay content backfill. A 1984 inspection by the EPA indicated the ponds had been filled. Truck washing operations continued with wastewater being discharged to the sanitary sewer. In 1980, Edwards Heavy Equipment Rebuilding operated in the eastern portion of former tax lot TL22.

In 1985, Peninsula Diesel began operation of a diesel engine repair facility in the eastern portion of former tax lot TL22. The facility consisted of a shop building, two storage sheds, an aboveground storage tank, an underground storage tank (UST), and a wash pad. Peninsula Diesel discontinued operations in 1988 and vacated the site.

In 1986, Arrow Transportation (the occupier of the South Larsen Property) purchased the operations from Widing Transportation. Arrow Transportation continued truck washing operations with discharge to the sanitary sewer until 1997 when they filed for bankruptcy. The site has remained vacant since this time. Operations from the truck washing facility on the South Larsen Property resulted in the spill and release of chlorinated solvents to soil and groundwater on that property. The solvent plume from the South Larsen Property extended beneath a small portion of the site along the southern border.

The City purchased the site in July 2001. The Larsens sold the Southern Larsen Property to North Portland Road LLC in December 2005.

In 2007, Columbia Steel entered into a lease agreement with the City to use the western portion of the site as a storage area for soil stockpiles generated from Columbia Steel's operations. Soil was placed in stockpiles and stored on site until 2020, and a ramp was created to bridge the elevation difference between the two properties. The soils contained elevated concentrations of metals. In 2020, Columbia Steel began removing the soil stockpiles for disposal. Columbia Steel removed the stockpiles before filing for bankruptcy, at which point they ceased all activities at the site. In late 2023, the City demolished the remaining site structures and removed all trash and debris from the site.

Site use over time, as shown by aerial photographs, is shown on BES Figures 3 through 8, beginning in 1996 for years where aerial photographs were available.

3. Conceptual Site Model

The Conceptual Site Model identifies exposure pathways and receptors for the entire site; however, the screening level risk assessment presented in Section 5 is limited to soil, groundwater, and soil vapor samples and exposure pathways relevant to TASS 2. The remaining pathways will be evaluated and discussed in a future update to this RA. Due to the presence of contaminants at the site, a Contaminated Media Management Plan (CMMP) was prepared for the TASS 2 site (Haley & Aldrich, 2024a) that instructs TASS 2 construction crews on the safe handling and disposal of media at the site. A forthcoming final Remedial Action Plan (RAP) for the TASS 2 site will be prepared specifying the remedial actions and control measures to be implemented for TASS 2.

Future use of the site will be industrial use; however, until the entire site is developed, the remainder of the site outside the limits of TASS 2 will remain undeveloped and vacant. To address exposure concerns in this area, a future RAP will also be prepared for the West Property to detail the remedial actions and control measures to be implemented during future redevelopment.

3.1 CONTAMINANT SOURCE AREAS

Contaminant source areas at the site include three onsite areas based on past use, including: 1) former diesel truck repair shop; 2) former materials storage area; 3) former retention pond area; and the offsite South Larsen site, located adjacent south of the site. These areas are shown on the BES figures included in Attachment A. In addition to these specific source areas, subsurface organic material and/or petroleum hydrocarbons in the subsurface throughout the West Property may generate methane gas.

3.1.1 Former Diesel Engine Repair Shop

The northeastern-most portion of the site was used as a diesel repair shop between 1985 through 1988. The shop used USTs, a wash pad, and a drywell as part of their operations. Remedial activities were performed in 1997 to remove the wash pad and drywell and an unknown 1,000-gallon gasoline UST was discovered. Signs of a past leak were present following UST decommissioning and removal. The UST pit and groundwater in the area were remediated with soil excavation and removal, and groundwater pumping from the excavation pit being performed. Further details regarding UST decommissioning activities are included in Section 4.1. Following UST decommissioning, residual concentrations of petroleum hydrocarbons were detected in soil samples; however, the concentrations did not exceed Oregon Department of Environmental Quality (DEQ) Risk-Based Concentrations (RBCs).

Groundwater samples collected from borings and monitoring wells in the vicinity of the former shop and downgradient of the UST have either not detected petroleum hydrocarbons or have detected residual concentrations below DEQ human health RBCs.

The Former Diesel Engine Repair Shop is located within the northeastern portion of the TASS 2 footprint, as shown on BES Figure 1 (Attachment A).

3.1.2 Former Materials Storage Area

The central portion of the site was used for materials storage and is indicated as the Former Storage Yard on BES figures included in Attachment A. Aerial photographs of the area between 1996 and 2021

are also included in Attachment A and show materials storage in various containers. The 2006 Data Gap Evaluation (Hahn and Associates, Inc. [Hahn] 2006) noted that paint, fluorescent light fixtures, air conditioning units, and old boiler components were stored in this area. Aerial photos beginning in 2005 (Attachment A) show the area was primarily used for semi-trailer storage.

Low concentrations of diesel- and oil-range hydrocarbons and metals were detected in soil samples from this area at concentrations below DEQ human health RBCs. Soil boring and test pit excavation sampling in this area has identified polycyclic aromatic hydrocarbons (PAHs) in shallow soil (less than 3 feet deep) and deep soil (greater than 3 feet deep) at concentrations that exceed DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential or occupational receptors.

Limited groundwater data has been collected in this area and includes samples from one boring and two monitoring wells. Sample results yielded low concentrations of petroleum hydrocarbons, volatile organic compounds (VOCs), PAHs, and total metals; all below DEQ human health RBCs. PAH results were largely non-detect in groundwater samples.

The Former Materials Storage Yard covers the western half of the TASS 2 footprint, as shown on BES Figure 1 (Attachment A).

3.1.3 Former Retention Pond Area

The former retention pond area consists of the western half of the site. The ponds were reportedly 11 to 15 feet deep (Hahn, 2006) and had a sludge layer several inches thick that accumulated phenols, phthalates, and heavy metals deposited from the wash water disposed of in the ponds. The ponds were filled in to eliminate exposure to the sludge. The ponds were filled in with soil and construction debris (e.g., concrete) and other debris such as wood and metal. The sludge layer has not been identified in subsequent investigations and it is unknown if the sludge was removed or mixed in with the fill material. The retention pond area remained unchanged from approximately 1984 to 2007.

Beginning in 2007, Columbia Steel began using the area to store soil stockpiles. The soil stockpiles contained metal slag and grit byproduct from Columbia Steel's operations. Practices for preventing erosion of the stockpiles, known as best management practices, are unknown and the potential for precipitation to leach metals to the ground surface or erode and transport to nearby surface soils could have occurred. Stockpile removal occurred in 2020 and post-removal surface soil sampling indicates that elevated concentrations of manganese and nickel are present. The area is currently vegetated with weed cover.

Groundwater in the former retention ponds area has primarily been sampled from monitoring wells associated with the South Larsen Property VOC plume (MW-A and MW-6D) and sentinel wells downgradient of the plume (MW-C, MW-D, and MW-5). Groundwater has primarily been sampled for petroleum hydrocarbons and VOCs. Petroleum hydrocarbons have been detected at low concentrations below DEQ human health RBCs. VOCs from the South Larsen plume were treated with bioremediation injections in 2008, with minor concentrations of VOCs detected in MW-6D during post-remediation sampling in 2011. Vinyl chloride was detected at a concentration exceeding the residential Volatilization to Outdoor Air and Groundwater in Excavation RBCs. Groundwater from MW-6D is from a depth of 80 through approximately 60 feet of water column. Concentrations of VOCs are expected to attenuate through the water column and vadose zone, and not pose a risk to human health. Additional

information on the South Larsen VOC plume remediation is discussed in Section 4.6. Residual VOC concentrations are at a depth that will not be encountered by construction workers.

The Former Retention Pond Area is located outside the TASS 2 footprint with the exception of a small triangular wedge approximately 15 feet wide by 60 feet long overlapping the western border of TASS 2, as shown in BES Figure 1 (Attachment A).

3.1.4 South Larsen Site

The South Larsen site, located adjacent to the south of the site across the unnamed private road, was listed on the DEQ Environmental Cleanup Site Information (ECSI) database (ECSI No. 3337) because of releases of chlorinated solvents to groundwater that migrated beneath a small portion of the southern part of the site. A remedial action was performed on the South Larsen Property, as required by a Consent Judgement, that included bioremediation with injection of an emulsified oil and water mixture. The remedial action was completed, and a Certificate of Completion (DEQ, 2011) was issued for the South Larsen Property.

3.1.5 Subsurface Methane

During 24 April 2024 field activities for a previous soil vapor investigation (Haley & Aldrich, 2024b), methane was detected in soil vapor samples collected from beneath the TASS 2 site at concentrations up to 50 percent. The source(s) of methane beneath the TASS 2 site may be subsurface organic material, petroleum hydrocarbons in the subsurface, or a combination of the two.

3.2 EXPOSURE PATHWAYS

The following sections describe the exposure pathways present at the TASS 2 site.

3.2.1 Human Health Receptors

The following are potential exposure pathways for human health receptors at TASS 2.

- Soil Ingestion, Dermal Contact, and Inhalation for residential, occupational, and construction
 worker receptors. For residential and occupational receptors, this exposure pathway is only
 considered a complete exposure pathway for soil above 3 feet bgs.
- Volatilization to Outdoor Air from soil and groundwater for residential and occupational receptors.
- Groundwater in Excavation for construction and excavation worker receptors.

Surface soil at the site is currently exposed making the Soil Ingestion, Dermal Contact, and Inhalation pathways complete.

The following are incomplete exposure pathways for human health receptors at the site.

- Soil Leaching to Groundwater.
- Groundwater Ingestion and Inhalation from Tapwater.
- Vapor Intrusion to Indoor Air from soil and groundwater for residential and occupational receptors.

Groundwater beneath the site is not in use as a drinking water source. As a result, the Soil Leaching to Groundwater and Groundwater Ingestion and Inhalation from Tapwater exposure pathways are considered incomplete.

Given the construction of the temporary TASS 2 structures, vapor movement to outdoor air will be evaluated with the assumption that indoor air concentrations are equivalent to outdoor air concentrations. Therefore, vapor intrusion into buildings is not considered a complete pathway.

3.2.2 Ecological Receptors

The following are potential exposure pathways for ecological receptors at TASS 2.

Groundwater Discharge to Columbia Slough for aquatic and surface water receptors.

Groundwater Discharge to the Columbia Slough is a potentially complete exposure pathway for ecological receptors as groundwater beneath TASS 2 has the potential to migrate the approximate 200 feet north/northeast and discharge to Columbia Slough.

The following are incomplete exposure pathways for ecological receptors at TASS 2.

- Direct contact with soil for mammals, birds, and invertebrates.
- Plant Uptake.
- Direct contact with sediment from surface soil erosion and discharge to Columbia Slough for aquatic receptors.

The site has a history of industrial use that prevented habitation of plants and animals at the site. Ground cover at TASS 2 consists of gravel with very sparse, weedy growth that does not provide habitat for animals or plants. The risk to plant and animal populations in the non-TASS 2 area will be evaluated in a future RA for the West Property.

Ecological receptors may come into contact with potentially contaminated surface soil that may be eroded and transported to the Columbia Slough through surface water runoff. Because soil deeper than 1 foot bgs is unlikely to erode from surface water runoff, this exposure pathway is only considered a potentially complete exposure pathway for soil above 1 foot bgs. The vast majority of surface water infiltrates into the subsurface during typical rain events. However, larger rain events have the potential for precipitation rates that exceed the infiltration rate of site soils. These larger rain events can cause stormwater runoff that may transport surface soil. The BES currently mitigates surface water runoff with silt fence surrounding the site as a temporary measure to prevent surface soil discharge to Columbia Slough from being a complete exposure pathway. Additionally, berms adjacent to the riparian edge of the site restrict stormwater runoff.

3.2.3 Methane

Methane is a non-toxic compound but can pose a fire or explosion risk if allowed to accumulate inside of structures or subsurface features (e.g., utility conduits or vaults) and can act as a simple asphyxiant. While the methane exposure pathway is currently incomplete because there are no structures affixed to the ground surface, the site is currently unoccupied, and the methane is contained within subsurface soil, there are potentially complete future exposure pathways for human receptors within unventilated

enclosed spaces. TASS 2 structures will be ventilated by the air gaps present beneath each structure; therefore, this pathway will remain an incomplete exposure pathway at the TASS 2 site. Regular methane monitoring will be performed to confirm that methane accumulation is not occurring such that the methane exposure pathway remains an incomplete exposure pathway.

3.3 SCREENING LEVELS

Site data was evaluated against multiple human health screening levels using DEQ's RBCs for individual chemicals (DEQ, 2023) and EPA Regional Screening Levels (RSLs; EPA 2023), where RBCs have not been established. Site data were not evaluated against ecological screening criteria as ecological pathways are considered incomplete within the TASS 2 development area. Ecological receptors will be evaluated in a future update of this RA and will be screened against DEQ Ecological RBCs (DEQ, 2020) and Lower Columbia Slough Screening Levels (DEQ, 2014).

3.3.1 Soil Screening Levels

Risk to human health from contact with soil was evaluated using the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for the residential, occupational, construction worker, and excavation worker receptors. Soil screening levels are presented in Tables 1A through 6B. For chemicals that do not have an RBC established, the EPA Soil Ingestion, Dermal Contact, and Inhalation RSLs for residential and industrial receptors using a target hazard quotient of 0.1. A hazard quotient of 0.1 were selected as conservative screening values as there are multiple contaminants being screened at the site.

The background concentration of arsenic in the Portland Basin is 8.8 milligrams per kilogram (mg/kg) (DEQ, 2019), which is greater than the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential and occupational receptors of 0.43 mg/kg and 1.9 mg/kg, respectively. Only arsenic concentrations above background concentrations are included in the risk screening in Section 5 and are highlighted as exceedances in Tables 4A through 4C (Attachment D).

The EPA recently updated their Soil Lead Guidance (EPA, 2024) to reduce the screening level for residential receptors from 400 to 200 mg/kg for sites where people may be exposed a single source of lead, and 100 mg/kg for sites where people may be exposed to multiple sources of lead. The Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential receptors of 400 mg/kg is based on the previous EPA value. The DEQ is evaluating the updated EPA soil lead value for adoption as an RBC. The more conservative value of 100 mg/kg is presented in Tables 4A through 4C (Attachment D) for reference only; soil lead data in Section 5 is not evaluated against the 100 mg/kg value.

DEQ Clean Fill Screening Criteria Values area also presented in Tables 1A through 6B (Attachment D) for reference only; soil data are not screened against those values.

3.3.2 Groundwater Screening Levels

Risk to human health from contact with groundwater at the site was evaluated using the DEQ Groundwater in Excavation RBCs for the construction/excavation worker receptor. Results from the soil vapor investigation were screened against the site-specific Volatilization to Outdoor Air RBCs to assess indoor air concentrations for site structures. Groundwater screening levels are presented in Tables 7A and 7B.

3.3.3 Soil Vapor Screening Levels

Risk to human health from soil vapor was evaluated against the site-specific Volatilization to Outdoor RBCs developed by DEQ for residential and occupational receptors (DEQ, 2024). Given that the RVs, pods, and other structures at the site will be elevated a minimum of 5 inches above ground surface, RBCs for vapor intrusion based on a building directly contacting soil do not apply

Because methane is a non-toxic compound, human-health-based or ecological screening levels have not been established. While methane can pose a fire or explosion risk, methane is only considered a fire or explosion risk if present at concentrations between the LEL and UEL of 5 and 15 percent, respectively. The LEL and UEL apply to concentrations of methane in air and do not apply to methane concentrations in soil. Soil vapor screening levels are presented in Tables 8 and 9.

4. Previous Investigations

Numerous previous environmental investigations have been conducted at the site. Previous environmental investigations conducted consist of the following:

- UST Decommissioning by Enviro-Comp Services, Inc. (ECS) in July 1997 (AMEC, 2000);
- Phase II ESA conducted by PNG in December 1998 (PNG, 1999a);
- Phase II Investigation conducted by PNG in May 1999 (PNG, 1999b);
- Phase II ESA conducted by Kleinfelder in May 2000 (Kleinfelder, 2000);
- Geotechnical Investigation by Fujitani Hilts & Associates, Inc. (Fujitani) in May 2000 (Fujitani, 2000);
- Monitoring well installation conducted by AMEC in September 2009 (AMEC, 2009);
- South Larsen Groundwater Remediation conducted by Ash Creek Associates, Inc. (Ash Creek) in January 2011 (Ash Creek, 2011a);
- Groundwater monitoring event conducted by GeoEngineers in July 2011 (GeoEngineers, 2011);
- Columbia Steel soil stockpile removal confirmation sampling conducted by the BES in May and September 2020;
- Columbia Steel soil stockpile removal soil evaluation conducted by the SLR International Corporation (SLR) in June 2020 (SLR, 2024);
- Test Pit Investigation conducted by BES in October 2023; Soil Boring Investigation conducted by BES in November 2023; and
- Soil Vapor Investigation conducted by Haley & Aldrich in April 2024 (Haley & Aldrich, 2024b)

Analytical results from previous investigations were compiled into data tables by the BES and included in Attachment D. The tables included in Attachment D are as follows.

- Total petroleum hydrocarbon in soil and chemical group analytical results for shallow soil less than 3 feet deep (includes composite soil samples between 0 and 5 feet bgs that encompass shallow soil but extend deeper) in TASS 2 are summarized in Table 1A; for deep soil greater than 3 feet deep in TASS 2 in Table 1B; and for all soil depths in the entire West Property in Table 1C.
- VOCs in soil analytical results for TASS 2 are summarized in Table 2A and for the entire West Property in Table 2B.
- PAHs in soil analytical results for shallow soil less than 3 feet deep (includes composite soil samples between 0 and 5 feet bgs that encompass shallow soil but extend deeper) in TASS 2 are summarized in Table 3A; for deep soil greater than 3 feet deep in TASS 2 in Table 3B; and for the entire West Property in Table 3C.
- Metals in soil analytical results shallow soil less than 3 feet deep (includes composite soil samples between 0 and 5 feet bgs that encompass shallow soil but extend deeper) in TASS 2 are presented in Table 4A; for deep soil greater than 3 feet deep in Table 4B; and for the entire West Property in Table 4C.

- Pesticides in soil analytical results for TASS 2 are presented in Table 5A and for the entire West Property in Table 5B.
- Polychlorinated biphenyls (PCBs) in soil analytical results for TASS 2 are presented in Table 6A and for the entire West Property in Table 6B.
- Groundwater analytical results for TASS 2 are presented in Table 7A and for the entire West Property in Table 7B.
- Soil vapor sample analytical results for TASS 2 are presented in Tables 8 and 9.

Soil sample locations are shown on BES Figure 9 – Soil Sampling Location Map and groundwater sampling locations are shown on BES Figure 11 – Groundwater Data Map. Soil vapor sample location are shown on BES Figure 12. These figures are included in Attachment A.

4.1 UST DECOMMISSIONING – ENVIRO-COMP SERVICES, INC. – JULY 1997

In July 1997, ECS discovered a 1,000-gallon gasoline UST north of the shop building during excavation work. The UST was removed, and two soil samples were collected from beneath the north and south ends of the UST. Visible staining and odors were observed on soil in the UST cavity, indicating that a release had occurred. Gasoline-range hydrocarbons were detected at a concentration of 190 mg/kg in soil sample 1-N-UST-6'. After the initial analytical results were received, overexcavation of the UST cavity was performed down to approximately 16 to 17 feet bgs. Groundwater with an apparent petroleum-like sheen was observed seeping into the UST cavity upon reaching total depth of the overexcavation. The volume of soil excavated was not available. Two soil samples were collected from the overexcavated UST cavity floor.

Due to the impacted groundwater observed in the UST cavity, an additional test-pit was excavated southwest of the UST cavity to a depth of 15 feet. The test pit also contained groundwater with apparent petroleum hydrocarbon impacts. Groundwater was pumped out of the test pit and groundwater samples were collected. Total xylenes were detected in groundwater and resulted in multiple rounds of groundwater removal until total xylenes concentrations were reduced from a maximum of 15,000 micrograms per liter (μ g/L) to 59 μ g/L, less than applicable DEQ RBCs including Groundwater in Excavation for Construction Workers and Volatilization to Outdoor Air RBCs for residential receptors.

Following groundwater removal activities, final soil samples were collected from the UST cavity. Three samples were collected from the sidewalls and one from the cavity floor. Samples were analyzed for oil-range hydrocarbons only and resulted in detections with a maximum concentration of 647 mg/kg from the UST cavity floor. While site-specific TPH RBCs can be established using the results of hydrocarbon fraction analysis, DEQ has not established generic RBCs for oil-range hydrocarbons.

4.2 PHASE II ESA – PNG ENVIRONMENTAL, INC. – DECEMBER 1998

PNG conducted a Phase II ESA of the site in February 1999 (PNG, 1999a) that included advancing six direct-push borings (B-1 through B-6) to depths of up to 32 feet bgs. One soil sample was collected from each boring and groundwater samples were collected from borings B-1, B-2, and B-3 (B1-W, B2-W, and B3-W). The Phase II ESA by PNG noted that a soil probe investigation was conducted in June 1997 by an unknown party as part of the due diligence process by a potential purchaser of the property. According to the PNG report, benzene was detected in a groundwater sample collected from a push-probe boring at the site

during the June 1997 investigation at a concentration of 9 μ g/L, less than applicable DEQ RBCs. The location and depth of this groundwater sample were not reported.

Soil Analytical Results. Soil samples were analyzed for hydrocarbon identification by Method NWTPH-HCID and diesel- and oil-range hydrocarbons by Method NWTPH-Dx. Lube oil-range hydrocarbons were detected in the six samples at concentrations of up to 1,410 mg/kg. Diesel-range hydrocarbons were detected in samples collected from borings B-3 and B-6 at concentrations of up to 148 mg/kg. The detected concentrations of diesel-range hydrocarbons were less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs. DEQ has not established a Soil Ingestion, Dermal Contact, and Inhalation RBC for oil-range hydrocarbons.

The soil samples from borings B-1 and B-2 were analyzed for VOCs by EPA Method 8260B and the sample from B-2 (B2-12) was analyzed semi-volatile organic compounds (SVOCs) by EPA Method 8270C. VOCs were not detected in the soil samples analyzed. Naphthalene, fluoranthene, and pyrene were detected in soil sample B2-12 at concentrations less than applicable DEQ Residential Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Groundwater Analytical Results. Groundwater samples were analyzed for hydrocarbon identification by Method NWTPH-HCID; diesel- and oil-range hydrocarbons by Method NWTPH-Dx; VOCs by EPA Method 8260B; and SVOCs by EPA Method 8270C. Diesel- and lube oil-range hydrocarbons were detected in groundwater sample B2-W at concentrations of 2,090 and 1,640 μg/L, respectively. The detected concentration of diesel-range hydrocarbons was less than applicable DEQ Groundwater in Excavation and Volatilization to Outdoor Air RBCs. Petroleum hydrocarbons were not detected in groundwater samples B1-W and B3-W; however, the detected concentrations of these VOCs were less than applicable DEQ Groundwater in Excavation RBCs. Several SVOCs were detected in groundwater sample BW-2; the detected concentrations were less than applicable DEQ Groundwater in Excavation RBCs.

4.3 PHASE II INVESTIGATION – PNG ENVIRONMENTAL, INC. – MAY 1999

The results of the February 1999 Phase II ESA were used to inform a Phase II Investigation that was conducted in May 1999 and included excavating five test pits (TP-1 through TP-5) and installing six monitoring wells (MW-1 through MW-6). The following three areas of concern and exploration locations were investigated in the Phase II Investigation.

- Former UST at the former Peninsula Diesel facility shop: test pit TP-5.
- Materials storage area of the former shop: test pits TP-1 and TP-3; and monitoring wells MW-1 through MW-4.
- Former Retention Pond Area: test pits TP-2, TP-3, and TP-4; and monitoring wells MW-1, MW-5, and MW-6.

Soil samples were not collected from the monitoring well borings due to their proximity to test pit locations, and a soil sample was not collected from test pit TP-4. Test pits encountered fill to the total depths of their excavations and field screening evidence of petroleum impacts were observed in four of the five test pits (all but TP-4). Groundwater sampling was performed in May and July 1999 in the newly installed wells.

The locations of the explorations at the site are shown on the site plan included in Attachment A. Soil analytical results are presented in BES Tables 1A through 6B (Attachment D). Groundwater analytical results are presented in BES Tables 7A and 7B (Attachment D).

Soil Analytical Results. The soil samples were analyzed for gasoline-range hydrocarbons by Method NWTPH-Gx, diesel- and oil-range hydrocarbons by Method NWTPH-Dx, VOCs by EPA Method 8240, and SVOCs by EPA Method 8270B. Gasoline-range hydrocarbons were detected in three samples at concentrations ranging from 3.63 mg/kg (TP-2-17) to 1,470 mg/kg (TP-1-12). The detected concentration of gasoline-range hydrocarbons in TP-1-12 slightly exceeded the residential DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC of 1,200 mg/kg, but was below all other applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs. Diesel-range hydrocarbons were not detected in the soil samples analyzed. Oil-range hydrocarbons were detected in each sample at concentrations ranging from 116 mg/kg (TP-1-12) to 1,440 mg/kg (TP-5-8). DEQ has not established RBCs for oil-range hydrocarbons.

SVOCs were not detected in the soil samples analyzed. Except for benzene in soil sample TP-3-13, VOCs were not detected in the soil samples analyzed. Benzene was detected in soil sample TP-3-13 at a concentration of 956 micrograms per kilogram ($\mu g/kg$), less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Groundwater Analytical Results. Groundwater samples collected from the six monitoring wells were analyzed for gasoline-range hydrocarbons by Method NWTPH-Gx, diesel- and oil-range hydrocarbons by Method NWTPH-Dx, VOCs by EPA Method 624, and SVOCs by EPA Method 625.

During both events, gasoline-, diesel-, and/or oil- range hydrocarbons were detected in each sample analyzed. Gasoline-range hydrocarbons were detected at a maximum concentration of 0.310 milligrams per liter (mg/L; MW-5), diesel-range hydrocarbons at a maximum concentration of 0.764 mg/L (MW-5), and oil-range hydrocarbons at a maximum concentration of 2.13 mg/L (MW-2). The maximum detected concentrations of gasoline- and diesel-range hydrocarbons were less than applicable DEQ Groundwater in Excavation and Volatilization to Outdoor Air RBCs.

VOCS were detected in groundwater samples collected from MW-1 and MW-3, and SVOCs were detected in groundwater samples collected from MW-1, MW-2, and MW-3. The detected concentrations of VOCs and SVOCs were less than applicable DEQ Groundwater in Excavation and Volatilization to Outdoor Air RBCs.

4.4 PHASE II ESA – KLEINFELDER, INC. – MAY 2000

Kleinfelder completed a Phase II ESA at the site in May 2000. The Phase II ESA included excavating 16 test pits (TP-1 through TP-16) to depths ranging from 12 to 21 feet bgs. Two soil samples were collected from each test pit except for test pit TP-11, where three samples were collected. A grab groundwater sample was also collected from test pit TP-6 because petroleum-like odors and sheen were observed in the test pit. During Kleinfelder's 2000 investigation, groundwater samples were also collected from previously installed monitoring wells MW-1 through MW-6.

This Phase II ESA used the same nomenclature for test pit labeling as the previous Phase II ESA performed by PNG in 1999; however, the test pits of the same identification (TP-1 through TP-5) were not in the same location for both investigations. Both sets of test pits are shown on the BES figure "Sample Locations Map" included in Attachment A.

Subsurface conditions encountered in the test pits generally consisted of clayey to silty fill soils with varying amounts of debris (concrete, wood, plastic, brick, piping, and rebar). Abundant large concrete and asphalt debris (up to 3 feet in diameter) was encountered in a majority of the test pits excavated. This debris was encountered generally 6 to 14 feet bgs.

Soil Analytical Results. Soil samples were analyzed for VOCs by EPA Method 8260, SVOCs by EPA Method 8270D, and total RCRA 8 metals by EPA 6000/7000 series methods.

VOCs were detected in soil samples TP-2-19, TP-6-13, TP-11-11, and TP-15-21. The Kleinfelder report noted that 2-butanone was detected in all soil samples, but this was reportedly due to laboratory contamination and not site conditions; therefore, those results were not included in the result screening. Naphthalene and p-isopropyl toluene were detected in soil sample TP-2-19; 13 VOCs were detected in soil sample TP-6-13; and naphthalene and 1,2,4-trimethylbenzene were detected in soil sample TP-11-11. The detected concentrations of these VOCs were less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

SVOCs were detected in soil samples TP-2-5, TP-3-10, TP-6-13, TP-7-17, and TP-15-21. Fluoranthene, phenanthrene, and pyrene were detected in each sample with the exception of TP-15-21, which only had a detection of butyl benzyl phthalate. The detected concentrations of these SVOCs were less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Arsenic, barium, cadmium, chromium, lead, and mercury were detected in each sample analyzed at maximum concentrations of 21.7, 220, 3.36, 35, 130, and 4.88 mg/kg, respectively. Selenium was detected in soil samples TP-10-16 and TP-13-19, with a maximum concentration of 0.32 mg/kg in TP-10-16. Silver was not detected in the soil samples analyzed. Arsenic was detected at concentrations up to 21.7 mg/kg (TP-6-13), with all arsenic concentrations exceeding the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential (0.43 mg/kg) and occupational (1.9 mg/kg) receptors. With the exception of four samples (TP-6-5, TP-6-13, TP-14-12, and TP-15-21), the detected concentrations of arsenic were below the background concentration of 8.8 mg/kg. The concentration of arsenic in TP-14-12 (9.11 mg/kg) was above background but below the Soil Ingestion, Inhalation, and Dermal Contact RBC for construction worker receptors of 15 mg/kg. The concentrations of arsenic in TP-6-5 (20.90 mg/kg), TP-6-13 (21.7 mg/kg), and TP-15-21 (16.30 mg/kg) exceeded the Soil Ingestion, Inhalation, and Dermal Contact RBCs for construction worker receptors. Because all soil samples are located greater than 3 feet bgs, this is an incomplete exposure pathway for residential and occupational receptors.

Groundwater Analytical Results. The groundwater sample from TP-6 was analyzed for VOCs by EPA Method 8260B, SVOCs by EPA Method 8270, and RCRA 8 metals by EPA Method 200 series. A total of 16 VOCs and 10 SVOCs were detected in TP-6. No VOC or SVOC detections exceeded the DEQ Groundwater in Excavation or Volatilization to Outdoor Air RBCs.

Groundwater samples collected from monitoring wells MW-1 through MW-6 underwent the same chemical analysis as TP-6. A total of nine VOCs were detected in one or more samples with all VOC results below the DEQ Groundwater in Excavation or Volatilization to Outdoor Air RBCs. SVOCs were not detected in any monitoring well sample. Metals were detected in most samples; however, no metals concentrations exceeded the DEQ Groundwater in Excavation RBC.

4.5 GEOTECHNICAL INVESTIGATION – FUJITANI HILTS & ASSOCIATES, INC. – MAY 2000

Fujitani advanced two geotechnical borings (B-1 and B-2) to evaluate soil conditions for a proposed expansion of the Columbia Boulevard Wastewater Treatment Plant located to the east across North Portland Road. Environmental samples were also collected from the two borings. Investigation results were reported in a Draft Environmental Field and Laboratory Report dated August 2000 prepared for Brown and Caldwell and BES. This report was unavailable for review; however, a memorandum by Fujitani evaluating the results of the geotechnical investigation and the Phase II ESA and Site Investigation by PNG was available.

Soil samples were collected from each boring at depths of 10, 15, and 20.5 feet for a total of six soil samples. One groundwater sample was collected from each boring at an unspecified depth.

Soil Analytical Results. Soil samples were analyzed for gasoline-, diesel-, and heavy oil-range hydrocarbons by Method NWTPH-HCID; VOCs by EPA Method 8260B; SVOCs by EPA Method 8270B; and metals by EPA Method 6010/6020/7471. Gasoline- and diesel range hydrocarbons, VOCs, and VOCs were not detected in any soil sample. Oil-range hydrocarbons were detected in samples from B-2 at 10 and 15 feet and analysis by NWTPH-Dx was performed. Heavy oil-range hydrocarbons were detected at concentration of 126 mg/kg (B2-S-4-10) and 1,420 mg/kg (B2-S-4-15). Neither detection exceeded DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Arsenic was detected in all samples at concentrations above the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential and occupational receptors but below the background value. All other metals were not detected at concentrations above the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential receptors.

Groundwater Analytical Results. Groundwater samples were analyzed for gasoline-, diesel-, and heavy oil-range hydrocarbons by Method NWTPH-HCID; VOCs by EPA Method 8260B; SVOCs by EPA Method 8270B; and dissolved metals by EPA Method 200.7/200.8/245.1. With the exception of one VOC detection and one SVOC detection in B-2, petroleum hydrocarbons, VOCs, and SVOCs were not detected in either groundwater sample. Acetone and bis(2-ethylhexyl)phthalate were detected at concentrations just above the method reporting limit. DEQ does not have established RBCs for acetone, and the construction worker and excavation worker RBC for bis(2-ethylhexyl)phthalate in groundwater exceeds the solubility limit.

4.6 MONITORING WELL INSTALLATION – AMEC EARTH & ENVIRONMENTAL, INC. – SEPTEMBER

AMEC installed four groundwater monitoring wells (MW-A through MW-D) at the site in September 2008 and collected soil samples from the monitoring well borings. MW-A was installed in the intermediate groundwater zone as a companion well to monitoring well MW-6D, which was located on the South Larsen Property adjacent to the south of the site at 10145 North Portland Road. Monitoring well MW-B was installed downgradient of the former UST associated with the former repair shop located in the northeast portion of the site. Monitoring wells MW-C and MW-D were installed in the intermediate and deep groundwater zones downgradient of MW-A and South Larsen Property well MW-6D.

Soil samples were collected from MW-A at 35 to 36 feet bgs, from MW-B at 6 to 7 and 26 to 27 feet bgs, and from MC-C at 30 to 31 feet bgs. Soil samples were not collected from MW-D, and groundwater samples were not collected during the September 2009 AMEC investigation.

Soil Analytical Results. Sample MW-A 35-36 was analyzed for VOCs by EPA Method 8260B only. Ten VOCs were detected with tetrachloroethene and trichloroethene detected at concentrations greater than the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential receptors. The two exceedances were from a depth of 35 feet and the exposure pathway for residential and occupational receptors is incomplete. All other VOC concentrations detected were less than applicable DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs.

Soil samples MW-B 6-7 and MW-B 26-27 were analyzed for gasoline-range hydrocarbons by Method NWTPH-Gx, diesel- and oil-range hydrocarbons by Method NWTPH-Dx, and RCRA 8 metals by EPA Method 6010. Sample MW-B 6-7 was also analyzed for PAHs by EPA Method 8270 due to a detection of oil-range hydrocarbons. Gasoline- and diesel-range hydrocarbons were not detected. Metals were not detected above applicable DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs. The DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential and occupational receptors are not applicable as the sample depths were greater than 3 feet and the exposure pathway is incomplete.

Sample MW-C 30-31 was analyzed for VOCs by EPA Method 8260B and RCRA 8 metals by EPA Method 6010. VOCs were not detected at concentrations greater than applicable DEQ RBCs. Arsenic and lead were detected at concentrations of 1,860 mg/kg. The equivalent concentrations of arsenic and lead in this sample are elevated compared to all other soil data points and appear to be anomalously high, but were not discussed in the well installation report. The concentrations were confirmed to be accurate and were verified in the laboratory analytical report included in the report. Due to the age and brevity of the well installation report, no conclusions regarding the nature of these elevated detections could be made. The detected concentrations of arsenic and lead in this sample were greater than the corresponding DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for construction and excavation workers. Because this sample is located greater than 3 feet bgs, this is an incomplete exposure pathway for residential and occupational receptors.

4.7 SOUTH LARSEN PROPERTY GROUNDWATER REMEDIATION – ASH CREEK ASSOCIATES, INC. – JANUARY 2011

The South Larsen Property was listed on the DEQ ECSI database (ECSI No. 3337) because of releases of chlorinated solvents to groundwater that migrated beneath a small portion of the southern part of site. A remedial action was performed on the South Larsen Property, as required by a Consent Judgement, that included bioremediation with injection of an emulsified oil and water mixture. The remedial action was completed, and a Certificate of Completion (DEQ, 2011) was issued for the South Larsen Property. In the Certificate on Completion, the DEQ indicated that the "NPR (former South Larsen) site is protective of public health and the environment and requires no further action provided the land and water use restrictions outlined in the Certificate of Completion are observed". These restrictions were outlined in a Site Management Plan prepared for the South Larsen Property by Ash Creek (Ash Creek, 2011b). The restrictions consist of the following:

1. Regular inspection of a constructed swale located on the northeast portion former South Larsen Property, along the southern site boundary;

- 2. Onsite maintenance of approximately 2,400 cubic yards of mildly contaminated soil within a soil placement cell and managed for truck and equipment parking and staging only; and
- 3. Limits on construction near the enhanced cleanup around the chlorinated solvent source area on the South Larsen Property.

Remedial injections for the South Larsen Property were performed in September and October 2008. Following completion of remedial injections, one round of groundwater sampling was performed in site wells MW-A, MW-C, and MW-D that are downgradient of the South Larsen Property source area. Groundwater samples were analyzed for VOCs by EPA Method 8260B. With the exception of chloroform, VOCs were not detected in wells MW-C and MW-D, which are located in the northern portion of the site. Multiple VOCs were detected in MW-A (located in the plume extension beneath the site) at low level concentrations that do not exceed the DEQ Groundwater in Excavation RBCs for the construction and excavation worker or the DEQ Volatilization to Outdoor Air RBCs for residential or occupational receptors.

As stated in the South Larsen Property Site Management Plan, the current soil and groundwater data beneath the South Larsen Property indicate that the remaining concentrations of VOCs did not result in an unacceptable risk from volatilization to outdoor air or risks to site workers from volatilization to outdoor air. The plan further stated that no additional actions were required due to any volatilization to outdoor air pathway.

4.8 GROUNDWATER MONITORING EVENT – GEOENGINEERS, INC. – JULY 2011

GeoEngineers performed a groundwater monitoring even in July 2011 to collect groundwater samples from wells MW-A through MW-D and MW-6D. The samples from MW-A, MW-C, and MW-6D were analyzed for VOCs by EPA Methods 8260C and 8260C-SIM only. The MW-B sample was analyzed for qualitative hydrocarbon identification by Method NWTPH-HCID only. The sample from MW-D was analyzed for VOCs by EPA Methods 8260C and 8260C-SIM, RCRA 8 metals plus copper and zinc by EPA Method 200, and dissolved arsenic by EPA Method 7470A.

Gasoline-, diesel-, and oil-range hydrocarbons were not detected in MW-B. Multiple VOCs were detected in one or more analyzed samples. Trichloroethene in well MW-A and vinyl chloride in well MW-6D were detected above the DEQ Groundwater in Excavation RBCs. The vinyl chloride concentration in MW-6 also exceeded the Volatilization to Outdoor Air RBCs for residential receptors. Well MW-6D is located further than 100 feet outside the TASS 2 footprint.

4.9 COLUMBIA STEEL SOIL STOCKPILE REMOVAL CONFIRMATION SAMPLING – CITY OF PORTLAND BES – MAY AND SEPTEMBER 2020

Following removal of the Columbia Steel soil stockpiles from the former retention pond area of the site, BES collected composite surface soil samples from the former stockpile footprints. BES collected samples from the ground surface and 6 inches bgs in two reference locations (HA-CS-1 and HACS-2) located outside the former stockpile footprints to establish baseline conditions, and in 13 decision units (HA-CS-3, HA-CS-4, HA-CS-10 through HA-CS-18, HA-CS-19 Ramp, and HA-CS-20) from the former stockpile areas. Sample CS-15-PIT was collected from a test pit located in the HA-CS-15 sampling grid (see BES Soil Sampling Map in Attachment A); however, the location of the test pit was not available and is not shown on the figure. Samples Sand Mix-Top Layer, Soil/Rock, and Soil/Clay were also collected from a test pit advanced by Columbia Steel. Note that soil analytical data for samples from decision unit

HA-CS-3 were collected from a soil stockpile that has since been removed from the site; and therefore, those sample results are no longer relevant to the site.

Samples HA-CS-10 through HA-CS-17 and HA-CS-19 Ramp were analyzed for total cadmium, chromium, copper, manganese, nickel, and selenium. The remaining samples were also analyzed for antimony, arsenic, beryllium, cobalt, lead, mercury, silver, thallium, and/or zinc. Samples HA-CS-18 and HA-CS-20 were also analyzed for aluminum and/or barium. Sample CS-15-PIT was analyzed for diesel-and oil-range hydrocarbons, VOCs, SVOCs, and PCBs.

One or more metals were detected in each of the soil samples analyzed. Arsenic was detected in all soil samples at concentrations above the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential and occupational receptors but were lower than the background concentration of 8.8 mg/kg with the exception of CS-17-PILE and CS-15-PIT at concentrations of 8.85 mg/kg and 17.5 mg/kg, respectively. Arsenic concentrations in CS-17-PILE exceeded background and in CS-15-PIT exceeded the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC for construction receptors.

Manganese was detected above the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC for residential receptors of 1,800 mg/kg in eight samples (HA-CS-3 0, HA-CS-3 6", HA-CS-10, HA-CS-11, HA-CS-15, HA-CS-18, HA-CS-19 Ramp, HA-CS-19-RAMP-2). Four of the manganese exceedances (HA-CS-3 0, HA-CS-3 6", HA-CS-19 Ramp, and HA-CS-19-RAMP-2) also exceeded the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC for residential receptors at 1,800 mg/kg. Subsequent to soil sampling activities, earthwork activities on site removed surface soil from the location of HA-CS-3. Analytical results for the two samples from HA-CS-3 are included in Table 4C (Attachment D) but are not included in the risk screening in Section 5.

Nickel was detected at a concentration of 1,790 mg/kg in HA-CS-18 above the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC for residential receptors of 1,500 mg/kg. All other metals concentrations were below applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Diesel-range hydrocarbons were detected in CS-15-PIT at a concentration of 4,900 mg/kg and exceeded the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential and construction worker receptors. Benzo(a)pyrene was detected at a concentration of 230 μ g/kg and exceeded the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBC for residential receptors.

Oil-range hydrocarbons, VOCs, total PCBs, and all other SVOCs were not detected above applicable DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs.

4.10 COLUMBIA STEEL SOIL STOCKPILE REMOVAL SOIL EVALUATION – SLR INTERNATIONAL CORPORATION – JUNE 2020

Columbia Steel placed soil stockpiles consisting of used foundry sand and slag in the leased portion of the site from 2007 through 2020 at which point the stockpiles were removed. Following removal of the stockpiles, SLR conducted confirmation sampling of surface soil beneath the former stockpiles. SLR established grid areas representing five former stockpiles (I North, I South, J, K, and M) and from the southwest corner of the site represented as SW. The grid areas are shown on the BES figure "Sample Overview Map" (Attachment A). SLR collected 9-point composite samples from depths of 0 to 4 inches and 12 to 16 inches in the six grid areas. The composite soil samples were analyzed for total metals by EPA Method 6020B.

All samples had detectable concentrations of arsenic, beryllium, cadmium (except sample Former I [south]), cobalt, copper, lead, manganese, nickel, and zinc. Isolated detections of antimony, mercury, and selenium occurred in three samples. Arsenic was not detected in any sample above background concentrations; however, all samples exceeded the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential and occupational receptors. Manganese was detected in four samples above the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential receptors of 1,800 mg/kg in Former I (south) at 4,250 mg/kg; Former I (north) at 1,980 mg/kg; Former M at 3,760 mg/kg; and SW at 3,950 mg/kg. All other metals detections were below applicable DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs.

4.11 TEST PIT INVESTIGATION – CITY OF PORTLAND BES – OCTOBER 2023

In preparation for planned development of TASS 2, the BES excavated 12 test pits (T-Pit-1 through T-Pit-12) along the northern border of the proposed footprint of the TASS 2 development in October 2023. The test pits were excavated to observe shallow subsurface soil conditions in the area where a proposed septic field may be installed.

BES analyzed 13 composite soil samples collected from 12 test pits. The composite soil samples included seven composite soil samples collected between 0 and 1.5 feet bgs, and six composite soil samples collected between 0 and 5 feet bgs. The composite soil samples were analyzed for one or more of the following: qualitative hydrocarbon identification by Method NWTPH-HCID; gasoline-range hydrocarbons by Method NWTPH-Dx; PAHs by EPA Method 8270-SIM; total arsenic, cadmium, chromium, copper, lead, mercury, and zinc by EPA Method 6020; PCBs by EPA Method 8082; and/or organochlorine pesticides by EPA Method 8081B.

Gasoline-, diesel-, and oil-range hydrocarbons were either not detected or were detected at concentrations less than applicable DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs in the composite soil samples analyzed.

Benzo(a)pyrene was detected in seven soil samples (T-Pit-2 0-5', T-Pit-3 0-18", T-Pit-5 0-18", T-Pit-6 0-18", T-Pit-6 0-5', T-Pit-9 0-5', and T-Pit-11 0-5') at concentrations up to 1,400 mg/kg and exceeding the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential receptors of 110 μ g/kg. Sample T-Pit-2 0-5' also detected concentrations of benzo(b)fluoranthene (1,100 μ g/kg), dibenzo(a,h)anthracene (160 μ g/kg), and indeno(1,2,3-cd)pyrene (1,300 μ g/kg) that exceeded the DEQ Soil Ingestion, Inhalation, and Dermal Contact RBCs for residential receptors. All other PAHs were not detected at concentrations greater than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Total arsenic, cadmium, chromium, copper, lead, mercury, and zinc were detected in each of the soil samples analyzed. Arsenic was detected above the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for occupational receptors in all samples, but were below background concentrations in all samples except for sample T-Pit-3 0-18". The detected concentration of arsenic in T-Pit-3 0-18" (9.27 mg/kg) exceeded the background value but was below the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC for construction worker receptor of 15 mg/kg. All other metals concentrations were less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Soil sample T-Pit-6 0-5' was analyzed for PCBs, which were not detected.

Soil sample T-Pit-7 0-5' was analyzed for organochlorine pesticides. Three pesticides including 4-4'-DDD, 4-4'-DDE, and 4-4'-DDT were detected in soil sample T-Pit-7 0-5'. The detected concentrations of these organochlorine pesticides were less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

4.12 SOIL BORING INVESTIGATION – CITY OF PORTLAND BES – NOVEMBER 2023

In November 2023, BES advanced 13 direct-push soil borings (WP-1 through WP-13) in the central and eastern portions of the site. BES collected one discrete soil sample and 29 composite soil samples from the borings, including: one discrete soil sample collected from between 0 and 1 foot bgs; 13 composite soil samples collected from between 0 and 5 feet bgs; 13 composite soil samples collected from between 5 and 10 feet bgs; and two composite soil samples collected from between 10 and 15 feet bgs.

The soil samples were analyzed for qualitative hydrocarbon identification by Method NWTPH-HCID; gasoline-range hydrocarbons by Method NWTPH-Gx; diesel- and oil-range hydrocarbons by Method NWTPH-Dx; VOCs by EPA Method 8260, PAHs by EPA Method 8270-SIM; total arsenic, cadmium, chromium, copper, lead, mercury, and zinc by EPA Method 6020; and/or PCBs by EPA Method 8082.

Gasoline-range hydrocarbons were not detected in the soil samples analyzed. Diesel-range hydrocarbons were detected in four of the 29 soil samples analyzed. The detected concentrations of diesel-range hydrocarbons were less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs. Oil-range hydrocarbons were detected at concentrations up to 1,000 mg/kg in 13 of the soil samples analyzed.

The discrete soil sample (WP-11 0-1) was analyzed for VOCs. Except for naphthalene, VOCs were not detected. The detected concentration of naphthalene in soil sample WP-11 0-1 of 44 μ g/kg was less than applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBC.

One or more PAHs were detected in each of the 29 soil samples analyzed. Benzo(a)anthracene (five detections), benzo(a)pyrene (12 detections), benzo(b)fluoranthene (five detections), dibenzo(a,h)anthracene (seven detections), and/or indeno(1,2,3-cd)pyrene (five detections) had concentrations that exceeded the Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential receptors or occupational receptors.

Arsenic, cadmium, chromium, copper, lead, mercury, and zinc were detected in each of the soil samples analyzed. Arsenic detected in all samples exceeded the Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential and construction worker receptors, but were below the background value except for samples WP-2 0-5, WP-2 5-10, and WP-4 5-10. The concentrations of arsenic in those three samples exceeded the background value but were below the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for construction worker receptors.

4.13 SOIL VAPOR INVESTIGATION – HALEY & ALDRICH – APRIL 2024

In April 2024, Haley & Aldrich conducted a Soil Vapor Investigation (SVI) of TASS 2 (Haley & Aldrich, 2024b) in general accordance with a DEQ-approved work plan (Haley & Aldrich, 2024c) dated 23 April 2024. The SVI included collecting nine soil vapor samples from throughout the TASS 2 site (SV-1-TO-15 through SV-6-TO-15 and SV-8-TO-15 through SV-10-TO-15) and analyzing the soil vapor samples for total

petroleum hydrocarbons as gasoline (TPHg) and VOCs by EPA Method TO-15. The analytical results from the nine soil vapor samples were compared to DEQ-developed, site-specific RBCs for Volatilization to Outdoor Air for residential and occupational receptors (DEQ, 2024).

One or more VOCs were detected in each of the soil vapor samples analyzed. The detected concentrations of these VOCs were generally between three and six orders of magnitude less than the DEQ-developed RBCs, where established. Based on the results of the soil vapor investigation and the results of previous soil and groundwater samples collected from the TASS 2 site, there is no volatilization risk to future workers or occupants of TASS 2.

During the soil vapor investigation, concentrations of methane, hydrogen sulfide, and oxygen were measured in the soil vapor probes using a multi-gas meter. Hydrogen sulfide was not detected. Methane was measured at concentrations up to 50 percent in each of the soil vapor probes; therefore, methane was added as an analyte during analysis of the TO-15 sample canisters. Methane was not detected in ambient air during VOC sampling activities. Methane was detected in each of the soil vapor samples analyzed except for soil vapor sample SV-10-TO-15; however, the absence of methane in soil vapor sample SV-10-TO-15 could be due to the introduction of ambient air in the sample. The detected concentrations of methane ranged from 3.7 to 49 percent.

Because of the detected concentrations of subsurface methane, Haley & Aldrich personnel returned to the TASS 2 site on 6 June 2024 and collected ambient air measurements for methane, hydrogen sulfide, and carbon dioxide at the ground surface at 18 locations throughout the West Property. Measurements were also collected from three septic treatment tanks, an open excavation for eight septic holding tanks, the eight septic holding tanks inside of this excavation, a portable restroom, a plumbing system standpipe, and three office spaces inside of a closed, unoccupied Conex box-type mobile office. Methane was not detected at the site, except for at two ground surface locations near the west boundary of the TASS 2 site (#7 and #8). The detected concentrations of methane at locations #7 and #8 were 0.07 and 0.08 percent total methane by volume, respectively. Hydrogen sulfide was not detected at any of the measurement locations. Carbon dioxide was detected at each measurement location at concentrations ranging from 0.02 to 0.10 parts per million.

5. Screening Level Risk Assessment

The following sections present a screening level assessment for the TASS 2 portion of the West Property using available soil, groundwater, and soil vapor data and applicable human health screening levels previously discussed in Section 3.3.

5.1 SOIL SCREENING LEVEL RISK ASSESSMENT

Soil data was evaluated against screening criteria based on the exposure pathway present. Data evaluation was performed as listed below.

- Shallow soil less than 3 feet bgs: DEQ human health RBCs for Soil Ingestion, Dermal Contact, and Inhalation for residential, occupational, construction, and excavation worker receptors for all contaminants.
- Deep soil greater than 3 feet bgs: DEQ human health RBCs for Soil Ingestion, Dermal Contact, and Inhalation for construction and excavation worker receptors.
- Shallow and deep soil: DEQ Soil Volatilization to Outdoor Air RBCs for residential and occupational receptors for petroleum hydrocarbons and VOCs.

Attachment D contains BES prepared Tables 1A through 6B with soil chemical results and screening levels. Unacceptable risk to human health receptors was identified in shallow soil for the contaminants summarized below.

5.1.1 PAHs

A total of 10 soil samples had exceedances of DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs from five PAHs in shallow soil. The exceedances for shallow soil are summarized as follows.

- Benz(a)anthracene: two detections above the residential receptor RBC of 1,100 μg/kg.
- Benzo(a)pyrene: five detections above the residential receptor RBC of 110 μ g/kg and two above the occupational receptor RBC of 2,100 μ g/kg.
- Benzo(b)fluoranthene: two detections above the residential receptor RBC of 1,100 μg/kg.
- Dibenz(a,h)anthracene: three detections above the residential receptor RBC of 110 μg/kg.
- Indeno(1,2,3-cd)pyrene: two detections above the residential receptor RBC of 1,100 μg/kg.

An additional 21 detections of PAHs exceeded the DEQ Soil Ingestion, Dermal Contact, and Inhalation residential or occupational RBCs, but were located in deep soil and do not represent a complete exposure pathway.

Detections above the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential receptors were distributed throughout TASS 2 with the highest concentrations above the occupational receptor from sample locations WP-7 and WP-9 in the center of TASS 2 and WP-13 located near the former diesel engine repair shop.

Chemical results for PAHs in TASS 2 are presented in BES Table 3A for shallow soil and BES Table 3B for deep soil (Attachment D).

5.1.2 Total Metals

Total arsenic was detected in all samples at concentrations above the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential and occupational receptors; the majority of which were below the background value of 8.8 mg/kg and do not pose additional risk to human health. Four soil samples had total arsenic concentrations above background, ranging from 9.12 to 12.1 mg/kg, but did not exceed the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for construction worker receptors of 15 mg/kg. Two of the four arsenic concentrations above background (10.4 and 12.1 mg/kg) were from soil samples deeper than 3 feet, and below the residential and occupational receptor exposure pathway.

All other metals did not exceed applicable DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs.

Chemical results for metals in TASS 2 are presented in BES Table 4A for shallow soil and BES Table 4B for deep soil (Attachment D).

5.2 GROUNDWATER SCREENING LEVEL ASSESSMENT

Groundwater data at TASS 2 was evaluated against DEQ Groundwater Ingestion, Dermal Contact, and Inhalation RBCs for construction and excavation worker receptors and Volatilization to Outdoor Air RBCs for residential and occupational receptors. Groundwater concentrations did not exceed any applicable RBCs. Groundwater chemical results and screening levels for TASS 2 sample locations are presented in BES Table 7A (Attachment D) and for the entire West Property in BES Table 7B (Attachment D).

Groundwater data from TASS 2 onsite groundwater monitoring wells MW-3 and MW-4 provide evidence that the South Larsen VOC plume did not travel cross gradient into TASS 2. Groundwater data from monitoring wells MW-2, MW-B, and borings B-1, B-2, and B-3 located immediately north of and downgradient of the TASS 2 site, the former diesel repair shop, the former UST, and other pertinent features, did not indicate the presence of contaminants that would pose a volatilization risk at TASS 2.

Groundwater does not contain contaminant concentrations that pose a risk to human health receptors.

5.3 SOIL VAPOR SCREENING LEVEL ASSESSMENT

Soil vapor data at TASS 2 was evaluated against DEQ-developed, site-specific RBCs for Volatilization to Outdoor Air. Soil vapor concentrations were generally between three and six orders of magnitude less than the DEQ-developed RBCs. Soil vapor sample chemical results and screening levels for TASS 2 sample locations are presented in Table 8 (Attachment D). Soil vapor does not contain contaminant concentrations that pose a risk to human receptors at the TASS 2 site.

Methane was evaluated following the precepts set forth in ASTM International (ASTM) E2993-23, Standard Guide for Evaluating Potential Hazard as a Result of Methane in the Vadose Zone. This calls for evaluating methane based on concentration, volume, and pressure. Due to the lack of oxygen, methane in a typical soil matrix will not burn or explode, and the LEL and UEL apply to concentrations of methane in air and do not apply to methane concentrations in soil.

The natural aeration of soil containing methane gas is not likely to generate hazardous atmospheres with respect to flammability. Additionally, except for two minor detections at the ground surface,

methane was not detected in ambient air, excavations, or enclosed spaces during the 6 June 2024 monitoring event. Biogas measurements at the TASS 2 site collected during the SVI investigation indicate that the amount of biogas generated appears to be too small to result in internal pressure associated with an increase in gas volume, so that gas transport to the ground surface will be limited by diffusion rather than advection. As the gas diffuses towards the ground surface, there should be more than sufficient oxygen to support aerobic biodegradation. However, even if there is no biodegradation, the future TASS 2 structures will have air gaps of between 5 and 18 inches above the ground surface, so any methane should not pose a risk to future occupants of TASS 2.

5.4 SCREENING LEVEL RISK ASSESSMENT UNCERTAINTIES

Risk screening using maximum concentrations instead of exposure point concentrations based on an upper confidence level on the arithmetic mean is a simple, conservative screening approach. Given that unacceptable risk from direct contact with surface soil was indicated, it is not necessary to collect additional data or conduct a more complex risk assessment, if the risks will be mitigated. Because development plans include actions to prevent contact with soil (thus removing the exposure pathway), summing of risk across chemicals and media is not necessary because the evaluation will not change the conclusion of unacceptable risk.

6. Conclusions

Based on a review of available existing data to human health RBCs and EPA RSLs (where applicable), there is risk to human health in shallow soil at TASS 2. The following sections discuss the risk and recommended actions to be performed for TASS 2. Impacts to the remaining portion of the site will be evaluated in a future RA for the entire West Property. The forthcoming final RAP will be prepared to address impacts outside the TASS 2 footprint.

6.1 SOIL

Shallow soil less than 3 feet deep at TASS 2 contains five PAHs at concentrations that exceed the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential and occupational receptors. Shallow soil also contains arsenic at concentrations that exceed the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for residential and occupational receptors. Only two shallow soil samples exceed the background value of 8.8 mg/kg. None of the exceedances are greater than the DEQ Soil Ingestion, Dermal Contact, and Inhalation RBCs for construction or excavation worker receptors.

To protect current and future users of TASS 2, the exposure pathway for human receptors to shallow soil should be addressed. The City plans to mitigate shallow soil impacts by constructing a cap (4 inches of pavement over 8 inches of gravel) over the central and western portions of the site to prevent exposure in that area. BES has prepared a draft RAP (Haley & Aldrich, 2024d) for TASS 2 to document the course of action selected for the area and a CMMP (Haley & Aldrich, 2024a) for use by TASS 2 construction workers. The City intends to require inspections for vehicle fluid leaks for all RVs entering the site and will use oil/water separators as an additional filter of surface water entering constructed bioswales for TASS 2 for stormwater management.

6.2 **GROUNDWATER**

Tetrachloroethylene (PCE), trichloroethylene (TCE), or other contaminants were not detected at concentrations greater than DEQ Vapor Intrusion into Buildings or Volatilization to Outdoor Air RBCs for residential receptors in groundwater samples collected from onsite groundwater monitoring wells MW-3 and MW-4 or in groundwater samples collected from monitoring wells MW-3, MW-B, and borings B-1, B-2, and B-3 located immediately north of and downgradient of the TASS 2 site, the former diesel repair shop, the former UST, and other pertinent features.

Groundwater data evaluated did not indicate that contaminants were present at concentrations that pose a risk to construction and excavation workers. The CMMP for TASS 2 (Haley & Aldrich, 2024a) includes procedures for handling and managing groundwater, should groundwater be encountered during excavation.

The focus of this RA is to evaluate exposure pathways and risk to human health at the site prior to construction of TASS 2; therefore, an evaluation for ecological receptors (specifically the Groundwater Discharge to Columbia Slough pathway) was not evaluated. Groundwater beneath TASS 2 will travel through adjacent portions of the West Property prior to potential discharge to Columbia Slough. Ecological receptor pathways will be evaluated in a future RA for the entire West Property.

6.3 SOIL VAPOR

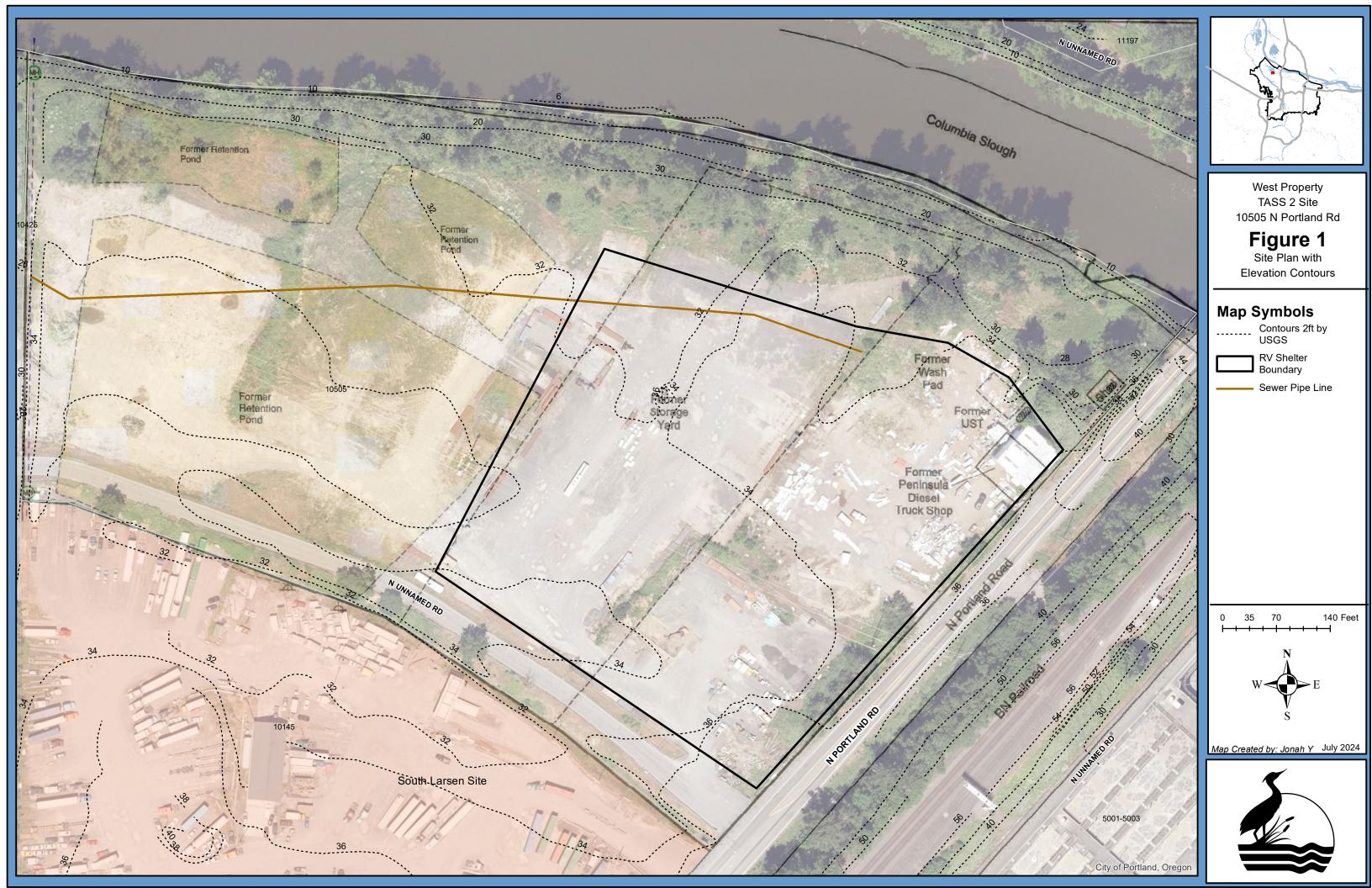
Soil vapor data evaluated did not indicate the presence of contaminants at concentrations that pose a risk to occupational or residential receptors at the TASS 2 site. The results of subsurface biogas measurements indicate that elevated concentrations of subsurface methane will aerobically biodegrade as methane diffuses towards the ground surface, and future TASS 2 structures will have air gaps of between 5 and 18 inches, so there is little risk of accumulation of methane in onsite utility conduits, future living spaces, or future common spaces at ignitable concentrations.

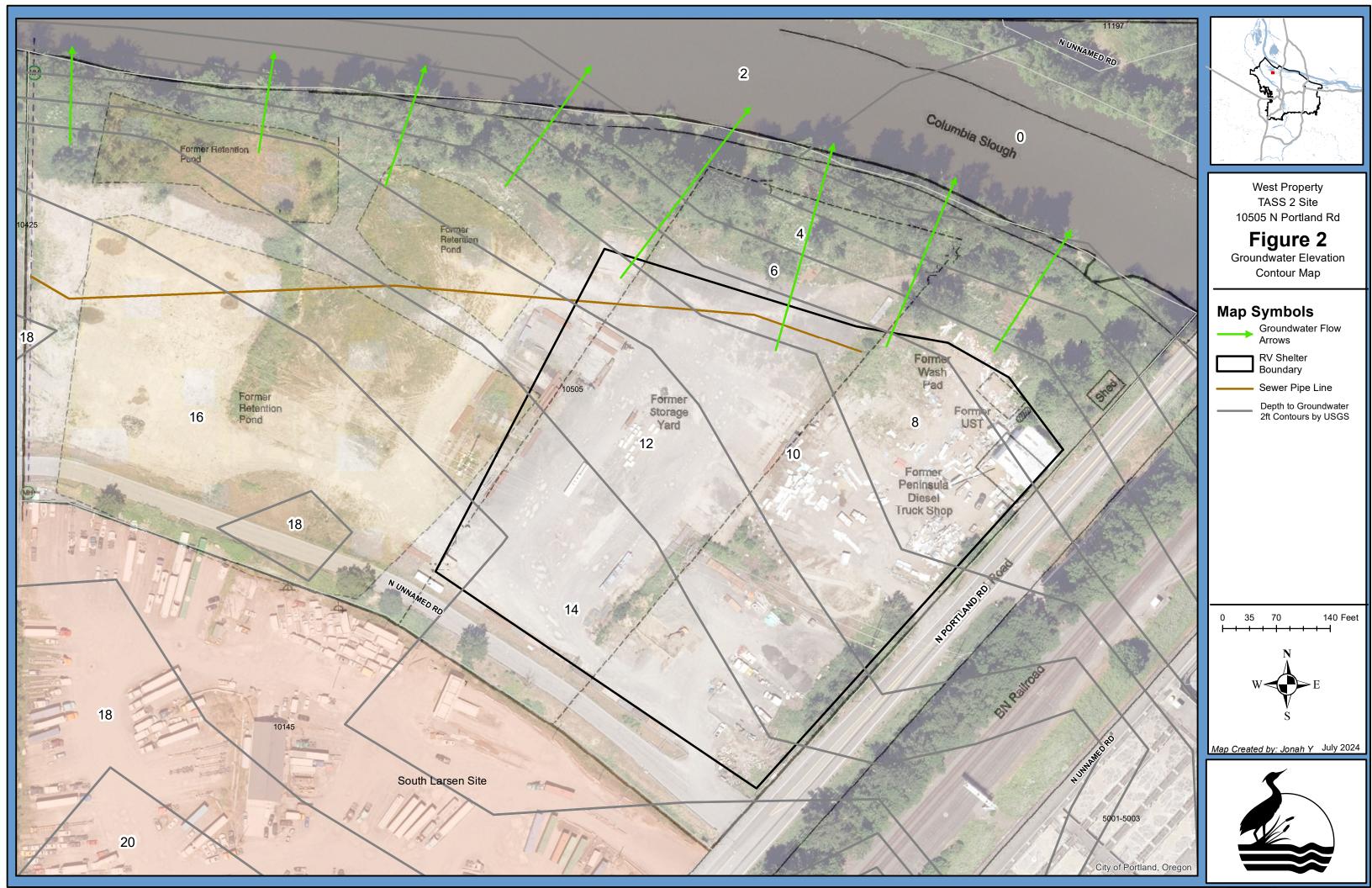
In an abundance of caution and as a conservative measure, the City developed a methane-specific HASP for use during development of TASS 2. Further, to prevent potential future methane accumulation in future utility vaults and/or subsurface conduits at the TASS 2 site, utility trench plugs consisting of controlled density fill or similar materials will likely be installed in underground utility trenches at the point where they exit the property and/or exit the subsurface, and utility boxes present at the TASS 2 site will likely be passively vented to prevent potential methane accumulation in the utility boxes. Additionally, methane monitoring of accessible subsurface features will likely be conducted as part of routine cap inspection and maintenance activities. Details of the proposed methane mitigation measures and routine cap inspection and maintenance activities will be presented in a forthcoming RAP for the TASS 2 development.

References

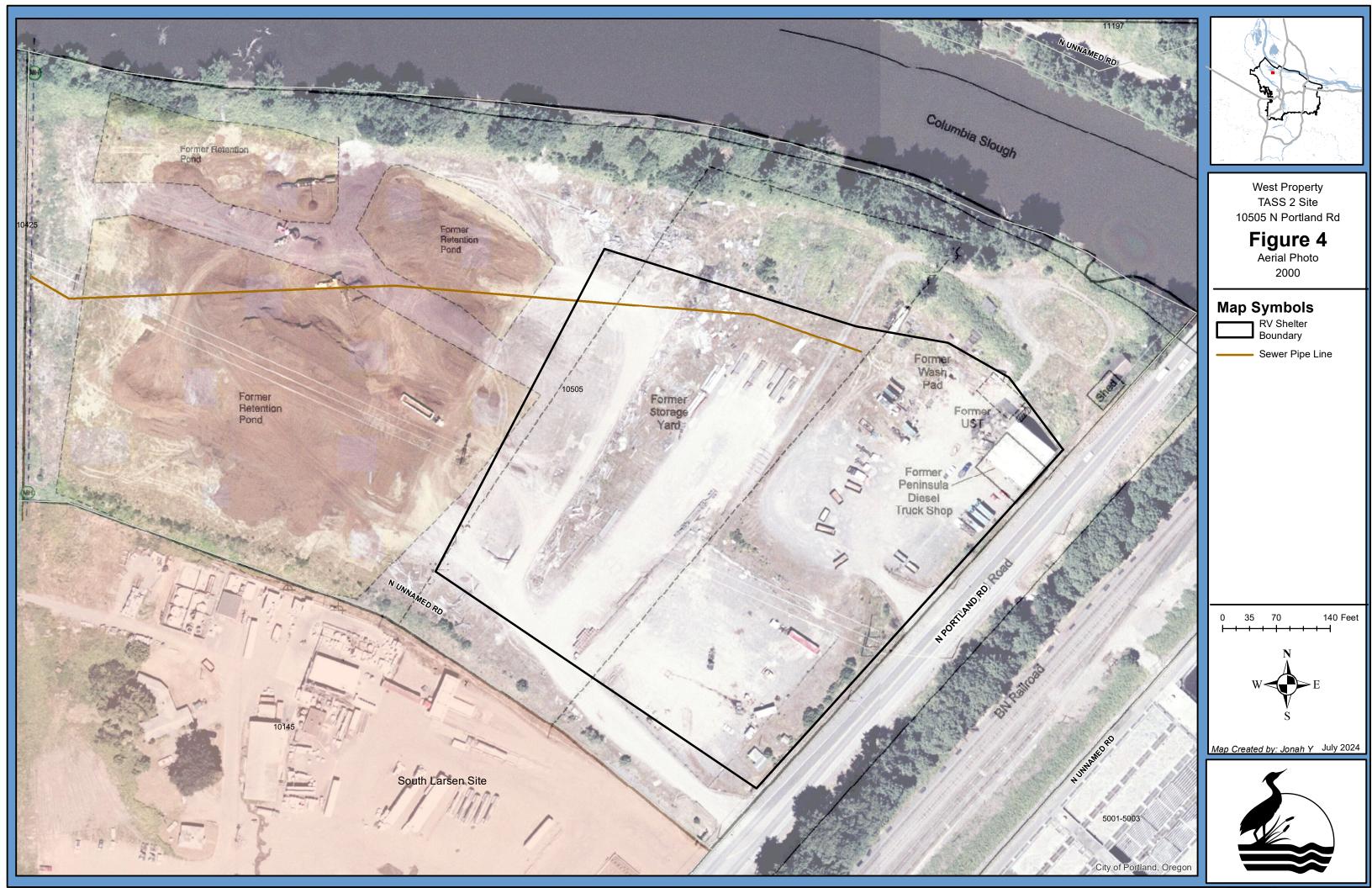
- 1. AMEC Earth & Environmental, Inc. (AMEC), 2000. Combined 20- and 45-Day UST Release Report, Larsen/PRTI Site, 10505 North Portland Road, Portland Oregon, DEQ Cleanup File No. 26-97-0558. 22 November 2000.
- 2. AMEC, 2009. North Larsen Property Monitoring Well Installation Report, North Larsen Property, 10505 N Portland Road, Portland, Oregon. 10 September 2009.
- 3. Ash Creek Associates, Inc. (Ash Creek), 2011a. Enhanced Bioremediation Report and Updated Hydrogeologic Model, 10145 North Portland Road, Portland, Oregon. 13 January 2011.
- 4. Ash Creek, 2011b. Site Management Plan Portland Road, LLC, 10145 North Portland Road. 4 May 2011.
- 5. Ash Creek, 2011c. Close Out Memorandum, Stipulation and Consent Judgement, Site location: 10145 North Portland Road, Portland Oregon, ECSI# 3337. 13 May 2011.
- 6. DEQ, 2011. Certificate of Completion, North Portland Road, LLC (former South Larsen), ECSI No. 3337. 16 August 2011.
- 7. DEQ, 2014. Columbia Slough Sediment Cleanup Program, Lower Columbia Slough Screening Levels. 3 June 2014.
- 8. DEQ, 2019. Clean Fill Determinations. 21 February 2019.
- 9. DEQ, 2020. Conducting Ecological Risk Assessments. 14 September 2020.
- 10. DEQ, 2023. Table for Risk-Based Concentrations for Individual Chemicals. August 2023.
- 11. DEQ, 2024. Draft Development of Site-Specific Soil Vapor to Outdoor Air Risk-Based Concentrations, North Larsen TASS 2 Site. 26 April 2024.
- 12. EPA, 2023. Regional Screening Levels Generic Tables (TR=1E-06, THQ=0.1). November 2023.
- 13. EPA, 2024. Updated Residential Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. 17 January 2024.
- 14. Fujitani Hilts & Associates, Inc., 2000. Project Memorandum, Preliminary Evaluation of Environmental Data. 23 August 2000.
- 15. Haley & Aldrich, 2024a. Contaminated Media Management Plan, West Property TASS 2 Site, 10505 North Portland Road, Portland, Oregon. 12 June 2024.
- 16. Haley & Aldrich, 2024b. Soil Vapor Investigation, West Property TASS 2 Site, 10505 North Portland Road, Portland, Oregon, ECSI No. 0186. 10 July 2024.
- 17. Haley & Aldrich, 2024c. Work Plan for Soil Vapor Investigation, West Property TASS 2 Site, 10505 North Portland Road, Portland, Oregon, ECSI No. 0186. 23 April 2024.

- 18. Haley & Aldrich, 2024d. Draft Remedial Action Plan, West Property TASS 2 Site, 10505 North Portland Road, Portland, Oregon. 27 March 2024.
- 19. GeoEngineers, Inc., 2011. Revised Summary Report, North Larsen Groundwater Sampling, 10505 North Portland Road, Portland, Oregon, File No. 2116-046-00. 28 October 2011.
- 20. Hahn and Associates, Inc., 2006. Preliminary Environmental Data Gap Evaluation, North Larson Property, 10505 North Portland Road, Portland, Oregon. 24 March 2006.
- 21. Kleinfelder, Inc., 2000. Limited Site Investigation and Groundwater Monitoring, Backfilled Retention Ponds, 10505 North Portland Road, Portland Oregon. 6 July 2000.
- 22. Natural Resources Conservation Service, 2023. Web Soil Survey, accessed November 2023 at: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx.
- 23. PNG Environmental, Inc. (PNG), 1999a. CSA-177, Limited Phase II Environmental Site Assessment, Larsen Property, 10505 N Portland Road, Portland, Oregon. 5 February 1999.
- 24. PNG, 1999b. Phase II Environmental Investigation, Larsen Property, 10505 North Portland Road, Portland, Oregon. 12 November 1999.
- 25. SLR International Corporation, 2024. Soil Evaluation Summary Report, 10505 North Portland Road, Portland, Oregon (Western Portion). January 2024.

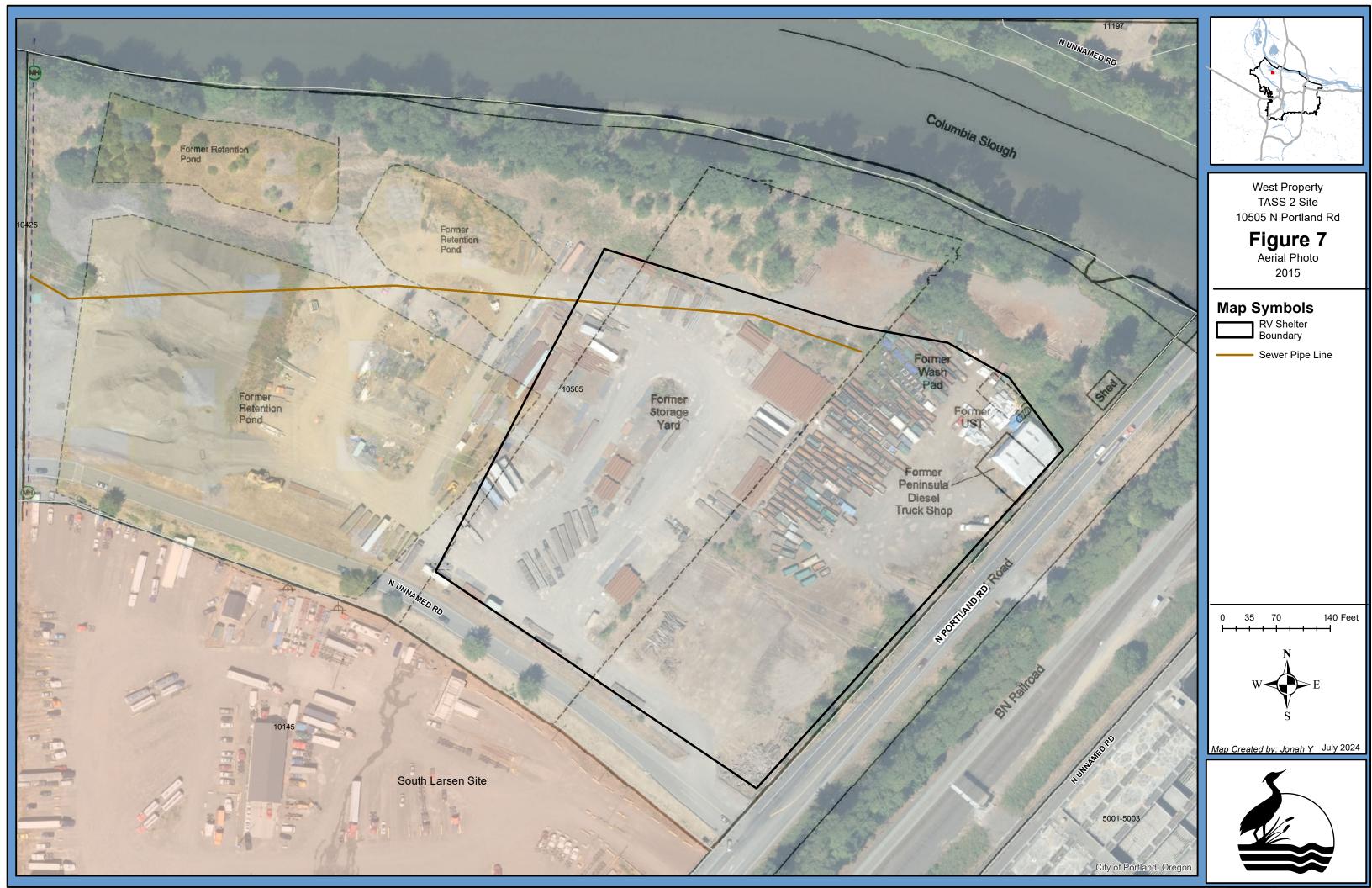

https://haleyaldrich.sharepoint.com/sites/CityofPortlandBureauofEnvironmentalServices/Shared Documents/0209772.COP West Parcel/0209772-002 North Larsen Risk Assessment/Deliverables/Risk Assessment/08 - FINAL RA 2024.08.06/2024_0813_HAI_Larsen_RA_F.docx

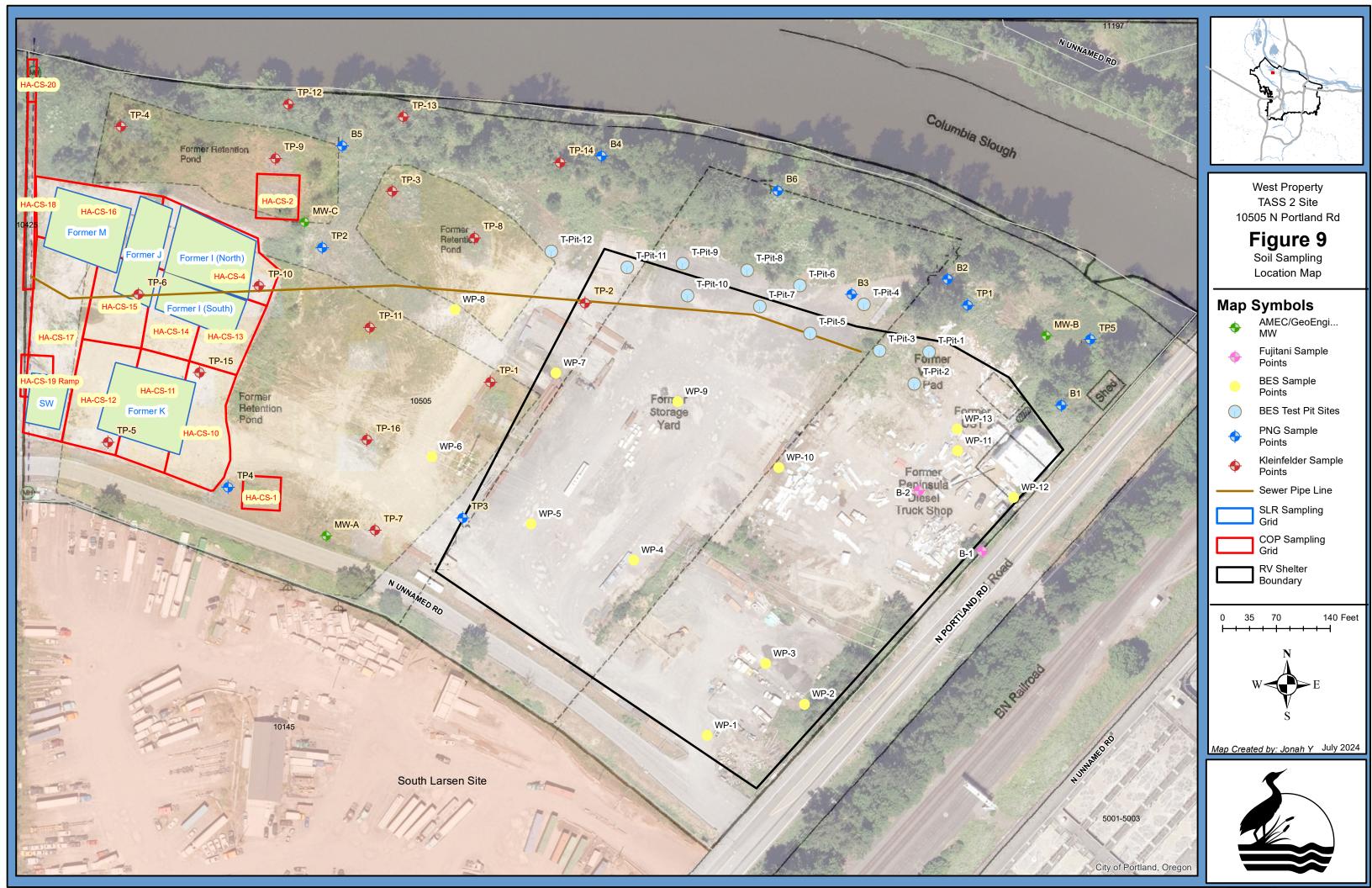


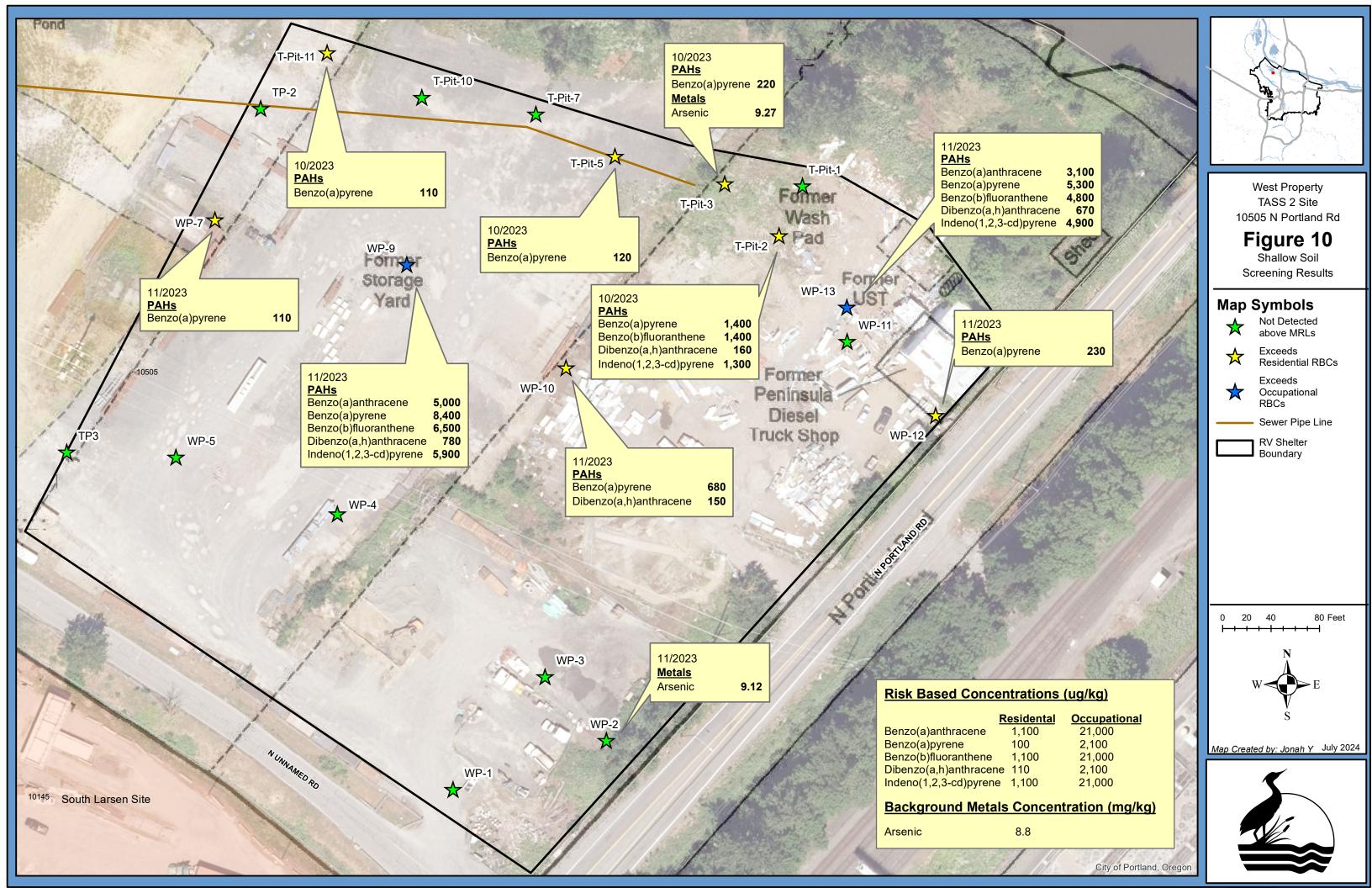


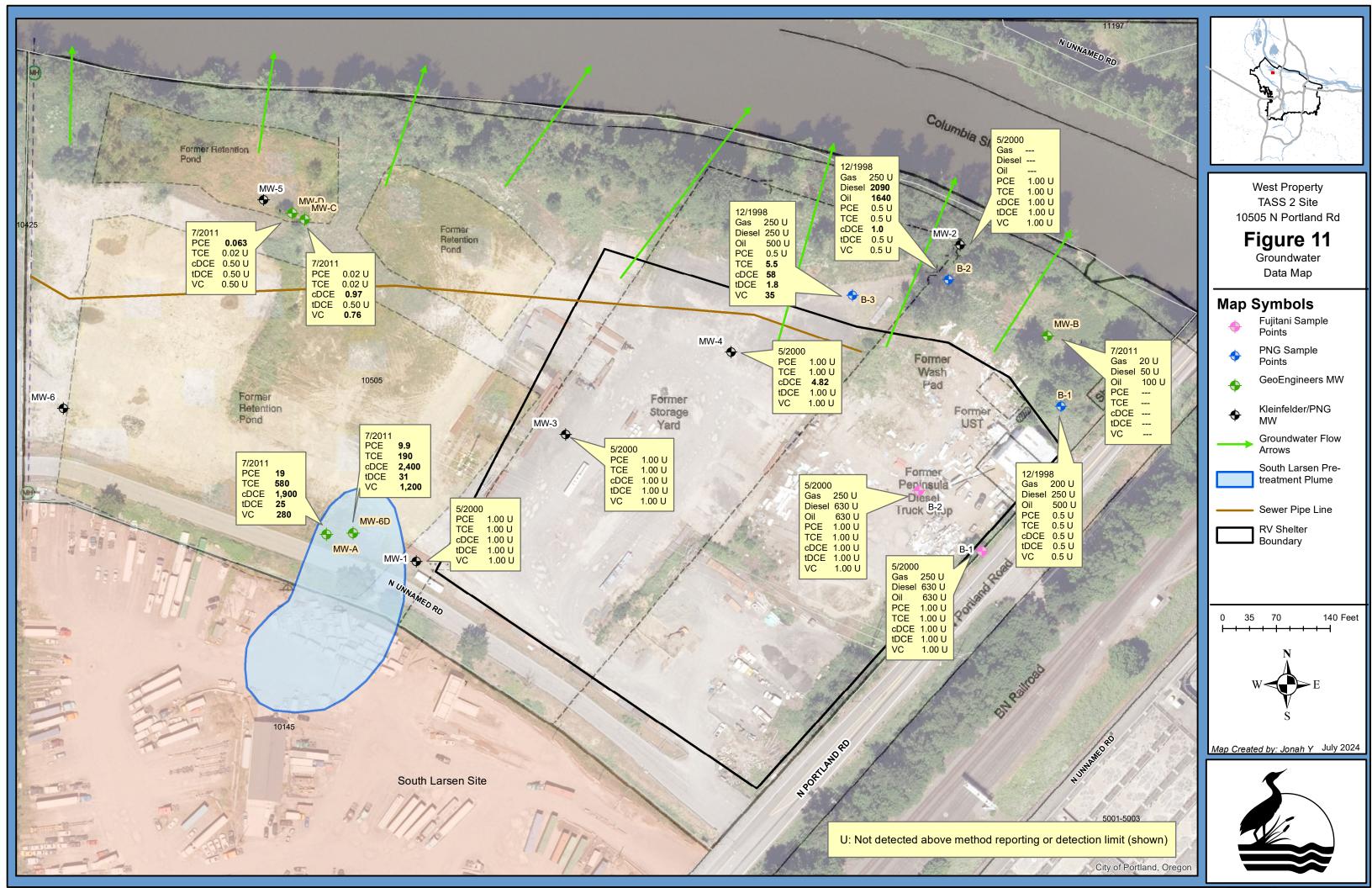


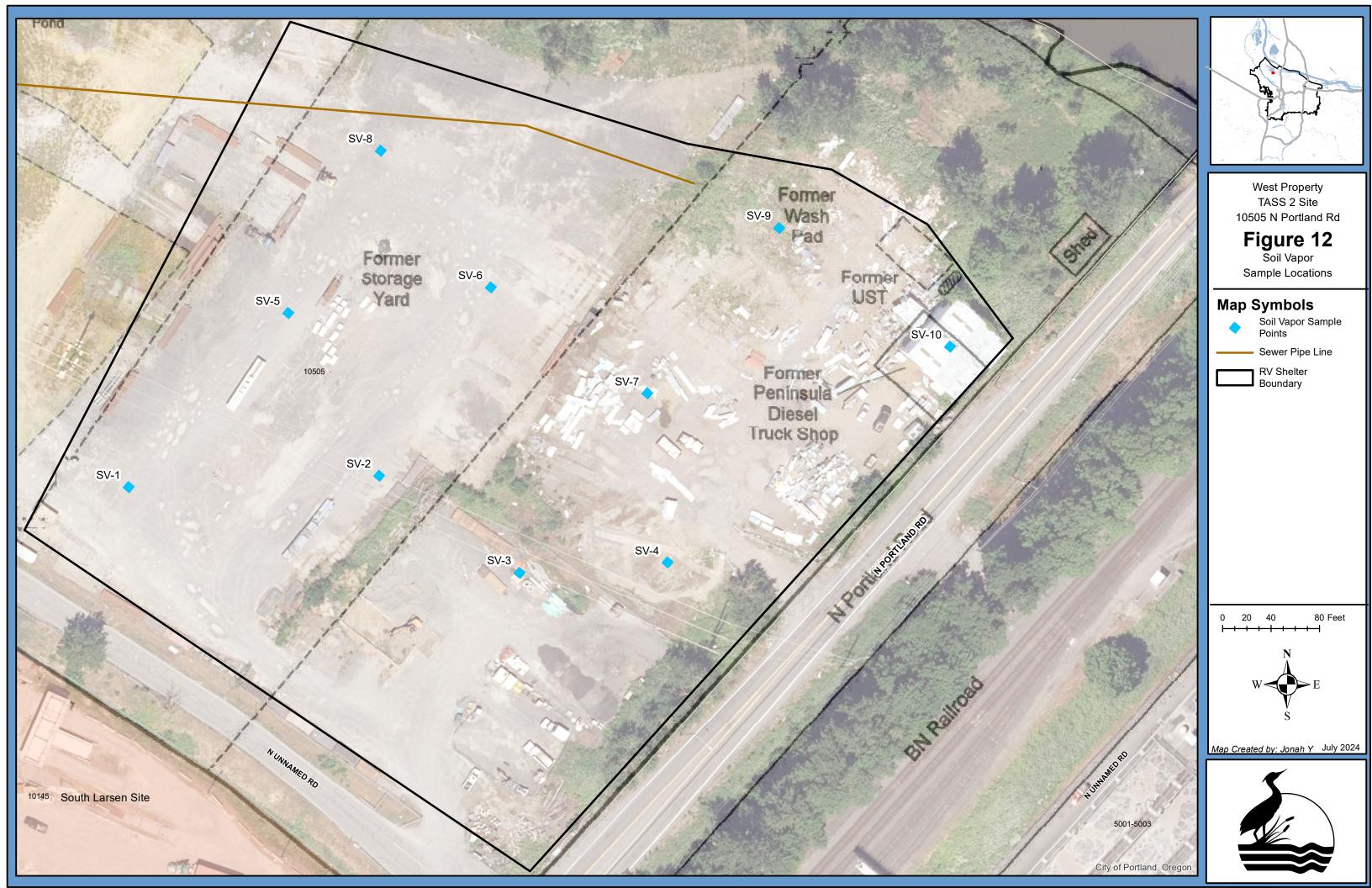
ATTACHMENT A
BES Figures

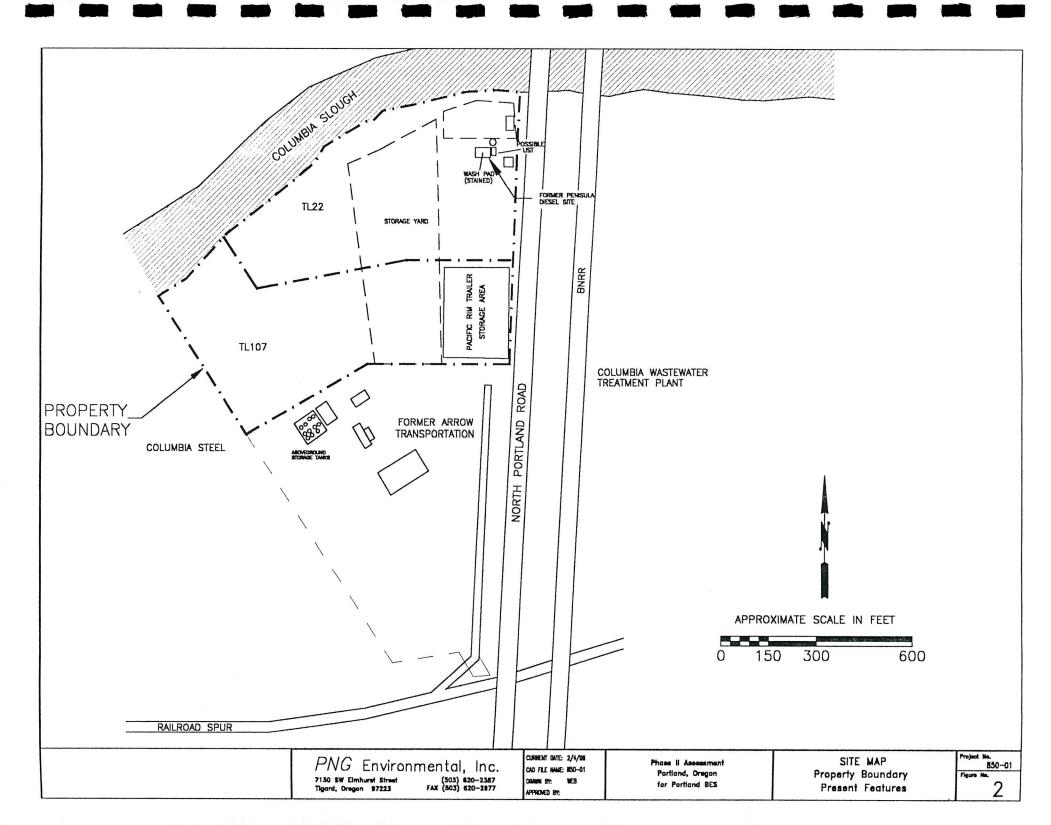


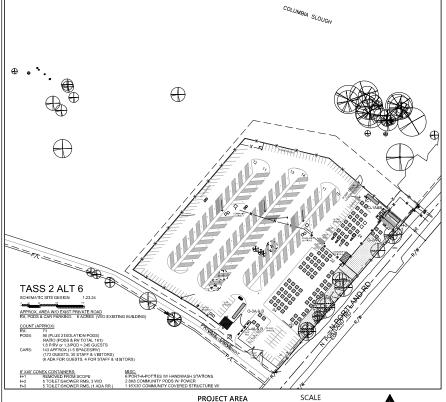




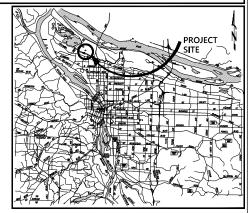








ATTACHMENT B Supporting Document Figures


ATTACHMENT C TASS 2 Development Plans

TEMPORARY ALTERNATE SHELTER - SITE 2

SHEET INDEX:

<u> </u>	10 -/.	
SHEET NUMBER	SHEET TITLE	SHEET DESCRIPTION
01	G01	COVER SHEET
02	G02	LEGEND, ABBREVIATIONS, & CONSTRUCTION NOTES
03	C01	EXISTING CONDITIONS AND DEMOLITION
04	C02	SITE PLAN
05	C03	OVERALL GRADING PLAN
06	C04	GRADING PLAN - NORTH
07	C05	GRADING PLAN - SOUTH
08	C06	SWALE GRADING PLAN - 1
09	C07	CIVIL DETAILS - 1
10	C08	CIVIL DETAILS - 2
11	CE01	ESC PLAN
12	CE02	ESC DETAILS

PORTLAND, OREGON VICINITY MAP NOT TO SCALE

DESIGN CRITERIA AND ASSUMPTIONS:

- 1. NO EXCEPTIONS TO CITY STANDARDS OR OTHER REGULATORY REQUIREMENTS WERE TAKEN DURING THE DESIGN OF THIS PROJECT
- 2. WATER QUALITY TREATMENT AND DETENTION ARE NOT REQUIRED FOR THIS PROJECT PER THE CURRENT STORMWATER MANAGEMENT
- 3. NO ENVIRONMENTAL ZONES EXIST WITHIN THE PROJECT BOUNDARY.
- 4. DESIGN IS BASED ON THE HYDRAULIC MODELING REPORT DATED <MONTH> <YEAR>.
- 5. ENVIRONMENTAL ZONES EXIST WITHIN THE PROJECT BOUNDARY, NO WORK ALLOWED EXCEPT WHAT IS AUTHORIZED.
- 6. STORMWATER FACILITIES SIZED BASED ON STORMWATER MANAGEMENT MANUAL REQUIREMENTS AND DESIGN EXCEPTIONS.
- 7. STORMWATER NARRATIVE; SUMMARIZE ANY OF THE DESIGN ASSUMPTIONS AND SERVICE LEVELS IN THIS SECTION. IF THERE IS A DESIGN REPORT, PLEASE REFERENCE IT HERE. FOR STORMWATER FACILITIES, DOCUMENT THE CATCHMENT AREA AND RUNOFF COEFFICIENTS AND/OR PEAK FLOW RATES (FOR MANUFACTURED TREATMENT) IF LESS THAN 5 FACILITIES OR CAPTURED IN ONE

DESIGN EXCEPTIONS TO CITY STANDARDS OR OTHER REGULATORY REQUIREMENTS THAT WERE TAKEN DURING THE DESIGN OF THIS PROJECT: WHERE PROPOSED 8-INCH OR 10-INCH DIAMETER SEWER MAINS ARE BEING CONSTRUCTED INSTEAD OF 12-INCH DIAMETER SEWER MAINS, FUTURE CONDITION DESIGN FLOWS ARE CONVEYED WITHOUT SURCHARGE AND A LARGER PIPE IS NOT NECESSARY. NOT ALL TERMINAL CLEANOUTS USED ON 8-INCH DIAMETER PIPE MEET

THE SEWER DESIGN MANUAL REQUIREMENTS OF 100 FEET OF PIPE OR

THIS PROJECT USES A FLAT TOP MAINTENANCE HOLE INSTEAD OF STANDARD MAINTENANCE HOLE WITH A CONE. INSIDE DROP ASSEMBLIES LARGER THAN 12 INCHES (SHEETS CXX & CXX) DUE TO MAINTENANCE HOLE DEPTHS GREATHER THAN 20 FEET.

8. SUPPORT UTILITIES, AS REQUIRED, TO PROTECT IN PLACE.

9. CONSTRUCT PER CURRENT CITY OF PORTLAND STANDARD DETAILS AND DRAWINGS, UNLESS OTHERWISE NOTED IN THE CONTRACT DOCUMENTS OR DIRECTED BY THE OWNER'S REPRESENTATIVE.

1. EXISTING GRADES AND ELEVATIONS SHOWN IN PROFILE WERE PROVIDED BY

THE CITY OF PORTLAND AND TAKEN ALONG THE CENTERLINE STATIONED ALIGNMENT OF SEWER MAIN, VERIFY ALL ELEVATIONS AND GRADES.

4. SEWER SERVICE LATERALS SHALL CONNECT TO A SEWER MAIN AND EXTEND

5. REINSTATE ALL ACTIVE SERVICE LATERAL CONNECTIONS UNLESS OTHERWISE

SEWER LATERALS SHALL BE 6-INCH ASTM D3034 PVC, SDR-35 AT 2% SLOPE

(MINIMUM) UNLESS OTHERWISE SHOWN IN THE CONTRACT DOCUMENTS OR APPROVED BY THE OWNER'S REPRESENTATIVE.

CONTRACT DOCUMENTS, UNLESS OTHERWISE DIRECTED BY THE OWNER'S

7. RECONNECT EXISTING INLET OR CATCH BASIN LEADS AS SHOWN IN THE

TO THE CURB LINE UNLESS OTHERWISE SHOWN OR DIRECTED BY OWNER'S

2. UTILITIES AND SERVICE LATERALS AS SHOWN IN THE CONTRACT DOCUMENTS ARE AT APPROXIMATE LOCATIONS. VERIFY ALL LOCATIONS IN

3. NOT ALL WATER OR GAS SERVICE LATERALS ARE SHOWN

SHOWN OR DIRECTED BY THE OWNER'S REPRESENTATIVE.

 ALL INLET PIPING SHALL BE EITHER ASTM F714 DR 26 HDPE OR ASTM D3034 PVC SDR-35. FOR G-1 INLETS INSTALL 10-INCH DIAMETER PIPE AND FOR G-2 INLETS INSTALL 12-INCH DIAMETER PIPE.

CITY OF PORTLAND VERTICAL DATUM AND OCRS83.PORTLANDIF

TATION ANGL INSTRUCTED BY ___ OIECT COMPLETED EXXXXXX_G01.dwg

 CITY OF PORTLAND Environmental Services APPROVAL

MINGUS MAPPS COMMISSIONER

ENVIRONMENTAL SERVICES CHIEF ENGINEER REG. PROF. ENGR. NO. 82245

NW NATURAL GAS

M-F 7am-6pm

AFTER HOURS

VERIZON

CITY BUREAU OF MAINTENANCE

NOTICE TO EXCAVATORS:

ATTENTION: OREGON LAW REQUIRES YOU TO FOLLOW RULES ADOPTED BY THE

OREGON UTILITY NOTIFICATION CENTER.

952-001-0090, YOU MAY OBTAIN COPIES OF THE RULES BY CALLING THE CENTER.

(NOTE: THE TELEPHONE NUMBER FOR THE OREGON UTILITY NOTIFICATION CENTER IS

POTENTIAL UNDERGROUND FACILITY OWNERS

Dig Safely.

Call the Oregon One-Call Center

DIAL 811 or 1-800-332-2344

EMERGENCY TELEPHONE NUMBERS

503-226-4211 Ext 4313

503-226-421 503-464-777

503-823-170

1-800-483-1000

THOSE RULES ARE SET FORTH IN OAR

952-001-0010 THROUGH OAR

TEMPORARY ALTERNATE SHELTER SITE 2

GENERAL NOTES:

REPRESENTATIVE

REPRESENTATIVE.

THE FIELD PRIOR TO CONSTRUCTION.

COVER SHEET

Exxxxx 01 of 12

G01

1924 1925

500 1000

LEGEND:

EXISTING PROPOSED ᅟᅟ ROAD SIGN CLEANOUT \circ_{co} CLEANOUT INLET FIELD INLET G2 INLET 0 MAINTENANCE HOLE BEEHIVE Ψ CULVERT INLET FIELD INLET 11 CULVERT OUTLET 0 MAINTENANCE HOLE 0 BOLLARD PERMANENT PLUG POLE ANCHOR TEMPORARY PLUG -¤-POLE WITH STREET LIGHT BOREHOLE \$ STREET LIGHT BIO-BAG II Θ INLET PROTECTION 0 0 DECIDUOUS TREE PROTECT TREE \odot \otimes CONFEROUS TREE REMOVE TREE M STUMP CHAIN LINK FFENCE α FIRE HYDRANT COMBINED SEWER MAIN \square_{WM} WATER METER ----- CONDUIT ₩ WATER VALVE CURB - EDGE OF GRAVEL ___ X ____ X ____ FENCE — FOP — EDGE OF PAVEMENT INLET PIPE ------ EDGE OF WATER ----XXX---- MAJOR CONTOUR LINE - FC - ENVIRONMENTAL CONSERVATION ----XXX---- MINOR CONTOUR LINE - EP - ENVIRONMENTAL PROTECTION PDL PERMANENT DISTURBANCE LIMITS ENVIRONMENTAL TRANSITION TDL TEMPORARY DISTURBANCE LIMITS PLUGGED LATERAL ___ X _____ FENCE ___ G__ G__ GAS LINE PROJECT SITE BOUNDARY GUARD RAIL PRIVATE SEWER LATERAL ----XXX----- MAJOR CONTOUR LINE ■ PRIVATE SEWER MAIN ---- XXX---- MINOR CONTOUR LINE P/L P/L PROPERTY LINE OH OVERHEAD LINE P/L PROPERTY LINE SANITARY SEWER MAIN — SAW——— SAW CUT — STM — STORM SEWER MAIN SEWER SERVICE LATERAL - - - TOE - - - TOE - TOE OF SLOPE O O O SILT FENCE

— — — TOP — — TOP — TOP OF SLOPE

_____ w___ w___ water line

STORM SEWER MAIN

ABBREVIATIONS:

DUCTILE IRON

DIAMETER

DI

DIA

DIP

MATTING SEEDING AREA

NATIVE PLANTING

CONSTRUCTION NOTES:

- DEMOLISH BUILDING, FOUNDATION PAD TO REMAIN
- EXISTING HYDRANT TO BE REMOVED AND REPLACED.
- ① DEMOLISH CHAIN LINK FENCE.
- REMOVE TREE.
- O PROTECT TREE.
- © REMOVE VEGETATION.
- O DEMOLISH GATE.
- (8) CONSTRUCT STANDARD CURB ALONG ENTIRE NORTH EDGE WITH 2-FOOT KNOCK OUTS AT DRAINAGE SWALE OUTFALLS PER STD. DWG. P-540
- CONSTRUCT 24-FT OF LOW PROFILE MOUNTABLE CURB AT WASTE WATER HOLDING TANK ACCESS ENTRANCE PER STD. DWG. P-540
- CONSTRUCT PAVEMENT SECTION WITH 4"
 ASPHALT OVER 8" AGGREGATE BASE ROCK
- CONSTRUCT WALKWAY/UTILITY ALLEY
- (I) CONSTRUCT FULLY LINED STORMWATER SWALE, SEE SHEET CO6
- CONSTRUCT FULLY LINED STORMWATER SWALE,
 SEE SHEET C06
- (S) DITCH INLET PER DETAIL P-212, SEE SHEET CO8
- STORM DRAIN MAINTENANCE HOLE PER DETAIL
- P-151, SEE SHEET COB
- SEDIMENTATION MAINTENANCE HOLE PER DETAIL
 P-161, SEE SHEET CO8
- ⊕ GATE VALVE
- (19) CONNECT TO EXISTING MAINTENANCE HOLE AAG066
- PROVIDE 1 FT BENCH BEYOND PAVEMENT AND SLOPE DOWN AT 3:1 TO MATCH EXISTING GRADE
- PROVIDE 2 FT KNOCKOUT IN CURB FOR DRAINAGE OUTFALL TO SWALE
- INSTALL CLASS 50 RIPRAP CHANNEL TO SWALE
- O CONSTRUCT LINED GRASSY SWALE PER DETAIL ON SHEET COB
- PORTLAND WATER BUREAU TO KILL EXISTING METER SERVICE
- SAWCUT AND REMOVE EXISTING ASPHALT AT DRIVEWAY ENTRANCE, EXTEND 1-FT MINIMUM INTO EXISTING ASPHALT ROAD
- (3) SEE ARCHITECTURAL PLANS FOR NEW WATER LINE SERVICES, INCLUDING HYDRANT, METERS, BACKFLOW PREVENTION AND ROUTING.
- CONNECT TO EXISTING MH (ASG066). CONTRACTOR TO FIELD LOCATE EXISTING MANHOLE LOCATION, CONFIRM EXISTING INVERT
- INFORMATION, RAISE MANHOLE TO FINISH ② CONSTRUCT DITCH INLET. TEE INTO EXISTING 8" STORM LINE WITH 8-INCH PVC PIPE. SLOPE =1.0%
- ADJUST EXISTING INLET AS NECESSARY TO MATCH FINISH GRADE.
- (3) INSTALL A FLOW-SPREADING DEVICCE AT THE INLET TO DISTRIBUTE FLOWS EVENLY ACROSS THE ROTTOM OF THE SWALE IN SWALES WITH A BOTTOM WIDTH GREATER THAN 6-FT, INSTALL A FLOW SPREADER AT LEAST EVERY 50-FT

7100112	11/11/01/15:	EXIST, EXTG, EX.	EXISTING	PGE	PORTLAND GENERAL ELECT
		FDTN	FOUNDATION	pp	POWER POLE
AC.	ACRE	FL	FLOW LINE	PROF	PROFILE
AC	ASPHALTIC CONCRETE	FT	FOOT OR FEET	PVMT	PAVEMENT
AGGR	AGGREGATE	GEN	GENERAL	R	RADIUS
APPROX	APPROXIMATE	GPM	GALLONS PER MÍNUTE	REQ D	REQUIRED
ASPH	ASPHALT	GR	GUARDRAIL	RT	RIGHT
BES	BUREAU OF ENVIRONMENTAL SERVICES	HDPE	HIGH-DENSITY POLYETHYLENE	S	SOUTH, SLOPE OR SEWER
BOTT	BOTTOM	HMAC	HOT-MIXED ASPHALT CONCRETE	SALV	SALVAGE
BDRY	BOUNDARY	HORIZ	HORIZONTAL	SE	SOUTHEAST
BR	BRIDGE	IE.	INVERT ELEVATION	SED	SEDIMENTATION
BKFL	BACKFILL	IN.	INCHES	SF, SQ FT	SQUARE FEET
BLK	BLOCK	J	JUNCTION BOX	SHT	SHEET
BLDG	BUILDING	JCT	JUNCTION	SL	STREET LIGHT OR SLOPE
CIP	CAST IRON PIPE	LB	POUND	STA	STATION
CL	CENTERLINE	LP	LIGHT POLE	STD	STANDARD
CLSM	CONCRETE LOW STRENGTH MIX	LT	LEFT	SU	SUMP
CMP	CORRUGATED METAL PIPE	MAX	MAXIMUM	SW	SOUTHWEST
CO	CLEANOUT OR COUNTY	MH	MAINTENANCE HOLE	TEMP	TEMPORARY
COMP	COMPACTED	MIN	MINIMUM	TOPO	TOPOGRAPHY
CONC	CONCRETE	MSTF	MANUFACTURED STORMWATER	TYP	TYPICAL
CONN	CONNECTION		TREATMENT FACILITY	VAR	VARIES OR VARIABLE
CONST	CONSTRUCT	N	NORTH	w	WEST, WIDTH OR WATER
CORR		NE	NORTHEAST	WM	WATER METER
CP	CONTROL POINT	NO.	NUMBER	wv	WATER VALVE
CSP	CONCRETE SEWER PIPE	NOM	NOMINAL	W/	WITH
CULV	CULVERT	NTS	NOT TO SCALE	W/O	WITHOUT

NORTHWEST

PEDESTRIAN

PROFESSIONAL ENGINEER

ELEVATION

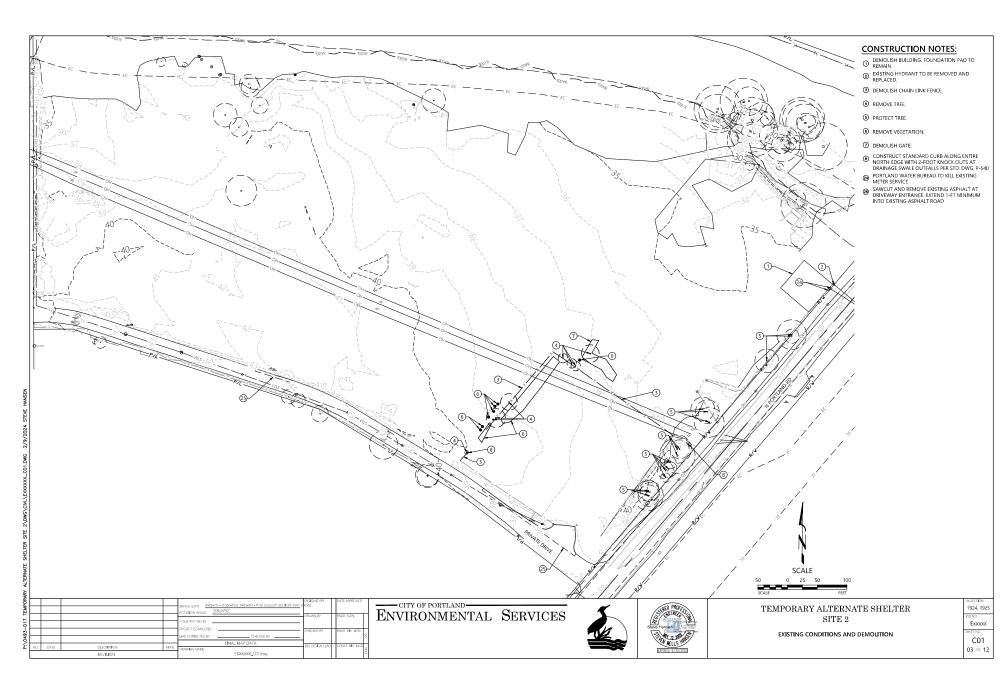
FI FIFV

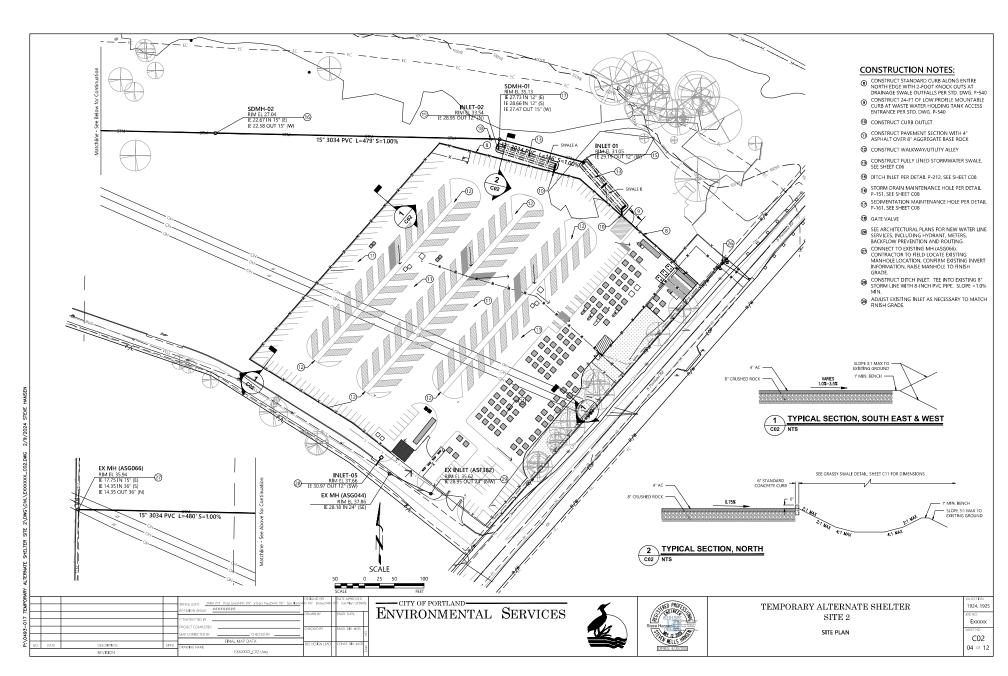
PED

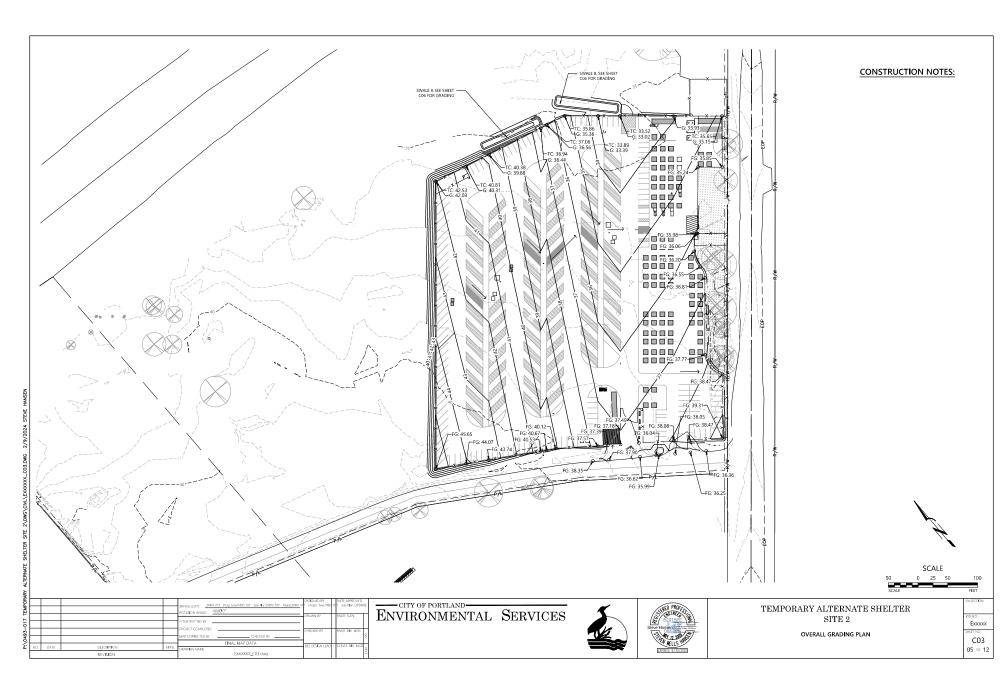
₽¥									
Š				\top		DESIGNED BY	П	DATE APPROVED	Т
TEMP					XRFR(S) USFD: ROTATION ANGLE: #######		Ц		╛
1				_	CONSTRUCTED BY	DRAWN BY	Ш	ENGR. SUPV.	П
93-0				+	PROJECT COMPLETED	CHECKED BY	Н	ENGR. DIV. MGR	Н
649					MAP CORRECTED BY CHECKED BY		Ш		8
ä	NO.	DATE	DESCRIPTION	APPD.	FINAL MAP DATA DRAWING NAME:	BES DESIGN LEAD	Н	CONST. DIV. MCR.	đ
			REVISION .		EXXXXX_G02.dwg		Ш		ŝ

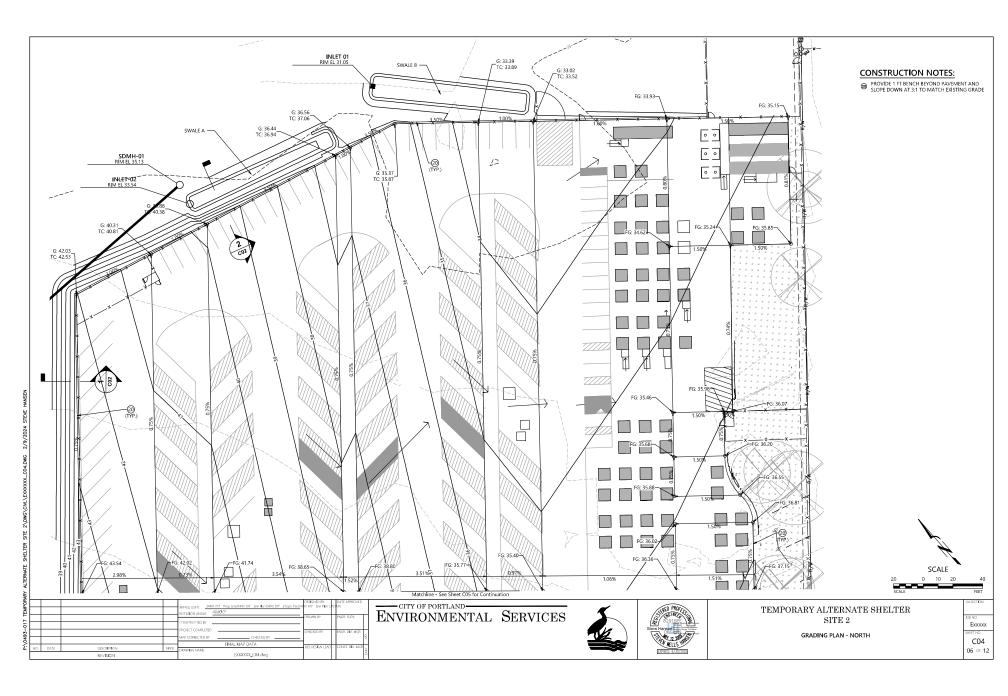
· · · · · · STORM DITCH

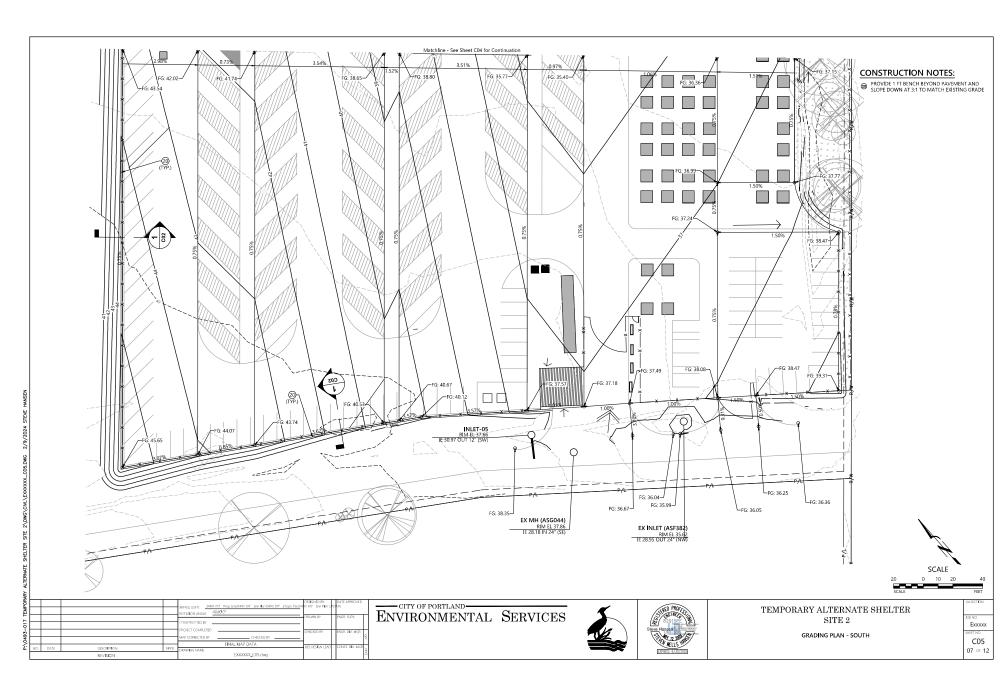
— CITY OF PORTLAND— ENVIRONMENTAL SERVICES

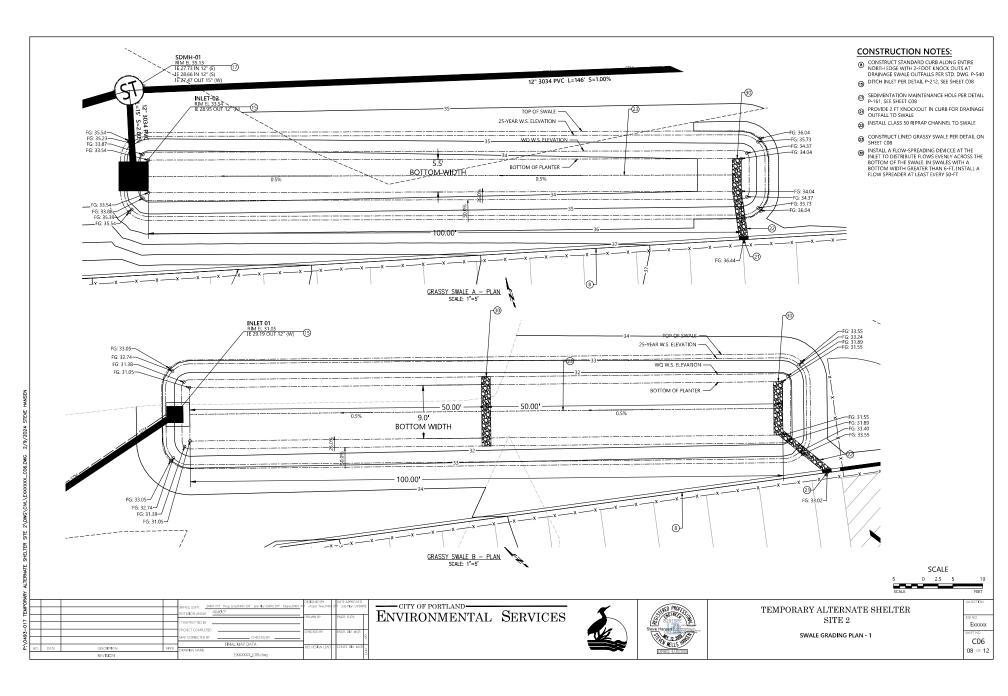

DEPMANENT

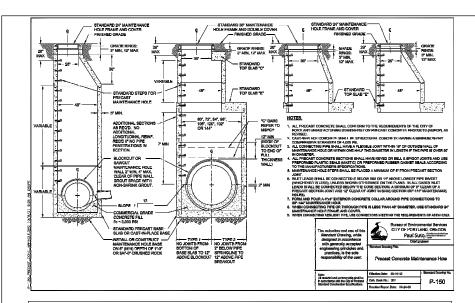

TEMPORARY ALTERNATE SHELTER SITE 2

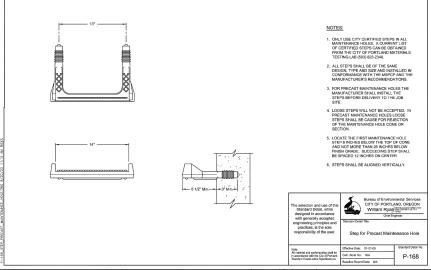

LEGEND, ABBREVIATIONS, & CONSTRUCTION NOTES

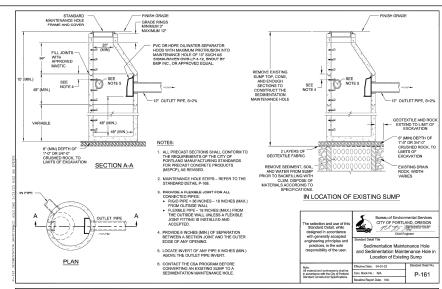

Exxxxx G02

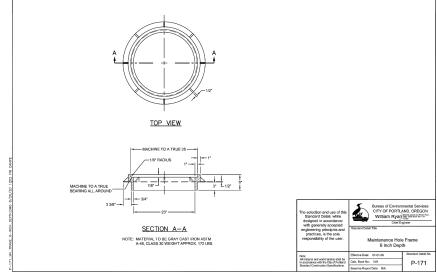

02 ∘ 12



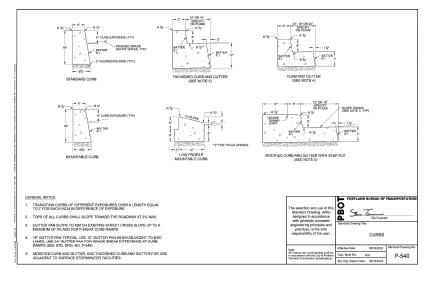


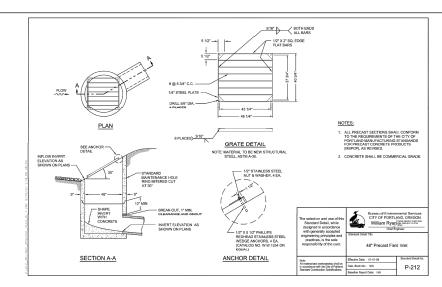


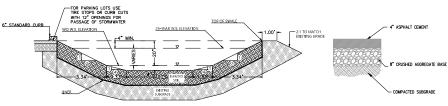




ENVIRONMENTAL SERVICES


TEMPORARY ALTERNATE SHELTER SITE 2


CIVIL DETAILS - 1


EXXXXX
SHEET NO.

CO7

O9 OF 12

- Detail Intended as an example. Detail must match PAC assumptions and/or design report.
- Setbacks: 5' from property lines except next to right-of-way; 10' from building foundations.

- I. Blended Solt: Use BES stendard soll blend for stormaster foolisities (SSMM Section 6.3) unless otherwise opproved, install imhimum of 22 on notite soil, install imhimum of 24 if there's a drinkage layer or storage layer before the imported soil. MRIESPROOF LINET: 30 MIL EPOM, HEPE CR. PRIFORD COMMAND.

- I, FLOW SPREADER: INSTALL A FLOW-SPREADING DEVICE AT THE INLET TO DISTRIBUTE FLOWS EVENLY ACROSS THE BOTTOM OF THE SWALE. IN SWALES WITH A BOTTOM MICHI OREATER THAN 6 FT, INSTALL A FLOW SPREADER AT LEAST EVERY 50 FT.
- Inspections: Coll BDS IVR Inspection Line, (503) 823-7000, request 487. 3 inspections required.

CONSTRUCTION REQUIREMENTS

Mark the location of future facilities, and fence or cover facility locations after excavation. Do not allow vehicular traffic, foot traffic, material storage, or heavy equipment within 10 feet of the infiltration area except as needed to excavate, grade, and construct the facility. Do not allow entry of runoff or

SEID MATING BACK LINKER IN THE SYMMETICAN VIEW. HERY SEED AT THE MATE SPECIALISE THE METHER, THAT'S HUST BE STRAMBURD BY THE THAT THE AREALTHY COMMETTED NO HOT LEAST HOW HOMER SAFTES SCENE OF A TROBER OF ASSESSMENT AS SOME AND ASSESSMENT THAT THE THE SYMMET COMMETTED AND BEFORE WATER IS ALLOWED TO EMPER THE FACILITY, DO NOT ALLOW ENTRY OF CONCENTRATED STOMMWATER FLOWS UNTIL THE VEGETATION IS PLULY STRAMBHED.

UNLESS VEGETATION IS ESTABLISHED PRIOR TO COMPLETION OF CONSTRUCTION, INSTALL BIODEGRADABLE EROSION CONTROL MATTING THAT IS APPROPRIATE FOR LOW-VELOCITY FLOWS (APPROXIMATELY 1 FT/S) IN THE FLOW PATH BEFORE ALLOWING WATER INTO THE FACILITY.

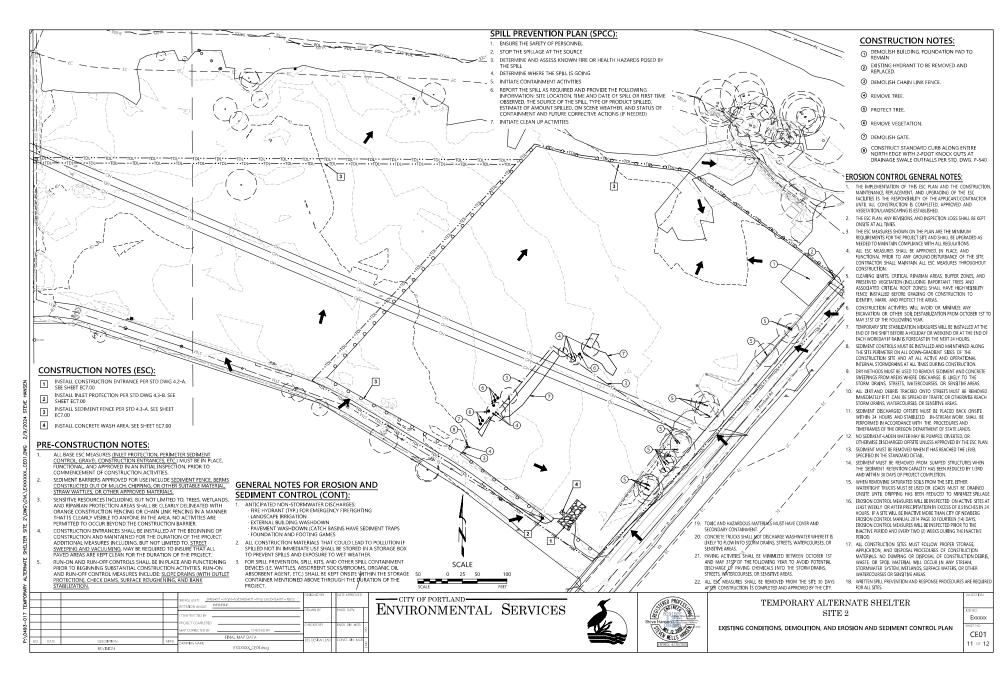
GRASSY SWALE DTAIL

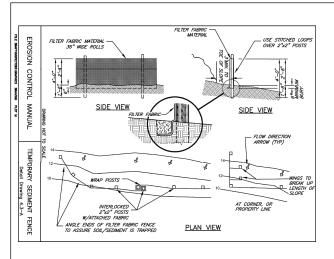
NTS

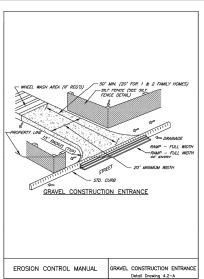
9						DESIGNED BY	DATE APPROVED	Т
E					XRFF(S) USFD: ROTATION ANGLE: 0d0/0"	DRAWN BY	ENGR. SUPV.	\perp
. 410				-	CONSTRUCTED BY	DRAWN BY	ENGK SUPV.	Ш
93					PROJECT COMPLETED	CHECKED BY	ENGR DIV MGR	Н
Š					MAP CORRECTED BY CHECKED BY FINAL MAP DATA			2
ģ.	NO.	DATE	DESCRIPTION	APPD.	DRAWING NAME:	BES DESIGN LEAD	CONST. DIV. MCR	N.
			REVISION		EXXXXXX_C08.dwg		1	F

CITY OF PORTLAND ENVIRONMENTAL SERVICES

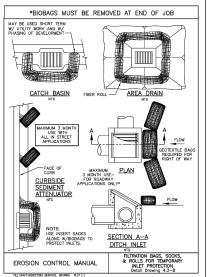
TEMPORARY ALTERNATE SHELTER SITE 2

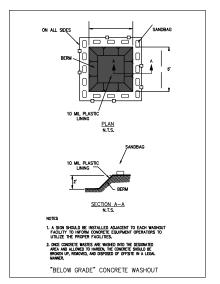

CIVIL DETAILS - 2

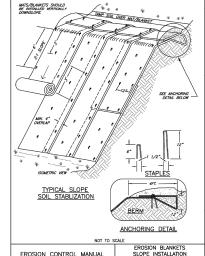

JOB NO.
Exxxxx
SHEET NO.
C08

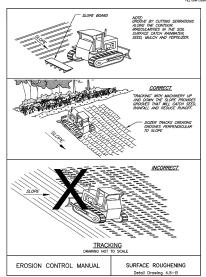

ASPHALT PAVEMENT SECTION NTS

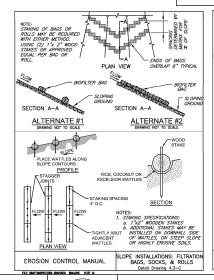
NOTE: REFER TO GEOTECHNICAL REPORT PREPARED BY XX ON XXX FOR MORE INFORMATION. CONTRACTOR TO COORDINATE WITH GEOTECHNICAL ENGINEER TO DETERMINE ACCEPTABLE COMPACTION.

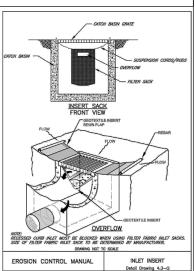

10 □ 12








ET E TOATTAMOSPYTTON SOAGAIPS TOALANG TO 301 DE DE M



				EROSION CONTROL MANUAL		NSTALLATION owing 4.5-C
				FILE DIAPTORSPECTORS GRAPHICS DIAPTING PLOT IN XREF(S) USED: ROTATION ANGLE: 0.00°.0°	DESIGNED BY	DATE APPROVED
				CONSTRUCTED BYPROJECT COMPLETED	DRAWN BY OHECKED BY	ENGR. DIV. MGR
NO.	DATE	DESCRIPTION	APPD.	MAP CORRECTED BY CHECKED BY THOUSED BY CHECKED BY	BES DESIGN LEAD	CONST. DIV. MCR.
	0	REVISION	1,,,,,	DRAWING NAME: EXXXXXX_CE02.dwg		W.

 CITY OF PORTLAND ENVIRONMENTAL SERVICES

TEMPORARY ALTERNATE SHELTER SITE 2

EROSION AND SEDIMENT CONTROL DETAILS

Exxxxx CE02 12 of 12

ATTACHMENT D BES Data Tables 1 through 9

Table 1A - TASS 2 Shallow (< 3 feet bgs¹) Soil Total Petroleum Hydrocarbons (TPH) and Soil Summary

			Laboratory Analytical Testing Results (mg/kg)									
Sample ID	Sample Date	Sampled By	Sample Depth	NWTPH- HCID	NWTPH-Gx	NWTI	PH-Dx	EPA 8260 or 8240	EPA 8270	EPA 8081B	EPA 8082	
				ПСІВ	Gasoline	Diesel	Lube Oil	VOCs	SVOCs/PAHs	Pesticides	PCBs	
BES Test Pits			(ft. bgs)				•					
T-Pit-1 0-18"	10/5/2023	BES	0-1.5	Oil		28	520		Table 3			
T-Pit-2 0-5'	10/5/2023	BES	0-5	Oil		30	480		Table 3			
T-Pit-3 0-18"	10/5/2023	BES	0-1.5	Oil		26 U	280		Table 3			
T-Pit-5 0-18"	10/5/2023	BES	0-1.5	Diesel, Oil		64	1,700		Table 3			
T-Pit-7 0-5'	10/5/2023	BES	0-5	Oil		24 U	390		Table 3	Table 5		
T-Pit-10 0-18"	10/5/2023	BES	0-1.5	Oil		47 U	450		Table 3			
T-Pit-11 0-5'	10/5/2023	BES	0-5	Oil		26 U	200		Table 3			
BES Geoprobe Sam	•		(ft. bgs)									
WP-1 0-5	11/21/2023	BES	0-5						Table 3			
WP-2 0-5	11/21/2023	BES	0-5	Oil		29 U	340		Table 3			
WP-3 0-5	11/21/2023	BES	0-5						Table 3		Table 6	
WP-4 0-5	11/21/2023	BES	0-5	Diesel, Oil		93	740		Table 3			
WP-5 0-5	11/21/2023	BES	0-5						Table 3			
WP-7 0-5	11/21/2023	BES	0-5	Oil		26	490		Table 3			
WP-9 0-5	11/21/2023	BES	0-5	Oil		100	910		Table 3			
WP-10 0-5	11/21/2023	BES	0-5	Oil		26 U	180		Table 3			
WP-11 0-1	11/21/2023	BES	0-1		4.78 U			Table 2				
WP-11 0-5	11/21/2023	BES	0-5	21 U								
WP-12 0-5	11/21/2023	BES	0-5	Oil		26 U	1,000		Table 3			
WP-13 0-5	11/21/2023	BES	0-5	Diesel, Oil		150	1,000		Table 3			
ODEQ Cleanfill												
Clean Fill Screening \					31	1,100	2,800					
ODEQ Risk Based Co	oncentration									, ,		
Soil Ingestion, Derma	l Contact, and Inha	lation RBC - Res	idential		1,200	1,100						
Soil Ingestion, Derma	l Contact, and Inha	lation RBC - Occ	upational		20,000	14,000						
Soil Ingestion, Derma Worker	l Contact, and Inha	lation RBC - Con	struction		9,700	4,600						
Soil Ingestion, Derma Worker	l Contact, and Inha	lation RBC - Exc	avation		>Max	>Max						
Volatilization to Outdo	Volatilization to Outdoor Air - Site-Specific RBC				24,000,000							
EPA Regional Screer	ning Levels - Target	hazard quotients	s = 0.1									
Soil Ingestion, Derma	l Contact, and Inha	lation for Resider	ntial									
Soil Ingestion, Derma	l Contact, and Inha	lation for Industri	al Worker									

Table 1A - TASS 2 Shallow (< 3 feet bgs¹) Soil Total Petroleum Hydrocarbons (TPH) and Soil Summary

Notes

ODEQ - Oregon Department of Enviornmental Quality

EPA - Enviornmental Protection Agency

RBCs- Risk-Based Concentrations

NWTPH-HCID - Total petroleum hydrocarbon identification

NWTPH-Dx - Diesel-range hydrcarbon quantification

NWTPH-Gx - Gasoline-range hydrocarbon quantification

VOCs - Volatile organic compounds

PAHs - Polycyclic aromatic hydrocarbons

PCBs - Polychlorinated biphenyls

bgs - Below ground surface

mg/kg - Milligrams per kilogram

U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Anaylte detected in the sample

- Analyte detected at a concentration at or above ODEQ Risk Based Concentrations

4 - 2-Butanone detection attributed to laboratory contamination

^{1.} Because of the limited data set for soil samples between 0 and 3 feet bgs, composite samples collected from between 0 and 5 feet bgs are also considered shallow soil.

Table 1B - TASS 2 Deep (> 3 feet bgs) Soil Total Petroleum Hydrocarbons (TPH) and Soil Summary

						Laborato	ry Analytica	al Testing Res	ults (mg/kg)		
Sample ID	Sample Date	Sampled By	Sample Depth	NWTPH-	NWTPH-Gx	NWTF	PH-Dx	EPA 8260 or 8240	EPA 8270	EPA 8081B	EPA 8082
				HCID	Gasoline	Diesel	Oil	VOCs	SVOCs/PAHs	Pesticides	PCBs
Enviro-Comp Sample	Enviro-Comp Samples (ft. bgs)						•				
1-S-UST-6'	7/23/1997	Enviro-Comp	6	20.0 U							
1-N-UST-6'	7/23/1997	Enviro-Comp	6	Gas, Diesel	190						
#2 S.G16'-South	7/25/1997	Enviro-Comp	16		8.3						
#2 S.G16'-West	7/25/1997	Enviro-Comp	16		12.7						
Kleinfelder & PNG Te			(ft. bgs)								
TP-2-5	5/17/2000	Kleinfelder	5					U ⁴	Table 3		
TP-2-19	5/17/2000	Kleinfelder	19					Table 2 ⁴	U		
Fujitani Hilts Sample			(ft. bgs)								
B1-S-4-10'	5/17/2000	Fujitani	4-10	20.0 U				U	U		
B1-S-7-15	5/17/2000	Fujitani	7-15	20.0 U				U	U		
B1-S-10-21	5/17/2000	Fujitani	10-21	20.0 U				U	U		
B2-S-4-10	5/18/2000	Fujitani	4-10	Oil		25 U	126	U	U		
B2-S-7-15	5/18/2000	Fujitani	7-15	Oil		25 U	1,420	U	U		
B2-S-10-20	5/18/2000	Fujitani	10-20	20.0 U				U	U		
BES Geoprobe Samples (ft. bgs)							•				
WP-1 5-10	11/21/2023	BES	5-10	Oil		27 U	190		Table 3		
WP-2 5-10	11/21/2023	BES	5-10						Table 3		
WP-3 5-10	11/21/2023	BES	5-10	Oil		26 U	260		Table 3		
WP-4 5-10	11/21/2023	BES	5-10						Table 3		
WP-5 5-10	11/21/2023	BES	5-10	20 U							
WP-7 5-10	11/21/2023	BES	5-10	Oil		29 U	220		Table 3		
WP-9 5-10	11/21/2023	BES	5-10						Table 3		
WP-10 5-10	11/21/2023	BES	5-10						Table 3		U
WP-11 5-10	11/21/2023	BES	5-10						Table 3		
WP-11 10-15	11/21/2023	BES	10-15	22 U							
WP-12 5-10	11/21/2023	BES	5-10						Table 3		
WP-13 5-10	11/21/2023	BES	5-10						Table 3		
WP-13 10-15	11/21/2023	BES	10-15	Oil		31 U	180		Table 3		
ODEQ Cleanfill	,,	323		<u> </u>		<u> </u>	100		14.5.5		
Clean Fill Screening V	alue				31	1,100	2,800				
ODEQ Risk Based Co					<u> </u>	1,100	2,000				
Soil Ingestion, Dermal		lation RBC - Cons	struction		0.700	4.000					
Worker					9,700	4,600					
Soil Ingestion, Dermal Worker	Contact, and Inha	lation RBC - Exca	vation		>Max	>Max					
Volatilization to Outdoo	or Air - Residential				5,900	>Max					
Volatilization to Outdoo					69,000	>Max					
EPA Regional Screeni			= 0.1		12,000		1				
Soil Ingestion, Dermal		•									
Soil Ingestion Dermal	Contact and Inha	lation for Industria	al Worker								

Table 1B - TASS 2 Deep (> 3 feet bgs) Soil Total Petroleum Hydrocarbons (TPH) and Soil Summary

Notes

ODEQ - Oregon Department of Enviornmental Quality

EPA - Enviornmental Protection Agency

RBCs- Risk-Based Concentrations

NWTPH-HCID - Total petroleum hydrocarbon identification

NWTPH-Dx - Diesel-range hydrcarbon quantification

NWTPH-Gx - Gasoline-range hydrocarbon quantification

VOCs - Volatile organic compounds

PAHs - Polycyclic aromatic hydrocarbons

PCBs - Polychlorinated biphenyls

bgs - Below ground surface

mg/kg - Milligrams per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Anaylte detected in the sample

- Analyte detected at a concentration at or above ODEQ Risk Based Concentrations

4 - 2-Butanone detection attributed to laboratory contamination

Table 1C - West Property Soil Total Petroleum Hydrocarbons (TPH) and Soil Summary

able 1C - West Prope	erty Soil Total Pe	troleum Hydroc	arbons (TPH	l) and Soil Sum	mary						
						Laborato	ory Analytica	Testing Resu	ılts (mg/kg)		
Sample ID	Sample Date	Sampled By	Sample Depth	NWTPH-	NWTPH-Gx	NWTF	PH-Dx	EPA 8260 or	EPA 8270	EPA 8081B	EPA 808
			Берш	HCID	0 !!	D: I	0:1	8240		D. C. C.	
in in Comm Commis			/f(Gasoline	Diesel	Oil	VOCs	SVOCs/PAHs	Pesticides	PCBs
Inviro-Comp Sample: 1-S-UST-6'	7/23/1997	Enviro-Comp	(ft. bgs)	20.0 U							
1-N-UST-6'	7/23/1997	Enviro-Comp	6	Gas, Diesel	190						
#2 S.G16'-South	7/25/1997	Enviro-Comp	16		8.3						
#2 S.G16'-West	7/25/1997	Enviro-Comp	16		12.7						
#1-P-SW-3' #1-P-SW-3'	7/30/1997 7/30/1997	Enviro-Comp Enviro-Comp	3				320 320				
#2-P-SE-3'	7/30/1997	Enviro-Comp	3				246				
#3-P-E-3'	7/30/1997	Enviro-Comp	3				150				
#4-P-B-5'	7/30/1997	Enviro-Comp	5				647				
NG Geoprobe Samp B1-5	12/17/1998	PNG	(ft. bgs) 5	Oil		25 U	100		<u></u>		
B1-17	12/17/1998	PNG	17	U		25 U	100 U				
B2-5	12/17/1998	PNG	5	Oil		25 U	1,410				
B2-12	12/17/1998	PNG	12	Oil		25 U	809	Table 2	Table 3		
B3-7 B3-15	12/17/1998 12/17/1998	PNG PNG	7 15	Oil, Diesel Oil		133 25 U	856 292				
B4-7	12/17/1998	PNG	7	Oil		25 U	168				
B5-6	12/17/1998	PNG	6	Oil		25 U	617				
B6-8	12/17/1998	PNG	8	Oil, Diesel		148	740				
einfelder & PNG Tes		DNC	(ft. bgs)		1 470	250 11	116	1.4			
TP1-12 TP2-17	5/18/1999 5/18/1999	PNG PNG	12 17		1,470 3.63	250 U 125 U	116 423	U ⁴	U		
TP3-13	5/18/1999	PNG	13		4.77	250 U	1,000	Table 2 ⁴	Ü		
TP5-8	5/18/1999	PNG	8		2.50 U	125 U	1,440	U ⁴	U		
TP-1-7	5/17/2000	Kleinfelder	7					U ⁴	U		
TP-1-19 TP-2-5	5/17/2000 5/17/2000	Kleinfelder Kleinfelder	19 5					U ⁴	U Table 3		
TP-2-19	5/17/2000	Kleinfelder	19					Table 2 ⁴	U		
TP-310	5/17/2000	Kleinfelder	10					U ⁴	Table 3		
TP-3-21	5/17/2000	Kleinfelder	21					U ⁴	U		
TP-4-11 TP-4-21	5/17/2000 5/17/2000	Kleinfelder Kleinfelder	11 21					U ⁴	U		
TP-4-21 TP-5-11	5/17/2000	Kleinfelder	11					U* U4	U		
TP-5-21	5/17/2000	Kleinfelder	21					U ⁴	U		
TP-6-5	5/17/2000	Kleinfelder	5					U^4	U		
TP-6-13	5/17/2000	Kleinfelder	13					Table 2 ⁴	Table 3		
TP-7-5 TP-7-17	5/17/2000 5/17/2000	Kleinfelder Kleinfelder	5 17					U ⁴	U Table 3		
TP-8-5	5/17/2000	Kleinfelder	5					U ⁴	U		
TP-8-19	5/17/2000	Kleinfelder	19					U ⁴	U		
TP-9-5	5/17/2000	Kleinfelder	5					U ⁴	U		
TP-9-11 TP-10-10	5/17/2000 5/17/2000	Kleinfelder Kleinfelder	11 10					U ⁴	U		
TP-10-16	5/17/2000	Kleinfelder	16					U ⁴	Ü		
TP-11-5	5/17/2000	Kleinfelder	5					U ⁴	Ü		
TP-11-11	5/17/2000	Kleinfelder	11					Table 2⁴	U		
TP-11-21	5/17/2000	Kleinfelder	21					U ⁴	U		
TP-12-5 TP-12-21	5/17/2000 5/17/2000	Kleinfelder Kleinfelder	5 21					U ⁴	U U		
TP-13-19	5/17/2000	Kleinfelder	19					U ⁴	Ü		
TP-13-21	5/17/2000	Kleinfelder	21					U^4	U		
TP-14-12	5/17/2000	Kleinfelder	12					U ⁴	U		
TP-14-20 TP-15-12	5/17/2000 5/17/2000	Kleinfelder Kleinfelder	20 12					U ⁴	U U		
TP-15-21	5/17/2000	Kleinfelder	21					U ⁴	Table 3		
TP-16-5	5/17/2000	Kleinfelder	5					U ⁴	U		
TP-16-9	5/17/2000	Kleinfelder	9 (ft. la aux.)					U ⁴	U		
ijitani Hilts Samples B1-S-4-10'	5/17/2000	Fujitani	(ft. bgs) 4-10	20.0 U	I I			U	U		
B1-S-7-15	5/17/2000	Fujitani	7-15	20.0 U				Ü	Ü		
B1-S-10-21	5/17/2000	Fujitani	10-21	20.0 U				U	U		
B2-S-4-10	5/18/2000	Fujitani	4-10	Oil		25 U	126	U	U		
B2-S-7-15 B2-S-10-20	5/18/2000 5/18/2000	Fujitani Fujitani	7-15 10-20	Oil 20.0 U		25 U 	1,420 	U	U U		
MEC Soil Samples	3/10/2000	i ujitani	(ft. bgs)	20.0 0							
MW-A 35-36	3/30/2009	AMEC	35-36					Table 2			
MW-B 6-7	3/31/2009	AMEC	6-7		4.46 U	5.56 U	133		Table 3		
MW-B 26-27 MW- C 30-31	3/31/2009 4/1/2009	AMEC AMEC	26-27 30-31		5.56 U	30 U	60 U 	 Table 2			
olumbia Steel Pile R		AIVIEC	(ft. bgs)					I able 2			
HA-CS-4 0	5/12/2020	BES	0								
HA-CS-4 6"	5/12/2020	BES	0.5								
HA-CS-10 HA-CS-11	5/27/2020 5/27/2020	BES BES	0.5 0.5								
HA-CS-11	5/27/2020	BES	0.5								
HA-CS-13	9/28/2020	BES	0.5								
HA-CS-14	9/28/2020	BES	0.5								
HA-CS-15 HA-CS-16	9/28/2020 5/28/2020	BES BES	0.5 0.5								
HA-CS-16 HA-CS-17	5/28/2020 9/28/2020	BES BES	0.5								
CS-17-PILE	6/23/2020	BES	0.5								
HA-CS-18	9/28/2020	BES	0.5			29 U	59 U		U	Table 5	U
HA-CS-19 Ramp	9/28/2020	BES	0.5								
HA-CS-19-Ramp-2 HA-CS-20	1/3/2024 9/28/2020	BES BES	0.5 0.5			 26 U	 51 U		 Table 3	 Table 5	 U
CS-15-PIT	5/28/2020	BES	~ 0-6		191	4,900	6,400	Table 2	Table 3	rable 5	Table
S Baseline			(ft. bgs)			,	.,				
HA-CS-1 0	5/8/2020	BES	0								
HA-CS-2.0	5/8/2020	BES	0.5								
HA-CS-2 0 HA-CS-2 6"	5/8/2020 5/8/2020	BES BES	0.5								
S Test Pits	0,0,2020	550	(ft. bgs)								
T-Pit-1 0-18"	10/5/2023	BES	0-1.5	Oil		28	520		Table 3		
T-Pit-2 0-5'	10/5/2023	BES	0-5	Oil		30	480		Table 3		
T-Pit-3 0-18"	10/5/2023	BES	0-1.5	Oil		26 U	280		Table 3		
T-Pit-4 0-5'	10/5/2023	BES	0-5	Diesel,		190	2,100		Table 3		
T-Pit-5 0-18"	10/5/2023	BES	0-1.5	Gasoline, Oil Diesel, Oil		64	1,700		Table 3		
T-Pit-6 0-18"	10/5/2023	BES	0-1.5 0-1.5	Oil		27 U	1,700 390		Table 3		
T-Pit-6 0-5'	10/5/2023	BES	0-1.5	Oil		43	600		Table 3		U
T-Pit-7 0-5'	10/5/2023	BES	0-5	Oil		24 U	390		Table 3	Table 5	
T-Pit-8 0-18"	10/5/2023	BES	0-1.5	Oil		49 U	1,400		Table 3		
		. טבפ	O.E	Oil			. EEN		Table 3		
T-Pit-9 0-5' T-Pit-10 0-18"	10/5/2023 10/5/2023	BES BES	0-5 0-1.5	Oil Oil		27 47 U	550 450		Table 3		

Table 1C - West Property Soil Total Petroleum Hydrocarbons (TPH) and Soil Summary

T-Pit-12 0-18" BES Geoprobe Sample: WP-1 0-5 WP-1 5-10 WP-2 0-5 WP-2 5-10 WP-3 0-5	10/5/2023 11/21/2023 11/21/2023 11/21/2023	Sampled By BES BES	Sample Depth 0-1.5	NWTPH- HCID	NWTPH-Gx	NWTF		EPA 8260 or	EPA 8270	EDA 0004B	
T-Pit-12 0-18" BES Geoprobe Sample: WP-1 0-5 WP-1 5-10 WP-2 0-5 WP-2 5-10	10/5/2023 s 11/21/2023 11/21/2023	BES	Depth		NWTPH-Gx	NWTF	PH-Dx	1	EDA 9270	EDA 0004B	EDA 0000
WP-1 0-5 WP-1 5-10 WP-2 0-5 WP-2 5-10	11/21/2023 11/21/2023		0-1 5	ПСІВ			11 DX	8240	EFA 0270	EPA 8081B	EPA 8082
WP-1 0-5 WP-1 5-10 WP-2 0-5 WP-2 5-10	11/21/2023 11/21/2023		0-1.5		Gasoline	Diesel	Oil	VOCs	SVOCs/PAHs	Pesticides	PCBs
WP-1 0-5 WP-1 5-10 WP-2 0-5 WP-2 5-10	11/21/2023 11/21/2023	DEC	0-1.5	Oil		24 U	410		Table 3		
WP-1 5-10 WP-2 0-5 WP-2 5-10	11/21/2023	DEC	(ft. bgs)								
WP-2 0-5 WP-2 5-10		DES	0-5						Table 3		
WP-2 5-10	11/21/2023	BES	5-10	Oil		27 U	190		Table 3		
		BES	0-5	Oil		29 U	340		Table 3		
WD305	11/21/2023	BES	5-10						Table 3		
	11/21/2023	BES	0-5						Table 3		Table 6
WP-3 5-10	11/21/2023	BES	5-10	Oil		26 U	260		Table 3		
WP-4 0-5	11/21/2023	BES	0-5	Diesel, Oil		93	740		Table 3		
WP-4 5-10	11/21/2023	BES	5-10						Table 3		
WP-5 0-5	11/21/2023	BES	0-5						Table 3		
WP-5 5-10	11/21/2023	BES	5-10	20 U							
WP-6 0-5	11/21/2023	BES	0-5	Oil		28 U	96		Table 3		
WP-6 5-10	11/21/2023	BES	5-10						Table 3		
WP-7 0-5	11/21/2023	BES	0-5	Oil		26	490		Table 3		
WP-7 5-10	11/21/2023	BES	5-10	Oil		29 U	220		Table 3		
WP-8 0-5	11/21/2023	BES	0-5						Table 3		U
WP-8 5-10	11/21/2023	BES	5-10	Oil		29 U	200		Table 3		
WP-9 0-5	11/21/2023	BES	0-5	Oil		100	910		Table 3		
WP-9 5-10	11/21/2023	BES	5-10						Table 3		
WP-10 0-5	11/21/2023	BES	0-5	Oil		26 U	180		Table 3		
WP-10 5-10	11/21/2023	BES	5-10						Table 3		U
WP-11 0-1	11/21/2023	BES	0-1		4.78 U			Table 2			
WP-11 0-5	11/21/2023	BES	0-5	21 U							
WP-11 5-10	11/21/2023	BES	5-10						Table 3		
WP-11 10-15	11/21/2023	BES	10-15	22 U							
WP-12 0-5	11/21/2023	BES	0-5	Oil		26 U	1,000		Table 3		
WP-12 5-10	11/21/2023	BES	5-10						Table 3		
WP-13 0-5	11/21/2023	BES	0-5	Diesel, Oil		150	1,000		Table 3		
WP-13 5-10	11/21/2023	BES	5-10						Table 3		
WP-13 10-15	11/21/2023	BES	10-15	Oil		31 U	180		Table 3		
ODEQ Cleanfill								•			
Clean Fill Screening Valu ODEQ Risk Based Conc					31	1,100	2,800				
Soil Ingestion, Dermal Co		ation RBC - Resi	dential		1,200	1,100					
Soil Ingestion, Dermal Co					20,000	14,000					
Soil Ingestion, Dermal Co	-				·						
Worker Soil Ingestion, Dermal Co					9,700	4,600					
Worker		ation NDC - Exce	avalion		>Max	>Max					
Volatilization to Outdoor					5,900	>Max					
Volatilization to Outdoor	Air - Occupation	al			69,000	>Max					
EPA Regional Screening	Levels - Target	hazard quotients	= 0.1								
Soil Ingestion, Dermal Co	ontact, and Inhal	ation for Residen	itial								
Soil Ingestion, Dermal Co	ontact, and Inhal	ation for Industria	al Worker								

Notes

ODEQ - Oregon Department of Enviornmental Quality

EPA - Enviornmental Protection Agency RBCs- Risk-Based Concentrations

NWTPH-HCID - Total petroleum hydrocarbon identification NWTPH-Dx - Diesel-range hydrocarbon quantification NWTPH-Gx - Gasoline-range hydrocarbon quantification

VOCs - Volatile organic compounds PAHs - Polycyclic aromatic hydrocarbons PCBs - Polychlorinated biphenyls bgs - Below ground surface

mg/kg - Milligrams per kilogram
U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Anaylte detected in the sample

- Analyte detected at a concentration at or above ODEQ Risk Based Concentrations

4 - 2-Butanone detection attributed to laboratory contamination

Table 2A - TASS 2 Soil Analytical Results: Volatile Organic Compounds (VOCs)

								Volatile Or		cal Testing R ounds by EPA	esults 8260 or 8240) (ug/kg)				
Sample ID	Sample Date	Sampled By	Sample Depth	1,1,1- Trichloroethane	1,1,2- Trichloroethane	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	1,2- Dichlorobenzene	1,3- Dichlorobenzene	1,4- Dichlorobenzene	cis-1,2- Dichloroethene	2-Chlorotoluene	Acetone	Benzene	Chlorobenzene	Ethylbenzene
Kleinfelder & PN	G Test Pits		(ft. bgs)													
TP-2-5	5/17/2000	Kleinfelder	5	100 U	100 U	100 U	100 U	100 U		100 U	100 U		1,000 U	100 U	100 U	100 U
TP-2-19	5/17/2000	Kleinfelder	19	100 U	100 U	100 U	100 U	100 U		100 U	100 U		1,000 U	100 U	100 U	100 U
BES Sample Poir			(ft. bgs)													
WP-11 0-1	11/21/2023	BES	0-1	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	957 U	23.9 U	23.9 U	23.9 U
ODEQ Cleanfill																
Clean Fill Screeni	ng Value			190,000	3.6	200	11,000	920	740	57		14,000	1,200	23	2,400	230
ODEQ Risk Based																
Soil Ingestion, De Residential	rmal Contact, and I	nhalation RBC) -	53,000,000	3,200	430,000	430,000	2,200,000		14,000	160,000			8,200	530,000	34,000
Soil Ingestion, De	rmal Contact, and I	nhalation RBC	C - Occupational	870,000,000	26,000	6,900,000	6,900,000	36,000,000		64,000	2,300,000		-	37,000	8,700,000	150,000
Soil Ingestion, De Worker	rmal Contact, and I	nhalation RBC	C - Construction	470,000,000	54,000	2,900,000	2,900,000	20,000		1,300,000	710,000		-	380,000	4,700,000	1,700,000
Soil Ingestion, De Excavation Worke	rmal Contact, and I er	nhalation RBC) -	>Max	1,500,000	81,000,000	81,000,000	560,000,000		36,000,000	20,000,000			11,000,000	130,000,000	49,000,000
Volatilization to O	utdoor Air - Reside	ntial		>Csat	5,600	>Csat	>Csat	>Csat		8,100	>Max			11,000	>Csat	36,000
Volatilization to O	utdoor Air - Occupa	ntional		>Csat	24,000	>Csat	>Csat	>Csat		36,000	>Max			50,000	>Csat	160,000
Regional Screenir	ng Levels - Target h	nazard quotien	its = 0.1													
Soil Ingestion, De	rmal Contact, and I	nhalation for F	Residential	810,000	150	30,000	27,000	180,000		2,600	6,300	160,000	7,000,000	1,200	28,000	5,800
Soil Ingestion, De	rmal Contact, and I	nhalation for l	ndustrial Worker	3,600,000	630	180,000	150,000	930,000		11,000	37,000	2,300,000	110,000,000	5,100	130,000	25,000

Table 2A - TASS 2 Soil Analytical Results: Volatile Organic Compounds (VOCs)

									Volatil		ical Testing R bounds by EPA	esults \ 8260 or 8240 (ug/kg)					
Sample ID	Sample Date	Sampled By	Sample Depth	Isopropylbenzene	p-Isopropyltoluene	m,p-Xylene	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	Tetrachloroethene	Trichloroethene	Toluene	Total Xylenes	Other VOCs	Total VOCs (less 2-butanone
Kleinfelder & PN			(ft. bgs)															
TP-2-5	5/17/2000	Kleinfelder	5	100 U	100 U	200 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	200 U	1,170	U
TP-2-19	5/17/2000	Kleinfelder	19	100 U	126	200 U	408	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	200 U	1,850	530
BES Sample Poir			(ft. bgs)															
WP-11 0-1	11/21/2023	BES	0-1	23.9 U		47.8 U	44.0	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U	23.9 U			
ODEQ Cleanfill																		
Clean Fill Screeni						11,000	77	190,000	72,000	1,000	350,000	120	180	13	23,000	1,400		
ODEQ Risk Based						T	T			.	•				T			
Soil Ingestion, Dei Residential	rmal Contact, and I	Inhalation RBC	; -	3,500		1,400,000	5,300			1,400,000		7,900,000	220,000	6,700	5,800,000	1,400,000		
Soil Ingestion, De	rmal Contact, and I	Inhalation RBC	: - Occupational	57,000,000		25,000,000	23,000			25,000,000		130,000,000	1,000,000	51,000	88,000,000	25,000,000		
Soil Ingestion, Der Worker	rmal Contact, and I	Inhalation RBC	: - Construction	27,000,000		20,000,000	580,000			20,000,000		56,000,000	1,800,000	130,000	28,000,000	20,000,000		
Soil Ingestion, De Excavation Worke	rmal Contact, and I er	Inhalation RBC) -	750,000,000		560,000,000	16,000,000			560,000,000		>Max	50,000,000	3,700,000	770,000,000	560,000,000		
Volatilization to O	utdoor Air - Reside	ntial		>Csat		>Csat	6,400			>Csat		>Csat	>Csat	15,000	>Csat	>Csat		
Volatilization to O	utdoor Air - Occupa	ational		>Csat		>Csat	83,000			>Csat		>Csat	>Csat	96,000	>Csat	>Csat		
Regional Screening	ng Levels - Target h	nazard quotien	ts = 0.1															
Soil Ingestion, De	rmal Contact, and I	Inhalation for F	Residential	190,000		56,000	2,000	390,000		64,000	780,000	600,000			490,000			
Soil Ingestion, De	rmal Contact, and I	Inhalation for Ir	ndustrial Worker	990,000		240,000	8,600	5,800,000		280,000	12,000,000	3,500,000			4,700,000			

Table 2B - West Property Soil Analytical Results: Volatile Organic Compounds (VOCs) **Analytical Testing Results** Volatile Organic Compounds by EPA 8260 or 8240 (ug/kg) 1,2,4-Trimethylbenzene 1,4-Dichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane cis-1,2-Dichloroethene 2-Chlorotoluene 1,2-Dichlorobenzen Sample ID Sample Date Sampled By Sample Depth 1,3,5-Trimethylben 1,3-Dichloroben Ethylber PNG Geoprobe Samples (ft. bgs) 12/17/1998 PNG 5 U 5 U 20 U 5 U B1-17 17 20 U 20 U 5 U 5 U 5 U 5 U 160 5 U 5 U B2-12 12/17/1998 PNG 12 5 U 5 U 20 U 20 U 5 U 5 U 5 U 5 U 20 U 50 U 5 U 5 U 5 U Kleinfelder & PNG Test Pits (ft. bgs) 200 U TP3-13 5/18/1999 PNG 200 U 200 U 200 U 200 U 200 U 200 U 956 200 U 13 --------TP-2-5 5/17/2000 Kleinfelder 5 100 U 100 U 100 U 100 U 100 U --100 U 100 U --1,000 U 100 U 100 U 100 U TP-2-19 19 5/17/2000 Kleinfelder 100 U 1,000 U 100 U 100 U 100 U TP-3-10 5/17/2000 Kleinfelder 10 100 U 1.000 U 100 U 100 U 100 U ----TP-6-13 5/17/2000 Kleinfelder 204 U 249 204 U 204 U 1,100 1,460 204 U 2,040 U 204 U 8,650 204 U 13 TP-7-13 5/17/2000 100 U 1,000 U Kleinfelder 13 100 U TP-11-11 5/17/2000 100 U 100 U Kleinfelder 11 100 U 299 100 U 100 U 100 U 1,000 U 100 U 100 U 100 U Kleinfelder TP-15-21 5/17/2000 21 100 U --1,000 U 100 U 100 U 100 U AMEC Soil Samples (ft. bgs) MW-A 35-36 3/30/2009 AMEC 21,600 11,110 U 11,110 U 11,110 U 11,110 U 11,110 U 11,110 U 14,300 11,110 U 278,000 U 2,220 U 11,110 U 21,500 35-36 MW-C 30-31 23.5 U 4/1/2009 AMEC 30-31 117 U 117 U 718 165 117 U 117 U 117 U 117 U 117 U 2930 U 117 U 117 U Columbia Steel Pile Removal Area (ft. bgs) 5/28/2020 CS-15-PIT BES 88.5 U 88.5 U 88.5 U 88.5 U 228 1,630 88.5 U 3540 U 88.5 U 88.5 U 0.5 202 110 6,390 **BES Sample Points** (ft. bgs) WP-11 0-1 11/21/2023 BES 0-1 23.9 U 957 U 23.9 U 23.9 U 23.9 U ODEQ Cleanfill Clean Fill Screening Value 190,000 3.6 200 11,000 920 740 57 14,000 1,200 23 2,400 230 --**ODEQ Risk Based Concentrations** Soil Ingestion, Dermal Contact, and Inhalation RBC - Residential 53,000,000 3,200 430,000 430,000 2,200,000 14,000 160,000 8,200 530,000 34,000 --Soil Ingestion, Dermal Contact, and Inhalation RBC - Occupational 870.000.000 26.000 6,900,000 6.900.000 36,000,000 64,000 2,300,000 37.000 8,700,000 150.000 ----Soil Ingestion, Dermal Contact, and Inhalation RBC - Construction 470,000,000 54,000 2,900,000 2,900,000 20,000 1,300,000 710,000 --380,000 4,700,000 1,700,000 Worker Soil Ingestion, Dermal Contact, and Inhalation RBC - Excavation 1,500,000 20,000,000 130.000.000 49,000,000 >Max 81,000,000 81,000,000 560,000,000 36,000,000 11,000,000 Worker Volatilization to Outdoor Air - Residential >Csat 5,600 11,000 36,000 >Csat >Csat >Csat 8,100 >Max -->Csat Volatilization to Outdoor Air - Occupational >Csat 24,000 >Csat >Csat >Csat 36,000 >Max 50,000 >Csat 160,000 --Regional Screening Levels - Target hazard quotients = 0.1 810,000 27,000 180,000 160,000 7,000,000 1,200 28,000 Soil Ingestion, Dermal Contact, and Inhalation for Residential 150 30,000 2,600 6,300 5,800 Soil Ingestion, Dermal Contact, and Inhalation for Industrial Worker 3,600,000 630 180,000 150,000 930,000 11,000 37,000 2,300,000 110,000,000 5,100 130,000 25,000

Table 2B - West Property Soil Analytical Results: Volatile Organic Compounds (VOCs) **Analytical Testing Results** Volatile Organic Compounds by EPA 8260 or 8240 (ug/kg) n-Propylbenzene n-Butylbenzene Total VOCs (less 2-butanon Tetrachloroether Butylbenzer Total Xylenes Naphthalene Other VOCs m,p-Xylene Trichloroethe Sample ID Sample Date Sampled By Sample Depth Styrene PNG Geoprobe Samples (ft. bgs) PNG 20 U 20 U 5 U 160 B1-17 12/17/1998 17 5 U 20 U 20 U 5 U 20 U 5 U 5 U 5 U 5 U U --B2-12 12/17/1998 PNG 12 20 U 68 20 U 5 U 5 U U 5 U 20 U 5 U 20 U 5 U 5 U 5 U 68 Kleinfelder & PNG Test Pits (ft. bgs) TP3-13 5/18/1999 PNG 500 U 200 U 200 U U 956 13 --------------------TP-2-5 5/17/2000 Kleinfelder 5 100 U 100 U 200 U 100 U 200 U 1,170 U TP-2-19 19 5/17/2000 Kleinfelder 100 U 126 200 U 408 100 U 200 U 1,850 530 TP-3-10 5/17/2000 Kleinfelder 10 100 U 100 U 200 U 100 U 200 U U 1,100 TP-6-13 5/17/2000 Kleinfelder 402 642 2.040 3,020 571 232 204 U 204 U 204 U 204 U 20,360 13 646 1,350 3,390 U TP-7-13 5/17/2000 100 U Kleinfelder 13 100 U 100 U 200 U 100 U 200 U 1,220 U TP-11-11 5/17/2000 Kleinfelder 148 100 U 11 100 U 100 U 200 U 100 U 200 U 1,300 450 Kleinfelder TP-15-21 5/17/2000 21 100 U 100 U 200 U 100 U 200 U 1,200 U AMEC Soil Samples (ft. bgs) MW-A 35-36 3/30/2009 AMEC 22,200 U 22,200 U 77,900 22,200 U 55,600 U 11,110 U 20,800 11,110 U 11,300 729,000 39,100 169,000 98,700 35-36 MW-C 30-31 4/1/2009 AMEC 30-31 235 U 235 U 235 U 587 U 117 U 117 U 117 U 117 U 648 117 U 117 U 117 U 117 U Columbia Steel Pile Removal Area (ft. bgs) CS-15-PIT 5/28/2020 BES 177 U 88.5 U 623 88.5 U 88.5 U 88.5 U 88.5 U 0.5 446 --800 95.6 200 ------**BES Sample Points** (ft. bgs) WP-11 0-1 11/21/2023 BES 0-1 23.9 U --47.8 U 44.0 23.9 U ----ODEQ Cleanfill Clean Fill Screening Value 11,000 77 190,000 72,000 350,000 23,000 1,000 120 180 13 1,400 --------**ODEQ Risk Based Concentrations** Soil Ingestion, Dermal Contact, and Inhalation RBC - Residential 3,500 1,400,000 5,300 1,400,000 7,900,000 220,000 6,700 5,800,000 1,400,000 51,000 Soil Ingestion, Dermal Contact, and Inhalation RBC - Occupational 57.000.000 25,000,000 23.000 25.000.000 130,000,000 1,000,000 88,000,000 25,000,000 ----Soil Ingestion, Dermal Contact, and Inhalation RBC - Construction 27,000,000 20,000,000 580,000 --20,000,000 56,000,000 1,800,000 130,000 28,000,000 20,000,000 ----Worker Soil Ingestion, Dermal Contact, and Inhalation RBC - Excavation 750,000,000 770,000,000 560,000,000 560,000,000 16,000,000 560,000,000 >Max 50,000,000 3,700,000 Worker Volatilization to Outdoor Air - Residential >Csat 6,400 15,000 >Csat >Csat >Csat >Csat >Csat >Csat --Volatilization to Outdoor Air - Occupational >Csat >Csat 83,000 >Csat >Csat >Csat 96,000 >Csat >Csat --Regional Screening Levels - Target hazard quotients = 0.1 Soil Ingestion, Dermal Contact, and Inhalation for Residential 190,000 56,000 2,000 390,000 64,000 780,000 600,000 490,000 Soil Ingestion, Dermal Contact, and Inhalation for Industrial Worker 990,000 240,000 8,600 5,800,000 280,000 12,000,000 3,500,000 4,700,000

Table 2B - West Property Soil Analytical Results: Volatile Organic Compounds (VOCs)

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

>Csat - Soil RBC exceeds the limit of three-phase equilibrium partitioning. Soil concentrations in excess of Csat indicate that free product might be present.

Bolded - Analyte detected in the sample

							Lab	oratory An	alytical Test	ina Result	ts			
						Polynu					270-SIM (ug/k	g)		
Sample ID	Sample Date	Sampled By	Sample Depth	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Chrysene	Dibenzo(a,h)anthracen e
BES Test Pits			(ft. bgs)											
T-Pit-1 0-18"	10/5/2023	BES	0-1.5	40 U	40 U	40 U	35	72	93	100	23	1	52	20 U
T-Pit-2 0-5'	10/5/2023	BES	0-5	50	430	250	490	1,400	1,100	1,400	390		700	160
T-Pit-3 0-18"	10/5/2023	BES	0-1.5	41 U	80	83	95	220	260	300	100		160	49
T-Pit-5 0-18"	10/5/2023	BES	0-1.5	110 U	110 U	110 U	53 U	120	170	210	53 U	-	65	53 U
T-Pit-7 0-5'	10/5/2023	BES	0-5	43 U	66	62	91	110	140	36		89	22	160
T-Pit-10 0-18"	10/5/2023	BES	0-1.5	38 U	38 U	38 U	19 U	40	58	95	19 U	ı	19	19 U
T-Pit-11 0-5'	10/5/2023	BES	0-5	42 U	49	52	31	110	100	160	27	-	36	35
BES Geoprobe Sar			(ft. bgs)					1						
WP-1 0-5	11/21/2023	BES	0-5	44 U	44 U	44 U	22 U	26	28	35	22 U		22 U	22 U
WP-2 0-5	11/21/2023	BES	0-5	47 U	47 U	47 U	23 U	35	39	53	23 U		24	23 U
WP-30-5	11/21/2023	BES	0-5	46 U	46 U	46 U	23 U	29	29	42	23 U		23 U	23 U
WP-4 0-5	11/21/2023	BES	0-5	42 U	42 U	42 U	24	21 U	34	29	21 U		28	21 U
WP-5 0-5	11/21/2023	BES	0-5	46 U	46 U	53	39	57	80	73	28		110	23 U
WP-7 0-5	11/21/2023	BES	0-5	42 U	42 U	42 U	54	110	110	120	28		57	24
WP-9 0-5	11/21/2023	BES	0-5	370	4,300	1,900	5,000	8,400	6,500	6,400	6,400		5,800	780
WP-10 0-5	11/21/2023	BES	0-5	21 U	21 U	21 U	360	680	880	540	270		600	150
WP-12 0-5	11/21/2023	BES	0-5	21 U	47	23	94	230	240	850	89		210	100
WP-13 0-5	11/21/2023	BES	0-5	340	2,600	1,200	3,100	5,300	4,800	5,300	1,500		4,400	670
ODEQ Cleanfill	\/ I			252	100.000			1 440		05.000	1 44 000	44.000	0.400	1.10
Clean Fill Screening				250	120,000	6,800	730	110	1,100	25,000	11,000	14,000	3,100	110
ODEQ Risk Based (alatian DDC				·		ı	· ·					1
Soil Ingestion, Derm Residential	ial Contact, and Inni	alation RBC -		4,700,000		23,000,000	1,100	110	1,100		11,000		110,000	110
Soil Ingestion, Derm	nal Contact, and Inha	alation RBC - O	ccupational	70,000,000		350,000,000	21,000	2,100	21,000		210,000		2,100,000	2,100
Soil Ingestion, Derm Worker	·			21,000,000		110,000,000	170,000	17,000	4,900,000		49,000,000	1	490,000,000	490,000
Soil Ingestion, Derm Worker				590,000,000		>Max	4,900,000	490,000	170,000		1,700,000	ŀ	17,000,000	17,000
Regional Screening														
Soil Ingestion, Derm				360,000		1,800,000	1,100	110	1,100		11,000	290,000	110,000	110
Soil Ingestion, Derm	nal Contact, and Inha	alation for Indus	strial Worker	4,500,000		23,000,000	21,000	2,100	21,000		210,000	1,200,000	2,100,000	2,100

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 3A - TASS 2 Shallow (< 3 feet bgs) Soil Analytical Results: Polynulcear Aromatic Hydrocarbons (PAHs)

					Lal	boratory An	alytical Testir	ng Results		
				Po	lynuclear Arom				70-SIM (ug/kg)	
Sample ID	Sample Date	Sampled By	Sample Depth	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs
BES Test Pits			(ft. bgs)			•	·			
T-Pit-1 0-18"	10/5/2023	BES	0-1.5	69	40 U	79	81 U	40 U	91	
T-Pit-2 0-5'	10/5/2023	BES	0-5	580	42 U	1,300	84 U	130	960	-
T-Pit-3 0-18"	10/5/2023	BES	0-1.5	140	41 U	270	82 U	41 U	180	
T-Pit-5 0-18"	10/5/2023	BES	0-1.5	78	110 U	150	210 U	110 U	150	-
T-Pit-7 0-5'	10/5/2023	BES	0-5	43 U	120	86 U	110	180		
T-Pit-10 0-18"	10/5/2023	BES	0-1.5	42	38 U	52	76 U	38 U	62	
T-Pit-11 0-5'	10/5/2023	BES	0-5	63	42 U	150	85 U	42 U	92	
BES Geoprobe San			(ft. bgs)							
WP-1 0-5	11/21/2023	BES	0-5	42	44 U	28	88 U	44 U	61	
WP-2 0-5	11/21/2023	BES	0-5	51	47 U	33	94 U	47 U	71	
WP-30-5	11/21/2023	BES	0-5	23 U	46 U	23 U	92 U	46 U	38	
WP-4 0-5	11/21/2023	BES	0-5	85	42 U	23	84 U	42 U	100	
WP-5 0-5	11/21/2023	BES	0-5	56	46 U	62	93 U	46 U	75	
WP-7 0-5	11/21/2023	BES	0-5	100	21 U	96	84 U	54	150	
WP-9 0-5	11/21/2023	BES	0-5	18,000	290	5,900	80 U	10,000	24,000	
WP-10 0-5	11/21/2023	BES	0-5	350	21 U	600	42 U	83	470	
WP-12 0-5	11/21/2023	BES	0-5	130	21 U	730	41 U	57	210	
WP-13 0-5	11/21/2023	BES	0-5	8,800	820	4,900	1,100	7,300	12,000	
ODEQ Cleanfill										
Clean Fill Screening				10,000	3,700	1,100	77	5,500	10,000	
ODEQ Risk Based C										
Soil Ingestion, Derm Residential	al Contact, and Inha	alation RBC -		2,400,000	3,100,000	1,100	5,300	-	1,800,000	
Soil Ingestion, Derm	al Contact, and Inha	alation RBC - O	ccupational	30,000,000	47,000,000	21,000	23,000		23,000,000	-
Soil Ingestion, Derm Worker	al Contact, and Inha	alation RBC - C	onstruction	280,000,000	390,000,000	4,900,000	16,000,000		210,000,000	-
Soil Ingestion, Derm Worker	al Contact, and Inha	alation RBC - E	cavation	10,000,000	14,000,000	170,000	580,000		7,500,000	
Regional Screening	Levels - Target haz	ard quotients =	0.1			1			-	
Soil Ingestion, Derm				240,000	240,000	1,100	2,000		180,000	
	al Contact, and Inh			3,000,000	3,000,000	21,000	8,600		2,300,000	

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

- Analyte detected at a concentration at or above ODEQ RBCs

Page 2 of 2

	!	1	(alytical Test					
	!	1	(Polynu	Jolean Aroma	itic Hydroca	irbons (PAHs	s) by EPA 82	270-SIM (ug/k	g) T		1 0
Sample ID	Sample Date	Sampled By	Sample Depth	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Chrysene	Dibenzo(a,h)anthracene
Kleinfelder Test Pit			(ft. bgs)											
TP-2-5	5/17/2000	Kleinfelder	5	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U
TP-2-19	5/17/2000	Kleinfelder	19	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U
BES Geoprobe San	•		(ft. bgs)											
WP-1 5-10	11/21/2023	BES	5-10	44 U	44 U	44 U	66	100	120	80	40		89	22 U
WP-2 5-10	11/21/2023	BES	5-10	50	190	140	180	430	350	390	100		240	31
WP-3 5-10	11/21/2023	BES	5-10	41 U	41 U	41 U	130	170	180	130	66		150	26
WP-4 5-10	11/21/2023	BES	5-10	570	42	450	730	950	1,000	660	310		800	110
WP-7 5-10	11/21/2023	BES	5-10	54	1,200	620	2,700	2,800	2,500	1,600	830		2,700	340
WP-9 5-10	11/21/2023	BES	5-10	1,900	110	1,100	530	480	550	300	180		630	74
WP-10 5-10	11/21/2023	BES	5-10	22 U	22 U	22 U	11 U	14	14	15	11 U		11	11 U
WP-11 5-10	11/21/2023	BES	5-10	21 U	21 U	21 U	10 U	16	16	18	10 U		13	10 U
WP-12 5-10	11/21/2023	BES	5-10	20 U	20 U	30 U	16	34	33	66	11		24	10 U
WP-13 5-10	11/21/2023	BES	5-10	130 U	130 U	130 U	80	78	110	72	65 U		150	65 U
WP-13 10-15	11/21/2023	BES	10-15	120	700*	560	1,200	1,700	1,400	1,300	450		1,500	190
ODEQ Cleanfill														
Clean Fill Screening				250	120,000	6,800	730	110	1,100	25,000	11,000	14,000	3,100	110
ODEQ Risk Based C														
Soil Ingestion, Derma		alation RBC -		21,000,000		110,000,000	170,000	17,000	4,900,000		49,000,000		490,000,000	490,000
Construction Worker			l	21,000,000		110,000,000	170,000	17,000	4,300,000		40,000,000		490,000,000	430,000
Soil Ingestion, Derma	al Contact, and Inha	ادalation RBC -	ľ	590,000,000	l <u></u>	>Max	4,900,000	490,000	170,000		1,700,000		17,000,000	17,000
Excavation Worker			<u> </u>	000,000,000		· Wax	4,000,000	400,000	170,000		1,700,000		17,000,000	17,000
Regional Screening I									·			·		
Soil Ingestion, Derma				360,000		1,800,000	1,100	110	1,100		11,000	290,000	110,000	110
Soil Ingestion, Derma	al Contact, and Inha	alation for Indus'	trial Worker	4,500,000		23,000,000	21,000	2,100	21,000		210,000	1,200,000	2,100,000	2,100

		Ī			1.0	a a wata m . A m .	olutical Testin	n Descrite		
				De	blynuclear Arom		alytical Testin		70 SIM (ua/ka)	
				PC	nynucieal Alom	, ,	DOIIS (PARS)	Dy EPA 621	U-Silvi (ug/kg)	
Sample ID	Sample Date	Sampled By	Sample Depth	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs
Kleinfelder Test Pi			(ft. bgs)							
TP-2-5	5/17/2000	Kleinfelder	5	3,830	3,300 U	3,300 U	3,300 U	3,300 U	3,980	7,810
TP-2-19	5/17/2000	Kleinfelder	19	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	
BES Geoprobe Sar			(ft. bgs)							
WP-1 5-10	11/21/2023	BES	5-10	120	44U	78	88 U	68	140	
WP-2 5-10	11/21/2023	BES	5-10	490	80	360	86 U	390	660	
WP-3 5-10	11/21/2023	BES	5-10	240	41 U	130	83 U	120	260	
WP-4 5-10	11/21/2023	BES	5-10	1,700	480	730	270	1,400	1,600	
WP-7 5-10	11/21/2023	BES	5-10	5,000	180	1,800	190	2,300	6,500	
WP-9 5-10	11/21/2023	BES	5-10	2,100	1,400	330	3,800	3,800	2,100	
WP-10 5-10	11/21/2023	BES	5-10	16	22 U	13	43 U	22 U	22	
WP-11 5-10	11/21/2023	BES	5-10	20	21 U	17	42 U	21 U	26	
WP-12 5-10	11/21/2023	BES	5-10	30	20 U	56	41 U	20 U	45	
WP-13 5-10	11/21/2023	BES	5-10	170	130 U	65 U	260 U	320	280	
WP-13 10-15	11/21/2023	BES	10-15	3,900	420	1,300	400	4,300	4,500	
ODEQ Cleanfill										
Clean Fill Screening	Value			10,000	3,700	1,100	77	5,500	10,000	
ODEQ Risk Based (
Soil Ingestion, Derm	nal Contact, and Inha	alation RBC -		280,000,000	390,000,000	4,900,000	16,000,000		210,000,000	
Construction Worke				280,000,000	390,000,000	4,900,000	10,000,000	-	210,000,000	
Soil Ingestion, Derm	nal Contact, and Inha	alation RBC -		10,000,000	14,000,000	170,000	580,000		7,500,000	
Excavation Worker				10,000,000	17,000,000	170,000	300,000		7,500,000	
Regional Screening										
Soil Ingestion, Derm				240,000	240,000	1,100	2,000		180,000	
Soil Ingestion, Derm	nal Contact, and Inha	alation for Indus	trial Worker	3,000,000	3,000,000	21,000	8,600		2,300,000	

Sample D Sample Date Sample Date D		<u> </u>	T					l ah	oratory An	alutical Toe	ting Posult				
Samplet D Samplet Date Samplet By Samplet Depth Sa							Polyn						(a)		
PNG Georgies Semples (IL 1939)							1 Olyll	T TOTAL	I	,	 	, ,	Ĭ		T
PNG Georgies Semples (IL 1939)								<u>ə</u>		lue lue	l e	ne	ate		l G
PNG Georgies Semples (IL 1939)					ഉ	ne	4	l ë	l e	the	<u> </u>	the	l al		l ac
PNG Georgies Semples (IL 1939)	Sample ID	Sample Date	Sampled By	Sample Depth	Je	Xe	ne	يق	l e	aut	e l	ant	‡	ЭE	투
PNG Georgies Semples (IL 1939)	Salliple ID	Sample Date	Sampled by	Sample Depth	htt	ith.	ace	=	<u>(d</u>	<u>o</u>	<u>ë</u>	iora	 	ser	ar a
PNG Georgies Semples (IL 1939)					ap	l de	hra	<u>a</u>)(a	€	, r,)flu	ا لاِ ا	īŻ	Ĺ,
PNG Georgies Semples (IL 1939)					ĕ	l sue	ht	%)ZC	(q)))	, X	l Ser	င်	e)o
PNG Georgies Semples (IL 1939)					Ac	A _C	4	Zu	l Be	ו	Į ŽŲ	UZC	=		Zu
PNG Georgies Semples (IL 1939)						`			_	Bel	Be	Bel] 3rt		l jpe
B2-12	PNG Geonrobe Sa	<u> </u> 		(ft has)											
			PNG		300 U	300 U	300 U	300 U	300 U	300 U	300 U	300 U	300 U	300 U	300 U
TP-2-5			1110		000 0	_ 000 0	000 0	1 000 0	1 000 0	0000	1 000 0	0000	1 000 0	000 0	1 000 0
TP-2-19			Kleinfelder		3 300 U	3 300 U	3 300 U	3 300 U	3 300 U	3 300 U	3 300 U	3 300 U	3 300 U	3 300 U	3 300 U
TP-8-10						<u> </u>							 		
TP-6-13 61172000 Keinfelder 13 26,900											<u> </u>		 '		
TP-7-13								<u> </u>	1						
TP-11-11 5/17/2000 Kleinfelder 11 3,300 U 3,															
TP-15-21															
## AMEC Soil Samples (ft. bgs) WW-B 6-7 20 U 20 U 20 U 30 49 46 46 20 U 36 20 U 20 U 20 U 30 49 46 46 20 U 36 20 U 20 U 20 U 20 U 20 U 30 49 46 46 20 U 36 20 U															
MW-8-6-7			Monnedon		330 0	330 0	330 0	1 330 0	1 330 0	330 0	1 330 0	330 0	1 400	330 0	1 330 0
Columbia Steel Pile Removal Area			AMEC		20 U	20 U	20 U	30	49	46	46	20 U		35	
HA-CS-20															
CS-15-PIT 5/28/2020 BES 0.5 880 120 2,000 320 230 310 230 100 400 60 U			BES		21 U	21 U	21 U	10 U	10 U	10 U	10 U	10 U		10 U	T 10 U
BES Test Pits															
T-Pit-10-18" 10/5/2023 BES 0-1.5 40 U 40 U 40 U 35 72 93 100 23 52 20 U 1- T-Pit-20-5' 10/5/2023 BES 0-5 50 430 250 430 1.400 1.400 1.400 330 700 160 T-Pit-30-18" 10/5/2023 BES 0-1.5 41 U 80 83 95 220 260 300 110 160 49 1- 160 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BES Test Pits	•					·		•		•				
T-Pit-4 0-5' 10/5/2023 BES 0-1.5 41 U 80 83 95 220 260 300 100 160 49 T-Pit-4 0-5' 10/5/2023 BES 0-5 39 U 39 U 39 U 43 66 77 69 29 77 20 U T-Pit-6 0-18' 10/5/2023 BES 0-1.5 110 U 110 U 110 U 53 U 120 170 210 53 U 65 53 U T-Pit-6 0-18' 10/5/2023 BES 0-1.5 38 U 48 65 180 180 210 170 79 190 42 T-Pit-6 0-18' 10/5/2023 BES 0-5 44 U 88 110 150 220 230 320 68 170 48 T-Pit-6 0-18' 10/5/2023 BES 0-5 44 U 88 110 150 220 230 320 68 170 48 T-Pit-6 0-18' 10/5/2023 BES 0-5 44 U 98 110 140 36 89 22 160 T-Pit-6 0-18' 10/5/2023 BES 0-5 43 U 66 62 91 110 140 36 89 22 160 T-Pit-9 0-5' 10/5/2023 BES 0-1.5 97 U 97 U 97 U 97 U 49 U 52 80 130 49 U 49 U 49 U T-Pit-9 0-5' 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 58 95 19 U 19 19 U 7-Pit-10 0-18' 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 40 58 95 19 U 19 19 U 19 T-Pit-10 0-18' 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pit-12 0-18' 10/5/2023 BES 0-5 42 U 49 52 31 110 10 160 27 36 36 35 T-Pit-12 0-18' 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 88 GS 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 88 GS 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 88 GS 0-1.5 38 U 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 88 GS 0-1.5 38 U 38	T-Pit-1 0-18"	10/5/2023	BES		40 U	40 U	40 U	35	72	93	100	23		52	20 U
T-Pit-6 0-18" 10/5/2023 BES 0-1.5 39 U 39 U 43 66 77 69 29 77 20 U 1	T-Pit-2 0-5'	10/5/2023	BES	0-5	50	430	250	490	1,400	1,100	1,400	390		700	160
T-Pit-6 0-18"	T-Pit-3 0-18"	10/5/2023	BES	0-1.5	41 U	80	83	95	220	260	300	100		160	49
T-Pit-6 0-18" 10/5/2023 BES 0-1.5 38 U 48 65 180 190 210 170 79 190 42 T-Pit-6 0-5 10/5/2023 BES 0-5 44 U 88 110 150 220 230 320 68 170 48 T-Pit-7 0-5 10/5/2023 BES 0-5 43 U 66 62 91 110 140 36 89 22 160 T-Pit-8 0-18" 10/5/2023 BES 0-1.5 97 U 97 U 97 U 97 U 49 U 52 80 130 49 U 49 U 49 U 7-Pit-9 0-5 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 40 58 95 19 U 19 19 U 19 U 19 U 19 U 19 U 19	T-Pit-4 0-5'	10/5/2023	BES	0-5	39 U	39 U	39 U	43	66	77	69	29		77	20 U
T-Pit-6 0-5' 10/5/2023 BES 0-5 43 U 88 110 150 220 230 320 68 170 48 T-Pit-7 0-5' 10/5/2023 BES 0-5 43 U 66 62 91 110 140 36 89 22 160 T-Pit-8 0-18'' 10/5/2023 BES 0-1.5 97 U 97 U 97 U 49 U 52 80 130 49 U 49 U 49 U T-Pit-9 0-5' 10/5/2023 BES 0-5 40 U 100 110 110 220 300 370 100 200 69 T-Pit-10 0-18'' 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pit-12 0-18'' 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 40 58 95 19 U 19 19 U T-Pit-12 0-18'' 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pit-12 0-18'' 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U BES Georphoe Samples WP-1 0-5 11/21/2023 BES 0-5 44 U 44 U 44 U 22 U 26 28 35 22 U 22 U 22 U WP-1 0-5 11/21/2023 BES 0-5 47 U 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-2 5-10 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 24 23 U WP-3 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 42 U 42 U 24 21 U 34 29 21 U 23 U 31 WP-3 0-5 11/21/2023 BES 5-10 41 U 41 U 41 U 130 170 180 130 66 23 U 32 U WP-4 0-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 24 U 31 WP-3 0-5 11/21/2023 BES 5-10 50 49 U 42 U 42 U 42 U 42 U 44 U 11 U 130 170 180 130 66 23 U 32 U 35 U 39 U 35 U 39 U 31 U 24 U 31 U WP-4 5-10 11/21/2023 BES 5-10 41 U 41 U 41 U 130 170 180 130 66 150 26 WP-4 0-5 11/21/2023 BES 5-10 50 42 U 42 U 42 U 42 U 42 U 44 U 44 U 44	T-Pit-5 0-18"	10/5/2023	BES	0-1.5	110 U	110 U	110 U	53 U	120	170	210	53 U		65	53 U
T-Pic-6-0-5' 10/5/2023 BES 0-5 44 U 88 110 150 220 230 320 68 170 48 T-Pic-70-5' 10/5/2023 BES 0-5 43 U 66 62 91 110 140 36 89 22 160 T-Pic-8 0-18' 10/5/2023 BES 0-1.5 97 U 97 U 97 U 49 U 52 80 130 49 U 49 U 49 U T-Pic-9 0-5' 10/5/2023 BES 0-5 40 U 100 110 110 220 300 370 100 200 69 T-Pic-10 0-18'' 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pic-12 0-18'' 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pic-12 0-18'' 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 8BES Geoprobe Samples WP-1 0-5 11/21/2023 BES 0-5 44 U 44 U 44 U 22 U 26 28 35 22 U 22 U 22 U WP-1 0-1 11/21/2023 BES 0-5 47 U 47 U 47 U 47 U 23 U 35 39 U 35 U 35 U 35 U 35 U 32 U 24 U 31 U 49 U 40	T-Pit-6 0-18"	10/5/2023	BES	0-1.5	38 U	48	65	180	190	210	170	79		190	42
T-Pit-8 0-5" 10/5/2023 BES 0-5 43 U 66 62 91 110 140 36 89 22 160 T-Pit-8 0-18" 10/5/2023 BES 0-1.5 97 U 97 U 97 U 97 U 49 U 52 80 130 49 U 49 U 49 U 49 U T-Pit-8 0-5" 10/5/2023 BES 0-5 40 U 100 110 110 260 300 370 100 200 69 T-Pit-10 0-18" 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 40 58 95 19 U 19 19 19 U 10 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pit-12 0-18" 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 8ES Geoprobe Samples (ft. bigs) WP-10-5 11/2/1/2023 BES 0-5 44 U 44 U 44 U 22 U 26 28 35 22 U 22 U 22 U WP-15-10 11/2/1/2023 BES 0-5 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-20-5 11/2/1/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U WP-30-5 11/2/1/2023 BES 0-5 42 U 42 U 42 U 42 U 24 U 34 U 34 U 34 U	T-Pit-6 0-5'	10/5/2023	BES	0-5	44 U	88	110	150	220	230	320	68		170	48
T-Pit-8 0-18" 10/5/2023 BES 0-5 40 U 100 110 110 260 300 370 100 49 U 49 U 7-Pit-9 0-5' 10/5/2023 BES 0-5 40 U 100 110 110 260 300 370 100 200 69 10/5/2023 BES 0-1.5 38 U 38 U 19 U 40 58 95 19 U 19 19 U 7-Pit-10 0-18" 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pit-12 0-18" 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U 8	T-Pit-7 0-5'		BES	0-5	43 U	66	62	91	110	140	36		89	22	160
T-Pit-9 0-5'												49 U			49 U
T-Pit-10 0-18" 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 40 58 95 19 U 19 19 U T-Pit-11 0-5' 10/5/2023 BES 0-5 42 U 49 52 31 110 100 160 27 36 35 T-Pit-12 0-18" 10/5/2023 BES 0-1.5 38 U 38 U 38 U 19 U 46 48 76 19 U 22 19 U BES Geoprobe Samples WP-1 0-5 11/21/2023 BES 0-5 44 U 44 U 44 U 22 U 26 28 35 22 U 22 U 22 U WP-1 5-10 11/21/2023 BES 5-10 44 U 44 U 44 U 44 U 66 100 120 80 40 89 22 U WP-2 0-5 11/21/2023 BES 0-5 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-2 5-10 11/21/2023 BES 5-10 50 190 140 180 430 350 390 100 240 31 WP-3 0-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U WP-3 5-10 11/21/2023 BES 0-5 46 U 46 U 41 U 41 U 41 U 41 U 41 U 41 U															
T-Pit-11 0-5'	T-Pit-10 0-18"					38 U				58		19 U			_
BES Geoprobe Samples (ft. bgs) WP-1 0-5 11/21/2023 BES 0-5 44 U 44 U 44 U 22 U 26 28 35 22 U 22 U 22 U WP-1 5-10 11/21/2023 BES 5-10 44 U 44 U 44 U 66 100 120 80 40 89 22 U WP-2 0-5 11/21/2023 BES 0-5 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-2 5-10 11/21/2023 BES 5-10 50 190 140 180 430 350 390 100 240 31 WP-30-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U 29 19 42 23 U 23 U 20 U 24 U 24 U 24 U <	T-Pit-11 0-5'	10/5/2023	BES	0-5	42 U	49	52	31	110	100	160	27		36	35
WP-1 0-5 11/21/2023 BES 0-5 44 U 44 U 44 U 22 U 26 28 35 22 U 22 U 22 U WP-1 5-10 11/21/2023 BES 5-10 44 U 44 U 44 U 66 100 120 80 40 89 22 U WP-2 0-5 11/21/2023 BES 0-5 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-2 5-10 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 240 31 WP-30-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U 23 U 23 U 23 U 23 U 23 U 23 U 24 U <t< td=""><td>T-Pit-12 0-18"</td><td>10/5/2023</td><td>BES</td><td>0-1.5</td><td>38 U</td><td>38 U</td><td>38 U</td><td>19 U</td><td>46</td><td>48</td><td>76</td><td>19 U</td><td></td><td>22</td><td>19 U</td></t<>	T-Pit-12 0-18"	10/5/2023	BES	0-1.5	38 U	38 U	38 U	19 U	46	48	76	19 U		22	19 U
WP-1 5-10 11/21/2023 BES 5-10 44 U 47 U 22 U WP-2 0-5 11/21/2023 BES 0-5 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-2 5-10 11/21/2023 BES 5-10 50 190 140 180 430 350 390 100 240 31 WP-30-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U WP-3 5-10 11/21/2023 BES 5-10 41 U 41 U 41 U 130 170 180 130 66 150 26 WP-4 0-5 11/21/2023 BES 0-5 42 U 42 U 24 21 U 34 29 21 U 28	-														
WP-2 0-5 11/21/2023 BES 0-5 47 U 47 U 47 U 23 U 35 39 53 23 U 24 23 U WP-2 5-10 11/21/2023 BES 5-10 50 190 140 180 430 350 390 100 240 31 WP-30-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U WP-3 5-10 11/21/2023 BES 5-10 41 U 41 U 41 U 130 170 180 130 66 150 26 WP-4 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 24 21 U 34 29 21 U 28 21 U WP-4 5-10 11/21/2023 BES 5-10 570 42 450 730 950 1,000 660 310															_
WP-2 5-10 11/21/2023 BES 5-10 50 190 140 180 430 350 390 100 240 31 WP-30-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U WP-3 5-10 11/21/2023 BES 5-10 41 U 41 U 41 U 130 170 180 130 66 150 26 WP-4 0-5 11/21/2023 BES 0-5 42 U 42 U 24 21 U 34 29 21 U 28 21 U WP-4 0-5 11/21/2023 BES 0-5 42 U 42 U 450 730 950 1,000 660 310 800 110 WP-5 0-5 11/21/2023 BES 0-5 46 U 46 U 53 39 57 80 73 28 110 23 U <td></td>															
WP-30-5 11/21/2023 BES 0-5 46 U 46 U 46 U 23 U 29 29 42 23 U 23 U 23 U WP-3 5-10 11/21/2023 BES 5-10 41 U 41 U 41 U 130 170 180 130 66 150 26 WP-4 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 24 21 U 34 29 21 U 28 21 U WP-4 5-10 11/21/2023 BES 5-10 570 42 450 730 950 1,000 660 310 800 110 WP-5 0-5 11/21/2023 BES 0-5 46 U 46 U 53 39 57 80 73 28 110 23 U WP-6 0-5 11/21/2023 BES 0-5 22 U 22 U 22 U 11 U 13 17 11 U 11 U 14															
WP-3 5-10 11/21/2023 BES 5-10 41 U 42 U 43 U															
WP-4 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 24 U 24 U 21 U 34 U 29 U 21 U 28 U 21 U WP-4 5-10 11/21/2023 BES 5-10 570 42 U 450 730 U 950 U 1,000 U 660 U 310 U 800 U 110 U WP-5 0-5 11/21/2023 BES 0-5 U 46 U U 46 U U 53 U 39 U 57 U 80 U 73 U 28 U 110 U 23 U WP-6 0-5 11/21/2023 BES 0-5 U 22 U U 22 U U 22 U U 11 U U 13 U U 11 U U U 11 U U U 11 U U U 11 U U U U U 11 U U U U U U U U															
WP-4 5-10 11/21/2023 BES 5-10 570 42 450 730 950 1,000 660 310 800 110 WP-5 0-5 11/21/2023 BES 0-5 46 U 46 U 53 39 57 80 73 28 110 23 U WP-6 0-5 11/21/2023 BES 0-5 22 U 22 U 22 U 11 U 13 17 11 U 11 U 14 11 U WP-6 5-10 11/21/2023 BES 5-10 43 U 43 U 43 U 43 U 54 110 110 110 11 U 78 22 U WP-7 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 54 110 110 120 28 57 24 WP-7 5-10 11/21/2023 BES 5-10 54 1,200 620 2,700 2,800 2,500 1,600 830															
WP-5 0-5 11/21/2023 BES 0-5 46 U 46 U 53 39 57 80 73 28 110 23 U WP-6 0-5 11/21/2023 BES 0-5 22 U 22 U 22 U 11 U 13 17 11 U 11 U<													+		_
WP-6 0-5 11/21/2023 BES 0-5 22 U 22 U 22 U 11 U 13 17 11 U 11 U 14 11 U WP-6 5-10 11/21/2023 BES 5-10 43 U 43 U 43 U 61 69 79 58 25 78 22 U WP-7 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 54 110 110 120 28 57 24 WP-7 5-10 11/21/2023 BES 5-10 54 1,200 620 2,700 2,800 2,500 1,600 830 2,700 340 WP-8 0-5 11/21/2023 BES 0-5 22 U 23 22 U 27 47 40 46 12 33 11 U WP-8 5-10 11/21/2023 BES 5-10 55 600 310 1,300 2,000 1,800 1,800 520													+		
WP-6 5-10 11/21/2023 BES 5-10 43 U 43 U 43 U 61 69 79 58 25 78 22 U WP-7 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 54 110 110 120 28 57 24 WP-7 5-10 11/21/2023 BES 5-10 54 1,200 620 2,700 2,800 2,500 1,600 830 2,700 340 WP-8 0-5 11/21/2023 BES 0-5 22 U 23 22 U 27 47 40 46 12 33 11 U WP-8 5-10 11/21/2023 BES 5-10 55 600 310 1,300 2,000 1,800 1,800 520 1,800 210															
WP-7 0-5 11/21/2023 BES 0-5 42 U 42 U 42 U 54 110 110 120 28 57 24 WP-7 5-10 11/21/2023 BES 5-10 54 1,200 620 2,700 2,800 2,500 1,600 830 2,700 340 WP-8 0-5 11/21/2023 BES 0-5 22 U 23 22 U 27 47 40 46 12 33 11 U WP-8 5-10 11/21/2023 BES 5-10 55 600 310 1,300 2,000 1,800 1,800 520 1,800 210															
WP-7 5-10 11/21/2023 BES 5-10 54 1,200 620 2,700 2,800 2,500 1,600 830 2,700 340 WP-8 0-5 11/21/2023 BES 0-5 22 U 23 22 U 27 47 40 46 12 33 11 U WP-8 5-10 11/21/2023 BES 5-10 55 600 310 1,300 2,000 1,800 1,800 520 1,800 210													1		
WP-8 0-5 11/21/2023 BES 0-5 22 U 23 22 U 27 47 40 46 12 33 11 U WP-8 5-10 11/21/2023 BES 5-10 55 600 310 1,300 2,000 1,800 1,800 520 1,800 210													+		
WP-8 5-10 11/21/2023 BES 5-10 55 600 310 1,300 2,000 1,800 1,800 520 1,800 210													1		
													1		
									 						_

			1				Lab	oratory An	alytical Test	ina Result				
						Polyni					270-SIM (ug/k	g)		
Sample ID	Sample Date	Sampled By	Sample Depth	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene '	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butyl benzyl phthalate	Chrysene	Dibenzo(a,h)anthracene
WP-9 5-10	11/21/2023	BES	5-10	1,900	110	1,100	530	480	550	300	180		630	74
WP-10 0-5	11/21/2023	BES	0-5	21 U	21 U	21 U	360	680	880	540	270		600	150
WP-10 5-10	11/21/2023	BES	5-10	22 U	22 U	22 U	11 U	14	14	15	11 U		11	11 U
WP-11 5-10	11/21/2023	BES	5-10	21 U	21 U	21 U	10 U	16	16	18	10 U		13	10 U
WP-12 0-5	11/21/2023	BES	0-5	21 U	47	23	94	230	240	850	89		210	100
WP-12 5-10	11/21/2023	BES	5-10	20 U	20 U	30 U	16	34	33	66	11		24	10 U
WP-13 0-5	11/21/2023	BES	0-5	340	2,600	1,200	3,100	5,300	4,800	5,300	1,500		4,400	670
WP-13 5-10	11/21/2023	BES	5-10	130 U	130 U	130 U	80	78	110	72	65 U		150	65 U
WP-13 10-15	11/21/2023	BES	10-15	120	700*	560	1,200	1,700	1,400	1,300	450		1,500	190
ODEQ Cleanfill														
Clean Fill Screening	*			250	120,000	6,800	730	110	1,100	25,000	11,000	14,000	3,100	110
ODEQ Risk Based (
Soil Ingestion, Derm Residential	nal Contact, and Inha	alation RBC -		4,700,000		23,000,000	1,100	110	1,100		11,000		110,000	110
Soil Ingestion, Derm	nal Contact, and Inha	alation RBC - O	ccupational	70,000,000		350,000,000	21,000	2,100	21,000		210,000		2,100,000	2,100
Soil Ingestion, Derm Worker				21,000,000		110,000,000	170,000	17,000	4,900,000		49,000,000		490,000,000	490,000
Soil Ingestion, Derm Worker	nal Contact, and Inha	alation RBC - Ex	xcavation	590,000,000		>Max	4,900,000	490,000	170,000		1,700,000		17,000,000	17,000
Regional Screening	Levels - Target haz	ard quotients =	0.1											
Soil Ingestion, Derm				360,000		1,800,000	1,100	110	1,100		11,000	290,000	110,000	110
Soil Ingestion, Derm	nal Contact, and Inha	alation for Indus	trial Worker	4,500,000		23,000,000	21,000	2,100	21,000		210,000	1,200,000	2,100,000	2,100

		1			l al	horatory An	alytical Testii	na Results		
				Po	olynuclear Arom				0-SIM (ua/ka)	
Sample ID	Sample Date	Sampled By	Sample Depth	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs
PNG Geoprobe Sai	mples		(ft. bgs)							
B2-12	12/17/1998	PNG	12	600	300 U	300 U	300 U	300 U	400	1,000
Kleinfelder Test Pit	ts		(ft. bgs)							
TP-2-5	5/17/2000	Kleinfelder	5	3,830	3,300 U	3,300 U	3,300 U	3,300 U	3,980	7,810
TP-2-19	5/17/2000	Kleinfelder	19	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	
TP-3-10	5/17/2000	Kleinfelder	10	1,110	660 U	660 U	660 U	670	1,340	3,120
TP-6-13	5/17/2000	Kleinfelder	13	26,900 U	26,900 U	26,900 U	26,900 U	28,900	26,900 U	28,900
TP-7-13	5/17/2000	Kleinfelder	13	950	3,300 U	3,300 U	3,300 U	3,300 U	872	1,822
TP-11-11	5/17/2000	Kleinfelder	11	3300 U	3,300 U	3,300 U	3,300 U	3,300 U	3,300 U	
			21		<u>'</u>					
TP-15-21 AMEC Soil Sample	5/17/2000	Kleinfelder		330 U	330 U	330 U	330 U	330 U	330 U	460
MW-B 6-7	3/31/2009	AMEC	(ft. bgs) 6-7	77	20 U	32	37	43	80	l
Columbia Steel Pile		AIVIEC		11	200	32	31	43	00	
HA-CS-20	9/28/2020	BES	(ft. bgs) 0.5	10 U	21 U	10 U	41 U	22	10 U	Ι
CS-15-PIT		BES	0.5					22		
	5/28/2020	BES		1,200	1,700	160	790	5,000	1,500	
BES Test Pits	40/E/2022	BES	(ft. bgs) 0-1.5	69	1011	70	04.11	1 40 11	91	I
T-Pit-1 0-18"	10/5/2023				40 U	79	81 U	40 U		
T-Pit-2 0-5'	10/5/2023	BES	0-5	580	42 U	1,300	84 U	130	960	
T-Pit-3 0-18"	10/5/2023	BES	0-1.5	140	41 U	270	82 U	41 U	180	
T-Pit-4 0-5'	10/5/2023	BES	0-5	57	39 U	58	78 U	85	88	
T-Pit-5 0-18"	10/5/2023	BES	0-1.5	78	110 U	150	210 U	110 U	150	
T-Pit-6 0-18"	10/5/2023	BES	0-1.5	290	38 U	160	77 U	150	400	
T-Pit-6 0-5'	10/5/2023	BES	0-5	250	44 U	240	88 U	100	370	
T-Pit-7 0-5'	10/5/2023	BES	0-5	43 U	120	86 U	110	180	<u></u>	
T-Pit-8 0-18"	10/5/2023	BES	0-1.5	52	97 U	60	190 U	97 U	80	
T-Pit-9 0-5'	10/5/2023	BES	0-5	230	40 U	360	80 U	110	290	
T-Pit-10 0-18"	10/5/2023	BES	0-1.5	42	38 U	52	76 U	38 U	62	
T-Pit-11 0-5'	10/5/2023	BES	0-5	63	42 U	150	85 U	42 U	92	
T-Pit-12 0-18"	10/5/2023	BES	0-1.5	28	38 U	50	75 U	38 U	43	
BES Geoprobe Sar			(ft. bgs)		1 4411		00.11			ı
WP-1 0-5	11/21/2023	BES	0-5	42	44 U	28	88 U	44 U	61	
WP-1 5-10	11/21/2023	BES	5-10	120	44U	78	88 U	68	140	
WP-2 0-5	11/21/2023	BES	0-5	51	47 U	33	94 U	47 U	71	
WP-2 5-10	11/21/2023	BES	5-10	490	80	360	86 U	390	660	
WP-30-5	11/21/2023	BES	0-5	23 U	46 U	23 U	92 U	46 U	38	
WP-3 5-10	11/21/2023	BES	5-10	240	41 U	130	83 U	120	260	
WP-4 0-5	11/21/2023	BES	0-5	85	42 U	23	84 U	42 U	100	
WP-4 5-10	11/21/2023	BES	5-10	1,700	480	730	270	1,400	1,600	
WP-5 0-5	11/21/2023	BES	0-5	56	46 U	62	93 U	46 U	75	
WP-6 0-5	11/21/2023	BES	0-5	25	22 U	11 U	45 U	22 U	27	
WP-6 5-10	11/21/2023	BES	5-10	110	43 U	48	86 U	79	140	
WP-7 0-5	11/21/2023	BES	0-5	100	21 U	96	84 U	54	150	
WP-7 5-10	11/21/2023	BES	5-10	5,000	180	1,800	190	2,300	6,500	
WP-8 0-5	11/21/2023	BES	0-5	58	22 U	40	43 U	22 U	83	
WP-8 5-10	11/21/2023	BES	5-10	3,800	49	1,700	92 U	1,000	5,200	
WP-9 0-5	11/21/2023	BES	0-5	18,000	290	5,900	80 U	10,000	24,000	

		1			Lal	poratory Ana	alytical Testin	na Results						
				Po	olynuclear Arom				'0-SIM (ug/kg)					
Sample ID	Sample Date	Sampled By	Sample Depth	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAHs				
WP-9 5-10	11/21/2023	BES	5-10	2,100	1,400	330	3,800	3,800	2,100					
WP-10 0-5	11/21/2023	BES	0-5	350	21 U	600	42 U	83	470					
WP-10 5-10	11/21/2023	BES	5-10	16	22 U	13	43 U	22 U	22					
WP-11 5-10	11/21/2023	BES	5-10	20	21 U	17	42 U	21 U						
WP-12 0-5	11/21/2023	BES	0-5	130	21 U	730	41 U	57						
WP-12 5-10	11/21/2023	BES	5-10	30	20 U	56	41 U	20 U						
WP-13 0-5	11/21/2023	BES	0-5	8,800	820	4,900	1,100	7,300						
WP-13 5-10	11/21/2023	BES	5-10	170	130 U	65 U	260 U	320						
WP-13 10-15	11/21/2023	BES	10-15	3,900	420	1,300	400	4,300	4,500					
ODEQ Cleanfill														
Clean Fill Screening				10,000	3,700	1,100	77	5,500	10,000					
ODEQ Risk Based (3800 2,100 83 470 22 U 22 21 U 26 57 210 20 U 45 300 12,000 320 280 300 4,500 1,800,000 23,000,000 210,000,000					
Soil Ingestion, Derm Residential	al Contact, and Inha	alation RBC -		2,400,000	3,100,000	1,100	5,300	-	1,800,000					
Soil Ingestion, Derm			•	30,000,000	47,000,000	21,000	23,000	1	23,000,000					
Soil Ingestion, Derm Worker				280,000,000	390,000,000	4,900,000	16,000,000		210,000,000					
Soil Ingestion, Derm Worker	al Contact, and Inha	alation RBC - Ex	cavation	10,000,000	14,000,000	170,000	580,000		7,500,000					
Regional Screening														
Soil Ingestion, Derm				240,000	240,000	1,100	2,000		180,000					
Soil Ingestion, Derm	al Contact, and Inha	alation for Indus	trial Worker	3,000,000	3,000,000	21,000	8,600		2,300,000					

Table 3C - West Property Soil Analytical Results: Polynulcear Aromatic Hydrocarbons (PAHs)

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

										Lak	oratory A	nalytical Te	esting Result	5						
Sample ID	Sample Date	Sampled By	Sample Depth							-	Total Metal	s by EPA 6	020 (mg/kg)							
J 34p.0 12	Jap. 5 Ja.15		(ft. bgs)	Aluminum	Antimony	Arsenic	Barium	Berylium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
BES Test Pits			(ft. bgs)													<u> </u>		<u> </u>		
T-Pit-1 0-18"	10/5/2023	BES	0-1.5			4.44			0.449	113		34.4	84.1		0.0670			—		142
T-Pit-2 0-5'	10/5/2023	BES	0-5			5.00			0.352	51.8		30.6	59.2	-	0.161					127
T-Pit-3 0-18"	10/5/2023	BES	0-1.5			9.27			0.893	169		82.4	123		0.0719					232
T-Pit-5 0-18"	10/5/2023	BES	0-1.5			2.62			0.166	20.4		24.5	27.7		0.0226					84.1
T-Pit-7 0-5'	10/5/2023	BES	0-5	-		5.09			0.291	23.3		28.2	51.8	1	0.0639					145
T-Pit-10 0-18"	10/5/2023	BES	0-1.5	1		2.22	-		0.138	447		28.7	25.1	1	0.0180					70.8
T-Pit-11 0-5'	10/5/2023	BES	0-5	-		4.27			0.171	330		29.8	32.6	1	0.0246					104
BES Geoprobe Sample			(ft. bgs)																	
WP-1 0-5	11/21/2023	BES	0-5	-		5.63	-		0.149	22.9		21.3	76.7	I	0.0211					67.8
WP-2 0-5	11/21/2023	BES	0-5	-		9.12			0.137	26.8		20.8	24.0	1	0.0207					70.7
WP-3 0-5	11/21/2023	BES	0-5			3.86			0.084	22.5		18.7	13.0	1	0.0175					51.1
WP-4 0-5	11/21/2023	BES	0-5			2.49			0.120	21.2		14.4	12.4	-	0.0214					47.2
WP-5 0-5	11/21/2023	BES	0-5			6.91			0.141	99.5		22.4	15.3	-	0.0245					60.6
WP-7 0-5	11/21/2023	BES	0-5	-		7.07			0.145	22.5		20.7	20.2	1	0.0259					64.7
WP-9 0-5	11/21/2023	BES	0-5			4.06			0.098	22.6		17.4	16.4	-	0.0217					56.6
WP-10 0-5	11/21/2023	BES	0-5			3.76			0.208	23.4		24.0	25.6		0.0284					79.5
WP-11 0-5	11/21/2023	BES	0-5			5.47			0.218	21.9		24.2	27.7	-	0.0234					97.3
WP-12 0-5	11/21/2023	BES	0-5			4.54			0.223	20.8		23.6	88.4	-	0.0340					111
WP-13 0-5	11/21/2023	BES	0-5			2.84			0.273	20.8		34.3	63.3		0.0263					105
ODEQ Cleanfill																				
Clean Fill Screening Value	ıe				0.56	8.8	790	2	0.63	76	43	34	28	1,800	0.23	47	0.71	0.82	5.2	180
ODEQ Risk Based Cond	entrations											•				•	•	•		
Soil Ingestion, Dermal C	ontact, and Inhala	ation RBC -				0.43*	45.000	160	70	120,000		2.400	400	1,800	22	1,500		390		
Residential						0.43	15,000	160	78	120,000		3,100	400	1,800	23	1,500		390		
Soil Ingestion, Dermal C	esidential oil Ingestion, Dermal Contact, and Inhalation RBC - Occupationa					1.9*	220,000	2,300	1,100	>Max		47,000	800	25,000	350	22,000		5,800		
· ·	oil Ingestion, Dermal Contact, and Inhalation RBC -					15	69,000	700	350	530,000		14,000	800	8,200	110	7,000		1,800		
	onstruction Worker oil Ingestion, Dermal Contact, and Inhalation RBC -						•			·								<u> </u>		\vdash
•	oil Ingestion, Dermal Contact, and Inhalation RBC - cavation Worker					420	>Max	19,000	9,700	>Max		390,000	800	230,000	2,900	190,000		49,000		
	cavation Worker egional Screening Levels - Target hazard quotients = 0.1																			
	il Ingestion, Dermal Contact, and Inhalation for Residential					0.68*	1,500	16	0.71	8,500	2.3	310	100 / 200**		1.1	l	39	39		2,300
Soil Ingestion, Dermal C			7,700 110,000	3 47	3*	22,000	230	10	36,000	35	4.700	800		4.6		580	580		35,000	
Con ingestion, Definal C	oniaci, and inital	adon for indus	Surai VVOINCI	110,000	,	J	22,000	200	10	30,000	55	7,700	000	- -	J 7.0	I	1 500	1 500	_ _ _	33,000

Notes

DEQ - Department of Enviornmental Quality EPA - Environmental Protection Angency RBCs - Risk-Based Concentrations

bgs - Below ground surface mg/kg - Milligrams per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

^{* -} Arsenic screening level values are below the naturally occuring background level of 8.8 mg/kg for this region

^{** -} Pending forhcoming RBC values

Table 4B -TASS 2 Deep (> 3 feet bgs)Soil Analytical Results: Total Metals

Table 4B -TASS 2 Dee		Analytical is								L	aboratory	Analytical 1	Testing Resu	Its						
Sample ID	Sample Date	Sampled By	Sample Depth								Total Met	als by EPA	6020 (mg/kg)							
·	·		(ft. bgs)	Aluminum	Antimony	Arsenic	Barium	Berylium	Cadmium	Chromium		Copper		Mangansese	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Kleinfelder Test Pits			(ft. bgs)																	
TP-2-5	5/17/2000	Kleinfelder	5			6.93	110		0.40	22			24		0.030		0.25 U	0.3 U		
TP-2-19	5/17/2000	Kleinfelder	19			6.45	120		0.19	14			76		4.88		0.25 U	0.3 U		
Fujitani Hilts Sampling	9		(ft. bgs)								•					•				•
B1-S-4-10	5/17/2000	Fujitani	4-10			1.08	52		0.042	11			1.9 U		0.0047		0.25 U	0.30 U		
B1-S-7-15	5/17/2000	Fujitani	7-15			1.17	59		0.052	12			2.3 U		0.0095		0.25 U	0.30 U		
B1-S-10-21	5/17/2000	Fujitani	10-21			8.24	160	1	0.10	25			7.0		0.021		0.25 U	0.30 U		
B2-S-4-10	5/18/2000	Fujitani	4-10			3.69	120		0.21	16			28		0.219		0.25 U	0.30 U		
B2-S-7-15	5/18/2000	Fujitani	7-15			3.29	160	-	0.14	20			17		0.011		0.25 U	0.30 U		
B2-S-10-20	5/18/2000	Fujitani	10-20			3.63	120		0.16	15			11		0.018		0.25 U	0.30 U		
BES Geoprobe Sample			(ft. bgs)																	
WP-1 5-10	11/21/2023	BES	5-10			5.42			0.219	22.8		22.3	52.3		0.0487					95.5
WP-2 5-10	11/21/2023	BES	5-10			10.4			0.147	24.1		15.9	17.2		0.0197					66.4
WP-3 5-10	11/21/2023	BES	5-10			7.96			0.199	28.2		38.5	38.4		0.0358					81.7
WP-4 5-10	11/21/2023	BES	5-10			12.1			0.226	28.3		97.3	71.2		0.0579					102
WP-5 5-10	11/21/2023	BES	5-10			3.10			0.106	21.5		17.1	18.4		0.0274					58.8
WP-7 5-10	11/21/2023	BES	5-10			5.17			0.131	21.3		30.0	32.9		0.0740					68.9
WP-9 5-10	11/21/2023	BES	5-10			4.12			0.177	21.6		24.8	23.5		0.0365					77.3
WP-10 5-10	11/21/2023	BES	5-10			4.44			0.195	21.5		18.1	41.7		0.0465					94.6
WP-11 5-10	11/21/2023	BES	5-10			8.40			0.186	22.2		15.5	26.5		0.0225					89.5
WP-11 10-15	11/21/2023	BES	10-15			5.58			0.255	24.4		31.1	105		0.0226					130
WP-12 5-10	11/21/2023	BES	5-10			2.95			0.169	16.8		25.3	29.3		0.0253					84.7
WP-13 5-10	11/21/2023	BES	5-10			3.09			0.210	17.2		14.6	33.3		0.0831					102
WP-13 10-15	11/21/2023	BES	10-15			4.66			0.243	21.0		16.8	111		0.0297					136
ODEQ Cleanfill						_														
Clean Fill Screening Va	lue				0.56	8.8	790	2	0.63	76	43	34	28	1,800	0.23	47	0.71	0.82	5.2	180
ODEQ Risk Based Con																				
Soil Ingestion, Dermal (Contact, and Inhal	ation RBC -				0.43*	15,000	160	78	120,000		3,100	400	1,800	23	1,500		390		
Residential						0.43	15,000	100	70	120,000		3,100	400	1,000	23	1,500		390		
Soil Ingestion, Dermal (Contact, and Inhal	ation RBC - Oc	cupational			1.9*	220,000	2,300	1,100	>Max		47,000	800	25,000	350	22,000		5,800		
Soil Ingestion, Dermal C Construction Worker	Contact, and Inhal	ation RBC -				15	69,000	700	350	530,000		14,000	800	8,200	110	7,000		1,800		
	oil Ingestion, Dermal Contact, and Inhalation RBC -					420	>Max	19,000	9,700	>Max		390,000	800	230,000	2,900	190,000		49,000		
Regional Screening Lev	vels - Target hazaı	rd quotients = 0	.1			1														
Soil Ingestion, Dermal (7,700	3	0.68*	1,500	16	0.71	8,500	2.3	310	100 / 200 **		1.1		39	39		2,300
Soil Ingestion, Dermal (Contact, and Inhal	ation for Industr	ial Worker	110,000	47	3*	22,000	230	10	36,000	35	4,700	800		4.6		580	580		35,000

Notes

DEQ - Department of Environmental Quality EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface mg/kg - Milligrams per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

^{* -} Arsenic screening level values are below the naturally occuring background level of 8.8 mg/kg for this region

^{** -} Pending forhcoming RBC values

Table 4C -West Property Soil Analytical Results: Total Metals

Table 4C -West Proper	ty Son Analytica	Results: Tota	II WELAIS	1							aboratory	Analytical 7	Testing Resu	lte						
Sample ID	Sample Date	Sampled By	Sample Depth							<u>L</u>			6020 (mg/kg)	its						
Sample ID	Sample Date	Sampled by	(ft. bgs)	Aluminum	Antimony	Araonia	Barium	Berylium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Kleinfelder Test Pits			/ft bas	Aluminum	Anumony	Arsenic	Danum	beryllum	Cadmium	Chromium	Cobail	Copper	Leau	Manganese	Mercury	Nickei	Selenium	Silver	<u> </u>	Zinc
	5/17/2000	Kleinfelder	(ft. bgs)	<u> </u>	ı	2.62	420	T	0.079	24		T 1	7.0		0.0075		0.25 U	0.211		
TP-1-7 TP-1-19	5/17/2000	Kleinfelder	19			2.62 7.19	120 220		0.078 0.26	24 24			7.8 74		0.0075 0.030		0.25 U	0.3 U 0.3 U		
TP-2-5	5/17/2000	Kleinfelder	5			6.93	110		0.40	22			24		0.030		0.25 U	0.3 U		<u> </u>
TP-2-19	5/17/2000	Kleinfelder	19			6.45	120		0.40	14			76		4.88		0.25 U	0.3 U		
TP-3-10	5/17/2000	Kleinfelder	10			7.70	180		0.19	26			31		0.077		0.25 U	0.3 U		
TP-3-10	5/17/2000	Kleinfelder	21			5.23	220		0.20	31			20		0.077		0.25 U	0.3 U		
TP-4-11	5/17/2000	Kleinfelder	11			4.91	170		0.17	25			22		0.032		0.25 U	0.3 U		
TP-4-21	5/17/2000	Kleinfelder	21			4.97	190		0.25	26			130		0.053		0.25 U	0.3 U		
TP-5-11	5/17/2000	Kleinfelder	11			2.76	150		0.08	27			7.4		0.021		0.25 U	0.3 U		
TP-5-21	5/17/2000	Kleinfelder	21			6.94	150		0.27	23			13		0.025		0.25 U	0.3 U		
TP-6-5	5/17/2000	Kleinfelder	5			20.90	210		0.13	30			17		0.037		0.25 U	0.3 U		
TP-6-13	5/17/2000	Kleinfelder	13			21.70	140		3.36	45			81		0.130		0.25 U	0.3 U		
TP-7-5	5/17/2000	Kleinfelder	5			2.69	130		0.13	18			27		0.040		0.25 U	0.3 U		
TP-7-17	5/17/2000	Kleinfelder	17			2.56	80		0.11	21			17		0.024		0.25 U	0.3 U		
TP-8-5	5/17/2000	Kleinfelder	5			6.38	130		0.17	20			10		0.018		0.25 U	0.3 U		
TP-8-19	5/17/2000	Kleinfelder	19			3.56	110		0.12	17			7.3		0.011		0.25 U	0.3 U		
TP-9-5	5/17/2000	Kleinfelder	5			3.00	110		0.13	18			18		0.021		0.25 U	0.3 U		
TP-9-11	5/17/2000	Kleinfelder	11			6.04	200		0.11	25			17		0.017		0.25 U	0.3 U		
TP-10-10	5/17/2000	Kleinfelder	10			5.25	150		0.14	27			56		0.025		0.25 U	0.3 U		
TP-10-16	5/17/2000	Kleinfelder	16			4.45	200		0.47	25			74		0.064		0.32	0.3 U		
TP-11-5	5/17/2000	Kleinfelder	5			3.80	150		0.13	22			17		0.020		0.25 U	0.3 U		
TP-11-11	5/17/2000	Kleinfelder	11			4.51	110		0.30	17			45		0.028		0.25 U	0.3 U		
TP-11-21	5/17/2000	Kleinfelder	21			2.00	100		0.08	21			11		0.009		0.25 U	0.3 U		
TP-12-5	5/17/2000	Kleinfelder	5			2.40	140		0.07	35			8.4		0.036		0.25 U	0.3 U		
TP-12-21	5/17/2000	Kleinfelder	21			7.62	180		0.11	25			15		0.024		0.25 U	0.3 U		
TP-13-19	5/17/2000	Kleinfelder	19			3.33	140		0.15	22			4.8		0.021		0.27	0.3 U		
TP-13-21	5/17/2000	Kleinfelder	21			2.97	140		0.10	25			4.7		0.020		0.25 U	0.3 U		
TP-14-12	5/17/2000	Kleinfelder	12			9.11	180		0.19	26			19		0.042		0.25 U	0.3 U		
TP-14-20	5/17/2000	Kleinfelder	20			3.60	160		0.14	19			6.7		0.024		0.25 U	0.3 U		
TP-15-12	5/17/2000	Kleinfelder	12			4.78	200		0.21	22			22	-	0.031		0.25 U	0.3 U	-	
TP-15-21	5/17/2000	Kleinfelder	21			16.30	140		0.14	28			8.9	-	0.018		0.25 U	0.3 U	-	
TP-16-5	5/17/2000	Kleinfelder	5			2.98	150		0.13	19			11	-	0.014		0.25 U	0.3 U	-	
TP-16-9	5/17/2000	Kleinfelder	9			2.35	100		0.11	17			12		0.026		0.25 U	0.3 U		
Fujitani Hilts Sampling			(ft. bgs)																	
B1-S-4-10'	5/17/2000	Fujitani	4-10			1.08	52		0.042	11			1.9 U		0.0047		0.25 U	0.30 U		
B1-S-7-15	5/17/2000	Fujitani	7-15			1.17	59		0.052	12			2.3 U		0.0095		0.25 U	0.30 U		
B1-S-10-21	5/17/2000	Fujitani	10-21			8.24	160		0.10	25			7.0		0.021		0.25 U	0.30 U		
B2-S-4-10	5/18/2000	Fujitani	4-10			3.69	120		0.21	16			28		0.219		0.25 U	0.30 U		
B2-S-7-15	5/18/2000	Fujitani	7-15			3.29	160		0.14	20			17		0.011		0.25 U	0.30 U		
B2-S-10-20	5/18/2000	Fujitani	10-20			3.63	120		0.16	15			11		0.018		0.25 U	0.30 U		
AMEC Soil Samples			(ft. bgs)																	
MW-B 6-7	3/31/2009	AMEC	6-7			3.00	146		0.40	14.0			110		0.682		1.00 U	0.10 U		
MW-B 26-27	3/31/2009	AMEC	26-27			1.08	144		0.12	20.4			5.08		0.023		1.00 U	0.10 U		
MW-C 30-31	4/1/2009	AMEC	30-31			1,860	837		21.5	161	-		1,860		0.021		1.00 U	2.24		
Columbia Steel Test P	it		(ft. bgs)																	
SandMix-Top Layer	4/3/2020	BES	0.5		ND	ND		ND	19.0	633		168	19.0		ND	1,190	2.8	0.3	ND	82.0
Soil/Rock	4/3/2020	BES	0.5		1.62	5.7		0.324	0.696	181		80.6	43.4		ND	452	2.83	ND	ND	114
Soil/Clay	4/3/2020	BES	0.5		ND	6.7		0.448	0.288	47.6		50.7	31.6		ND	43.7	ND	ND	ND	108
BES Baseline			(ft. bgs)																	
HA-CS-1 0	5/8/2020	BES	0		1.23	5.61		0.055 U	0.362	31.3	11.6	41.6	28.8	595	0.0455	26.1	1.11 U	0.0650	0.126	101
HA-CS-1 6"	5/8/2020	BES	0.5		1.16	4.84	-	0.054 U	0.232	25.0	11.8	38.0	37.5	643	0.0430	25.9	1.08 U	0.0700	0.116	96.3
HA-CS-2 0	5/8/2020	BES	0		0.759	4.58		0.055 U	0.193	22.3	12.3	28.0	20.9	512	0.0148	20.9	1.10 U	0.055 U	0.118	79.0
HA-CS-2 6"	5/8/2020	BES	0.5		0.915	6.45		0.055 U	0.197	20.5	13.1	38.8	21.8	584	0.0250	18.6	1.10 U	0.055 U	0.139	92.7
HA-CS-1 0	5/8/2020	BES	0		1.23	5.61		0.055 U	0.362	31.3	11.6	41.6	28.8	595	0.0455	26.1	1.11 U	0.0650	0.126	101
Columbia Steel Pile Re	moval Area		(ft. bgs)																	
HA-CS-3	5/12/2020	BES	0		0.852	3.37		0.286	0.352	307	46.6	238	20.9	5,200	0.0236	961	2.17 U	0.108 U	0.108 U	76.0
HA-CS-3 6"	5/12/2020	BES	0.5		1.04	3.95		0.334	0.344	671	39.0	100	26.9	6,130	0.0260	853	2.10 U	0.105 U	0.105 U	74.7

HA-CS-4 0 HA-CS-4 6" HA-CS-10 HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	5/12/2020 5/12/2020 5/12/2020 5/27/2020 5/27/2020 5/27/2020 9/28/2020 9/28/2020 9/28/2020	BES BES BES BES BES BES BES	Sample Depth (ft. bgs) 0 0.5 0.5	Aluminum	Antimony 0.877	Arsenic	Barium	Berylium				tals by EPA	Testing Resu 6020 (mg/kg)							
HA-CS-4 0 HA-CS-4 6" HA-CS-10 HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	5/12/2020 5/12/2020 5/27/2020 5/27/2020 5/27/2020 9/28/2020 9/28/2020	BES BES BES BES	(ft. bgs) 0 0.5			Arsenic	Barium	l otal Metals by EPA 6020 (mg/kg)												
HA-CS-4 6" HA-CS-10 HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	5/12/2020 5/27/2020 5/27/2020 5/27/2020 9/28/2020 9/28/2020	BES BES BES	0 0.5			Arsenic	Barium	Rendium												
HA-CS-4 6" HA-CS-10 HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	5/12/2020 5/27/2020 5/27/2020 5/27/2020 9/28/2020 9/28/2020	BES BES BES	0.5		0.877			l per Angri	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
HA-CS-10 HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	5/27/2020 5/27/2020 5/27/2020 9/28/2020 9/28/2020	BES BES			0.0	4.17		0.569	0.306	27.2	13.4	32.8	70.3	485	0.0202	32.8	2.29 U	0.159	0.141	122
HA-CS-10 HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	5/27/2020 5/27/2020 5/27/2020 9/28/2020 9/28/2020	BES BES			0.736	4.47	-	0.677	0.321	28.1	12.9	37.0	74.7	530	0.0234	26.0	2.16 U	0.177	0.139	129
HA-CS-11 HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16	5/27/2020 5/27/2020 9/28/2020 9/28/2020	BES							0.240	85.2		107		2,710		85.9	1.32 U			
HA-CS-12 HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16	5/27/2020 9/28/2020 9/28/2020		0.5						0.294	127		46.5		2,220		134	1.30 U			
HA-CS-13 HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	9/28/2020 9/28/2020		0.5						0.428	73.4		47.7		1,710		154	1.31 U			
HA-CS-14 HA-CS-15 HA-CS-16 HA-CS-17	9/28/2020	BES	0.5						0.240	89.9		72.7		1,140		72.1	1.30 U			
HA-CS-16 HA-CS-17	9/28/2020	BES	0.5						0.211	34.6		55.8		627		26.9	1.33 U			
HA-CS-17		BES	0.5				-		0.265	84.4		87.1		3,000		115	1.32 U			
HA-CS-17	5/28/2020	BES	0.5						0.451	67.9		86.1		1,050		49.7	1.34 U			
	9/28/2020	BES	0.5						0.295	67.8		70.8		1,310		125	1.33 U			- -
CC 47 DH E	6/23/2020	BES	0.5							1				, , , , , , , , , , , , , , , , , , ,						
CS-17-PILE HA-CS-18	9/28/2020	BES	0.5	 12,200	1.20 0.510	8.85 3.28	949	0.693 0.283	0.414 0.254	75.6 304	83.4	42.1 114	48.6 27.3	1,040 3,270	0.0253 0.0167 U	70.2 1,790	1.09 U 2.23 U	0.092 0.148	0.169 0.112 U	157 136
HA-CS-19 Ramp	9/28/2020	BES	0.5	l	0.510	3.20		U.203 	0.258	385		103		11,500		936	1.38	U. 140 		
HA-CS-19-RAMP-2	1/3/2024	BES	0.5		1.26	5.49		0.548	0.236	209		97.1	39.2	4,860	0.0478	259	2.02 U	0.101 U	0.129	135
HA-CS-19-RAIVIP-2	9/28/2020	BES	0.5	12,300	0.532	3.29		0.346	0.306	173	74.0	125	33.2	4,000	0.0478 0.0171 U		2.02 U	0.1010	0.129 0.114 U	153
CS-15-PIT	5/28/2020	BES	0.5	12,300	2.02	3.29 17.5		0.234	3.11	60.6	74.0	58.5	171	530	0.01710	25.8	1.76 U	0.171	0.114 0 0.167	459
SLR Sampling	JIZUIZUZU	DES	(ft. bgs)		2.02	17.5		0.707	J. 1 I	00.6		30.3	1/1	330	0.402	25.0	1.700	U. 12 I	0.107	405
	6/29/2020	SLR			1.16 U	4.01		0.439	0.339	Γ	82.4	93.7	24.4	4,250	0.0930 U	353	1.24	0.233 U	0.233 U	79.1
Former I (south) Former I (south)	6/29/2020	SLR	0-4 12-16		1.16 U 1.22 U	6.03		0.439	0.339 0.245 U		32.8	142	40.7	740	0.0930 U	32.6	1.24 1.22 U	0.233 U 0.245 U	0.233 U 0.245 U	131
Former I (south)	6/29/2020	SLR	0-4		1.22 U 1.14 U	4.14		0.546	0.245 U 0.445		53.3	46.2	241	1,980	0.0979 U 0.0910 U	151	1.22 U 1.14 U	0.245 U 0.227 U	0.245 U 0.227 U	104
Former I (north)	6/29/2020	SLR	12-16		1.14 U 1.19 U	6.62		0.515	0.445		53.0	320	110	907	0.0910 0	45.3	1.14 U 1.19 U	0.227 U 0.239 U	0.227 U 0.239 U	205
Former M	6/29/2020	SLR	0-4		1.19 U	4.51		0.380	0.287		33.5	78.7	30.6	3,760	0.0922 U	61.2	1.19 U	0.239 U	0.239 U	76
Former M	6/29/2020	SLR	12-16		1.13 U	6.75		0.514	0.462		39.5	136	28.9	595	0.0922 U	24.7	1.126 U	0.250 U	0.250 U	94.8
Former J	6/29/2020	SLR	0-4		1.12 U	6.52		0.514	0.402		43.9	131	38.8	984	0.0897 U	65.9	1.12 U	0.232 U	0.232 U	140
Former J	6/29/2020	SLR	12-16		1.12 U	7.17		0.610	0.394		66.8	123	38.2	922	0.0037 U	53.1	1.12 U	0.230 U	0.230 U	117
SW	6/29/2020	SLR	0-4		1.20 U	4.80		0.370	0.414		70.3	66.4	30.0	3,950	0.0962 U	147	1.10 U	0.240 U	0.240 U	128
SW	6/29/2020	SLR	12-16		1.19 U	6.65		0.472	0.348		21.1	43.2	33.6	748	0.0950 U	25.7	1.19 U	0.238 U	0.238 U	83.5
Former K	6/29/2020	SLR	0-4		1.18 U	4.68		0.380	0.288		38.4	66.9	24.1	1,160	0.0930 U	103	1.18 U	0.236 U	0.236 U	77.9
Former K	6/29/2020	SLR	12-16		1.82	7.10		0.453	0.480		27.7	136	36.4	732	0.100 U	37.7	1.25 U	0.251 U	0.251 U	119
BES Test Pits	0/20/2020	OLIV	(ft. bgs)		1.02	7.10		0.400	0.400			1.00	00.4	.02	0.100 0	07.11	1.200	0.2010	0.2010	110
T-Pit-1 0-18"	10/5/2023	BES	0-1.5			4.44		I I	0.449	113		34.4	84.1	I	0.0670	l				142
T-Pit-2 0-5'	10/5/2023	BES	0-1.5			5.00			0.352	51.8		30.6	59.2		0.161					127
T-Pit-3 0-18"	10/5/2023	BES	0-1.5			9.27			0.893	169		82.4	123		0.0719					232
T-Pit-4 0-5'	10/5/2023	BES	0-1.5			3.63			0.252	21.3		21.6	69.9		0.048					112
T-Pit-5 0-18"	10/5/2023	BES	0-1.5			2.62			0.166	20.4		24.5	27.7		0.0226					84.1
T-Pit-6 0-18"	10/5/2023	BES	0-1.5			5.15			0.193	29.0		25.4	30.9		0.0391					90.4
T-Pit-6 0-5'	10/5/2023	BES	0-5			6.44			0.270	27.5		34.0	74.7		0.101					138
T-Pit-7 0-5'	10/5/2023	BES	0-5			5.09			0.291	23.3		28.2	51.8		0.0639					145
T-Pit-8 0-18"	10/5/2023	BES	0-1.5			2.72			0.165	18.9		30.9	16.0		0.0213					81.2
T-Pit-9 0-5'	10/5/2023	BES	0-5			3.70			0.168	24.3		26.2	29.0		0.0252					93.9
T-Pit-10 0-18"	10/5/2023	BES	0-1.5			2.22			0.138	447		28.7	25.1		0.0180					70.8
T-Pit-11 0-5'	10/5/2023	BES	0-5			4.27			0.171	330		29.8	32.6		0.0246					104
T-Pit-12 0-18"	10/5/2023	BES	0-1.5			3.12			0.153	19.7		19.9	16.1		0.0273					78.1
BES Geoprobe Samples			(ft. bgs)																	
<u>'</u>	11/21/2023	BES	0-5			5.63			0.149	22.9		21.3	76.7		0.0211					67.8
	11/21/2023	BES	5-10			5.42			0.219	22.8		22.3	52.3		0.0487					95.5
	11/21/2023	BES	0-5			9.12			0.137	26.8		20.8	24.0		0.0207					70.7
	11/21/2023	BES	5-10			10.4			0.147	24.1		15.9	17.2		0.0197					66.4
	11/21/2023	BES	0-5			3.86			0.084	22.5		18.7	13.0		0.0175					51.1
WP-3 5-10	11/21/2023	BES	5-10			7.96	-		0.199	28.2		38.5	38.4		0.0358					81.7
	11/21/2023	BES	0-5			2.49			0.120	21.2		14.4	12.4		0.0214					47.2
	11/21/2023	BES	5-10			12.1			0.226	28.3		97.3	71.2		0.0579					102
	11/21/2023	BES	0-5			6.91			0.141	99.5		22.4	15.3		0.0245					60.6
	11/21/2023	BES	5-10			3.10			0.106	21.5		17.1	18.4		0.0274					58.8
	11/21/2023	BES	0-5			6.38			0.126	23.3		16.6	16.9		0.0292					98.2
	11/21/2023	BES	5-10			4.99			0.130	25.7		26.6	23.7		0.0656					70.7
	11/21/2023	BES	0-5			7.07			0.145	22.5		20.7	20.2		0.0259					64.7

Table 4C -West Property Soil Analytical Results: Total Metals

Table 4C -west Propert	.,		Sample Depth							L	aboratory	Analytical [*]	Testing Resul	ts						
Sample ID	Sample Date	Sampled By	(ft. bgs)								Total Met	als by EPA	6020 (mg/kg)							
			(it. bys)	Aluminum	Antimony	Arsenic	Barium	Berylium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
WP-7 5-10	11/21/2023	BES	5-10			5.17			0.131	21.3		30.0	32.9		0.0740					68.9
WP-8 0-5	11/21/2023	BES	0-5			6.51			0.122	19.8		15.5	18.0		0.0182					66.5
WP-8 5-10	11/21/2023	BES	5-10			3.58			0.133	20.9		17.4	22.0		0.0250					75.9
WP-9 0-5	11/21/2023	BES	0-5			4.06			0.098	22.6		17.4	16.4		0.0217					56.6
WP-9 5-10	11/21/2023	BES	5-10			4.12			0.177	21.6		24.8	23.5		0.0365					77.3
WP-10 0-5	11/21/2023	BES	0-5			3.76			0.208	23.4		24.0	25.6		0.0284					79.5
WP-10 5-10	11/21/2023	BES	5-10			4.44			0.195	21.5		18.1	41.7		0.0465					94.6
WP-11 0-5	11/21/2023	BES	0-5			5.47			0.218	21.9		24.2	27.7		0.0234					97.3
WP-11 5-10	11/21/2023	BES	5-10			8.40			0.186	22.2		15.5	26.5		0.0225					89.5
WP-11 10-15	11/21/2023	BES	10-15			5.58			0.255	24.4		31.1	105		0.0226					130
WP-12 0-5	11/21/2023	BES	0-5			4.54			0.223	20.8		23.6	88.4		0.0340					111
WP-12 5-10	11/21/2023	BES	5-10			2.95			0.169	16.8		25.3	29.3		0.0253					84.7
WP-13 0-5	11/21/2023	BES	0-5			2.84			0.273	20.8		34.3	63.3		0.0263					105
WP-13 5-10	11/21/2023	BES	5-10			3.09			0.210	17.2		14.6	33.3		0.0831					102
WP-13 10-15	11/21/2023	BES	10-15			4.66			0.243	21.0		16.8	111		0.0297					136
ODEQ Cleanfill																				
Clean Fill Screening Valu	ue				0.56	8.8	790	2	0.63	76	43	34	28	1,800	0.23	47	0.71	0.82	5.2	180
ODEQ Risk Based Conc																				
Soil Ingestion, Dermal Co	ontact, and Inhala	ation RBC -				0.43*	15,000	160	78	120,000		3,100	400	1,800	23	1,500		390		
Soil Ingestion, Dermal Co						1.9*	220,000	2,300	1,100	>Max		47,000	800	25,000	350	22,000		5,800		
Soil Ingestion, Dermal Co Construction Worker	Ingestion, Dermal Contact, and Inhalation RBC - struction Worker					15	69,000	700	350	530,000		14,000	800	8,200	110	7,000		1,800		
Soil Ingestion, Dermal Co Excavation Worker	ontact, and Inhala				420	>Max	19,000	9,700	>Max		390,000	800	230,000	2,900	190,000		49,000			
Regional Screening Leve	els - Target hazar	.1																		
Soil Ingestion, Dermal Co			7,700	3	0.68*	1,500	16	0.71	8,500	2.3	310	100 / 200 **		1.1		39	39		2,300	
Soil Ingestion, Dermal Co	•			110,000	47	3*	22,000	230	10	36,000	35	4,700	800		4.6		580	580		35,000

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

mg/kg - Milligrams per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

^{* -} Arsenic screening level values are below the naturally occuring background level of 8.8 mg/kg for this region
** - Pending forhcoming RBC values

Table 5A - TASS 2 Soil Analytical Results: Pesticides

1able 5A - 1ASS 2 S	-								Laboratory	Analytical ⁻	Testing Resu	ults			
Canania ID	Camania Data	Communication	Sample						Pesticid	es by EPA 8	081B (ug/kg)				
Sample ID	Sample Date	Sampled By	Depth	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	alpha-BHC	alpha- Chlordane	beta-BHC	Chlordane	delta-BHC	Dieldrin	Endosulfan I	Endosulfan II
BES Test Pits			(ft. bgs)												
T-Pit-7 0-5'	10/5/2023	BES	0-5	120	91	150	2.2 U	1.1 U	3.90	1.1 U	11 U	0.35	1.1 U	1.40	2.2 U
ODEQ Cleanfill															
Clean Fill Screening	Value			6.3	10	10	23		270		910		4.5	640	640
ODEQ Risk Based															
Concentrations				11									1		
Soil Ingestion, Derma	al Contact, and Inhal	ation RBC - Re	sidential	2,200	1,800	1,900	31				1,700		34	380,000	380,000
Soil Ingestion, Derma	al Contact, and Inhal	ation RBC - Oc	cupational	12,000	8,200	8,500	130				7,400		140	4,900,000	4,900,000
Soil Ingestion, Derma Worker	al Contact, and Inhal	ation RBC - Co	nstruction	9,700	66,000	66,000	1,100				61,000		1,200	1,600,000	1,600,000
Soil Ingestion, Derma Worker	al Contact, and Inhal	ation RBC - Exc	cavation	270,000	1,800,000	18,000,000	30,000				1,700,000		33,000	45,000,000	45,000,000
Regional Screening L	_evels - Target hazaı	d quotients = 0	.1		•			,	•			1		•	•
Soil Ingestion, Derma	al Contact, and Inhal	ation for Reside	ential	2,300	2,000	1,900	39	16	0.71	300	3,600		34	47,000	
Soil Ingestion, Derma	al Contact, and Inhal	ation for Industi	rial Worker	9,700	9,300	8,500	180	230	10	1,300	50,000		140	700,000	

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 5A - TASS 2 Soil Analytical Results: Pesticides

									Analytical Tes		5		
Sample ID	Sample Date	Sampled By	Sample					Pesticide	s by EPA 808	1B (ug/kg)			
Sample ID	Sample Date	Sampled By	Depth	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Endrin Ketone	gamma-BHC (Lindane)	Heptachlor	Heptachlor Epoxide	Methoxychlor	Toxaphene	trans- Chlordane
BES Test Pits			(ft. bgs)	*									
T-Pit-7 0-5'	10/5/2023	BES	0-5	2.2 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U	2.2 U	2.2 U	110 U	4.80
ODEQ Cleanfill													
Clean Fill Screening \	/alue				1.4		-	9.5	17	4.2	5,100	360	
ODEQ Risk Based Concentrations													
Soil Ingestion, Derma	l Contact, and Inhala	ation RBC - Re	sidential		19,000			490	110	55		490	
Soil Ingestion, Derma	l Contact, and Inhala	ation RBC - Oc	cupational		250,000			2,100	450	240		2,100	
Soil Ingestion, Derma Worker	l Contact, and Inhala	ation RBC - Co	nstruction		80,000			17,000	4,000	2,000		17,000	
Soil Ingestion, Derma Worker	l Contact, and Inhala	ation RBC - Ex	cavation		2,200,000			470,000	110,000	56,000		470,000	
Regional Screening L	evels - Target hazar	d quotients = 0).1										
Soil Ingestion, Derma	l Contact, and Inhala	ation for Reside	ential	38,000	1,900			570	1,300	2,300	70	490	
Soil Ingestion, Derma	l Contact, and Inhala	ation for Indust	rial Worker	490,000	25,000		-	2,500	6,300	35,000	330	2,100	

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

- U analyte not detected above concentration indicated
- --- Analyte not analyzed, or no screening value for this analyte in this scenario
- >Max Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 5B - West Property Soil Analytical Results: Pesticides

									Laboratory	Analytical	Testing Resu	ults		
Carrente ID	Camania Data	Carranta d D.	Carrella Danth						Pesticid	es by EPA 8	081B (ug/kg)			
Sample ID	Sample Date	Sampled By	Sample Depth	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	alpha-BHC	alpha- Chlordane	beta-BHC	Chlordane	delta-BHC	Dieldrin	Endosulfan I
Columbia Steel Pile Remova	al Area		(ft. bgs)											
HA-CS-18	9/28/2020	BES	0.5	0.69 U	0.46 U	0.70 U	0.86	1.1 U	1.1 U	1.1 U	11 U	1.1 U	1.1 U	1.1 U
HA-CS-20	9/28/2020	BES	0.5	0.62 U	0.51 U	0.63 U	2.2 U	1.1 U	0.68	1.1 U	11 U	1.1 U	1.1 U	1.1 U
BES Test Pits			(ft. bgs)											
T-Pit-7 0-5'	10/5/2023	BES	0-5	120	91	150	2.2 U	1.1 U	3.90	1.1 U	11 U	0.35	1.1 U	1.40
ODEQ Cleanfill														_
Clean Fill Screening Value				6.3	10	10	23		270		910		4.5	640
ODEQ Risk Based Concentrations														
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Reside	ntial	2,200	1,800	1,900	31				1,700		34	380,000
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Occupa	ational	12,000	8,200	8,500	130				7,400		140	4,900,000
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Constr	uction Worker	9,700	66,000	66,000	1,100				61,000		1,200	1,600,000
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Excava	ation Worker	270,000	1,800,000	18,000,000	30,000				1,700,000		33,000	45,000,000
Regional Screening Levels - Target hazard quotients =														
Soil Ingestion, Dermal Contac	ct, and Inhalation	for Residentia	al	2,300	2,000	1,900	39	16	0.71	300	3,600		34	47,000
Soil Ingestion, Dermal Contac	ct, and Inhalation	for Industrial \	Worker	9,700	9,300	8,500	180	230	10	1,300	50,000		140	700,000

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 5B - West Property Soil Analytical Results: Pesticides

Table 3D - West Property 30										Analytical Te		s		
Sample ID	Sample Date	Sampled By	Cample Denth						Pesticide	es by EPA 808	31B (ug/kg)			
Sample ID	Sample Date	Sampled By	Sample Depth	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Endrin Ketone	gamma-BHC (Lindane)	Heptachlor	Heptachlor Epoxide	Methoxychlor	Toxaphene	trans- Chlordane
Columbia Steel Pile Remov	al Area		(ft. bgs)											
HA-CS-18	9/28/2020	BES	0.5	1.0	2.2 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U	2.2 U	2.2 U	110 U	1.1 U
HA-CS-20	9/28/2020	BES	0.5	2.2 U	2.2 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U	2.2 U	2.2 U	110 U	1.1 U
BES Test Pits			(ft. bgs)											
T-Pit-7 0-5'	10/5/2023	BES	0-5	2.2 U	2.2 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U	2.2 U	2.2 U	110 U	4.80
ODEQ Cleanfill														
Clean Fill Screening Value				640		1.4			9.5	17	4.2	5,100	360	
ODEQ Risk Based Concentrations														
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Reside	ential	380,000		19,000			490	110	55		490	
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Occup	ational	4,900,000		250,000			2,100	450	240		2,100	
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Constr	uction Worker	1,600,000	-	80,000			17,000	4,000	2,000		17,000	
Soil Ingestion, Dermal Contac	ct, and Inhalation	RBC - Excava	ation Worker	45,000,000		2,200,000			470,000	110,000	56,000		470,000	
Regional Screening Levels - Target hazard quotients =														
Soil Ingestion, Dermal Contac	ct, and Inhalation	for Residentia	al		38,000	1,900			570	1,300	2,300	70	490	
Soil Ingestion, Dermal Contac	ct, and Inhalation	for Industrial	Worker		490,000	25,000			2,500	6,300	35,000	330	2,100	

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

-- - Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 6A - TASS 2 Soil Analytical Results: Polychlorinated Biphenyls (PCBs)

	3 2 3011 Allalytica	ar recounter i	ory or morninate a	sipilioniyis (i s						
					Lab	oratory An	alytical Te	sting Resu	ılts	
Sample ID	Sample Date	Sampled	Sample Depth		Polychorina	ated Bipheyi	nyls (PCBs)) by EPA 80	082 (ug/kg)	
Sample ID	Gample Date	Ву	Sample Depth	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Total DCDa
				1016/1242	1221	1232	1248	1254	1260	Total PCBs
BES Sample Po	oints		(ft. bgs)							
WP-3 0-5	11/21/2023	BES	0-5	9.52 U	9.52 U	9.52 U	9.52 U	15.9	9.52 U	15.9
ODEQ Cleanfill										
Clean Fill Scree	ning Value			41	4.8	4.8	7.3	41	240	230
ODEQ Risk Bas	sed Concentrations	3							-	
Soil Ingestion, D	Dermal Contact, ar	d Inhalation	RBC -							230
Residential										230
	Dermal Contact, ar	d Inhalation	RBC -							590
Occupational										
	Dermal Contact, ar	d Inhalation	RBC -							4,900
Construction Wo										7,000
	Dermal Contact, an	nd Inhalation	RBC -							140,000
Excavation Wor										1 10,000
Regional Screer	ning Levels - Targe	et hazard quo	otients = 0.1							
Soil Ingestion, D	Dermal Contact, ar	d Inhalation	for Residential	410 / 230	200	170	230	120	240	
Soil Ingestion, D Worker	Dermal Contact, ar	id Inhalation	for Industrial	5,100 / 950	830	720	940	970	990	

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 6B - West Property Soil Analytical Results: Polychlorinated Biphenyls (PCBs)

	Trioperty 3011 A		•		<u>, , , , , , , , , , , , , , , , , , , </u>	oratory An	alytical Te	sting Resu	ılts	
Sample ID	Sample Date	Sampled	Sample Depth		Polychorina	ated Bipheyı	nyls (PCBs)	by EPA 80	082 (ug/kg)	
Sample ID	Gample Date	Ву	Sample Depth	Aroclor 1016/1242	Aroclor 1221	Aroclor 1232	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs
Columbia Stee	l Pile Removal Aı	ea	(ft. bgs)							
CS-15-PIT	5/28/2020	BES	0.5	13.2 U	26.4 U	13.2 U	13.2 U	92.9	34.9	127.8
BES Sample P	oints		(ft. bgs)							
WP-3 0-5	11/21/2023	BES	0-5	9.52 U	9.52 U	9.52 U	9.52 U	15.9	9.52 U	15.9
ODEQ Cleanfill										
Clean Fill Scree	ning Value			41	4.8	4.8	7.3	41	240	230
	sed Concentrations									
_	Dermal Contact, ar	nd Inhalation	RBC -							230
Residential										230
	Dermal Contact, ar	nd Inhalation	RBC -							590
Occupational										000
	Dermal Contact, ar	nd Inhalation	RBC -							4,900
Construction W										.,000
	Dermal Contact, ar	nd Inhalation	RBC -							140,000
Excavation Wor										.,
Regional Screet	ning Levels - Targ	et hazard qu	otients = 0.1							
Soil Ingestion, D	Dermal Contact, ar	nd Inhalation	for Residential	410 / 230	200	170	230	120	240	
Soil Ingestion, D Worker	Dermal Contact, ar	nd Inhalation	for Industrial	5,100 / 950	830	720	940	970	990	

Notes

DEQ - Department of Enviornmental Quality

EPA - Environmental Protection Angency

RBCs - Risk-Based Concentrations

bgs - Below ground surface

ug/kg - Micrograms per kilogram

U - analyte not detected above concentration indicated

--- Analyte not analyzed, or no screening value for this analyte in this scenario

>Max - Substance is deemed not to pose risks in this scenario

Bolded - Analyte detected in the sample

Table 7A - TASS 2 Groundwater Analytical Results

			Sampled By		Enviro	-Comp		PI	NG	Kleinfelder	PI	NG	Kleinfelder	Fuji	tani
			Sample ID	TP-1	TP-2	North Pit	South Pit		MW-3 (W-	3)		MW-4 (W-	4)	B-1 (B1RWS-1)	B-2 (B2WS-1)
			Sample Date	7/28/1997	7/28/1997	7/30/1997	7/30/1997	5/26/1999	7/28/1999	5/18/2000	5/26/1999	7/28/1999	5/18/2000	5/18/2000	5/18/2000
		Sample	Depth (ft. bgs)		Unknown	Unknown	Unknown		7.5 - 17.5	5		11.5 - 21.			
	ODEQ Ri	sk Based Concen	<u> </u>		•	•	•	•			•			•	•
	Volatilization to	Volatilization to	Construction					_							
Analyte	Outdoor Air-	Outdoor Air-	and					La	boratory Ar	nalytical Testin	ig Results (ug/L)			
	Residential ²	Occupational ¹	Excavation ³												
Total Petroleum Hydrocarbo															
Gasoline-Range	>S	>S	14,000					910	234		80 U	80.0 U		250 U	250 U
Diesel-Range	>S	>S	>S					600 U	656		600 U	639		630 U	630 U
Oil-Range				5,560	88,200	240,000	147,000	1,200 U	538		1,200 U	651		630 U	630 U
Volatile Organic Compound	S	•													
Acetone										18.5			10 U	10.0 U	11.1
Benzene	3,100	14,000	1,800	3.53	9.36	50 U	13.8	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1.00 U	1.00 U
n-Butylbenzene										1.00 U			1.00 U	1.00 U	1.00 U
Carbon Disulfide										10 U			10 U	10.0 U	10.0 U
Carbon Tetrachloride	1,800	7,700	1,800					3 U	3 U	1.00 U	3 U	3 U	1.00 U	1.00 U	1.00 U
Chlorobenzene	>S	>S	10,000					3	1 U	1.00 U	1 U	1 U	1.00 U	1.00 U	1.00 U
Chlorethane	>S	>S	2,400,000					1 U	1 U	1.00 U	1 U	1 U	1.00 U	1.00 U	1.00 U
Chloroform	1,400	6,300	720					1 U	1 U	1.00 U	1 U	1 U	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene	>S	>S	37,000					12	3	1.00 U	3 U	3 U	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene	4,900	21,000	1,500					2 U 2 U	2 U 2 U	1.00 U 1.00 U	2 U 2 U	2 U 2 U	1.00 U	1.00 U 1.00 U	1.00 U 1.00 U
1,1-Dichloroethane (DCA) 1,2-Dichloroethane	16,000	68,000	10,000					3 U	3 U	1.00 U	3 U	3 U	1.71 1.00 U	1.00 U	1.00 U
1,1-Dichloroethene (DCE)	 570,000	2,400,000	44,000					3 U	3 U	1.00 U	3 U	3 U	1.00 U	1.00 U	1.00 U
cis-1,2-DCE	>S	>S	18,000							1.00 U			4.82	1.00 U	1.00 U
trans-1,2-DCE	>S	>S	180,000					2 U	2 U	1.00 U	2 U	2 U	1.00 U	1.00 U	1.00 U
1,2-Dichloropropane								3 U	3 U	1.00 U	3 U	3 U	1.00 U	1.00 U	1.00 U
Ethylbenzene	9,900	43,000	4,500	59.3	419	3,900	217	3 U	3 U	1.00 U	3 U	3 U	1.00 U	1.00 U	1.00 U
Hexachlorobutadiene	>S	>S	>S							2.01			2.00 U	2.00 U	2.00 U
Methylene Chloride								4 U	4 U	5.00 U	4 U	4 U	5.00 U	5.00 U	5.00 U
Naphthalene	3,600	16,000	500							1.00 U			1.00 U	1.00 U	1.00 U
iso-Propylbenzene	>\$	>S	51,000							1.00 U			1.00 U	1.00 U	1.00 U
n-Propylbenzene										1.00 U			1.00 U	1.00 U	1.00 U
p-Isopropyltoluene										1.00 U			1.00 U	1.00 U	1.00 U
Tetrachloroethene (PCE)	64,000	>S	5,600					2 U	2 U	1.00 U	2 U	2 U	1.00 U	1.00 U	1.00 U
Toluene	>S	>S	220,000	6.12	21.7	50 U	2.5 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1.00 U	1.00 U
1,1,1-Trichloroethane	>S	>S	1,100,000					3 U	3 U	1.00 U	3 U	3 U	1.00 U	1.00 U	1.00 U
Trichloroethene (TCE)	3,300	20,000	430					4 U	4 U	1.00 U	4 U	4 U	1.00 U	1.00 U	1.00 U
1,2,4-Trimethylbenzene	>S	>S	6,300							1.00 U			1.00 U	1.00 U	1.00 U
1,3,5-Trimethylbenzene	>S	>S	7,500							1.00 U			1.00 U	1.00 U	1.00 U
Vinyl Chloride	350	5,900	960					50 U	50 U	1.00 U	50 U	50 U	1.00 U	1.00 U	1.00 U
m,p-Xylenes										2.00 U 1.00 U			2.00 U 1.00 U	2.00 U 1.00 U	2.00 U 1.00 U
o-Xylene Total Xylenes	 >S	 >S	23,000	200	1 700	15,000	 50.0			1.00 U			1.00 U	1.00 U	1.00 U
rotal Aylenes	/3		∠ა,000	208	1,790	15,000	59.0			1.00 0			1.00 U	1.00 0	1.00 0

Table 7A - TASS 2 Groundwater Analytical Results

Table 1A - 1AGG 2 Glodilaw	ator 7 and 1 and 1 and	4110	Sampled By		Enviro	-Comp		Pi	NG	Kleinfelder	Pi	NG	Kleinfelder	Fuji	tani
			Sample ID		TP-2	North Pit	South Pit	-	MW-3 (W-			MW-4 (W-4		B-1 (B1RWS-1)	B-2 (B2WS-1)
			Sample Date		7/28/1997	7/30/1997	7/30/1997	5/26/1999		5/18/2000	5/26/1999	7/28/1999	5/18/2000	5/18/2000	5/18/2000
		Sample	Depth (ft. bgs)		Unknown	Unknown	Unknown	3/20/1999	7.5 - 17.5		3/20/1999	11.5 - 21.5		3/10/2000	3/10/2000
	ODEO Bi	sk Based Concen		OTIKTIOWIT	Olikilowii	OTIKTIOWIT	Ulikilowii		7.5 - 17.5)		11.5 - 21.0)		
		1		•											
Analyte	Volatilization to	Volatilization to	Construction					La	boratory An	alytical Testir	ıg Results (ı	ug/L)			
1	Outdoor Air-	Outdoor Air-	and						,	•	•	o ,			
	Residential ²	Occupational ¹	Excavation ³												
Polycyclic Aromatic Hydroca															
Acenapthene	>S	>S	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Anthracene	>S	>S	>S					10	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Benzo(a)anthracene	>S	>S	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Benzo(a)pyrene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Benzo(b)fluoranthene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Benzo(ghi)perylene								5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Benzo(k)fluoranthene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Chrysene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Dibenzo(a,h)anthracene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Dibenzofuran										5.0 U			5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	>S	>S	37,000					20	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
2,4-Dimethylphenol								110	10 U	10 U	10 U	10 U	10 U	9 U	10 U
Fluoranthene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Fluorene	>S	>S	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-ed)pyrene	NV	NV	>S					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
2-Methylnaphthalene		1	1					1		10 U			10 U	5.0 U	5.0 U
										5.0 U			5.0 U		5.0 U
3,4-Methylphenol Naphthalene	2.000	40,000												5.0 U	
	3,600	16,000	500					5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Phenanthrene								10	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Phenol								10 U	10 U	5.0 U	10 U	10 U	5.0 U	5.0 U	5.0 U
bis(2-ethylhexyl)Phthalate								50	10 U	10 U	10 U	10 U	10 U	10 U	21.2
di-n-butyl Phthalate								100	20 U	5.0 U	20 U	20 U	5.0 U	5.0 U	5.0 U
Pyrene	>S	>S	>S	<u> </u>				5 U	5 U	5.0 U	5 U	5 U	5.0 U	5.0 U	5.0 U
Total Metals				<u> </u>			·			1		· · · · · · · · · · · · · · · · · · ·			1
Arsenic	NV	NV	6,300							60			300		
Barium	NV	NV	>S							2,700			4,600		
Cadmium	NV	NV	130,000							30 U			49		
Chromium	NV	NV	9,400							500			1,100		
Copper	NV	NV	5,400,000												
Lead	NV	NV	>S							1,500			5,700		
Mercury	NV	NV	>S							2.6			2.4		
Selenium										10 U			10 U		
Silver	NV	NV	1,100,000			-				10 U			15		
Zinc															
Dissolved Metals															
Arsenic														10 U	10
Barium														30	97
Cadmium														30 U	30 U
Chromium														30 U	30 U
Lead														100 U	100 U
Mercury														0.2 U	0.2 U
Selenium														10 U	18
Silver			<u></u>											10 U	10 U
001		1	1	II.	1		I .	1		I.	I .			1 100	, ,,,,,

Table 7B - West Property Groundwater Analytical Results Sampled By **Enviro-Comp** PNG Kleinfelder PNG Kleinfedler B2-W B3-W Sample ID TP-1 TP-2 North Pit South Pit B1-W MW-1 (W-1) MW-2 (W-2) **Sample Date** 7/28/1997 7/28/1997 7/30/1997 7/30/1997 12/18/1998 12/18/1998 12/18/1998 | 5/26/1999 | 7/28/1999 | 5/18/2000 | 5/26/1999 | 7/28/1999 | 5/18/2000 Sample Depth (ft. bgs) Unknown Unknown Unknown Unknown 16 - 20 28 - 32 16 - 20 14.5 - 24.5 11.5 - 21.5 **ODEQ Risk Based Concentrations Analyte** Laboratory Analytical Testing Results (ug/L) Volatilization to Volatilization to Construction Outdoor Air-Outdoor Airand Residential² Occupational¹ Excavation³ Total Petroleum Hydrocarbons 14.000 200 U 250 U 250 U 244 125 109 123 Gasoline-Range >S >S ------------Diesel-Range >S >S >S 250 U 2090 250 U 600 U 1,840 600 U 599 ----Oil-Range 88,200 147,000 500 U 5,560 240,000 1640 500 U 1200 U 1,020 2,130 500 U ------**Volatile Organic Compounds** 20 U 20 U 20 U 10 U 10 U Acetone 3.100 14.000 1.800 1.00 U 3.53 9.36 50 U 13.8 28 0.5 U 0.9 1 U 1 1.13 1 U 1 U Benzene 2 U 2 U 2 U 1.01 1.00 U n-Butylbenzene --------------------0.5 U 1.7 0.8 10 U 10 U Carbon Disulfide ----------7,700 1,800 0.5 U 0.5 U 3 U 3 U 3 U 3 U Carbon Tetrachloride 1,800 --0.5 U 1 U 1.00 U --Chlorobenzene >S >S 10.000 0.5 U 0.5 U 0.5 U 19 9 4.21 1 U 1 U 1.00 U --------Chlorethane >S >S 2,400,000 0.5 U 0.5 U 0.5 U 9 12 7.46 1 U 1 U 1.00 U --------1,400 6,300 720 1.00 U 1.00 U Chloroform 0.5 U 0.5 U 0.5 U 1 U 1 U 1 U 1 U --------37,000 3 U 3 U 1.00 U 1,2-Dichlorobenzene >S >S 0.5 U 0.5 U 0.5 U 3 U 3 U 1.00 U ----,4-Dichlorobenzene 4.900 21.000 1.500 0.5 U 0.5 U 0.5 U 2 U 2 U 1.00 U 2 U 2 U 1.00 U ----,1-Dichloroethane (DCA) 16,000 68,000 10,000 --0.5 U 0.9 0.5 U 2 U 2 U 1.00 U 2 U 2 U 1.00 U ----__ 0.5 U 0.5 U 0.5 U 3 U 3 U 1.00 U 3 U 3 U 1.00 U 1,2-Dichloroethane ----1,1-Dichloroethene (DCE) 570,000 2,400,000 44,000 0.5 U 0.5 U 3 U 3 U 1.00 U 3 U 3 U 1.00 U ----0.9 cis-1,2-DCE >S >S 18,000 0.5 U 1.0 58 1.00 U 1.00 U -trans-1,2-DCE >S >S 180,000 0.5 U 0.5 U 1.8 2 U 2 U 1.00 U 2 U 2 U 1.00 U --------1,2-Dichloropropane 0.5 U 0.5 U 0.5 U 3 U 3 U 1.00 U 3 U 3 U 1.00 U ----43,000 4,500 Ethylbenzene 9,900 59.3 419 3,900 217 6.7 0.5 U 0.5 U 5 3 U 1.44 3 U 3 U 1.00 U Hexachlorobutadiene >S >S >S 2 U 3 U 4 U 2.64 3.01 ------------Methylene Chloride ----1 U 1 U 1 U 3 U 4 U 5.00 U 4 U 4 U 5.00 U --------500 Naphthalene 3,600 16,000 ------0.5 U 100 0.5 U ----1.00 U ----1.00 U --51,000 2 U 2 U 2 U 1.00 U 1.00 U iso-Propylbenzene >S >S --------------2 U 2 U n-Propylbenzene ----2 U 1.00 U 1.00 U p-Isopropyltoluene 1.00 U 1.00 U --------Tetrachloroethene (PCE) 64,000 5,600 0.5 U 0.5 U 0.5 U >S 2 U 2 U 1.00 U 2 U 2 U 1.00 U --------220,000 6.12 2.5 U 0.5 U 1.00 U 1.00 U Toluene >S >S 21.7 50 U 2.4 0.5 U 1 U 1 U 1 U 1 U 1.100.000 1.00 U 1,1,1-Trichloroethane >S >S ------0.5 U 0.5 U 0.5 U 3 U 3 U 1.00 U 3 U 3 U --20.000 Trichloroethene (TCE) 3.300 430 ----0.5 U 0.5 U 5.5 4 U 4 U 1.00 U 4 U 4 U 1.00 U 1,2,4-Trimethylbenzene 6.300 1.00 U >S >S ----2 U 2 U 2 U --1.00 U 1,3,5-Trimethylbenzene >S >S 7,500 2 U 2 U 2 U 1.00 U 1.00 U ----350 960 0.5 U Vinyl Chloride 5,900 0.5 U 35 50 U 1.00 U 50 U 50 U 1.00 U --50 U 2.00 U m,p-Xylenes --1.0 0.5 0.5 U 2.00 U

0.9

1.9

0.5 U

0.5

0.5 U

0.5 U

--

--

--

--

1.00 U

1.00 U

--

--

--

--

1.00 U

1.00 U

o-Xylene

Total Xylenes

--

>S

23,000

208

1,790

15,000

59.0

>S

Table 7B - West Property Gro	undwater Analytica	l Results														
			Sampled By		Enviro	o-Comp				PNG	,		Kleinfelder	P	NG	Kleinfedler
			Sample ID	TP-1	TP-2	North Pit	South Pit	B1-W	B2-W	B3-W		MW-1 (W-1	1)		MW-2 (W-2	2)
			Sample Date	7/28/1997	7/28/1997	7/30/1997	7/30/1997	12/18/1998	12/18/1998	12/18/1998	5/26/1999	7/28/1999	5/18/2000	5/26/1999	7/28/1999	5/18/2000
		Sample	Depth (ft. bgs)	Unknown	Unknown	Unknown	Unknown	16 - 20	28 - 32	16 - 20		14.5 - 24.5	5		11.5 - 21.5	5
		ODEQ Risk														
		Based														
Analyte		Concentrations						La	boratory Ana	alvtical Testir	na Results ((ua/L)				
Allulyte	Volatilization to	Volatilization to	Construction						iboratory And	arytiour rootii	ig recounts ((ug/ =)				
	Outdoor Air-	Outdoor Air-	and													
	Residential ²	Occupational ¹	Excavation ³													
Polycyclic Aromatic Hydrocar				1	·						·					
Acenapthene	>S	>S	>S					10 U	10 U	10 U	5 U	5 U	25 U	10	10	5.0 U
Anthracene	>S	>S	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Benzo(a)anthracene	>S NV	>S NV	>S >S					10 U 10 U	10 U 10 U	10 U 10 U	5 U	5 U 5 U	25 U 25 U	5 U	5 U 5 U	5.0 U 5.0 U
Benzo(a)pyrene Benzo(b)fluoranthene	NV NV	NV NV	>S >S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Benzo(ghi)perylene								10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Benzo(k)fluoranthene	NV	NV	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Chrysene	NV	NV	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Dibenzo(a,h)anthracene	NV	NV	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Dibenzofuran								10 U	10 U	10 U			25 U			5.0 U
1,2-Dichlorobenzene	>S	>S	37,000					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
2,4-Dimethylphenol								10 U	10 U	10 U	50	20	50 U	10 U	10 U	10 U
Fluoranthene	NV	NV	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Fluorene	>S	> S	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	10	5.0 U
Indeno(1,2,3-ed)pyrene	NV	NV	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
2-Methylnaphthalene								10 U	24	10 U	5 U		25 U			10 U
3,4-Methylphenol	2.000	40,000						10 U	11 U	10 U	5 U		25 U	 		5.0 U
Naphthalene	3,600	16,000	500					10 U 10 U	85 10 U	10 U 10 U	5 U 5 U	5 U 5 U	25 U 25 U	5 U	5 U 5 U	5.0 U 5.0 U
Phenanthrene Phenol								10 U	10 U	10 U	30	10 U	25 U	10 U	10 U	5.0 U
bis(2-ethylhexyl)Phthalate								10 U	10 U	10 U	10	10 U	50 U	20	10 U	10 U
di-n-butyl Phthalate								10 U	10 U	10 U	5 U	20 U	25 U	20 U	20 U	5.0 U
Pyrene	>S	>S	>S					10 U	10 U	10 U	5 U	5 U	25 U	5 U	5 U	5.0 U
Total Metals																
Arsenic	NV	NV	6,300										10 U			20
Barium	NV	NV	>S										240			200
Cadmium	NV	NV	130,000										30 U			30 U
Chromium	NV	NV	9,400										30 U			30 U
Copper	NV	NV	5,400,000													
Lead	NV	NV	>S										100 U			100 U
Mercury	NV	NV	> S										0.7			0.2 U
Selenium	 NI\/	 NIV/	1 100 000										10 U			10 U
Silver Zinc	NV 	NV 	1,100,000										10 U 			10 U
Dissolved Metals	<u></u>					<u></u>	<u> </u>				<u></u>					
Arsenic														T		
Barium																
Cadmium																
Chromium																
Lead																
Mercury																
Selenium																
Silver			-													

Table 7B - West Property Grou	undwater Analytica	ii Resuits	Sampled By	PI	NG	Kleinfelder	PN	NG	Kleinfelder	Pi	NG	Kleinfelder	PI	NG	Kleinfelder	PNG	Kleinfelder
			Sample ID		MW-3 (W-	3)		MW-4 (W-	4)		MW-5 (W-	5)		MW-6 (W-	6)	W-7 (W-5 Duplicate)	TP-6
			Sample Date	5/26/1999	7/28/1999	5/18/2000	5/26/1999	7/28/1999	5/18/2000	5/26/1999	7/28/1999	5/18/2000	5/26/1999	7/28/1999	5/18/2000	7/28/1999	5/17/2000
		Sample	Depth (ft. bgs)		7.5 - 17.5			11.5 - 21.			14.5 - 29.			14.5 - 24.		14.5-29.5	13-15
		ODEQ Risk	,				•			•			•			•	-
		Based															
		Concentrations															
Analyte	Volatilization to	Volatilization to	Construction						Labora	atory Analyti	cal Testing	Results (ug/L))				
	Outdoor Air-	Outdoor Air-	and														
	Residential ²	Occupational ¹	Excavation ³														
Total Petroleum Hydrocarbon	J.																
Gasoline-Range	>S	>S	14,000	910	234		80 U	80.0 U	I	310	80.0 U	I	80 U	80.0 U	I	80.0 U	T
Diesel-Range	>S	>S	>S	600 U	656		600 U	639		650 U	764		700 U	580		580	
Oil-Range				1200 U	538		1200 U	651		1300 U	656		140 U	528		528	
Volatile Organic Compounds	•		•			•									•		•
Acetone						18.5			10 U			10 U			10 U		43.0
Benzene	3,100	14,000	1,800	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U		8.59
n-Butylbenzene						1.00 U			1.00 U			1.00 U			1.00 U		1.04
Carbon Disulfide						10 U			10 U			10 U			10 U		10 U
Carbon Tetrachloride	1,800	7,700	1,800	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	1.00 U
Chlorobenzene	>S	>S	10,000	3	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U		129
Chlorethane	>S	>S	2,400,000	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U		ND
Chloroform	1,400	6,300	720	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U	1 U	1 U	1.00 U		1.00 U
1,2-Dichlorobenzene	>S	>S	37,000	12	3	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U		6.71
1,4-Dichlorobenzene	4,900	21,000	1,500	2 U	2 U	1.00 U	2 U	2 U	1.00 U	2 U	2 U	1.00 U	2 U	2 U	1.00 U		5.88
1,1-Dichloroethane (DCA)	16,000	68,000	10,000	2 U	2 U	1.00 U	2 U	2 U	1.71	2 U	2 U	1.00 U	2 U	2 U	1.00 U		1.00 U
1,2-Dichloroethane				3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U		1.00 U
1,1-Dichloroethene (DCE)	570,000	2,400,000	44,000	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U		ND
cis-1,2-DCE	> S	>S	18,000			1.00 U			4.82			1.00 U			1.00 U		2.43
trans-1,2-DCE	> S	>S	180,000	2 U	2 U	1.00 U	2 U	2 U	1.00 U	2 U	2 U	1.00 U	2 U	2 U	1.00 U		1.00 U
1,2-Dichloropropane				3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U		1.00 U
Ethylbenzene	9,900	43,000	4,500	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U		58.9
Hexachlorobutadiene	>S	>S	>S			2.01			2.00 U			2.00 U			2.00 U		2.00 U
Methylene Chloride				4 U	4 U	5.00 U	4 U	4 U	5.00 U	4 U	4 U	5.00 U	4 U	4 U	5.00 U	4 U	5.00 U
Naphthalene	3,600	16,000	500			1.00 U			1.00 U			1.00 U			1.00 U		17.1
iso-Propylbenzene	>S	>S	51,000			1.00 U			1.00 U	 -		1.00 U			1.00 U		1.93
n-Propylbenzene						1.00 U 1.00 U			1.00 U			1.00 U			1.00 U		2.08
p-Isopropyltoluene Tetrachloroethene (PCE)	 64,000		 F 600	2 U	 2 U		2 U	2 U	1.00 U	211	211	1.00 U 1.00 U	2 U	2 U	1.00 U		1.92
Toluene	>S	>S >S	5,600 220,000	1 U	1 U	1.00 U 1.00 U	1 U	1 U	1.00 U 1.00 U	2 U 1 U	2 U 1 U	1.00 U	1 U	1 U	1.00 U 1.00 U		1.00 U 1.00 U
1,1,1-Trichloroethane	>S	>S	1,100,000	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U	3 U	3 U	1.00 U		1.00 U
Trichloroethene (TCE)	3,300	20,000	430	4 U	4 U	1.00 U	4 U	4 U	1.00 U	4 U	4 U	1.00 U	4 U	4 U	1.00 U	<u></u>	1.00 U
1,2,4-Trimethylbenzene	>S	20,000 >S	6,300	4 U 		1.00 U			1.00 U			1.00 U			1.00 U		10.4
1,3,5-Trimethylbenzene	>S	>S	7,500			1.00 U			1.00 U			1.00 U			1.00 U		1.92
Vinyl Chloride	350	5,900	960	50 U	50 U	1.00 U	50 U	50 U	1.00 U	50 U	50 U	1.00 U	50 U	50 U	1.00 U		1.71
m,p-Xylenes		3,900				2.00 U			2.00 U			2.00 U			2.00 U		57.7
o-Xylene						1.00 U			1.00 U			1.00 U			1.00 U		28.3
Total Xylenes	>S	>S	23,000			1.00 U			1.00 U			1.00 U			1.00 U		1.00 U

Table 7B - West Property Gro	undwater Analytica	II Results	Sampled By	P	NG	Kleinfelder	l Pi	NG	Kleinfelder	l Pi	NG	Kleinfelder	l Pi	NG	Kleinfelder	PNG	Kleinfelder
			Sample ID		MW-3 (W-	!		MW-4 (W-	!		MW-5 (W-	•		MW-6 (W-	•	W-7 (W-5	TP-6
			Sample Date		`	,	E/26/1000	7/28/1999	*	5/26/1999	7/28/1999	,	5/26/1999	7/28/1999	,	Duplicate) 7/28/1999	5/17/2000
		Sample	Depth (ft. bgs)		7.5 - 17.5		5/26/1999	11.5 - 21.		5/26/1999	14.5 - 29.		5/26/1999	14.5 - 24.		14.5-29.5	13-15
		ODEQ Risk	Deptii (it. bgs)		7.0 - 17.0		l	11.0 - 21.	<u> </u>	<u> </u>	14.0 - 20.	<u> </u>	<u> </u>	14.0 - 24.	<u> </u>	14.0-29.0	1 13-13
		Based															
		Concentrations											_				
Analyte	Volatilization to	Volatilization to	Construction						Labora	itory Analyti	cal Testing	Results (ug/L)				
	Outdoor Air-	Outdoor Air-	and														
	Residential ²	Occupational ¹	Excavation ³														
Polycyclic Aromatic Hydrocai	<u> </u>	<u>'</u>															
Acenapthene	>S	>S	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10.5
Anthracene	>S	>S	>S	10	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		11.3
Benzo(a)anthracene	>S	>S	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
Benzo(a)pyrene	NV	NV	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
Benzo(b)fluoranthene	NV	NV	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
Benzo(ghi)perylene	 ND /			5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
Benzo(k)fluoranthene	NV	NV	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
Chrysene	NV NV	NV NV	>S >S	5 U 5 U	5 U 5 U	5.0 U 5.0 U	5 U 5 U	5 U 5 U	5.0 U 5.0 U	5 U 5 U	5 U 5 U	5.0 U 5.0 U	5 U 5 U	5 U 5 U	5.0 U 5.0 U		10 U 10 U
Dibenzo(a,h)anthracene Dibenzofuran	INV 	NV 	>5	50	5 U 	5.0 U			5.0 U		5 U 	5.0 U			5.0 U		10 U
1,2-Dichlorobenzene	 >S	 >S	37,000	20	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
2,4-Dimethylphenol				110	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		20 U
Fluoranthene	NV	NV	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		16.6
Fluorene	>S	>S	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5	5 U	5.0 U	5 U	5 U	5.0 U		10 U
Indeno(1,2,3-ed)pyrene	NV	NV	>S	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		10 U
2-Methylnaphthalene						10 U			10 U			10 U			10 U		14.7
3,4-Methylphenol						5.0 U			5.0 U			5.0 U			5.0 U		10.1
Naphthalene	3,600	16,000	500	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		23.3
Phenanthrene				10	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		34.0
Phenol				10 U	10 U	5.0 U	10 U	10 U	5.0 U	10 U	10 U	5.0 U	10 U	10 U	5.0 U		67.1
bis(2-ethylhexyl)Phthalate				50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		63.7
di-n-butyl Phthalate	 >S		 >S	100	20 U	5.0 U	20 U	20 U	5.0 U	20 U	20 U	5.0 U	20 U	20 U	5.0 U		10 U
Pyrene Total Metals		>S	/ >5	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U	5 U	5 U	5.0 U		15.3
Arsenic	NV	NV	6,300			60	l		300	I		62	I	l <u></u>	21		T
Barium	NV	NV	>S			2,700			4,600			1,700			590		
Cadmium	NV	NV	130,000			30 U			49			30 U			30 U		
Chromium	NV	NV	9,400			500			1,100			200			32		
Copper	NV	NV	5,400,000														
Lead	NV	NV	>S			1,500			5,700			440			100 U		
Mercury	NV	NV	>S			2.6			2.4			0.5			0.2 U		
Selenium						10 U			10 U			10 U			10 U		
Silver	NV	NV	1,100,000			10 U			15			10 U			10 U		
Zinc																	
Dissolved Metals	1	I	1			1	ı					1		ı			
Arsenic																	58
Barium																	19
Cadmium Chromium																	30 U 30 U
Lead							 										100 U
Mercury																	0.2 U
Selenium																	10 U
Silver																	10 U
		I.	1			I	1	l	<u> </u>	1	I]	<u> </u>	I			1 .50

Table 7B - West Property Gro	undwater Analytica	al Results		11	•	<u> </u>			Ia			<u> </u>	0	
			Sampled By	Fuji	itanı	South Larsen	GeoEn	gineers	South Larsen	GeoEi	ngineers	South Larsen	GeoEr	ngineers
			Sample ID	B-1 (B1RWS-1)	B-2 (B2WS-1)	MW-		MW-B	MW-		MW-C Dup		W-D	MW-6D
			Sample Date		5/18/2000	4/22/2009	7/19/2011	7/19/2011	4/22/2009	7/19/2011	7/19/2011	4/22/2009	7/19/2011	7/19/2011
			Depth (ft. bgs)			55	55	40	80	80	80	24	24	80
		ODEQ Risk Based												
		Concentrations												
Analyte	Volatilization to	Volatilization to	Construction	1				Laboratory	Analytical Testi	ng Results (ug/L)			
	Outdoor Air-	Outdoor Air-	and											
	Residential ²	Occupational ¹	Excavation ³											
Total Petroleum Hydrocarbor														
Gasoline-Range	-S	>S	14,000	250 U	250 U			20 U	l				l	T
Diesel-Range	>S	>S	>S	630 U	630 U			50 U						
Oil-Range				630 U	630 U			100 U						
Volatile Organic Compounds		<u> </u>								!				•
Acetone				10.0 U	11.1		100 U			20 U	20 U		20 U	200 U
Benzene	3,100	14,000	1,800	1.00 U	1.00 U		2.50			0.52	0.51		0.1 U	3.70
n-Butylbenzene				1.00 U	1.00 U		10 U			2.0 U	2.0 U		2.0 U	20 U
Carbon Disulfide				10.0 U	10.0 U		2.5 U			0.50 U	0.50 U		0.50 U	5.0 U
Carbon Tetrachloride	1,800	7,700	1,800	1.00 U	1.00 U	1.0 U	0.1 U	0.02 U	1.0 U	0.02 U	0.02 U	1.0 U	0.02 U	0.1 U
Chlorobenzene	>S	>S	10,000	1.00 U	1.00 U	34.9	86		1.0 U	0.50 U	0.50 U	1.0 U	0.50 U	59
Chlorethane	>S	>S	2,400,000	1.00 U	1.00 U	2.0 U	8.4		2.0 U	3.6	3.6	2.0 U	0.50 U	5.2
Chloroform	1,400	6,300	720	1.00 U	1.00 U	9.13	0.1 U		13.4	0.02 U	0.02 U	12.5	9.3	0.17
1,2-Dichlorobenzene	>S	>S	37,000	1.00 U	1.00 U	16.6	160		1.0 U	0.50 U	0.50 U	1.0 U	0.50 U	150
1,4-Dichlorobenzene	4,900	21,000	1,500	1.00 U	1.00 U	1.0 U	3.8		1.0 U	0.02 U	0.02 U	1.0 U	0.02 U	3.8
1,1-Dichloroethane (DCA)	16,000	68,000	10,000	1.00 U	1.00 U	19.1	180		1.0 U	0.50 U	0.50 U	1.0 U	0.50 U	330
1,2-Dichloroethane				1.00 U	1.00 U	1.0 U	0.220		1.0 U	0.02 U	0.02 U	1.0 U	0.130	0.360
1,1-Dichloroethene (DCE)	570,000	2,400,000	44,000	1.00 U	1.00 U	1.69	12		1.0 U	0.50 U	0.50 U	1.0 U	0.50 U	13
cis-1,2-DCE	> S	>S	18,000	1.00 U	1.00 U	255	1,900		1.0 U	0.97	0.97	1.0 U	0.50 U	2,400
trans-1,2-DCE	>S	>S	180,000	1.00 U	1.00 U	2.59	25		1.0 U	0.50 U	0.50 U	1.0 U	0.50 U	31
1,2-Dichloropropane				1.00 U	1.00 U	6.52	79		1.0 U	0.50 U	0.50 U	1.0 U	0.50 U	220
Ethylbenzene	9,900	43,000	4,500	1.00 U	1.00 U		2.5 U			0.50 U	0.50 U		0.50 U	5.0 U
Hexachlorobutadiene	>S	>S	>S	2.00 U	2.00 U		10 U			2.0 U	2.0 U		2.0 U	20 U
Methylene Chloride				5.00 U	5.00 U	58	10 U	0.02 U		2.0 U	2.0 U		2.0 U	20 U
Naphthalene 	3,600	16,000	500	1.00 U	1.00 U		10 U			2.0 U	2.0 U		2.0 U	20 U
iso-Propylbenzene	>\$	>S	51,000	1.00 U	1.00 U		10 U			2.0 U	2.0 U		2.0 U	20 U
n-Propylbenzene				1.00 U	1.00 U		10 U			2.0 U	2.0 U		2.0 U	20 U
p-Isopropyltoluene			 5 000	1.00 U	1.00 U		10 U			2.0 U	2.0 U	4.011	2.0 U	20 U
Tetrachloroethene (PCE)	64,000	>S	5,600	1.00 U	1.00 U	256	21		1.0 U	0.02 U	0.02 U	1.0 U	0.063	9.9
Toluene	>S >c	>S >S	220,000	1.00 U	1.00 U		2.5 U			0.50 U	0.50 U		0.50 U	5.0 U
1,1,1-Trichloroethane	>S 3,300	20,000	1,100,000 430	1.00 U 1.00 U	1.00 U 1.00 U	23.9 152	5.2 540		1.0 U 1.0 U	0.50 U 0.02 U	0.50 U 0.02 U	1.0 U 1.0 U	0.50 U 0.02 U	5.0 U 190
Trichloroethene (TCE)	3,300 >S	20,000 >S	6,300	1.00 U	1.00 U		10 U			2.0 U	2.0 U		2.0 U	190 20 U
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	>S >S	>S >S	7,500	1.00 U	1.00 U		10 U			2.0 U	2.0 U		2.0 U	20 U
Vinyl Chloride	350	5,900	960	1.00 U	1.00 U	15.6	170		1.0 U	0.76	0.75	1.0 U	0.02 U	1,200
,		·	960	2.00 U	2.00 U	15.6	2.5 U		1.0 0	0.76 0.50 U	0.75 0.50 U		0.50 U	5.0 U
m,p-Xylenes o-Xylene				1.00 U	1.00 U		2.5 U			0.50 U	0.50 U		0.50 U	5.0 U
Total Xylenes	 >S	 >S	23,000	1.00 U			2.5 U			0.50 U	0.50 U		0.50 U	5.0 U
rotai Ayieries	<i>></i> 5	/5	_ ∠ა,000	II 1.00 U	1.00 U		∠.5 U			U.50 U	U.50 U		J 0.50 U	J 5.0 U

	ındwater Analytica		Sampled By	Fuji	tani	South Larsen	GeoEn	gineers	South Larsen	GeoE	ngineers	South Larsen	GeoEn	gineers
				B-1 (B1RWS-1)	B-2 (B2WS-1)	MW-	Α	MW-B	MW-	С	MW-C Dup		W-D	MW-6D
			Sample Date	5/17/2000	5/18/2000	4/22/2009	7/19/2011	7/19/2011	4/22/2009	7/19/2011	7/19/2011	4/22/2009	7/19/2011	7/19/2011
		Sample	Depth (ft. bgs)	0/11/2000	0/10/2000	55	55	40	80	80	80	24	24	80
		ODEQ Risk Based Concentrations	20pm (m 2 3 0)			1 00						1		
Analyte	Volatilization to Outdoor Air-	Volatilization to Outdoor Air-	Construction and					Laboratory	Analytical Testi	ng Results ((ug/L)			
	Residential ²	Occupational ¹	Excavation ³											
Polycyclic Aromatic Hydrocark	oons	•												
cenapthene	>S	>S	>S	5.0 U	5.0 U									
nthracene	>S	>S	>S	5.0 U	5.0 U									
enzo(a)anthracene	>S	>S	>S	5.0 U	5.0 U									
Senzo(a)pyrene	NV	NV	>S	5.0 U	5.0 U									
Benzo(b)fluoranthene	NV	NV	>S	5.0 U	5.0 U									
Benzo(ghi)perylene				5.0 U	5.0 U			-						
Benzo(k)fluoranthene	NV	NV	>S	5.0 U	5.0 U									
Chrysene	NV	NV	>S	5.0 U	5.0 U									
Dibenzo(a,h)anthracene	NV	NV	>S	5.0 U	5.0 U									
Dibenzofuran				5.0 U	5.0 U									
,2-Dichlorobenzene	>S	>S	37,000	5.0 U	5.0 U									
,4-Dimethylphenol				9 U	10 U									
luoranthene	NV	NV	>S	5.0 U	5.0 U									
luorene	>S	>S	>S	5.0 U	5.0 U									
ndeno(1,2,3-ed)pyrene	NV	NV	>S	5.0 U	5.0 U									
-Methylnaphthalene				5.0 U	5.0 U									
3,4-Methylphenol				5.0 U	5.0 U									
laphthalene	3,600	16,000	500	5.0 U	5.0 U									
· Phenanthrene				5.0 U	5.0 U									
Phenol				5.0 U	5.0 U									
ois(2-ethylhexyl)Phthalate				10 U	21.2									
li-n-butyl Phthalate				5.0 U	5.0 U									
Pyrene	>S	>S	>S	5.0 U	5.0 U									
otal Metals		•				•		•	•			•		
rsenic	NV	NV	6,300										0.5 U	
Barium	NV	NV	>S										15.6	
Cadmium	NV	NV	130,000										0.29	
Chromium	NV	NV	9,400										0.5 U	
Copper	NV	NV	5,400,000										1.2	
ead	NV	NV	>S										0.03	
Mercury	NV	NV	>S										0.2 U	
Selenium													1.0 U	
Bilver	NV	NV	1,100,000										0.02 U	
'inc													7.3	
Dissolved Metals														
rsenic				10 U	10									
Barium				30	97									
Cadmium				30 U	30 U									
Chromium				30 U	30 U									
_ead				100 U	100 U									
		1	-			t		1	1	t	1	1	1	
Mercury				I 0.2 U	I 0.2 U				I					
Mercury Selenium				0.2 U 10 U	0.2 U 18									

Notes

DEQ - Department of Environmental Quality

bgs - Below ground surface

ug/L - Micrograms per liter

ND - Analyte not detected in the sample

NV - Analyte is not a volatile substance

>S Analyte RBC exceeds the solubility limit

-- - Analyte not analyzed, or no screening value found for this analyte in this scenario **Bolded** - Analyte detected in the sample

Table 8 - TASS 2 Soil Vapor Volatile Organic Compounds

												Laboratory	Analytical T	esting Results (ug/m³)									
Sample ID	Sample Date	Sampled By	Sample Depth (feet bgs)	ТРН9	Benzene	Chlorobenzene	1,2- Dichlorobenzene	1,4- Dichlorobenzene	cis-1,2- Dichloroethene	Ethylbenzene	n-Hexane	Naphthalene	2-Propanol	n-Propylbenzene	Styrene	Tetrachloroethene	Toluene	1,1,1- Trichloroethane	1,1,2- Trichloroethane	Trichloroethene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	m.p-Xylene	o-Xylene
SV-1-TO-15	4/24/2024	Haley & Aldrich	5	94,000	340	10 U	17 U	22 U	180	23 J	670	8.8 U	82 J	12 U	8.0 U	18 U	35 J	14 U	19 U	36 J	14 U	14 U	31 J	23 J
SV-2-TO-15	4/24/2024	Haley & Aldrich	5	70,000	29	5.5 U	9.1 U	11 U	50	5.8 U	860	4.7 U	19 U	6.2 U	4.2 U	9.9 U	8.2 J	7.5 U	10 U	11 J	7.5 U	7.4 U	11 J	6.9 J
SV-3-TO-15	4/25/2024	Haley & Aldrich	3	30,000	2.7	0.87 U	0.80 U	0.66 U	1.4 U	0.95 J	87	2.1 U	6.4 J	0.99 U	0.78 U	1.1 U	4.1 J	0.71 U	1.1 U	0.42 U	1.6 J	0.81 U	1.4 J	0.90 U
SV-4-TO-15	4/24/2024	Haley & Aldrich	5	49,000	54	5.7 U	9.5 U	12 U	350	6.1 U	200	4.9 U	24 J	6.5 U	4.4 U	38 J	53	7.8 U	11 U	69	7.8 U	7.8 U	19 J	6.1 U
SV-5-TO-15	4/24/2024	Haley & Aldrich	5	49,000	<4.4	5.7 U	9.5 U	12 U	5.1 U	6.1 U	130	4.9 U	20 U	6.5 U	4.4 U	10 U	8.8 J	7.8 U	11 U	9.5 U	7.8 U	7.8 U	3.7 U	6.1 U
SV-6-TO-15	4/25/2024	Haley & Aldrich	5	57,000	46	5.8 U	9.7 U	8.4 U	5.2 U	6.2 U	610	5.0 U	20 7	6.6 U	4.5 U	10 U	26 J	8.0 U	11 U	9.6 U	8.0 U	7.9 U	4.0 J	6.2 U
SV-8-TO-15	4/25/2024	Haley & Aldrich	5	45,000	8.1 J	5.4 U	9.0 U	<11 U	4.8 U	5.7 U	480	4.6 U	19 U	6.1 U	4.2 U	9.7 U	5.2 U	7.4 U	10 U	8.9 U	7.4 U	7.3 U	4.2 J	5.8 U
SV-9-TO-15	4/25/2024	Haley & Aldrich	5	9,800	6.3	0.26 U	0.24 U	0.19 U	0.40 U	2.3	21	0.62 U	5.0 J	0.57 J	0.23 U	0.32 U	12	0.21 U	0.34 U	0.12 U	1.3	0.44 J	5.8	2.5
SV-10-TO-15	4/25/2024	Haley & Aldrich	5	310	5.2	0.27 U	0.25 U	0.20 U	0.42 U	3.0	3.2 J	0.65 U	2.4 J	0.30 U	0.32 J	3.0	28	0.22 U	0.35 U	0.13 U	0.65 J	0.28 J	9.0	3.2
ODEQ Risk Based Co	ncentrations																							
Volatilization	to Outdoor Air - S	ite-Specific		24,000,000	36,000 (c) 3,100,000 (non-c)	6,400,000	33,000,000	42,000	4,200,000	140,000 (c) 130,000,000 (non-c)	89,000,000	12,000 (c) 450,000 (non-c)	NE	150,000,000	120,000,000	1,900,000	590,000,000	710,000,000	24,000	62,000	9,200,000	9,300,000	13,000,000	13,000,000

Note

ODEQ - Oregon Department of Enviornmental Quality

VOCs - Volatile organic compounds

(c) - risk-based concentration based on cancer risk

(non-c) - risk-based concentration based on non-cancer health risk

The state of the s

Bolded - Anaylte detected in the sample

bgs - below ground surface ug/m³ - milligrams per cubic meter

U - analyte not detected above concentration indicated

-- - Analyte not analyzed

TABLE 9 SOIL GAS SAMPLE ANALYTICAL RESULTS

WEST PROPERTY - TASS 2 PORTLAND, OREGON

Sample Name Sample Date Sample Depth (bgs)	4/24/2024	SV-2-TO-15 4/24/2024 5 ft	SV-3-TO-15 4/25/2024 5 ft	SV-4-TO-15 4/24/2024 5 ft	SV-5-TO-15 4/24/2024 5 ft	SV-6-TO-15 4/25/2024 5 ft	SV-8-TO-15 4/25/2024 5 ft	SV-9-TO-15 4/25/2024 5 ft	SV-10-TO-15 4/25/2024 5 ft	Lower Explosive Limit (percent)	Upper Explosive Limit (percent)
Field Measurements (percent)		-		-							
Methane	50.05	37.29	18.92	42.00	31.50	24.86	32.98	3.88	0.01	5	15
Carbon Dioxide	8.13	6.78	5.25	4.60	4.62	0.26	2.67	5.29	4.76	NA	NA
Oxygen	0.1	19.5	0.36	3.62	0.08	3.95	0.08	0.14	10.10	NA	NA
Methane and Helium Analytical Results (percent)		-		-							
Methane	49	40	18	48	30	25	31	3.7	<0.00021	5	15
Helium	<0.11	<0.099		<0.10	<0.10	0.19	<0.097	<0.099	13	NA	NA

ABBREVIATIONS AND NOTES:

-: Not Analyzed

<: Not detected, value is the laboratory reporting limit

bgs: below ground surface

ft: feet

ug/m³: micrograms per cubic meter

NR: Not Reported
NA: Not applicable

Bolding denotes detected concentration.