FOURTH QUARTER 2010 GROUNDWATER MONITORING REPORT

FORMER MOLALLA KWIK GAS 305 WEST MAIN STREET MOLALLA, OREGON DEQ FILE No.: 03-05-461

ECN PROJECT No. 05-106

February 18, 2011

ENVIRONMENTAL COMPLIANCE NORTHWEST

PO BOX 230163 PORTLAND, OR 97281 (503) 372-9760 Phone (503) 213-9980 Fax

February 18, 2011 ECN Project No. 05-106

Mr. Jason Powell Powell Distributing Company 9125 North Burrage Portland, Oregon 97217

SUBJECT: Fourth Quarter 2010

Groundwater Monitoring Report

Former Molalla Kwik Gas 305 West Main Street Molalla, Oregon

DEQ LUST File No.: 03-05-461

Dear Mr. Powell:

Environmental Compliance Northwest, Inc., (ECN) is pleased to submit this Groundwater Monitoring Report for the above referenced facility. We hope this report meets your needs at this time. If you should require additional information, please contact us at 503-372-9760.

Sincerely,

ENVIRONMENTAL COMPLIANCE NORTHWEST, INC.

DEPT OF ENVIRONMENTAL QUALITY RECEIVED

FEB 2 2 2011

NORTHWEST REGION

John M. Day, RG Principal Geologist President

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
	SITE DESCRIPTION	
	BACKGROUND	
	FIELD ACTIVITIES	
	ANALYTICAL TEST METHODS	
6.0	FINDINGS	3
7.0	RISK-BASED EVALUATION OVERVIEW	4
8.0	SUMMARY AND CONCLUSIONS	5
9.0	REFERENCES	6
10.0	LIMITATIONS	7
TAB	LES	
1. 2.	Groundwater Analytical Results – TPH, VOCs, and Lead Groundwater Analytical Results – PAHs	

FIGURES

- 1. Vicinity Map
- Groundwater Contour Map-4th Quarter 2010 2.
- Groundwater Analytical Results Map-4th Quarter 2010 3.

APPENDIX

A. Laboratory Report and Chain of Custody

1.0 INTRODUCTION

This report describes results of the fourth quarter 2010 groundwater monitoring and sampling activities conducted at the former Kwik Gas service station located at 305 West Main Street in Molalla, Oregon (Figure 1).

2.0 SITE DESCRIPTION

The site is located on the north side of West Main Street, approximately 100 feet west of Kennel Avenue near downtown Molalla and was formerly used as a fuel service station. The site is currently occupied by an automobile detail facility. A former service station building is located in the southeastern portion of the site. The UST cavity, formerly containing four 10,000-gallon tanks is located in the northwestern portion of the site and a former fuel dispenser island is located south of the station building. The site and surrounding area are relatively flat generally covered with gravel, with the exception of the former fuel dispenser island area, which is paved with asphalt. The locations of pertinent site features are shown on Figure 2.

3.0 **BACKGROUND**

The following background information was obtained from DEQ files, verbal discussions with Powell Distributing Company (Powell) personnel, and activities observed and conducted by ECN. The facility operated since at least 1977 until 2005 and consisted of a retail fueling and automotive repair facility. The former UST system consisted of three gasoline USTs and one diesel UST, located in the northwest corner of the site and one fuel dispenser island, located in the southern portion of the site (Figure 2). In April 2005, an apparent leak was detected in the underground product piping. A portion of the piping was uncovered and several small holes were observed in the piping.

In March 2005, ECN conducted initial site assessment activities consisting of drilling two hand auger borings adjacent to the fuel product piping. Subsurface soil sampling indicated the presence of petroleum hydrocarbon impact to soil in to the maximum explored depth of 8.5 feet below ground surface (bgs).

Also in March 2005, ECN conducted site assessment activities, including drilling a total of nine soil borings. Seven borings were completed adjacent and in the vanity of the underground product piping trench. Two of the borings were completed adjacent to the former fuel island. Petroleum hydrocarbons were detected in soil samples collected from each boring, with the exception of the boring completed located near the northwest corner of the former service station \Projects\Powell\05106\4Q2010GMR.doc PAGE 1 of 7

February 18, 2011

building. Grab groundwater samples were collected from four of the borings. Petroleum hydrocarbons were detected in each grab groundwater sample collected.

Between September and October 2006, the UST system (consisting of four USTs and underground product piping) were decommissioned by removal. Two soil samples were collected from beneath each UST. In addition, one soil sample was collected from the south sidewall of the UST cavity and from beneath each of the three former fuel dispensers.

Petroleum hydrocarbons were not detected the soil samples collected from beneath the former USTs, with the exception of the southeastern portion of the former UST cavity, near the location where the product piping entered the cavity. Gasoline- and diesel-range hydrocarbons were detected in the soil samples collected from the former fuel dispensers (ECN, 2007).

A total of four monitoring wells (MW-1 through MW-4) were installed and two soil borings (B-101 and B-102) were completed in May 2007. The locations of the monitoring wells are shown on Figures 2 and 3. Borings B-101 and B-102 were drilled north and east of the existing building, respectively, to further define soil and groundwater impacts. Laboratory results indicated that the highest petroleum hydrocarbons were detected in the samples collected from MW-4, located adjacent to the former underground product piping. Lower petroleum hydrocarbon concentrations were detected in the other three monitoring wells, as well as in boring B-102 (ECN, 2010a).

Groundwater monitoring has been conducted at the site since the monitoring wells were installed.

A work plan for additional site assessment activities, including installation of two additional monitoring wells, and a proposal for risk-based corrective action plan (RBCAP) development was submitted to DEQ on December 10, 2010. In February 2011, DEQ responded, generally agreeing with the work plan and requested installation of soil gas sampling points to further assess the vapor intrusion to building exposure pathway. The additional field activities are planned for early spring 2011.

4.0 FIELD ACTIVITIES

Field procedures for the fourth quarter 2010 groundwater monitoring and sampling were performed in accordance with DEQ guidelines. On December 30, 2010, depth to groundwater was measured and groundwater samples were collected monitoring wells MW-1 through MW-4. Prior to purging and sampling, the depth to water in the wells was measured from a permanent

mark on top the well casing to the nearest 0.01-foot using an electronic water level indicator. The depth to water and top of casing elevation data were used to calculate the groundwater elevation in each well in reference to mean sea level (MSL). The survey data and historic groundwater elevation measurements collected through the fourth quarter 2010 monitoring event are presented in Table 1.

Prior to sample collection, monitoring wells were purged of at least three casing volumes. Groundwater samples were collected for laboratory analysis by lowering a bottom-fill, disposable bailer to just below the water level in the well. The collected water sample was then transferred from the bailer into laboratory-supplied containers.

5.0 ANALYTICAL TEST METHODS

Each groundwater sample collected during the fourth quarter 2010 monitoring event was analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). Groundwater samples collected from wells MW-3 and MW-4 were analyzed for DEQ risk-based decision making (RBDM) volatile organic compounds (VOCs) by EPA Method 8260B. In addition to BTEX, the RBDM VOCs include:; 1,2,4-trimethylbenzene (1,2,4-TMB); ethylene dibromide (EDB); ethylene dichloride (EDC); 1,3,5-trimethylbenzene (1,3,5-TMB); isopropylbenzene (IPB) methyl-tertiary butyl ether (MTBE); n-propylbenzene (NPB); and naphthalene. Each sample was also analyzed for diesel-range hydrocarbons (diesel) and lube oilrange petroleum hydrocarbons (lube oil) by Northwest Method NWTPH-Dx, and gasoline-range hydrocarbons by Northwest Method NWTPH-Gx. The groundwater sample from MW-4 was also analyzed for dissolved lead by EPA Method 6010 and polynuclear aromatic hydrocarbons (PAHs) by DEQ Method 8270SIM.

6.0 FINDINGS

Following are the physical and chemical results for the fourth quarter 2010 groundwater monitoring and sampling activities at the site. Naphthalene results are reported on both Table 1 and 2. The differing results shown in groundwater samples are a result of separate extraction methods. The concentrations from the VOC analyses are reported on the analytical results map (Figure 3).

Physical Results

The depth to water in the monitoring wells, as measured on December 30, 2010, ranged from 3.27 to 6.08 feet below the top of well casings. The groundwater flow direction was interpreted

to be to the southwest with an average hydraulic gradient of approximately 0.029 feet per foot. Compared to the third quarter 2010 monitoring data, groundwater elevations in the monitoring wells increased between 1.80 and 10.30 feet.

The groundwater elevation and flow direction data for the fourth quarter 2010 monitoring event are shown on Figure 2.

Chemical Results

MW-1 and MW-2: Diesel-, lube oil-, and gasoline-range hydrocarbons; and BTEX constituents were not detected at or above the corresponding laboratory reporting limits.

MW-3: Diesel-range hydrocarbons (154 micrograms per liter $[\mu g/L]$), and gasoline-range hydrocarbons (245 $\mu g/L$) were detected. RBDM VOCs were not detected at or above the laboratory reporting limits.

MW-4: Diesel-range hydrocarbons (1,760 µg/L); lube oil-range hydrocarbons (365 µg/L); gasoline-range hydrocarbons (10,200 µg/L); benzene (449 µg/L); toluene (4.26 µg/L); ethylbenzene (395 µg/L); total xylenes (127.9 µg/L); 1,2,4-TMB (142 µg/L); 1,3,5-TMB (17.7 µg/L); IPB (117 µg/L); MTBE (1.64 µg/L); NPB (372 µg/L); naphthalene (160 µg/L); and dissolved lead (1.8 µg/L) were detected. The following PAHs were also detected: acenaphthene (0.215 µg/L); acenaphthylene (0.0782 µg/L); fluorine (0.224 µg/L); naphthalene (61.7 µg/L); and phenanthrene (0.166 µg/L).

The groundwater sampling results for the fourth quarter 2010 monitoring event are shown on Figure 3 and summarized in Tables 1 and 2.

7.0 RISK-BASED EVALUATION OVERVIEW

In 1999, the Oregon DEQ issued the *Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites* guidance document (DEQ, 1999). This guidance document listed Risk-Based Concentration (RBC) cleanup levels that are based on current and potential future land and water uses at a site. The RBC cleanup levels are periodically revised, the most recent being September 15, 2009.

A detailed assessment of potential exposure pathways has not yet been conducted for the site. Although a conceptual site model has not been completed, based on our current knowledge of site conditions, the potentially complete exposure pathways for groundwater include: 1) vapor intrusion into buildings (occupational); 2) volatilization to outdoor air (occupational); and 3) \PROJECTS\POWELL\05106\402010GMR.DOC

PAGE 4 of 7

February 18, 2011 groundwater in an excavation for a construction or excavation worker. The potentially applicable RBCs are shown on Tables 1 and 2.

None of the groundwater samples collected during the fourth quarter 2010 monitoring event exceeded the potentially applicable exposure pathway RBCs.

8.0 SUMMARY AND CONCLUSIONS

The site was operated as a retail fueling facility until March 2005. An apparent petroleum hydrocarbon release from the underground product piping was reported to DEQ on March 15, 2005. The site is currently operated as automotive detailing facility and is an area of commercial development.

ECN conducted site assessment activities between March and April 2005, consisting of advancing hand soil borings, limited excavation of apparent impacted soil associated with the product piping release, and drilling a total nine soil borings. Soil and water samples collected during the site assessment activities indicated that both soil and the shallow water-bearing zone in the vicinity of the product piping were impacted by petroleum hydrocarbons.

The four USTs at the site were decommissioned by removal in October 2006. Petroleum hydrocarbon-impacted backfill material was encountered adjacent to the fill port of one the USTs. Analytical results of samples collected from beneath the former fuel dispensers indicated that residual diesel- and gasoline-range hydrocarbons were present in the southern portion of the site.

A total of four groundwater monitoring wells and two soil borings were completed at the site in May 2007. Analytical results from the groundwater samples collected indicated that petroleum hydrocarbons were present in each monitoring well, the highest levels reported were in MW-4

Based on historic groundwater elevation direction data, it appears that the generalized shallow water-bearing zone flow direction varies between west-southwest and southwest at varying gradients. The hydraulic gradient calculated for the fourth quarter 2010 monitoring event is an order of magnitude less than the third quarter 2010 monitoring event.

None of the groundwater collected during the fourth quarter 2010 groundwater sampling event exceeded the potentially complete exposure pathway RBCs.

9.0 REFERENCES

ECN, 2007. Site Assessment and UST Decommissioning Report, Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. April 17.

ECN, 2010a. Additional Site Assessment and Monitoring Installation Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. October 14.

ECN, 2010b. First Quarter 2008 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 1.

ECN, 2010c. Third Quarter 2008 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 2.

ECN, 2010d. First Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 3.

ECN, 2010e. Second Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 4.

ECN, 2010f. Third Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 5.

ECN, 2010g. Fourth Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 6.

ECN, 2010h. First Quarter 2010 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 7.

ECN, 2010i. Second Quarter 2010 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 8.

ECN, 2010j. Third Quarter 2010 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 9.

Oregon Department of Environmental Quality, 1999 and 2003. Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites (OAR 340-122-0205 through 0360). September 29, 1999, updated September 22, 2003.

Oregon Department of Environmental Quality, 2000. UST Cleanup Manual, Cleanup Rules for Leaking Petroleum UST Systems, OAR 340-122-0205 through 340-122-0360, and Associated Documents. Oregon Department of Environmental Quality, Portland, Oregon, December.

Oregon Department of Environmental Quality, 2009. Risk-Based Concentrations for Individual Chemicals. September 15.

10.0 LIMITATIONS

Environmental Compliance Northwest, Inc., has performed the work described in this report in accordance with the generally accepted standard of care existing in the State of Oregon at the time of the assessment. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the subsurface and historical conditions applicable to the study area. More extensive studies may be used to supplement the information presented in this report. Environmental Compliance Northwest, Inc., should be notified for additional consultation if Powell Distributing Company wishes to reduce uncertainties beyond the level associated with this assessment. Our assessment of the property also may change, as new data becomes available during additional site exploration, remediation, or development.

Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the report.

No warranty, express or implied is made.

TABLES

TABLE 1 Groundwater Analytical Results - TPH-Dx, TPH-G, RBDM VOCs, and Dissolved Lead Former Kwik Gas Station 305 West Main Street Molalla, Oregon ECN Project No. 05-106

Well D. Sampling		Date of	Casing	Depth to	Groundwater	Change in	TPH-	Dx [1]	TPH-G	В	т	E	X	1,2,4-TMB	EDB	EDC	1,3,5-TMB	IPB	MTBE	NPB	Naph-	Dissolved	
MM/-1 86/2007 8-77 13-82 80-85 8-77 8-76 8	Well I.D.						Diseas	Luba Oil		_		_		, ,	1					1	1		LAB
9.0000000 84.77 17.41 77.32 9.35 No-448 No-449 No-450 No-4		Camping	(Feet)	(Feet)	(Feet)	(Feet)	Diesei	Lube Oil	[2]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[3]	[4]	
98/20/2008 94.77 17.41 77.36 4.935 ND-428 ND	MW-1	6/5/2007	94.77	13.82	80.95		247	116	624	40.5	7.16	51.2	67.4	9.34	ND<1.00	ND<1.00	5.98	2.95	ND<1.00	5.04	ND<1.00		SA
20000009 94.77 94.4 95.24 74.7 95.4 96.25 74.77 75.74 74.43 95.4 4.59 NO-429		3/30/2008	94.77	8.06	86.71	5.76	ND<245	ND<491	ND<100	ND<0.300	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
69/30/2009 64.77 26.13 4.49 80.24 4.89 1.49 1.49 80.24 1.49		9/28/2008	94.77	17.41	77.36	-9.35	ND<243	ND<487	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
\$\frac{9287000}{2000} \qquad \qq\qq\qq\qq\qq\qq\qq\qq\qq\qq\qq\qq\qq		3/26/2009	94.77	9.54	85.23	7.87	ND<238	ND<476	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
1/2/26/2009 19,77 19,44 94,25 9,58 ND-243 ND-467 ND-100 N		6/30/2009	94.77	14.43	80.34	-4.89	ND<86.3	ND<216		0.910	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
Min-2 Min-		9/29/2009	94.77	20.13	74.64	-5.70	ND<249	ND<498	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
MW-2 68/2007 64.77 12.83 81.94 4.09 ND-758 ND-150		12/26/2009	94.77	10.54	84.23	9.59	ND<243	ND<487	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
MW-2 68/2007 64.77 12.83 81.94 4.09 ND-758 ND-150				8.74		1.80	ND<77.1	ND<193	ND<100	ND<0.300			ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
MW-2		6/30/2010	94.77	12.83	81.94	-4.09	ND<76.1	ND<190	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
MW-2		9/28/2010	94.77	16.38	78.39	-3.55	ND<82.6	ND<210	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
309/2006 83.73 31.56 93.88 6.01 ND=248 ND=2							ND<78.4	ND<196	ND<100	ND<0.300													SA
3002006 93.73 13.55 90.38 9.01 NO-248 NO-489 NO-490 NO-400	M\M-2	6/5/2007	93 73	9.36	84 37		237	ND<100	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
9/28/2008 98,73 11:10 82,88 7-775 ND-28/2 ND-49/3 ND-100 ND-100 ND-100 ND-150 N														ND<1 00	ND<1 00	ND<1 00	ND<1 00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
3/28/2009 83.73 3.50 86.23 7.60 ND-230 ND-235 ND-265 ND-266 ND-2																							SA
S00/2009 S3.73 9.36																							SA
9/28/2009 93,73 14,09 79,64 4,73 ND-485 ND-978 ND-														ND<1 00	ND<1 00	ND<1.00	ND<1.00	ND<1 00	ND<1.00	ND<1 00	ND<1.00		SA
12/28/2009 93.73 4.03 89.70 10.06 ND-275 ND-582 ND-100 ND-5300 ND-4500 ND-1500 ND-1500 ND-100																							SA
S3002010 S3.73 S4.2 S5.61 ND-195 ND-																							SA
690/20210 93.73 8.12 85.61 4.70 ND-78.6 ND-79.7 N														ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1 00	ND<1 00	ND<1 00	ND<1.00		SA
9/28/2010 83.73 9.23 98.50 -1.11 ND-78.7 ND-78.7 ND-79.7 ND-7																							SA
MW-3 6/5/2007 93.44 6.65 86.79 ND<49.9																							SA
State																							SA
3/30/2008 93.44 4.31 89.13 2.34 2.99 ND-495 589 ND-4930 ND-100	M\A/-3	6/5/2007	93.44	6.65	86 79		ND<49 9	ND<49 9	363	ND<0.300	0.84	2.04	ND<1.50										SA
9/28/2008 93.44 6.48 88.98 -2.15 350 ND≤41 787 ND<0.300 ND<1.00 ND<1.	14144-0														ND<1.00	ND<1.00	ND<1.00	ND<1 00		ND<1.00	ND<1.00		SA
3/28/2009 93,44 4.82 88.82 1.84 277 ND-478 429 ND-0.300 ND-1.00										.,_													SA
6/30/2009 93.44 8.96 86.65 -2.17 194 ND-203 — ND-0.300 ND-1.00 ND-1.0																							SA
9/29/2009 93.44 4, 99 89.05 4.67 336 ND-510 ND-422 81 216 S31 ND-63,00 ND-100 ND-1,00																							SA
12/26/2009 93.44 4.39 89.05 4.57 338 ND≤13 245 ND<0.00 ND<0.0																							SA
3/30/2010 93.44 4,09 89.35 0.30 216 235 477 NDc9.300 NDc1.00 NDc4.00 N				-,															0.000				SA
8/30/2010 93.44 6.31 87.13 -2.22 291 215 749 1.26 ND<1.00 1.70 ND<1.00 ND<1.0																							SA
9/28/2010 93.44 5.71 87.73 0.60 257 ND<193 338 ND<0.300 ND<1.00 ND<1.0																							SA
12/30/2010 93.44 3.91 89.53 1.80 154 ND<195 245 ND<1.030 ND<1.00 ND<1																							SA
3/30/2008 94.10 4.29 89.81 2.87 2,050 ND<489 16,900 985 8.93 397 343.0 386 ND<1.00 ND<1.00 43.4 92.2 11.3 261 150 2.5 ND<1.00 ND<1.00 43.4 92.2 11.3 261 150 2.5 ND<1.00 ND<1.00 40.0 400 400 400 400 400 400 400 400																							SA
3/30/2008 94.10 4.29 89.81 2.87 2,050 ND<489 16,900 985 8.93 397 343.0 386 ND<1.00 ND<1.00 43.4 92.2 11.3 261 150 2.5 ND<1.00 ND<1.00 43.4 92.2 11.3 261 150 2.5 ND<1.00 ND<1.00 40.0 400 460 766 0.34 460/2009 94.10 4.54 89.56 3.15 1,700 893 8,010 480 4.49 356 91.4 125 ND<1.00 ND<1.00 ND<1.00 23.7 87.6 1.80 185 119 0.82 6/30/2009 94.10 7.65 86.45 -3.11 1,460 310 682 7.28 769 248.2 594 ND<1.00 ND<1.00 ND<1.00 76.7 133 2.62 438 347 1.4 9/29/2009 94.10 12.75 81.35 -5.10 2,760 805 13,300 925 7.07 889 30.00 30.4 ND<1.00 ND<1.00 ND<1.00 34.3 115 7.16 395 640 1.5 12/26/2009 94.10 4.36 89.74 8.39 2,730 1,020 21,100 397 4.84 435 361.2 451 ND<1.00 ND<1.00 ND<1.00 25.5 114 1.43 245 609 ND<1.01 3/30/2010 94.10 4.55 89.55 -0.19 1,094 532 12,200 594 5.31 634 330.9 530 ND<1.00 ND<1.00 ND<1.00 0.00 ND<1.00 515 274 1.8 6/30/2010 94.10 6.49 87.61 -1.94 2,355 585 11,600 705 5.27 419 396.2 115 ND<1.00 ND<1.00 ND<1.00 ND<1.00 35.6 117 2.17 368 136 9/28/2010 94.10 3.82 90.28 3.30 1,760 365 10,200 449 4.26 395 127.9 142 ND<1.00 ND<1	M\\/.4	6/5/2007	94 10	7 16	86 94		2 060	3 500	7 370	326	5.97	216	336.2	230	ND<1.00	ND<1 00	55	34.4	6.92	66.2	55.6	14	SA
9/28/2008 94.10 7.69 86.41 -3.40 2,070 665 14,000 979 9.74 743 167.8 332 ND<1.00 ND<1.00 ND<1.00 88.3 125 ND<1.00 460 766 0.34 3/26/2009 94.10 4.54 89.56 3.15 1,700 893 8,010 480 4.49 356 91.4 125 ND<1.00 ND<1.00 ND<1.00 23.7 87.6 1.80 185 119 0.82 6/30/2009 94.10 7.65 86.45 -3.11 1,460 310 682 7.28 769 248.2 594 ND<1.00 ND<1.00 ND<1.00 76.7 133 2.62 438 347 1.4 9/29/2009 94.10 12.75 81.35 -5.10 2,760 805 13,300 925 7.07 889 30.00 30.4 ND<1.00 ND<1.00 ND<1.00 ND<1.00 34.3 115 7.16 395 540 1.5 12/26/2009 94.10 4.38 89.74 8.39 2,730 1,020 21,100 397 4.84 435 361.2 451 ND<1.00 ND<1.00 ND<1.00 ND<1.00 0.60.4 128 ND<1.00 ND<1.00 60.4 128 ND<1.00 S15 274 1.8 6/30/2010 94.10 6.49 87.61 -1.94 2,350 585 11,600 705 5.27 419 396.2 115 ND<1.00 ND<1.00 ND<1.00 ND<1.00 35.6 117 2.17 368 136 9/28/2010 94.10 7.12 86.98 -0.63 1,410 244 18,100 470 7.34 776 432.2 65.0 ND<1.00 ND<1.00 ND<1.00 ND<1.00 ND<1.00 665 153 2.80 554 756 2.4 12/30/2010 94.10 3.82 90.28 3.30 1,760 365 10,200 449 4.26 395 127.9 142 ND<1.00 ND<1.	INI V V																						SA
3/26/2009 94.10 4.54 89.56 3.15 1,700 893 8,010 480 4.49 356 91.4 125 ND<1.00 ND<1.00 23.7 87.6 1.80 185 119 0.82 6/30/2009 94.10 7.65 86.45 -3.11 1,460 310 682 7.28 769 248.2 594 ND<1.00 ND<1.00 ND<1.00 76.7 133 2.62 438 347 1.4 9/29/2009 94.10 12.75 81.35 -5.10 2,760 805 13,300 925 7.07 889 30.00 30.4 ND<1.00 ND<1.00 ND<1.00 ND<1.00 34.3 115 7.16 395 540 1.5 12/26/2009 94.10 4.36 89.74 8.99 2,730 1,020 21,100 397 4.84 435 361.2 451 ND<1.00 ND<1.00 ND<1.00 ND<1.00 25.5 114 1.43 245 609 ND<1.00 ND<1.0																							SA
6/30/2009 94.10 7.65 86.45 -3.11 1,460 310 682 7.28 769 248.2 594 ND<1.00 ND<1.00 76.7 133 2.62 438 347 1.4 9/29/2009 94.10 12.75 81.35 -5.10 2,760 805 13,300 925 7.07 889 30.00 30.4 ND<1.00 ND<1.00 ND<1.00 ND<1.00 34.3 115 7.16 395 540 1.5 12/26/2009 94.10 4.36 89.74 8.39 2,730 1,020 21,100 397 4.84 435 361.2 451 ND<1.00 ND<1.00 ND<1.00 0.00 25.5 114 1.43 245 509 ND<1.00 3/30/2010 94.10 4.55 89.55 -0.19 1,094 532 12,200 594 5.31 634 330.9 530 ND<1.00 ND<1.00 ND<1.00 ND<1.00 0.00 25.5 114 1.43 245 509 ND<1.00																							SA
9/29/2009 94.10 12.75 81.35 -5.10 2,760 805 13,300 925 7.07 889 30.00 30.4 ND<1.00 ND<1.00 34.3 115 7.16 395 540 1.5 12/26/2009 94.10 4.36 89.74 8.39 2,730 1,020 21,100 397 4.84 435 361.2 451 ND<1.00 ND<1.00 ND<1.00 25.5 114 1.43 245 509 ND<0.10 3/30/2010 94.10 4.55 89.55 -0.19 1,094 532 12,200 594 5.31 634 330.9 530 ND<1.00 ND<1.00 60.4 128 ND<1.00 515 274 1.8 6/30/2010 94.10 6.49 87.61 -1.94 2,350 585 11,600 705 5.27 419 396.2 115 ND<1.00 ND<1.00 35.6 117 2.17 368 136 9/28/2010 94.10 7.12 86.98 -0.63 1,410 244 18,100 470 7.34 776 432.2 65.0 ND<1.00 ND<1.00 665 153 2.80 554 756 2.4 12/30/2010 94.10 3.82 90.28 3.30 1,760 365 10,200 449 4.26 395 127.9 142 ND<1.00 ND<1.00 ND<1.00 17.7 117 1.64 372 160 1.8 Risk-Based Concentrations [5] - Volatilization to Outdoor Air - SP NE S 14,000 S 41,000 S 58 690 3,800 41,000 S 590,000 NE 10,000 NV Occupational) - SP NE S 2,800 S 7,400 S S 560 3,800 41,000 S 590,000 NE 10,000 NV																							SA
12/26/2009 94.10 4.36 89.74 8.39 2,730 1,020 21,100 397 4.84 435 361.2 451 ND<1.00 ND<1.00 25.5 114 1.43 245 509 ND<0.10 3/30/2010 94.10 4.55 89.55 -0.19 1,094 532 12,200 594 5.31 634 330.9 530 ND<1.00 ND<1.00 ND<1.00 60.4 128 ND<1.00 515 274 1.8 6/30/2010 94.10 6.49 87.61 -1.94 2,350 585 11,600 705 5.27 419 396.2 115 ND<1.00 ND<1.00 ND<1.00 35.6 117 2.17 368 136 9/28/2010 94.10 7.12 86.98 -0.63 1,410 244 18,100 470 7.34 776 432.2 65.0 ND<1.00 ND<1.00 ND<1.00 ND<1.00 665 153 2.80 554 756 2.4 12/30/2010 94.10 3.82 90.28 3.30 1,760 365 10,200 449 4.26 395 127.9 142 ND<1.00																							SA
3/30/2010 94.10 4.55 89.55 -0.19 1,094 532 12,200 594 5.31 634 330.9 530 ND<1.00 ND<1.00 60.4 128 ND<1.00 515 274 1.8 6/30/2010 94.10 6.49 87.61 -1.94 2,350 585 11,600 705 5.27 419 396.2 115 ND<1.00 ND<1.00 ND<1.00 ND<1.00 ND<1.00 ND<1.00 35.6 117 2.17 368 136 9/28/2010 94.10 7.12 86.98 -0.63 1,410 244 18,100 470 7.34 776 432.2 65.0 ND<1.00 ND<																						ND<0.10	SA
6/30/2010 94.10 6.49 87.61 -1.94 2,350 585 11,600 705 5.27 419 396.2 115 ND<1.00 ND<1.00 35.6 117 2.17 368 136 9/28/2010 94.10 7.12 86.98 -0.63 1,410 244 18,100 470 7.34 776 432.2 65.0 ND<1.00 N																				500			SA
9/28/2010 94.10 7.12 86.98 -0.63 1,410 244 18,100 470 7.34 776 432.2 65.0 ND<1.00 ND<1.00 ND<1.00 665 153 2.80 554 756 2.4 12/30/2010 94.10 3.82 90.28 3.30 1,760 365 10,200 449 4.26 395 127.9 142 ND<1.00 ND																					-		SA
12/30/2010 94.10 3.82 90.28 3.30 1,760 365 10,200 449 4.26 395 127.9 142 ND<1.00 ND<1.00 17.7 117 1.64 372 160 1.8 Risk-Based Concentrations [5] - Volatilization to Outdoor Air Occipational) - Vapor Intrusion Into Buildings - S NE S 2,800 S 7,400 S S 690 3,800 41,000 S 590,000 NE 10,000 NV Occupational)																						2.4	SA
- Volatilization to Outdoor Air SNE SNE S 14,000 S 41,000 S S 960 9,500 6,800 S 1,000,000 NE 16,000 NV (Occipational) - Vapor Intrusion Into Buildings SNE S 2,800 S 7,400 S S 690 3,800 41,000 S 590,000 NE 10,000 NV (Occupational)																					10000000		SA
- Volatilization to Outdoor Air S NE S 14,000 S 41,000 S S 960 9,500 6,800 S 1,000,000 NE 16,000 NV Occipational) - Vapor Intrusion Into Buildings S NE S 2,800 S 7,400 S S 690 3,800 41,000 S 590,000 NE 10,000 NV Occupational)	-Based Concent	trations [5]																					
- Vapor Intrusion Into Buildings >S NE >S 2,800 >S 7,400 >S >S 690 3,800 41,000 >S 590,000 NE 10,000 NV Occupational)	olatilization to Ou						>\$	NE	>\$	14,000	>\$	41,000	>\$	>\$	960	9,500	6,800	>\$	1,000,000	NE	16,000	NV	
Occupational)		to Buildings					>\$	NE	>S	2.800	>\$	7.400	>\$	>S	690	3.800	41.000	>\$	590,000	NE	10.000	NV	
	cupational)																						
- Groundwater in an Excavation >S NE 13,000 1,700 210,000 4,400 23,000 1,700 28 630 1,400 >S 62,000 NE 500 >S Construction and Excavation Worker)			er)				>\$	NE	13,000	1,700	210,000	4,400	23,000	1,700	28	630	1,400	>\$	62,000	NE	500	>S	

ABBREVIATIONS:

B: Benzene T: Toluene

E: Ethylbenzene X: Total Xylenes

X: Total Xylenes
MTBE: Metyl tertiary-butyl ether
ND: Not detected at or above the indicated laboratory reporting limit
NE: Not established by DEQ
>S: The groundwater RBC exceeds the solubility limit.
NV: This chemical is considered "nonvolatile" for purposes of the exposure calculations

Results are in micrograms per liter (µg/L)
(1) Nortwest Method NWTPH-Dx
(2) Northwest Method NWTPH-Gx (1) (2) (3) (4) (5) SA BOLD

EPA Method 8021B 0r 8260B

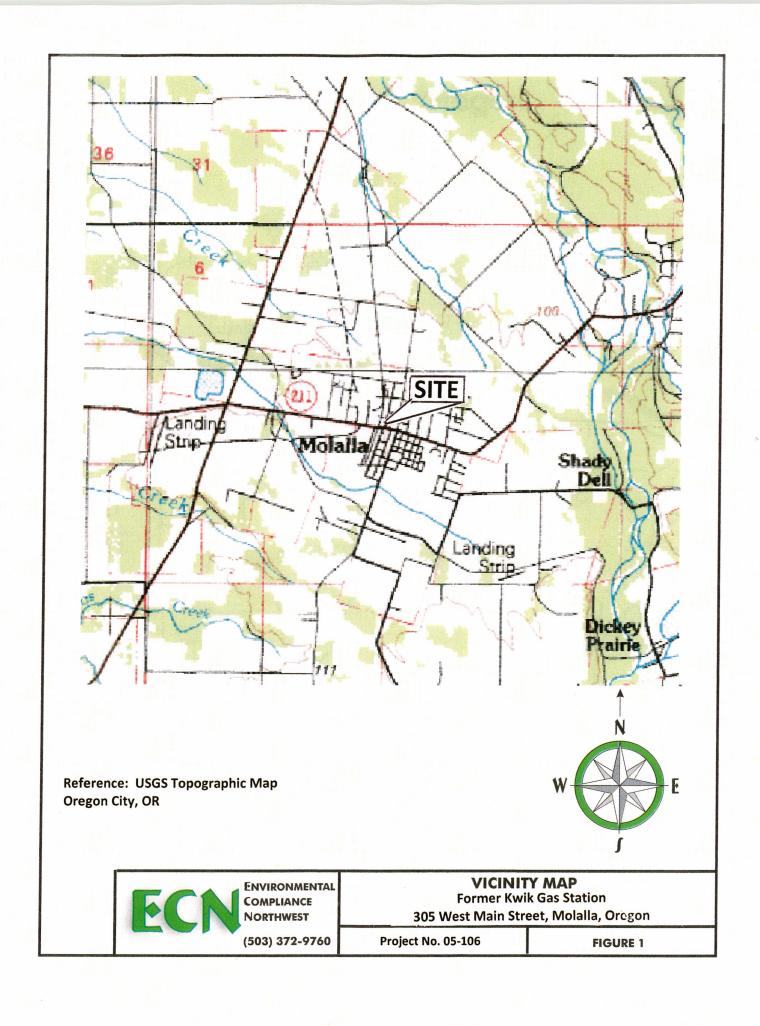
EPA Method 6011

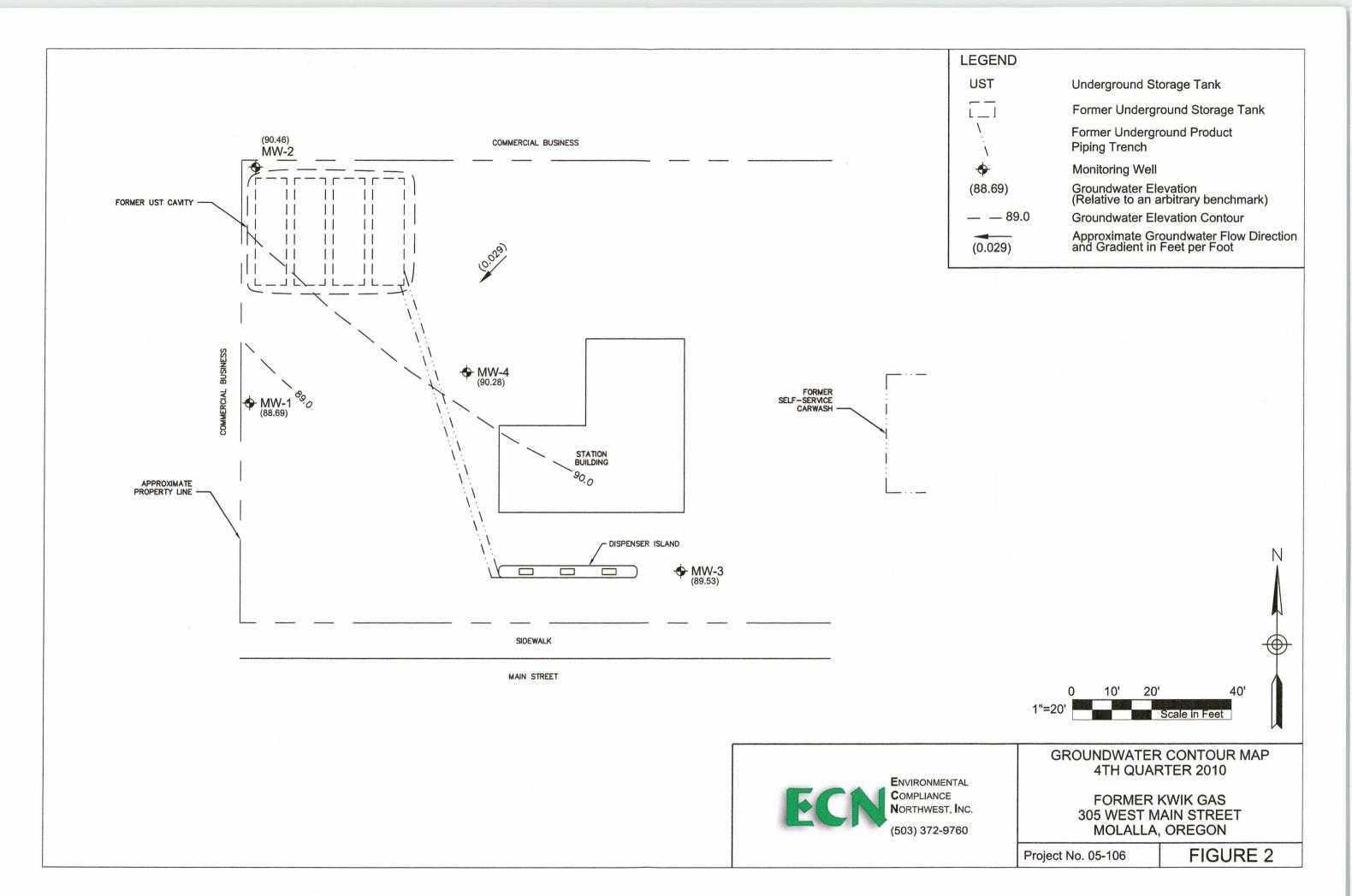
Oregon Department of Environmental Quality (DEQ) Generic Risk Based Concentrations (RBCs) Specialty Analytical

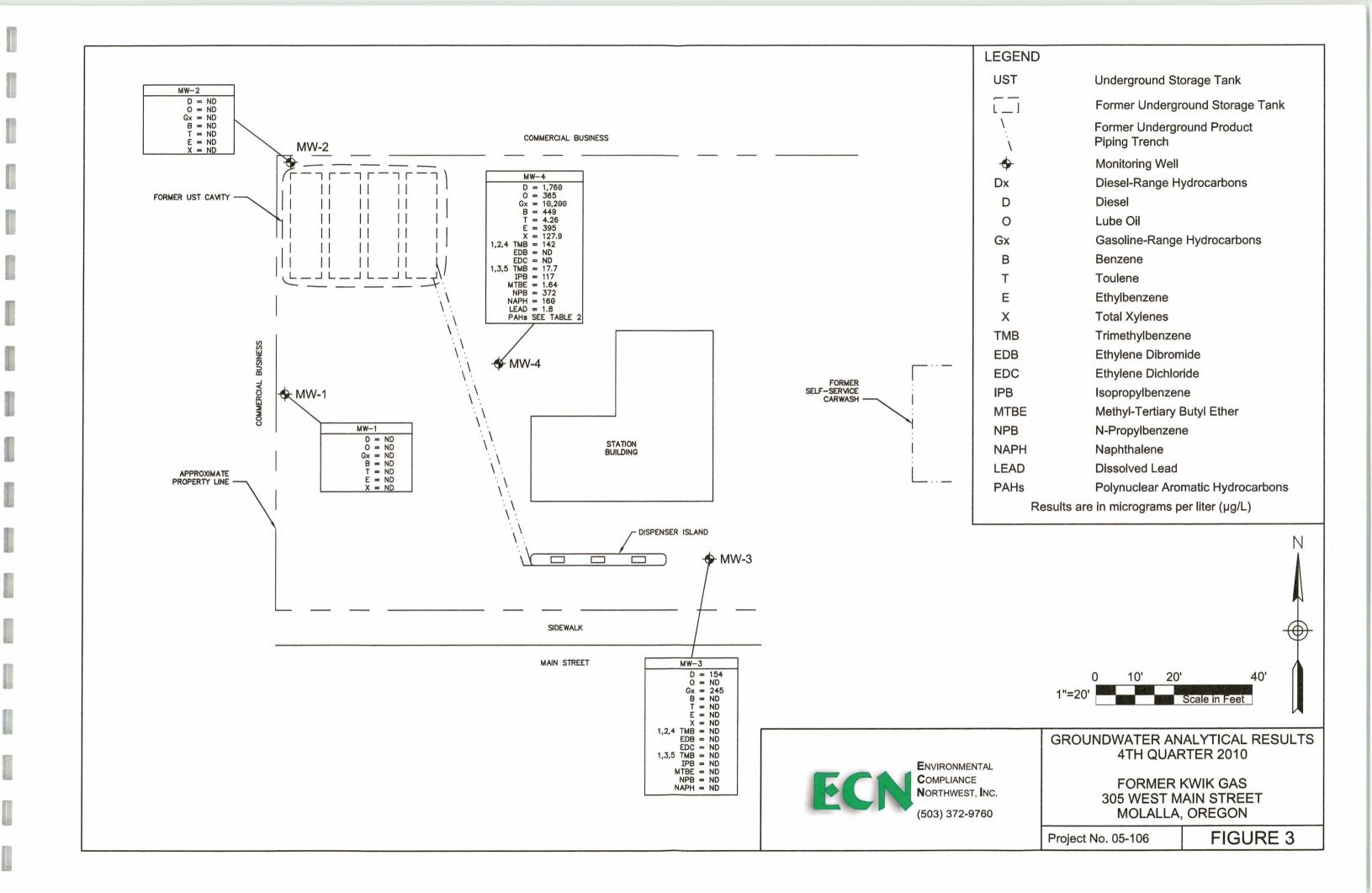
Exceeds the RBC

TABLE 2 **Groundwater Analytical Results (PAHs)** Former Molalla Kwik Gas 305 West Main Street Molalla, Oregon ECN Project No. 05-106

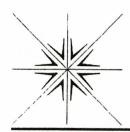
Polynuclear Aromatic [1		Acenaphthene	Acenapthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	nzo(g,h,l)perylene	Benzo(k)fluoranthene	Chrysene	oenz(a,h)anthracene	Fluoroanthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	LAB
Sample Identification	Sample Date				Ã		Be	Be	Be		Oib			pul				
MW-1	6/5/2007	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	2.81	ND<0.0503	ND<0.0503	SA
MW-2	6/5/2007	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	SA
,MW-3	6/5/2007	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	0.0792	ND<0.0495	0.287	ND<0.0495	ND<0.0495	SA
	3/26/2009	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	0.211	ND<0.0479	ND<0.0479	SA
	6/30/2009	0.0572	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	0.124	ND<0.0477	0.734	ND<0.0477	ND<0.0477	SA
	6/30/2010	0.0576	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	0.182	ND<0.0480	0.480	ND<0.0480	ND<0.0480	SA
MW-4	6/5/2007	0.115	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	0.136	ND<0.0525	83.4	0.0630	ND<0.0525	SA
	3/30/2008	0.231	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	0.0868	0.482	ND<0.0482	115	0.415	0.0868	SA
	9/28/2008	0.203	0.0676	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	0.126	0.261	ND< 0.0483	94.7	0.300	0.126	SA
	3/26/2009	0.138	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	0.138	ND<0.0429	ND<0.0429	56.9	0.0984	0.0591	SA
	6/30/2009	0.191	0.0765	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	0.229	ND<0.0478	179	0.143	0.0478	SA
	9/29/2009	0.172	0.0858	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	0.210	ND<0.0477	145	0.0953	ND<0.0477	SA
	12/26/2009	0.282	0.126	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	0.366	ND<0.0523	200	0.209	ND<0.0523	SA
	3/30/2010	0.209	0.112	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	0.316	ND<0.0500	150	0.179	ND<0.0500	SA
	6/30/2010	0.165	0.0778	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	0.223	ND<0.0486	30.9	0.0973	ND<0.0486	SA
	9/28/2010	0.265	0.128	ND<0.0491	ND<0.0491	ND<0.0491	ND<0.0491	ND<0.0491	ND<0.0491	ND<0.0491	ND<0.0491	ND<0.0491	0.402	ND<0.0491	244	0.275	ND<0.0491	SA
	12/30/2010	0.215	0.0782	ND<0.0489	ND<0.0489	ND<0.0489	ND<0.0489	ND<0.0489	ND<0.0489	ND<0.0489	ND<0.0489	ND<0.0489	0.244	ND<0.0489	61.7	0.166	ND<0.0489	SA
Risk-Based Concentrati - Occ. Volatilization to 0 - Occ. Vapor Intrusion I - Groundwater in an Ex- Construction and Exc	Outdoor Air Into buidlings cavation	>S >S >S	NE NE NE	>S >S >S	NV NV 9.1	NV NV 0.53	NV NV >S	NE NE NE	NV NV >S	NV NV >S	NV NV 0.21	NV NV >S	>S >S >S	NV NV >S	16,000 10,000 500	NE NE NE	NV NV >S	


ND not detected at or above the indicated laboratory reporting limit SA Specialty Analytical $\mu\text{g/L}$ Micrograms per Liter


DEQ Method 8270SIM
Oregon Department of Environmental Quality (DEQ) Generic Risk Based Concentrations (RBCs) (DEQ, 2009). [1] [2]


NE NV >S

A Risk-Based Concentration has not been determined for this constituent
This chemical is considered "nonvolatile" for purposes of the exposure calculation
This groundwater RBC exceeds the solubility limit. Groundwater concentrations in excess of S indicate that free product may be present. If solubility is not listed, data was not listed in Appendix D of the DEQ RBDM guidance document (DEQ, 2009).


FIGURES

APPENDIX A

11711 SE Capps Road Clackamas, OR 97015 (503) 607-1331 Fax (503) 607-1336

January 06, 2011

John Day

Environmental Compliance Northwest, Inc.

P.O. Box 230163

Portland, OR 97281

TEL: (503) 372-9760 FAX: (503) 213-9980

RE: Powell-Molalla / 05-106

Dear John Day:

Order No.: 1012222

Specialty Analytical received 4 samples on 12/30/2010 for the analyses presented in the following report.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Project Manager

Client Sample ID: MW-1

Date: 06-Jan-11

CLIENT:

Environmental Compliance Northwest, Inc.

Project:

Powell-Molalla / 05-106

Lab Order:

1012222

Lab ID:

1012222-01

Collection Date: 12/30/2010 1:00:00 PM

Matrix: GROUNDWATER

on the same of the				onco	
Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX			Analyst: zau
Diesel	ND	0.0784	mg/L	1	1/4/2011
Lube Oil	ND	0.196	mg/L	. 1	1/4/2011
Surr: o-Terphenyl	90.0	50-150	%REC	1	1/4/2011
BTEX - RBC		SW8021B			Analyst: jrp
Benzene	ND	0.300	μg/L	1	1/5/2011
Toluene	ND	0.500	μg/L	1	1/5/2011
Ethylbenzene	ND	0.500	μg/L	1	1/5/2011
Xylenes, Total	ND	1.50	μg/L	1	1/5/2011
Surr: 4-Bromofluorobenzene	77.3	74.8-126	%REC	1	1/5/2011
NWTPH-GX		NWTPH-GX			Analyst: jrp
Gasoline	ND	100	μg/L	1	1/5/2011
Surr: 4-Bromofluorobenzene	117	50-150	%REC	1	1/5/2011

Lab ID:

1012222-02

Client Sample ID: MW-2

Collection Date: 12/30/2010 12:00:00 PM

Matrix: GROUNDWATER

			1.14		
Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX			Analyst: zau
Diesel	ND	0.0768	mg/L	1	1/4/2011
Lube Oil	ND	0.192	mg/L	1	1/4/2011
Surr: o-Terphenyl	80.5	50-150	%REC	1	1/4/2011
BTEX - RBC		SW8021B			Analyst: jrp
Benzene	ND	0.300	μg/L	1	1/5/2011
Toluene	ND	0.500	μg/L	1	1/5/2011
Ethylbenzene	ND	0.500	μg/L	1	1/5/2011
Xylenes, Total	ND	1.50	μg/L	1	1/5/2011
Surr: 4-Bromofluorobenzene	77.0	74.8-126	%REC	1	1/5/2011
NWTPH-GX		NWTPH-GX			Analyst: jrp
Gasoline	ND	100	μg/L	1	1/5/2011
Surr: 4-Bromofluorobenzene	116	50-150	%REC	1	1/5/2011

Date: 06-Jan-11

CLIENT:

Environmental Compliance Northwest, Inc.

Project:

Powell-Molalla / 05-106

Lab Order:

1012222

Lab ID:

1012222-03

Collection Date: 12/30/2010 2:00:00 PM

Client Sample ID: MW-3				Matrix: GROU	NDWATER
Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX			Analyst: zau
Diesel	0.154	0.0780	A1 mg/L	1	1/4/2011
Lube Oil	ND	0.195	mg/L	1	1/4/2011
Surr: o-Terphenyl	81.5	50-150	%REC	1 .	1/4/2011
NWTPH-GX		NWTPH-GX			Analyst: jrp
Gasoline	245	100	μg/L	1	1/5/2011
Surr: 4-Bromofluorobenzene	117	50-150	%REC	1	1/5/2011
VOLATILE ORGANICS BY GC/MS		SW8260B			Analyst: kmn
1,2,4-Trimethylbenzene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
1,2-Dibromoethane	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
1,2-Dichloroethane	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
1,3,5-Trimethylbenzene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
Benzene	ND	0.300	μg/L	, 1	1/3/2011 11:25:00 PM
Ethylbenzene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
Isopropylbenzene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
m,p-Xylene	ND	2.00	μg/L	1	1/3/2011 11:25:00 PM
Methyl tert-butyl ether	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
n-Propylbenzene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
Naphthalene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
o-Xylene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
Toluene	ND	1.00	μg/L	1	1/3/2011 11:25:00 PM
Surr: 1,2-Dichloroethane-d4	98.7	72.2-129	%REC	1	1/3/2011 11:25:00 PM
Surr: 4-Bromofluorobenzene	107	73.5-125	%REC	1	1/3/2011 11:25:00 PM
Surr: Dibromofluoromethane	96.0	58.8-148	%REC	1	1/3/2011 11:25:00 PM
Surr: Toluene-d8	93.4	79.8-137	%REC	1	1/3/2011 11:25:00 PM

Date: 06-Jan-11

CLIENT: Environmental Com Project: Powell-Molalla / 05-		hwest, Inc.			Lab Orde	er: 1012222
Lab ID: 1012222-04				Collection Da	te: 12/30/	2010 3:00:00 PM
Client Sample ID: MW-4				Matr	ix: GROU	NDWATER
Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Analyst: zau
Diesel	1.76	0.0804	A1,L	mg/L	1	1/4/2011
Lube Oil	0.365	0.201	М	mg/L	1	1/4/2011
Surr: o-Terphenyl	108	50-150		%REC	1	1/4/2011
NWTPH-GX		NWTPH-GX				Analyst: jrp
Gasoline	10200	1000		μg/L	10	1/5/2011
Surr: 4-Bromofluorobenzene	111	50-150		%REC	10	1/5/2011
DISSOLVED METALS BY ICP/MS		SW6020				Analyst: cz
Lead	1.8	0.10		ug/L	1	1/3/2011 3:47:00 PM
OW LEVEL PAH BY GC/MS		8270SIM				Analyst: bda
Acenaphthene	0.215	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Acenaphthylene	0.0782	0.0489		µg/L	1	1/5/2011 10:36:00 AM
Anthracene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Benz(a)anthracene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Benzo(a)pyrene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Benzo(b)fluoranthene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Benzo(g,h,i)perylene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Benzo(k)fluoranthene	ND	0.0489		µg/L	1	1/5/2011 10:36:00 AM
Chrysene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Dibenz(a,h)anthracene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Fluoranthene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Fluorene	0.244	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Indeno(1,2,3-cd)pyrene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Naphthalene	61.7	0.244		μg/L	5	1/5/2011 11:00:00 AM
Phenanthrene	0.166	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Pyrene	ND	0.0489		μg/L	1	1/5/2011 10:36:00 AM
Surr: 2-Fluorobiphenyl	68.4	18.6-106		%REC	1	1/5/2011 10:36:00 AM
Surr: Nitrobenzene-d5	50.0	17-130		%REC	1	1/5/2011 10:36:00 AM
Surr: p-Terphenyl-d14	72.0	39.6-131		%REC	1	1/5/2011 10:36:00 AM
OLATILE ORGANICS BY GC/MS		SW8260B				Analyst: kmn
1,2,4-Trimethylbenzene	142	1.00		µg/L	1	1/4/2011 12:00:01 AM
1,2-Dibromoethane	ND	1.00		μg/L	1	1/4/2011 12:00:01 AM
1,2-Dichloroethane	ND	1.00		μg/L	1	1/4/2011 12:00:01 AM
1,3,5-Trimethylbenzene	17.7	1.00		μg/L	1	1/4/2011 12:00:01 AM
Benzene	449	1.50		μ g/L	5	1/4/2011 12:46:00 PM
Ethylbenzene	395	5.00		μ g/L	5	1/4/2011 12:46:00 PM
Isopropylbenzene	117	1.00		μ g/L	1	1/4/2011 12:00:01 AM
m,p-Xylene	95.4	2.00		μg/L	1	1/4/2011 12:00:01 AM

Date: 06-Jan-11

CLIENT: Project:	Environmental Compl Powell-Molalla / 05-10		west, Inc.		Lab Order	: 1012222
VOLATILE OF	RGANICS BY GC/MS		SW8260B			Analyst: kmn
Methyl tert-buty	d ether	1.64	1.00	μg/L	1	1/4/2011 12:00:01 AM
n-Propylbenzer	ne	372	5.00	μg/L	5	1/4/2011 12:46:00 PM
Naphthalene		160	1.00	μg/L	1	1/4/2011 12:00:01 AM
o-Xylene		32.5	1.00	μg/L	. 1	1/4/2011 12:00:01 AM
Toluene		4.26	1.00	μg/L	1	1/4/2011 12:00:01 AM
Surr: 1,2-Dic	chloroethane-d4	88.4	72.2-129	%REC	1	1/4/2011 12:00:01 AM
Surr: 4-Brom	nofluorobenzene	83.2	73.5-125	%REC	1	1/4/2011 12:00:01 AM
Surr: Dibrom	ofluoromethane	93.6	58.8-148	%REC	1	1/4/2011 12:00:01 AM
Surr: Toluen	e-d8	88.1	79.8-137	%REC	1	1/4/2011 12:00:01 AM

CLIENT:

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

Date: 06-Jan-11

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WDISS

Sample ID:	1012222-04CMS	SampType:	MS	TestCoo	le: 6020_WDI	SS Units: ug/L		Prep Dat	e: 1/3/201	1	Run ID: ICF	MS_110103	В
Client ID:	MW-4	Batch ID:	27420	TestN	lo: SW6020			Analysis Date	e: 1/3/201	1	SeqNo: 72 1	750	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	12		44.85	0.10	50	0.03768	89.6	70	130	0	0		-
Chromium			44.63	0.10	50	0.1202	89	70	130	0	0		
Lead			52.27	0.10	50	1.84	101	70	130	0	0		
Sample ID:	1012222-04CMSD	SampType:	MSD	TestCoo	le: 6020_WDI	SS Units: ug/L		Prep Dat	te: 1/3/201	1	Run ID: ICF	MS_110103	В
Client ID:	MW-4	Batch ID:	27420	TestN	lo: SW6020			Analysis Dat	e: 1/3/201	1	SeqNo: 721	_	
Analyte	1 m		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium			45.87	0.10	50	0.03768	91.7	70	130	44.85	2.25	20	
Chromium			46.5	0.10	50	0.1202	92.8	70	130	44.63	4.10	20	
Lead			53.25	0.10	50	1.84	103	70	130	52.27	1.86	20	
Sample ID:	1012222-04CDUP	SampType:	DUP	TestCoo	le: 6020_WDI	SS Units: ug/L		Prep Dat	e: 1/3/201	1	Run ID: ICF	MS_110103	В
Client ID:	MW-4	Batch ID:	27420	TestN	lo: SW6020			Analysis Dat	e: 1/3/201	1	SeqNo: 721	1749	
Analyte	2 "		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium			0.02827	0.10	0	0	0	0	0	0.03768	0	20	J
Chromium			0.1058	0.10	0	0	0	0	0	0.1202	12.7	20	
Lead			1.827	0.10	0	0	0	0	0	1.84	0.709	20	
Sample ID:	CCV	SampType:	CCV	TestCoo	ie: 6020_WDI	SS Units: ug/L		Prep Dat	e:		Run ID: ICF	MS_110103	В
Client ID:	ZZZZZ	Batch ID:	27420	TestN	lo: SW6020			Analysis Dat	e: 1/3/20 1	1	SeqNo: 721	1746	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
			Result 49.61	PQL 0.10	SPK value	SPK Ref Val	%REC 99.2	LowLimit 90	HighLimit 110	RPD Ref Val	%RPD 0	RPDLimit	Qual
Analyte Cadmium Chromium												RPDLimit	Qual
Analyte Cadmium			49.61	0.10	50	0	99.2	90	110	0	0	RPDLimit	Qual

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: 6020_WDISS

Sample ID: CCV	SampType: CCV	TestCode: 6020_WDISS Units: ug/L	Prep Date:	Run ID: ICPMS_110103B
Client ID: ZZZZZ	Batch ID: 27420	TestNo: SW6020	Analysis Date: 1/3/2011	SeqNo: 721753
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cadmium	48.19	0.10 50 0	96.4 90 110 0	0
Chromium	47.64	0.10 50 0	95.3 90 110 0	0
Lead	50.42	0.10 50 0	101 90 110 0	0
Sample ID: ICB-27420	SampType: ICB	TestCode: 6020_WDISS Units: ug/L	Prep Date: 1/3/2011	Run ID: ICPMS_110103B
Client ID: ZZZZZ	Batch ID: 27420	TestNo: SW6020	Analysis Date: 1/3/2011	SeqNo: 721747
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cadmium	0.04	0.10 0 0	0 0 0 0	0
Chromium	ND	0.10 0 0	0 0 0 0	0
Lead	0.03324	0.10 0 0	0 0 0 0	0
Sample ID: ICV	SampType: ICV	TestCode: 6020_WDISS Units: ug/L	Prep Date:	Run ID: ICPMS_110103B
Client ID: ZZZZZ	Batch ID: 27420	TestNo: SW6020	Analysis Date: 1/3/2011	SeqNo: 721745
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Cadmium	50.15	0.10 50 0	100 90 110 0	0
Ob	FO 00	0.10 50 0	100 00 110 0	•
Chromium	50.22	0.10 50 0	100 90 110 0	0

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

J - Analyte detected below quantitation limits

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Page 3 of 11

Sample ID: MB-27428	SampType: MBLK		de: 8260_W	Units: µg/L		Prep Date:	1/3/201	1	Run ID: 597	5X_110103E	3
Client ID: ZZZZZ	Batch ID: 27428	TestN	No: SW8260B			Analysis Date:	1/3/201	1	SeqNo: 721	758	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	ND	1.00									
1,2-Dibromoethane	ND	1.00									
1,2-Dichloroethane	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
Benzene	ND	0.300									
Ethylbenzene	0.21	1.00									
Isopropylbenzene	ND	1.00									J
m,p-Xylene	ND	2.00									
Methyl tert-butyl ether	ND	1.00									
n-Propylbenzene	ND	1.00									
Naphthalene	ND	1.00									
o-Xylene	ND	1.00									
Toluene	ND	1.00									
Surr: 1,2-Dichloroethane-d4	101.2	0	100	0	101	72.2	129	0			
Surr: 4-Bromofluorobenzene	102.3	0	100	0	102	73.5	125	0	0		
Surr: Dibromofluoromethane	99.84	0	100	0	99.8	58.8	148	0	0		
Surr: Toluene-d8	103.9	0	100	0	104	79.8	137	0	0		
Sample ID: LCS-27428	SampType: LCS	TestCoo	le: 8260_W	Units: µg/L		Prep Date:	1/3/201	1	Run ID: 597	EV 440402B	•
Client ID: ZZZZZ	Batch ID: 27428		lo: SW8260B	P3 -		Analysis Date:					,
						Allalysis Dale.	1/3/201	'	SeqNo: 721	755	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	42.35	0.300	40	0	106	77.9	125	0	0		
Toluene	43.3	1.00	40	0	108	74.6	119	0	0		
Sample ID: A1012220-01AMS	SampType: MS	TestCod	le: 8260_W	Units: µg/L		Prep Date:	1/3/201	1	Run ID: 597	EV 110100	,
Client ID: ZZZZZ	Batch ID: 27428		lo: SW8260B								•
			OTTOLOUD			Analysis Date:	1/3/201		SeqNo: 721	756	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	43.93	0.300	40	0	110	71.5	118	0	^		
Benzene				•		71.5	110		0		
Benzene Toluene	50.65	1.00	40	1.27	123	79.6	121	0	0		S

R - RPD outside accepted recovery limits

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID: A1012220-01AMSD	SampType:			le: 8260_W	Units: µg/L		Prep Date	e: 1/3/201	1	Run ID: 597	75X_110103E	3
Client ID: ZZZZZ	Batch ID:	27428	TestN	lo: SW8260B			Analysis Date	e: 1/3/201	1	SeqNo: 721	1757	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		44.52	0.300	40	0	111	71.5	118	43.93	1.33	20	
Toluene		46.55	1.00	40	1.27	113	79.6	121	50.65	8.44	20	
Sample ID: CCB-27428	SampType:	ССВ	TestCod	le: 8260_W	Units: µg/L		Prep Date	e: 1/3/201	1	Run ID: 597	75X_110103E	3
Client ID: ZZZZZ	Batch ID:	27428	TestN	lo: SW8260B			Analysis Date			SeqNo: 721		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene		ND	1.00	0	0	0	0	0	0	0		
1,2-Dibromoethane		ND	1.00	0	0	0	0	0	0	0		
1,2-Dichloroethane		ND	1.00	0	0	0	0	0	0	0		
1,3,5-Trimethylbenzene		ND	1.00	0	0	0	0	0	0	0		
Benzene		ND	0.300	0	0	0	0	0	0	0		
Ethylbenzene		ND	1.00	0	0	0	0	0	0	0		
Isopropylbenzene		ND	1.00	0	0	0	0	0	0	0		
m,p-Xylene		ND	2.00	0	0	0	0	0	0	0		
Methyl tert-butyl ether		ND	1.00	0	0	0	0	0	0	0		
n-Propylbenzene		ND	1.00	0	0	0	0	0	0	0		
Naphthalene		ND	1.00	0	0	0	0	0	0	0		
o-Xylene		ND	1.00	0	0	0	0	0	0	0		
Toluene		ND	1.00	0	0	0	0	0	0	0		
Surr: 1,2-Dichloroethane-d4	i te	101.1	0	100	0	101	72.2	129	0	0		
Surr: 4-Bromofluorobenzene		91.13	0	100	0	91.1	73.5	125	0	ŭ		
Surr: Dibromofluoromethane		82.77	0	100	0	82.8	58.8		_	0		
Surr: Toluene-d8		95.92	0	100	0	95.9	79.8	148 137	0	0		
Sample ID: CCV-27428	SampType:	CCV	TestCod	le: 8260_W	Units: µg/L		Prep Dat	e:		Run ID: 597	75X_110103E	3
Client ID: ZZZZZ	Batch ID:	27428	TestN	lo: SW8260B	• •		Analysis Date		1	SeqNo: 721		-
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene		61.67	1.00	60	0	103	80	120	0	0		
Toluene		68.92	1.00	60	0	115	80	120	0	0		

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID: CCV-27428 Client ID: ZZZZZ	SampType: CCV Batch ID: 27428		TestCode: 8260_W Units: µg/L TestNo: SW8260B			Prep Dat Analysis Dat		Run ID: 5975X_110103B SeqNo: 721832			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene Toluene	36.8 41.07	1.00 1.00	40 40	0 0	92 103	80 80	120 120	0	0		

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: BTEXRBC_W

Sample ID: MB-27439	SampType: MBLK	TestCode: BTEXRBO	_W Units: μg/L		Prep Date	e: 1/5/201	1	Run ID: GC-S_110105A				
Client ID: ZZZZZ	Batch ID: 27439	TestNo: SW8021B			Analysis Date	: 1/5/201	1	SeqNo: 722				
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Benzene	ND	0.300										
Toluene	0.21	0.500										
Ethylbenzene	0.1	0.500								,		
Xylenes, Total	0.5	1.50								J		
Surr: 4-Bromofluorobenzene	90.08	0 100	0	90.1	74.8	126	0	0		J		
Sample ID: LCS-27439	SampType: LCS	TestCode: BTEXRBO	_W Units: μg/L		Prep Date	e: 1/5/201	1	Run ID: GC	-S 110105A			
Client ID: ZZZZZ	Batch ID: 27439	TestNo: SW8021B			Analysis Date	: 1/5/201	1	SeqNo: 722006				
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Benzene	50.89	0.300 50	0	102	75.8	113	0	0				
Toluene	51.63	0.500 50	0	103	77	116	0	0				
Ethylbenzene	52.54	0.500 50	0	105	76.6	118	0	0				
Xylenes, Total	157.5	1.50 150	0	105	76.7	118	0	0				
Sample ID: 1101015-01EMS	SampType: MS	TestCode: BTEXRBO	C_W Units: µg/L		Prep Date	e: 1/5/201	1	Run ID: GC	-S_110105A			
Client ID: ZZZZZ	Batch ID: 27439	TestNo: SW8021B			Analysis Date	e: 1/5/201	1	SeqNo: 722009				
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Benzene	24.4	0.300 25	0.05	97.4	67.8	118	0	0				
Toluene	24.69	0.500 25	0.21	97.9	74.7	117	0	0				
Ethylbenzene	21.79	0.500 25	0.1	86.8	74.5	115	0	0				
Xylenes, Total	63.32	1.50 75	0.57	83.7	76.8	120	0	0				
Sample ID: 1101015-01EMSD	SampType: MSD	TestCode: BTEXRB0	C_W Units: µg/L		Prep Date	e: 1/5/201	1	Run ID: GC	-S_110105A			
Client ID: ZZZZZ	Batch ID: 27439	TestNo: SW8021B			Analysis Date	e: 1/5/201	1	SeqNo: 722	2010			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua		
Benzene	24.16	0.300 25	0.05	96.4	67.8	118	24.4	0.988	20			
Toluene	24.43	0.500 25	0.21	96.9	74.7	117	24.69	1.06	20			
Ethylbenzene	21.79	0.500 25	0.1	86.8	74.5	115	21.79	0	20			
Qualifiers: ND - Not Dete	ected at the Reporting Limit	S - Spi	ke Recovery outside ac	cepted recov	ery limits		B - Analyte detecte	d in the associate	ed Method Blan	nk		

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 6 of 11

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: BTEXRBC_W

Sample ID: 1101015-01EMSD	SampType: MSD	TestCode:	BTEXRBC	_W Units: μg/L		Prep Dat	te: 1/5/201	1	Run ID: GC-S_110105A			
Client ID: ZZZZZ	Batch ID: 27439	TestNo	SW8021B		- 4	Analysis Dat	e: 1/5/201	1	SeqNo: 722			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Xylenes, Total	70.76	1.50	75	0.57	93.6	76.8	120	63.32	11.1	20		
Sample ID: CCV	SampType: CCV	TestCode:	BTEXRBC	_W Units: μg/L		Prep Dat	te:		Run ID: GC	-S_110105A		
Client ID: ZZZZZ	Batch ID: 27439	TestNo	SW8021B			Analysis Dat	e: 1/5/201	1	SeqNo: 722	2005		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	50.89	0.300	50	0	102	85	115	0	0			
Toluene	51.63	0.500	50	0	103	85	115	0	0			
Ethylbenzene	52.54	0.500	50	0	105	85	115	0	0			
Xylenes, Total	157.5	1.50	150	0	105	85	115	0	0			

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHDXLL_W

Sample ID: MBLK-27	SampType:	MBLK	TestCoo	de: NWTPHD)	(LL Units: mg/L		Prep Date	e: 1/4/201	11	Run ID: GC-M_110104B				
Client ID: ZZZZZ	Batch ID:	27430	TestN	lo: NWTPH-D	x		Analysis Date	e: 1/4/201	11	SeqNo: 721925				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Diesel		ND	0.0800											
Lube Oil		ND	0.200											
Surr: o-Terphenyl		0.1753	0	0.2	0	87.7	50	150	0	0				
Sample ID: LCS-2743	O SampType:	LCS	TestCoo	de: NWTPHD)	(LL Units: mg/L		Prep Dat	e: 1/4/201	11	Run ID: GC	-M_110104B			
Client ID: ZZZZZ	Batch ID:	27430	TestN	lo: NWTPH-D	x		Analysis Date	e: 1/4/201	11	SeqNo: 721	_			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Diesel		0.8316	0.0800	1	. 0	83.2	60.7	121	0	0				
Lube Oil		0.7837	0.200	1	0	78.4	64	126	0	0				
Sample ID: LCSD-274	SampType:	LCSD	TestCoo	de: NWTPHD)	KLL Units: mg/L		Prep Date	e: 1/4/201	11	Run ID: GC	-M 110104B			
Client ID: ZZZZZ	Batch ID:	27430	TestN	lo: NWTPH-D	x		Analysis Date	e: 1/4/201	11	SeqNo: 721	927			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Diesel		0.9167	0.0800	1	0	91.7	60.7	121	0.8316	9.73	20			
Lube Oil		0.9424	0.200	1	0	94.2	64	126	0.7837	18.4	20			
Sample ID: CCV	SampType	CCV	TestCoo	de: NWTPHD)	(LL Units: mg/L		Prep Date	e:		Run ID: GC	-M 110104B			
Client ID: ZZZZZ	Batch ID:	27430	TestN	lo: NWTPH-D	x	* * *	Analysis Date	e: 1/4/201	11	SeqNo: 721	_			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Diesel		7.938	0.0800	8.155	0	97.3	85	115	0	0				
Lube Oil		3.712	0.200	4.011	0	92.5	85	115	0	0				

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHGX_W

Sample ID: MB-2		npType:			e: NWTPHG)			Prep Date			Run ID: GC	_	
Cheft ID. 2222	- -	alch ID:	2/438	I estN	o: NWTPH-G	x		Analysis Date:	1/5/201	1	SeqNo: 722	014	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			ND	100									
Surr: 4-Bromof	uorobenzene		135.6	0	100	0	136	50	150	0	0		
Sample ID: LCS-	27438 Sam	прТуре:	LCS	TestCod	e: NWTPHG)	C_ Units: µg/L		Prep Date	1/5/201	1	Run ID: GC	-S_110105B	
Client ID: ZZZ	ZZ Ba	atch ID:	27438	TestN	lo: NWTPH-G	x		Analysis Date:	1/5/201	1 ,	SeqNo: 722	2013	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			1721	100	2000	0	86	74.4	128	0	0		
Sample ID: 1012	109-02CDUP Sam	прТуре:	DUP	TestCod	e: NWTPHG	K_ Units: μg/L		Prep Date	: 1/5/201	1	Run ID: GC	-S_110105B	
Client ID: ZZZ	ZZ Ba	atch ID:	27438	TestN	lo: NWTPH-G	x		Analysis Date	1/5/201	1	SeqNo: 722		
Analyte	*****	-	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			29.1	100	0	0	0	0	0	31	0	20	J
Sample ID: 1012	223-01BDUP San	npType:	DUP	TestCod	e: NWTPHG	K_ Units: μg/L	·	Prep Date	: 1/5/201	1	Run ID: GC	-S 110105B	
Client ID: ZZZ	ZZ Ba	atch ID:	27438	TestN	lo: NWTPH-G	x		Analysis Date	1/5/201	1	SeqNo: 722	_	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			29	100	0	0	0	0	0	25.73	0	20	J
Sample ID: CCV	San	npType:	ccv	TestCod	le: NWTPHG	K_ Units: μg/L		Prep Date	:		Run ID: GC	-S_110105B	
Client ID: ZZZ	ZZ Ba	atch ID:	27438	TestN	lo: NWTPH-G	x		Analysis Date	1/5/201	1	SeqNo: 722	_	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline			2891	100	3000	0	96.4	80	120	0	0		

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: PAHLL_W

Sample ID: MB-27433 Client ID: ZZZZZ	SampType: MBLK Batch ID: 27433		de: PAHLL_W No: 8270SIM	Units: µg/L		Prep Dat Analysis Dat			Run ID: 5979 SeqNo: 7219		A
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val		RPDLimit	Qual
Acenaphthene	0.02	0.0500									
Acenaphthylene	ND	0.0500									J
Anthracene	ND	0.0500									
Benz(a)anthracene	0.02	0.0500									
Benzo(a)pyrene	0.02	0.0500									J
Benzo(b)fluoranthene	0.02	0.0500									J
Benzo(g,h,i)perylene	ND	0.0500									J
Benzo(k)fluoranthene	0.01	0.0500									
Chrysene	0.01	0.0500									J
Dibenz(a,h)anthracene	nthracene 0.01 0.0500										J
luoranthene											J
luorene	ND	0.0500									J
ndeno(1,2,3-cd)pyrene	0.01	0.0500									
Naphthalene	ND	0.0500									J
Phenanthrene	0.01	0.0500									
Pyrene	ND	0.0500									J
Surr: 2-Fluorobiphenyl	76.55	1.00	100	0	70.0	40.0					
Surr: Nitrobenzene-d5	59.77	1.00	100	0	76.6	18.6	106	0	0		
Surr: p-Terphenyl-d14	80.05	1.00	100	0	59.8 80	17 39.6	130 131	0	0		
Sample ID: LCS-27433	SampType: LCS	TestCo	de: PAHLL_W	Units: µg/L		Prep Dat	e: 1/4/201	1		FO 44040F	
Client ID: ZZZZZ	Batch ID: 27433		No: 8270SIM	Oliko. pg/2						5Q_110105/	A
	Dator 15. 27400	i esu	10. 62/05IN			Analysis Dat	e: 1/5/201	1	SeqNo: 722 0	003	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Acenaphthene	3.89	0.0500	5	0	77.8	35.1	100	0	0		
Benzo(g,h,i)perylene	4.75	0.0500	5	0	95	20.8	120	0	0		
Chrysene	4.31	0.0500	5	0	86.2	39.1	119	0			
Naphthalene	3.57	0.0500	5	0	71.4			0	0		
		3.73 0.0500 5		0	74.6	25.6 106 38.1 106			0		
Phenanthrene	3.73	น.ขอบน		1)				0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Environmental Compliance Northwest, Inc.

Work Order:

1012222

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: PAHLL_W

Sample ID: LCSD-27433	SampType: LCSD	TestCode: PA	HLL_W	Units: µg/L		Prep Dat	e: 1/4/201	1	Run ID: 5975Q_110105A					
Client ID: ZZZZZ	Batch ID: 27433	TestNo: 82	70SIM			Analysis Dat	e: 1/5/201	1	SeqNo: 722	2004				
Analyte	Result	PQL SPI	(value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Acenaphthene	4.37	0.0500	5	0	87.4	35.1	100	3.89	11.6	20				
Benzo(g,h,i)perylene	5.47	0.0500	5	0	109	20.8	120	4.75	14.1	20				
Chrysene	5.11	0.0500	5	0	102	39.1	119	4.31	17.0	20				
Naphthalene	4.23	0.0500	5	0	84.6	25.6	106	3.57	16.9	20				
Phenanthrene	4.54	0.0500	5	0	90.8	38.1	106	3.73	19.6	20				
Pyrene	4.53	0.0500	5	0	90.6	41.3	118	4	12.4	20				
Sample ID: CCV-27433	SampType: CCV	TestCode: PA	HLL_W	Units: µg/L		Prep Dat	Run ID: 5975Q_110105A							
Client ID: ZZZZZ	Batch ID: 27433	TestNo: 82	70SIM		Analysis Date: 1/5/2011				SeqNo: 721995					
Analyte	Result	PQL SPI	< value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Acenaphthene	0.9	0.0500	1	0	90	70	130	0	0					
Acenaphthylene	0.87	0.0500	1	0	87	70	130	0	0					
Anthracene	0.9	0.0500	1	0	90	70	130	0	0					
Benz(a)anthracene	0.87	0.0500	1	0	87	70	130	0	0					
Benzo(a)pyrene	0.9	0.0500	1	0	90	70	130	0	0					
Benzo(b)fluoranthene	1	0.0500	1	0	100	70	130	0	0					
Benzo(g,h,i)perylene	0.9	0.0500	1	0	90	70	130	0	0					
Benzo(k)fluoranthene	0.91	0.0500	1	0	91	70	130	0	0					
Chrysene	0.87	0.0500	1	0	87	70	130	0	0					
Dibenz(a,h)anthracene	0.9	0.0500	1	0	90	70	130	0	0					
Fluoranthene	1.03	0.0500	1	0	103	70	130	0	0					
Fluorene	0.94	0.0500	1	0	94	70	130	0	0					
Indeno(1,2,3-cd)pyrene	0.91	0.0500	1	0	91	70	130	0	0					
Naphthalene	0.94	0.0500	1	0	94	70	130	0	0					
Phenanthrene	0.88	0.0500	1	0	88	70	130	0	0					
Pyrene	0.81	0.0500	1	0	81	70	130	0	0					

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- * The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

CHAIN OF CUSTODY RECORD

Company

Contact Person/Project Manager John Dry

Page_/_of_/_

	/
W	//
7/	1
	"

Specialty Analytical
11711 SE Capps Road

				,	Addre	ss	- /	20	Bo	. 2	23	016	3					
		none: 503-607-1331 xx: 503-607-1336							-0	TL	0	5	R	9	7281			
Collected B Signature Printed Signature Printed	1		S	X		Phone Project Project	ect No	Z 7 Z Loca Analy		76°	X	w/	Proje	Fax_Z t Name Other Lab Job No Shipped Via	P.O. I	atory Use		
Turn Around		No. of Containers	BTEX ITPH-6X	280m Vac	PH-4X	TPH-DX	155,06	14175					Air Bill No Temperature (Specialty Anal	On Receip	atainers? Y	7N		
Date 17/7 0/10	Time 1300	Sample I.D.	Matrix	_			-	ij	~		/				Co	mments		Lab I.D.
130,00	1400	mw-2 mw-3 mw-4	W V	5556	X	X X	X X	\ X X	X	X					Pyn Dx >	if		
							1											
	L/																	
Relinquished Company:	Date Time 12/38/10 1630	Received Company	-					, K			nquish npany:		r.			Date	Time	
Unless Recia Samples held									Rec	eived I	For L	ab By:			Date	Time		
Copies: White	Original			- Willia Bupper 12/30							12/30/10	1625						