SECOND QUARTER 2010 GROUNDWATER MONITORING REPORT

FORMER MOLALLA KWIK GAS 305 WEST MAIN STREET MOLALLA, OREGON DEQ FILE No.: 03-05-461

ECN PROJECT No. 05-106

December 8, 2010

ENVIRONMENTAL COMPLIANCE NORTHWEST

PO BOX 230163 PORTLAND, OR 97281 (503) 372-9760 Phone (503) 213-9980 Fax

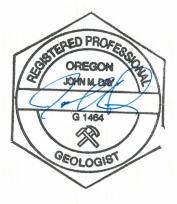
December 8, 2010 ECN Project No. 05-106

Mr. Jason Powell Powell Distributing Company 9125 North Burrage Portland, Oregon 97217

SUBJECT: Second Quarter 2010

Groundwater Monitoring Report

Former Molalla Kwik Gas 305 West Main Street Molalla, Oregon


DEQ LUST File No.: 03-05-461

Dear Mr. Powell:

Environmental Compliance Northwest, Inc., (ECN) is pleased to submit this Groundwater Monitoring Report for the above referenced facility. We hope this report meets your needs at this time. If you should require additional information, please contact us at 503-372-9760.

Sincerely,

Environmental Compliance Northwest, Inc.

John M. Day, RG Principal Geologist President

\Projects\Powell\05106\GMR.doc

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	SITE DESCRIPTION	
	BACKGROUND	
	FIELD ACTIVITIES	
	ANALYTICAL TEST METHODS	
	FINDINGS	
	RISK-BASED EVALUATION OVERVIEW	
	SUMMARY AND CONCLUSIONS	
	REFERENCES	
	LIMITATIONS	
10.0	LIMITATIONS	. 0

TABLES

- 1. Groundwater Analytical Results TPH, VOCs, and Lead
- 2. Groundwater Analytical Results PAHs

FIGURES

- 1. Vicinity Map
- 2. Groundwater Contour Map-2nd Quarter 2010
- 3. Groundwater Analytical Results Map-2nd Quarter 2010

APPENDIX

A. Laboratory Report and Chain of Custody

1.0 INTRODUCTION

This report describes results of the second quarter 2010 groundwater monitoring and sampling activities conducted at the former Kwik Gas service station located at 305 West Main Street in Molalla, Oregon (Figure 1).

2.0 SITE DESCRIPTION

The site is located on the north side of West Main Street, approximately 100 feet west of Kennel Avenue near downtown Molalla and was formerly used as a fuel service station. The site is currently occupied by an automobile detail facility. A former service station building is located in the southeastern portion of the site. The UST cavity, formerly containing four 10,000-gallon tanks is located in the northwestern portion of the site and a former fuel dispenser island is located south of the station building. The site and surrounding area are relatively flat generally covered with gravel, with the exception of the former fuel dispenser island area, which is paved with asphalt. The locations of pertinent site features are shown on Figure 2.

3.0 BACKGROUND

The following background information was obtained from DEQ files, verbal discussions with Powell Distributing Company (Powell) personnel, and activities observed and conducted by ECN. The facility operated since at least 1977 until 2005 and consisted of a retail fueling and automotive repair facility. The former UST system consisted of three gasoline USTs and one diesel UST, located in the northwest corner of the site and one fuel dispenser island, located in the southern portion of the site (Figure 2). In April 2005, an apparent leak was detected in the underground product piping. A portion of the piping was uncovered and several small holes were observed in the piping.

In March 2005, ECN conducted initial site assessment activities consisting of drilling two hand auger borings adjacent to the fuel product piping. Subsurface soil sampling indicated the presence of petroleum hydrocarbon impact to soil in to the maximum explored depth of 8.5 feet below ground surface (bgs).

Also in March 2005, ECN conducted site assessment activities, including drilling a total of nine soil borings. Seven borings were completed adjacent and in the vanity of the underground product piping trench. Two of the borings were completed adjacent to the former fuel island. Petroleum hydrocarbons were detected in soil samples collected from each boring, with the exception of the boring completed located near the northwest corner of the former service station

building. Grab groundwater samples were collected from four of the borings. Petroleum hydrocarbons were detected in each grab groundwater sample collected.

Between September and October 2006, the UST system (consisting of four USTs and underground product piping) were decommissioned by removal. Two soil samples were collected from beneath each UST. In addition, one soil sample was collected from the south sidewall of the UST cavity and from beneath each of the three former fuel dispensers.

Petroleum hydrocarbons were not detected the soil samples collected from beneath the former USTs, with the exception of the southeastern portion of the former UST cavity, near the location where the product piping entered the cavity. Gasoline- and diesel-range hydrocarbons were detected in the soil samples collected from the former fuel dispensers (ECN, 2007).

A total of four monitoring wells (MW-1 through MW-4) were installed and two soil borings (B-101 and B-102) were completed in May 2007. The locations of the monitoring wells are shown on Figures 2 and 3. Borings B-101 and B-102 were drilled north and east of the existing building, respectively, to further define soil and groundwater impacts. Laboratory results indicated that the highest petroleum hydrocarbons were detected in the samples collected from MW-4, located adjacent to the former underground product piping. Lower petroleum hydrocarbon concentrations were detected in the other three monitoring wells, as well as in boring B-102 (ECN, 2010a).

Groundwater monitoring has been conducted at the site since the monitoring wells were installed.

4.0 FIELD ACTIVITIES

Field procedures for the second quarter 2010 groundwater monitoring and sampling were performed in accordance with DEQ guidelines. On June 30, 2010, depth to groundwater was measured and groundwater samples were collected monitoring wells MW-1 through MW-4. Prior to purging and sampling, the depth to water in the wells was measured from a permanent mark on top the well casing to the nearest 0.01-foot using an electronic water level indicator. The depth to water and top of casing elevation data were used to calculate the groundwater elevation in each well in reference to mean sea level (MSL). The survey data and historic groundwater elevation measurements collected through the second quarter 2010 monitoring event are presented in Table 1.

Prior to sample collection, monitoring wells were purged of at least three casing volumes. Groundwater samples were collected for laboratory analysis by lowering a bottom-fill, disposable bailer to just below the water level in the well. The collected water sample was then transferred from the bailer into laboratory-supplied containers.

5.0 ANALYTICAL TEST METHODS

2010 Each groundwater sample collected during the second quarter monitoring event was analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). Groundwater samples collected from wells MW-3 and MW-4 were analyzed for DEQ risk-based decision making (RBDM) volatile organic compounds (VOCs) by EPA Method 8260B. In addition to BTEX, the RBDM VOCs include:; 1,2,4-trimethylbenzene (1,2,4-TMB); ethylene dibromide (EDB); ethylene dichloride (EDC); 1,3,5-trimethylbenzene (1,3,5-TMB); isopropylbenzene (IPB) methyl-tertiary butyl ether (MTBE); n-propylbenzene (NPB); and naphthalene. Each sample was also analyzed for diesel-range hydrocarbons (diesel) and lube oilrange petroleum hydrocarbons (lube oil) by Northwest Method NWTPH-Dx, and gasoline-range hydrocarbons by Northwest Method NWTPH-Gx. Select groundwater samples were analyzed for dissolved lead by EPA Method 6010 and polynuclear aromatic hydrocarbons (PAHs) by DEQ Method 8270SIM.

6.0 FINDINGS

Following are the physical and chemical results for the second quarter 2010 groundwater monitoring and sampling activities at the site. Naphthalene results are reported on both Table 1 and 2. The differing results shown in groundwater samples are a result of separate extraction methods. The concentrations from the VOC analyses are reported on the analytical results map (Figure 3).

Physical Results

The depth to water in the monitoring wells, as measured on June 30, 2010, ranged from 6.31 to 12.83 feet below the top of well casings. The groundwater flow direction was interpreted to be to the southwest with an average hydraulic gradient of approximately 0.119 feet per foot. Compared to the first quarter 2010 monitoring data, groundwater elevations in the monitoring wells decreased between 1.94 and 4.09 feet.

The groundwater elevation and flow direction data for the second quarter 2010 monitoring event are shown on Figure 2.

Chemical Results

MW-1 and MW-2: Diesel-, lube oil-, and gasoline-range hydrocarbons; and BTEX constituents were not detected at or above the corresponding laboratory reporting limits.

MW-3: Diesel-range hydrocarbons (291 micrograms per liter $[\mu g/L]$), lube oil-range hydrocarbons (215 μ g/L), gasoline-range hydrocarbons (749 μ g/L), benzene (1.26 μ g/L), and ethylbenzene (1.70 μ g/L) were detected. The following PAHs were also detected: acenaphthene (0.0576 μ g/L), fluorine (0.186 μ g/L), and naphthalene (0.480 μ g/L).

MW-4: Diesel-range hydrocarbons (2,350 μg/L); lube oil-range hydrocarbons (585 μg/L); gasoline-range hydrocarbons (11,600 μg/L); benzene (705 μg/L); toluene (5.27 μg/L); ethylbenzene (419 μg/L); total xylenes (396.2 μg/L); 1,2,4-TMB (115 μg/L); 1,3,5-TMB (35.6 μg/L); IPB (117 μg/L); MTBE (2.17 μg/L); NPB (368 μg/L); and naphthalene (136 μg/L); were detected. The following PAHs were also detected: acenaphthene (0.165 μg/L); acenaphthylene (0.0778 μg/L); fluorine (0.223 μg/L); naphthalene (30.9 μg/L); and phenanthrene (0.0973 μg/L).

The groundwater sampling results for the second quarter 2010 monitoring event are shown on Figure 3 and summarized in Tables 1 and 2.

7.0 RISK-BASED EVALUATION OVERVIEW

In 1999, the Oregon DEQ issued the *Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites* guidance document (DEQ, 1999). This guidance document listed Risk-Based Concentration (RBC) cleanup levels that are based on current and potential future land and water uses at a site. The RBC cleanup levels are periodically revised, the most recent being September 15, 2009.

A detailed assessment of potential exposure pathways has not yet been conducted for the site. Although a conceptual site model has not been completed, based on our current knowledge of site conditions, the potentially complete exposure pathways for groundwater include: 1) vapor intrusion into buildings (occupational); 2) volatilization to outdoor air (occupational); and 3) groundwater in an excavation for a construction or excavation worker. The potentially applicable RBCs are shown on Tables 1 and 2.

None of the groundwater samples collected during the second quarter 2010 monitoring event exceeded RBCs for the potentially complete groundwater exposure pathways.

8.0 SUMMARY AND CONCLUSIONS

The site was operated as a retail fueling facility until March 2005. An apparent petroleum hydrocarbon release from the underground product piping was reported to DEQ on March 15, 2005. The site is currently operated as automotive detailing facility and is an area of commercial development.

ECN conducted site assessment activities between March and April 2005, consisting of advancing hand soil borings, limited excavation of apparent impacted soil associated with the product piping release, and drilling a total nine soil borings. Soil and water samples collected during the site assessment activities indicated that both soil and the shallow water-bearing zone in the vicinity of the product piping were impacted by petroleum hydrocarbons.

The four USTs at the site were decommissioned by removal in October 2006. Petroleum hydrocarbon-impacted backfill material was encountered adjacent to the fill port of one the USTs. Analytical results of samples collected from beneath the former fuel dispensers indicated that residual diesel- and gasoline-range hydrocarbons were present in the southern portion of the site.

A total of four groundwater monitoring wells and two soil borings were completed at the site in May 2007. Analytical results from the groundwater samples collected indicated that petroleum hydrocarbons were present in each monitoring well, the highest levels reported were in MW-4

Based on historic groundwater elevation direction data, it appears that the generalized shallow water-bearing zone flow direction varies between west-southwest and southwest.

None of the groundwater collected during the second quarter 2010 groundwater sampling event exceeded the potentially complete exposure pathway RBCs.

9.0 REFERENCES

ECN, 2007. Site Assessment and UST Decommissioning Report, Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. April 17.

ECN, 2010a. Additional Site Assessment and Monitoring Installation Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. October 14.

ECN, 2010b. First Quarter 2008 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 1.

ECN, 2010c. Third Quarter 2008 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 2.

ECN, 2010d. First Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 3.

ECN, 2010e. Second Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 4.

ECN, 2010f. Third Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 5.

ECN, 2010g. Fourth Quarter 2009 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 6.

ECN, 2010h. First Quarter 2010 Groundwater Monitoring Report, Former Molalla Kwik Gas, 305 West Main Street, Molalla, Oregon, DEQ File No. 03-05-461. December 7.

Oregon Department of Environmental Quality, 1999 and 2003. Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites (OAR 340-122-0205 through 0360). September 29, 1999, updated September 22, 2003.

Oregon Department of Environmental Quality, 2000. UST Cleanup Manual, Cleanup Rules for Leaking Petroleum UST Systems, OAR 340-122-0205 through 340-122-0360, and Associated Documents. Oregon Department of Environmental Quality, Portland, Oregon, December.

Oregon Department of Environmental Quality, 2009. Risk-Based Concentrations for Individual Chemicals. September 15.

10.0 LIMITATIONS

Environmental Compliance Northwest, Inc., has performed the work described in this report in accordance with the generally accepted standard of care existing in the State of Oregon at the time of the assessment. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the subsurface and historical conditions applicable to the study area. More extensive studies may be used to supplement the information presented in this report. Environmental Compliance Northwest, Inc., should be notified for additional consultation if Powell Distributing Company wishes to reduce uncertainties beyond the level associated with

this assessment. Our assessment of the property also may change, as new data becomes available during additional site exploration, remediation, or development.

Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of the report.

No warranty, express or implied is made.

TABLES

TABLE 1 Groundwater Analytical Results - TPH-Dx, TPH-G, RBDM VOCs, and Dissolved Lead Former Kwik Gas Station 305 West Main Street Molalla, Oregon ECN Project No. 05-106

	Date of	Casing	Depth to	Groundwater	Change in	TPH-	Dx [1]	TPH-G	В	Т	E	Х	1,2,4-TMB	EDB	EDC	1,3,5-TMB	IPB	MTBE	NPB	Naph- thalene	Dissolved Lead	LAB
Well I.D.	Sampling	Elevation (Feet)	Water (Feet)	Elevation (Feet)	Elevation (Feet)	Diesel	Lube Oil	[2]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[4]	
MW-1	6/5/2007	94.77	13.82	80.95		247	116	624	40.5	7.16	51.2	67.4	9.34	ND<1.00	ND<1.00	5.98	2.95	ND<1.00	5.04 ND<1.00	ND<1.00 ND<1.00		SA SA
	3/30/2008	94.77	8.06	86.71	5.76	ND<245	ND<491	ND<100	ND<0.300	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00				SA
	9/28/2008	94.77	17.41	77.36	-9.35	ND<243	ND<487	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
	3/26/2009	94.77	9.54	85.23	7.87	ND<238	ND<476	ND<100	ND<0.300		ND<0.500	ND<1.50			ND -4 00	NID :4 00	ND 44 00	ND<1.00	ND<1.00	ND<1.00		SA
	6/30/2009	94.77	14.43	80.34	-4.89	ND<86.3	ND<216		0.910	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND~1.00	ND~1.00	ND~1.00		SA
	9/29/2009	94.77	20.13	74.64	-5.7	ND<249	ND<498	ND<100	ND<0.300		ND<0.500	ND<1.50	****									SA
	12/26/2009	94.77	10.54	84.23	9.59	ND<243	ND<487	ND<100	ND<0.300		ND<0.500	ND<1.50			ND -4 00	ND 44 00	NID 44 00	ND-1 00	ND<1.00	ND<1.00		SA
	3/30/2010	94.77	8.74	86.03	1.8	ND<77.1	ND<193	ND<100	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND~1.00	140~1.00		SA
	6/30/2010	94.77	12.83	81.94	-4.09	ND<76.1	ND<190	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										
14141.0	6/5/2007	93.73	9.36	84.37		237	ND<100	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
MW-2	3/30/2008	93.73	3.35	90.38	6.01	ND<248	ND<495	ND<100	ND<0.300	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
	9/28/2008	93.73	11.10	82.63	-7.75	ND<242	ND<483	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
	3/26/2009	93.73	3.50	90.23	7.6	ND<236	ND<473	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
	6/30/2009	93.73	9.36	84.37	-5.86	ND<82.5	ND<206		ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
	9/29/2009	93.73	14.09	79.64	-4.73	ND<485	ND<971	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50							Spirital line			SA
	12/26/2009	93.73	4.03	89.70	10.06	ND<275	ND<552	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
	3/30/2010	93.73	3.42	90.31	0.61	ND<77.8	ND<195	ND<100	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
	6/30/2010	93.73	8.12	85.61	-4.7	ND<76.6	ND<192	ND<100	ND<0.300	ND<0.500	ND<0.500	ND<1.50										SA
						ND -40.0	ND 440.0	202	ND<0.300	0.84	2.04	ND<1.50			***							SA
MW-3	6/5/2007	93.44	6.65	86.79		ND<49.9	ND<49.9	363 589	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
	3/30/2008	93.44	4.31	89.13	2.34	269	ND<485	787	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.00	ND<1.00	ND<1.00	ND<1.00	0.65	SA
	9/28/2008	93.44	6.46	86.98	-2.15	350	ND<541 ND<478	429	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.1	SA
	3/26/2009	93.44	4.62	88.82	1.84	277	ND<478	429	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.21	ND<1.00	ND<1.00	ND<1.00	1.1	SA
	6/30/2009	93.44	6.79	86.65	-2.17	194 275	ND<203	631	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.26	ND<1.00	ND<1.00	ND<1.00	1.8	SA
	9/29/2009	93.44	8.96	84.48	-2.17	336	ND<513	245	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	1.26	ND<1.00	ND<1.00	ND<1.00	0.96	SA
	12/26/2009	93.44	4.39	89.05	4.57	216	235	477	ND<0.300	ND<1.00	ND<1.00	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	2.58	ND<1.00	ND<1.00	1.48		SA
	3/30/2010 6/30/2010	93.44 93.44	4.09 6.31	89.35 87.13	0.3 -2.22	291	215	749	1.26	ND<1.00	1.70	ND<3.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00	ND<1.00		SA
	0/30/2010	33.44								F 07	040	336.2	239	ND<1.00	ND<1.00	55	34.4	6.92	66.2	55.6	14	SA
MW-4	6/5/2007	94.10	7.16	86.94		2,060	3,500	7,370	326	5.97	216 397	343.0	386	ND<1.00	ND<1.00	43.4	92.2	11.3	261	150	2.5	SA
	3/30/2008	94.10	4.29	89.81	2.87	2,050	ND<489	15,900	985	8.93	743	167.8	332	ND<1.00	ND<1.00	88.3	125	ND<1.00	460	766	0.34	SA
	9/28/2008	94.10	7.69	86.41	-3.4	2,070	665	14,000	979	9.74	356	91.4	125	ND<1.00	ND<1.00	23.7	87.6	1.80	185	119	0.82	SA
	3/26/2009	94.10	4.54	89.56	3.15	1,700	893	8,010	480	4.49 7.28	769	248.2	594	ND<1.00	ND<1.00	76.7	133	2.62	438	347	1.4	SA
	6/30/2009	94.10	7.65	86.45	-3.11	1,460	310	40.000	682	7.28	889	30.00	30.4	ND<1.00	ND<1.00	34.3	115	7.16	395	540	1.5	SA
	9/29/2009	94.10	12.75	81.35	-5.1	2,760	805	13,300	925 397	4.84	435	361.2	451	ND<1.00	ND<1.00	25.5	114	1.43	245	509	ND<0.10	SA
	12/26/2009	94.10	4.36	89.74	8.39	2,730	1,020	21,100	594	5.31	634	330.9	530	ND<1.00	ND<1.00	60.4	128	ND<1.00	515	274	1.8	SA
	3/30/2010 6/30/2010	94.10 94.10	4.55 6.49	89.55 87.61	-0.19 -1.94	1,094 2,350	532 585	12,200 11,600	705	5.27	419	396.2	115	ND<1.00	ND<1.00	35.6	117	2.17	368	136		SA
Risk-Based Concer	ntrations [5]														0.500	6.000		1 000 000	NE	16,000	NV	
- Volatilization to O						>\$	NE	>\$	14,000	> S	41,000	>S	>\$	960	9,500	6,800	>\$	1,000,000				
(Occipational) - Vapor Intrusion In	nto Buildings					>\$	NE	>\$	2,800	>8	7,400	>\$	>\$	690	3,800	41,000	>\$	590,000	NE	10,000	NV	
(Occupational) - Groundwater in a	an Excavation					>\$	NE	13,000	1,700	210,000	4,400	23,000	1,700	28	630	1,400	>\$	62,000	NE	500	>\$	

ABBREVIATIONS:

- B: Benzene
- T: Toluene E: Ethylbenzene
- X: Total Xylenes

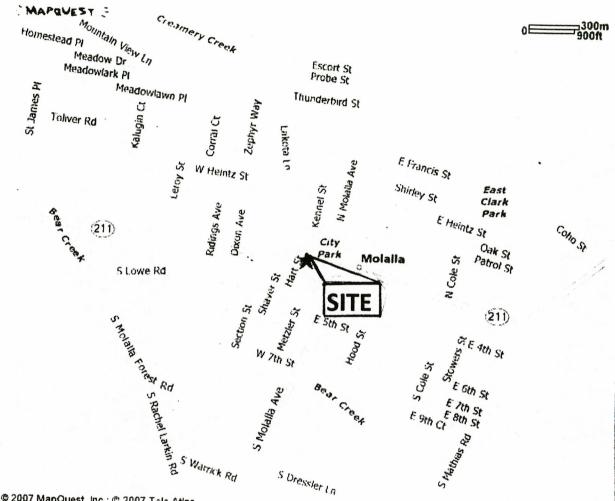
- X: Total Xylenes
 MTBE: Metyl tertiary-butyl ether
 ND: Not detected at or above the indicated laboratory reporting limit
 NE: Not established by DEQ
 >S: The groundwater RBC exceeds the solubility limit.
 NV: This chemical is considered "nonvolatile" for purposes of the exposure calculations

Results are in micrograms per liter (µg/L)
(1) Nortwest Method NWTPH-Dx
(2) Northwest Method NWTPH-Gx

- EPA Method 8021B 0r 8260B
- EPA Method 6011
- (1) (2) (3) (4) (5) SA BOLD Oregon Department of Environmental Quality (DEQ) Generic Risk Based Concentrations (RBCs)
- Specialty Analytical
- Exceeds the RBC

Polynuclear Aromatic [1		Acenaphthene	Acenapthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,l)perylene	Senzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoroanthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	LAB
Sample Identification	Sample Date						ш							_				
MVV-1	6/5/2007	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	ND<0.0503	2.81	ND<0.0503	ND<0.0503	SA
MW-2	6/5/2007	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	ND<0.0498	SA
,MVV-3	6/5/2007	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	ND<0.0495	0.0792	ND<0.0495	0.287	ND<0.0495	ND<0.0495	SA
	3/26/2009	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	ND<0.0479	0.211	ND<0.0479	ND<0.0479	SA
	6/30/2009	0.0572	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	0.124	ND<0.0477	0.734	ND<0.0477	ND<0.0477	SA
	6/30/2010	0.0576	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	ND<0.0480	0.182	ND<0.0480	0.480	ND<0.0480	ND<0.0480	SA
MVV-4	6/5/2007	0.115	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	ND<0.0525	0.136	ND<0.0525	83.4	0.0630	ND<0.0525	SA
	3/30/2008	0.231	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	ND<0.0482	0.0868	0.482	ND<0.0482	115	0.415	0.0868	SA
	9/28/2008	0.203	0.0676	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	ND< 0.0483	0.126	0.261	ND< 0.0483	94.7	0.300	0.126	SA
	3/26/2009	0.138	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	ND<0.0429	0.138	ND<0.0429	ND<0.0429	56.9	0.0984	0.0591	SA
	6/30/2009	0.191	0.0765	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	ND<0.0478	0.229	ND<0.0478	179	0.143	0.0478	SA
	9/29/2009	0.172	0.0858	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	ND<0.0477	0.210	ND<0.0477	145	0.0953	ND<0.0477	SA
	12/26/2009	0.282	0.126	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	ND<0.0523	0.366	ND<0.0523	200	0.209	ND<0.0523	SA
	3/30/2010	0.209	0.112	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.0500	0.316	ND<0.0500	150	0.179	ND<0.0500	SA
,	6/30/2010	0.165	0.0778	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	ND<0.0486	0.223	ND<0.0486	30.9	0.0973	ND<0.0486	SA
Risk-Based Concentrate Occ. Volatilization to Occ. Vapor Intrusion Groundwater in an Ex	Outdoor Air Into buidlings xcavation	>S >S >S	NE NE NE	>S >S >S	NV NV 9.1	NV NV 0.53	NV NV >S	NE NE NE	NV NV >S	NV NV >S	NV NV 0.21	NV NV >S	>S >S >S	NV NV >S	16,000 10,000 500	NE NE NE	NV NV >S	

ND not detected at or above the indicated laboratory reporting limit SA Specialty Analytical $\mu g/L$ Micrograms per Liter

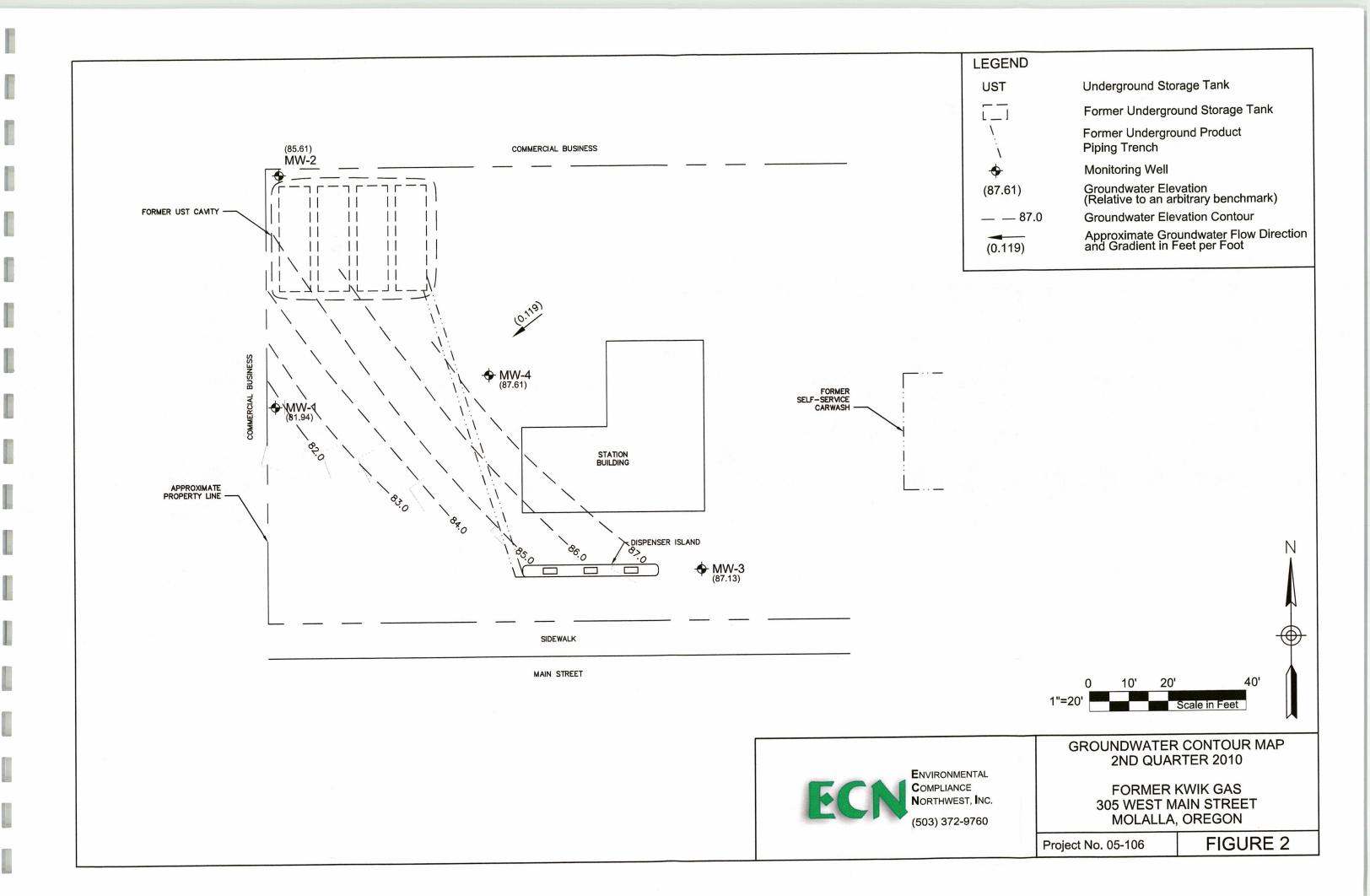

DEQ Method 8270SIM
Oregon Department of Environmental Quality (DEQ) Generic Risk Based Concentrations (RBCs) (DEQ, 2009). [1] [2]

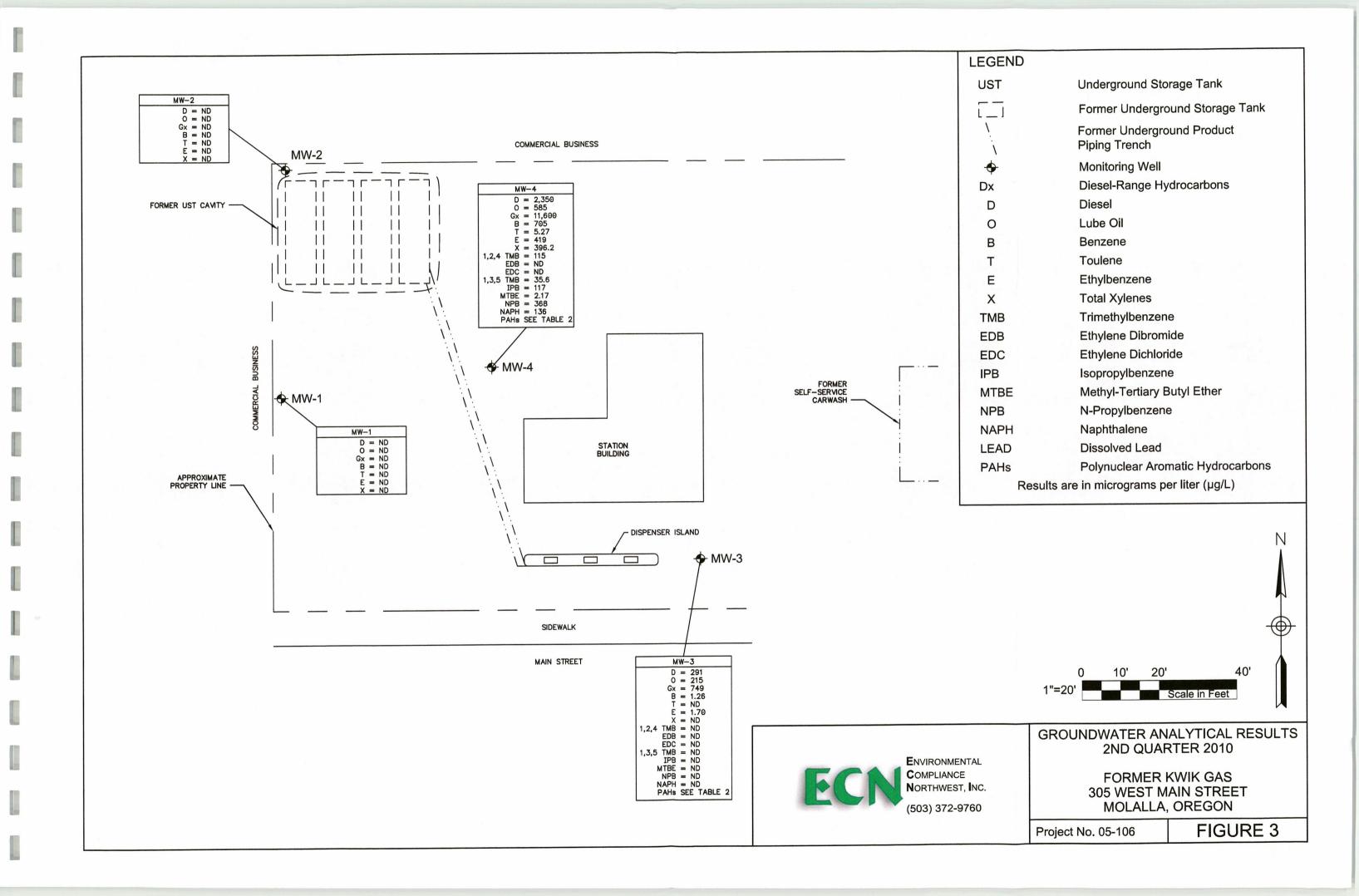
NE NV >S

(DEQ, 2009).

A Risk-Based Concentration has not been determined for this constituent
This chemical is considered "nonvolatile" for purposes of the exposure calculation
This groundwater RBC exceeds the solubility limit. Groundwater concentrations in excess of S indicate that free product may be present. If solubility is not listed, data was not listed in Appendix D of the DEQ RBDM guidance document (DEQ, 2009).

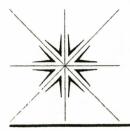
FIGURES


© 2007 MapQuest, Inc ; © 2007 Tele Atlas


VICINITY MAP

MOLALLA KWIK GAS 305 WEST MAIN STREET MOLALLA, OREGON

ECNW PROJ. No. 05-106


FIGURE 1

APPENDIX A

1

11711 SE Capps Road Clackamas, OR 97015 (503) 607-1331 Fax (503) 607-1336

July 12, 2010

John Day

Environmental Compliance Northwest, Inc.

P.O. Box 230163

Portland, OR 97281

TEL: (503) 372-9760 FAX: (503) 213-9980

RE: Powell-Molalla / 05-106

Dear John Day:

Order No.: 1007028

Specialty Analytical received 4 samples on 7/2/2010 for the analyses presented in the following report.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Cindy Hillyard

Project Manager

Technical Review

Date: 12-Jul-10

CLIENT:

Environmental Compliance Northwest, Inc.

1007028

Lab Order: Project:

Powell-Molalla / 05-106

Lab ID:

1007028-01

Client Sample ID: MW-1

Collection Date: 6/30/2010 1:00:00 PM

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX			Analyst: jrp
Diesel	ND	0.0761	mg/L	1	7/7/2010
Lube Oil	ND	0.190	mg/L	1	7/7/2010
Surr: o-Terphenyl	100	50-150	%REC	1	7/7/2010
BTEX - RBC		SW8021B			Analyst: jrp
Benzene	ND	0.300	µg/L	1	7/7/2010
Toluene	ND	0.500	µg/L	1	7/7/2010
Ethylbenzene	ND	0.500	µg/L	1	7/7/2010
Xylenes, Total	ND	1.50	µg/L	1	7/7/2010
Surr: 4-Bromofluorobenzene	86.0	74.8-126	%REC	1	7/7/2010
NWTPH-GX		NWTPH-GX			Analyst: jrp
Gasoline	ND	100	µg/L	1	7/8/2010
Surr: 4-Bromofluorobenzene	117	50-150	%REC	1	7/8/2010

Date: 12-Jul-10

CLIENT:

Environmental Compliance Northwest, Inc.

Client Sample ID: MW-2

Lab Order:

1007028

1007028-02

Collection Date: 6/30/2010 12:00:00 PM

Project: Lab ID: Powell-Molalla / 05-106

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX			Analyst: jrp
Diesel	ND	0.0766	mg/L	1	7/7/2010
Lube Oil	ND	0.192	mg/L	1	7/7/2010
Surr: o-Terphenyl	95.3	50-150	%REC	1	7/7/2010
BTEX - RBC		SW8021B			Analyst: jrp
Benzene	ND	0.300	µg/L	1	7/7/2010
Toluene	ND	0.500	μg/L	1	7/7/2010
Ethylbenzene	ND	0.500	μg/L	1	7/7/2010
Xylenes, Total	ND	1.50	μg/L	1	7/7/2010
Surr: 4-Bromofluorobenzene	84.2	74.8-126	%REC	1	7/7/2010
NWTPH-GX		NWTPH-GX			Analyst: jrp
Gasoline	ND	100	μg/L	1	7/8/2010
Surr: 4-Bromofluorobenzene	118	50-150	%REC	1	7/8/2010

Date: 12-Jul-10

CLIENT: Lab Order: Environmental Compliance Northwest, Inc.

1007028

Powell-Molalla / 05-106

Project: Lab ID:

1007028-03

Client Sample ID: MW-3

Collection Date: 6/30/2010 3:00:00 PM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: jrp
Diesel	0.291	0.0767	A1	mg/L	1	7/7/2010
Lube Oil	0.215	0.192	A2	mg/L	1	7/7/2010
Surr: o-Terphenyl	92.6	50-150		%REC	1	7/7/2010
NWTPH-GX		NWTPH-GX				Analyst: jrp
Gasoline	749	100		µg/L	1	7/8/2010
Surr: 4-Bromofluorobenzene	129	50-150		%REC	1	7/8/2010
OW LEVEL PAH BY GC/MS OARS	IM (8270C)	8270SIM				Analyst: bda
Acenaphthene	0.0576	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Acenaphthylene	ND	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Anthracene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Benz(a)anthracene	ND	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Benzo(a)pyrene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Benzo(b)fluoranthene	ND	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Benzo(g,h,i)perylene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Benzo(k)fluoranthene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Chrysene	ND	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Dibenz(a,h)anthracene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Fluoranthene	ND	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Fluorene	0.182	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Naphthalene	0.480	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Phenanthrene	ND	0.0480		µg/L	1	7/6/2010 4:23:00 PM
Pyrene	ND	0.0480		μg/L	1	7/6/2010 4:23:00 PM
Surr: 2-Fluorobiphenyl	69.2	18.6-106		%REC	1	7/6/2010 4:23:00 PM
Surr: Nitrobenzene-d5	66.7	17-130		%REC	1	7/6/2010 4:23:00 PM
Surr: p-Terphenyl-d14	105	39.6-131		%REC	1	7/6/2010 4:23:00 PM
OLATILE ORGANICS BY GC/MS		SW8260B				Analyst: kmr
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
1,2-Dibromoethane	ND	1.00		µg/L	1	7/7/2010 5:59:00 PM
1,2-Dichloroethane	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
Benzene	1.26	0.300		μg/L	1	7/7/2010 5:59:00 PM
Ethylbenzene	1.70	1.00		μg/L	1	7/7/2010 5:59:00 PM
Isopropylbenzene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
m,p-Xylene	ND	2.00		μg/L	1	7/7/2010 5:59:00 PM
Methyl tert-butyl ether	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
n-Propylbenzene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
Naphthalene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
o-Xylene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM

Date: 12-Jul-10

CLIENT:

Environmental Compliance Northwest, Inc.

1007028

Lab Order: Project:

Powell-Molalla / 05-106

Lab ID:

1007028-03

Client Sample ID: MW-3

Collection Date: 6/30/2010 3:00:00 PM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	14 14	SW8260B				Analyst: kmn
Toluene	ND	1.00		μg/L	1	7/7/2010 5:59:00 PM
Surr: 1,2-Dichloroethane-d4	99.2	72.2-129		%REC	1	7/7/2010 5:59:00 PM
Surr: 4-Bromofluorobenzene	82.5	73.5-125		%REC	1	7/7/2010 5:59:00 PM
Surr: Dibromofluoromethane	107	58.8-148		%REC	1	7/7/2010 5:59:00 PM
Surr: Toluene-d8	74.7	79.8-137	S	%REC	1	7/7/2010 5:59:00 PM

Date: 12-Jul-10

CLIENT:

Environmental Compliance Northwest, Inc.

Lab Order:

1007028

Project:

Powell-Molalla / 05-106

Lab ID:

1007028-04

Client Sample ID: MW-4

Collection Date: 6/30/2010 2:00:00 PM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
NWTPH-DX		NWTPH-DX				Analyst: jrp
Diesel	2.35	0.0776	A1	mg/L	1	7/7/2010
Lube Oil	0.585	0.194	A2	mg/L	1	7/7/2010
Surr: o-Terphenyl	92.7	50-150		%REC	1	7/7/2010
NWTPH-GX		NWTPH-GX				Analyst: jrp
Gasoline	11600	500		µg/L	5	7/9/2010
Surr: 4-Bromofluorobenzene	132	50-150		%REC	5	7/9/2010
OW LEVEL PAH BY GC/MS OARSI	M (8270C)	8270SIM				Analyst: bda
Acenaphthene	0.165	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Acenaphthylene	0.0778	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Anthracene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Benz(a)anthracene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Benzo(a)pyrene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Benzo(b)fluoranthene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Benzo(g,h,i)perylene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Benzo(k)fluoranthene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Chrysene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Dibenz(a,h)anthracene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Fluoranthene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Fluorene	0.233	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Indeno(1,2,3-cd)pyrene	ND	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Naphthalene	30.9	0.243		μg/L	5	7/7/2010 8:57:00 AM
Phenanthrene	0.0973	0.0486		μg/L	1	7/6/2010 4:52:00 PM
Pyrene	ND	0.0486		µg/L	1	7/6/2010 4:52:00 PM
Surr: 2-Fluorobiphenyl	45.4	18.6-106		%REC	1	7/6/2010 4:52:00 PM
Surr: Nitrobenzene-d5	49.2	17-130		%REC	1	7/6/2010 4:52:00 PM
Surr: p-Terphenyl-d14	80.5	39.6-131		%REC	1	7/6/2010 4:52:00 PM
OLATILE ORGANICS BY GC/MS		SW8260B				Analyst: kmr
1,2,4-Trimethylbenzene	115	1.00		μg/L	1	7/7/2010 8:17:00 PM
1,2-Dibromoethane	ND	1.00		μg/L	1	7/7/2010 8:17:00 PM
1,2-Dichloroethane	ND	1.00		μg/L	1	7/7/2010 8:17:00 PM
1,3,5-Trimethylbenzene	35.6	1.00		μg/L	1	7/7/2010 8:17:00 PM
Benzene	705	1.50		μg/L	5	7/7/2010 7:43:00 PM
Ethylbenzene	419	5.00		μg/L	5	7/7/2010 7:43:00 PM
Isopropylbenzene	117	1.00		μg/L	1	7/7/2010 8:17:00 PM
m,p-Xylene	39.9	2.00		μg/L	1	7/7/2010 8:17:00 PM
Methyl tert-butyl ether	2.17	1.00		µg/L	1	7/7/2010 8:17:00 PM
n-Propylbenzene	368	5.00		µg/L	5	7/7/2010 7:43:00 PM
Naphthalene	136	1.00		µg/L	1	7/7/2010 8:17:00 PM
o-Xylene	28.2	1.00		µg/L	1	7/7/2010 8:17:00 PM

Date: 12-Jul-10

CLIENT:

Environmental Compliance Northwest, Inc.

Lab Order:

1007028

Project:

Powell-Molalla / 05-106

Lab ID:

1007028-04

Client Sample ID: MW-4

Collection Date: 6/30/2010 2:00:00 PM

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: kmn
Toluene	5.27	1.00		μg/L	1	7/7/2010 8:17:00 PM
Surr: 1,2-Dichloroethane-d4	87.0	72.2-129		%REC	1	7/7/2010 8:17:00 PM
Surr: 4-Bromofluorobenzene	92.7	73.5-125		%REC	1	7/7/2010 8:17:00 PM
Surr: Dibromofluoromethane	90.2	58.8-148		%REC	1	7/7/2010 8:17:00 PM
Surr: Toluene-d8	90.0	79.8-137		%REC	1	7/7/2010 8:17:00 PM

Date: 12-Jul-10

CLIENT: Environmental Compliance Northwest, Inc.

Work Order: 1007028

Project: Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID: MB-26002	SampType: MBLK		e: 8260_W	Units: µg/L		Prep Date			Run ID: 597	_	3
Client ID: ZZZZZ	Batch ID: 26002	TestN	o: SW8260B		•	Analysis Date	e: 7/7/2010		SeqNo: 685	199	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	ND	1.00									
1,2-Dibromoethane	ND	1.00									
1,2-Dichloroethane	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
Benzene	ND	0.300									
Ethylbenzene	0.12	1.00									j
Isopropylbenzene	ND	1.00									
m,p-Xylene	ND	2.00									
Methyl tert-butyl ether	ND	1.00									
n-Propylbenzene	ND	1.00									
Naphthalene	ND	1.00									
o-Xylene	ND	1.00									
Toluene	ND	1.00									
Surr: 1,2-Dichloroethane-d4	97.5	0	100	0	97.5	72.2	129	0	0		
Surr: 4-Bromofluorobenzene	86.74	0	100	0	86.7	73.5	125	0	0		
Surr: Dibromofluoromethane	106.3	0	100	0	106	58.8	148	0	0		
Surr: Toluene-d8	91.88	0	100	0	91.9	79.8	137	0	0		
Sample ID: LCS-26002	SampType: LCS	TestCo	de: 8260_W	Units: µg/L		Prep Da	te: 7/7/201	0	Run ID: 59	75X_100707	В
Client ID: ZZZZZ	Batch ID: 26002	Test	No: SW8260B			Analysis Da	ite: 7/7/201	0	SeqNo: 68	5198	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	38.46	0.300	40	0	96.2	77.9	125	0	0		
Toluene	36.47	1.00	40	0	91.2	74.6	119	0	0		
Sample ID: A1007006-02BMS	SampType: MS	TestCo	de: 8260_W	Units: µg/L		Prep Da	ate: 7/7/201	0	Run ID: 59	75X_100707	В
Client ID: ZZZZZ	Batch ID: 26002	Test	No: SW8260E			Analysis Da	ate: 7/7/201	0	SeqNo: 68	5196	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 1 of 11

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: 8260_W

Sample ID: A1007006-02BMS Client ID: ZZZZZ	SampType: MS Batch ID: 26002	TestCode: 8260_W TestNo: SW8260			Prep Date Analysis Date	e: 7/7/2010 e: 7/7/2010		Run ID: 597 SeqNo: 685	5X_100707B 196	
Analyte	Result	PQL SPK valu	e SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	37.29	0.300 4	0 0	93.2	71.5	118	0	0		
Toluene	37.28	1.00 4	0 0	93.2	79.6	121	0	0		
Sample ID: A1007006-02BMSD	SampType: MSD	TestCode: 8260_V	Units: μg/L		Prep Date	e: 7/7/201	0	Run ID: 597	5X_100707E	3
Client ID: ZZZZZ	Batch ID: 26002	TestNo: SW826	В		Analysis Date	e: 7/7/201	0	SeqNo: 685	5197	
Analyte	Result	PQL SPK valu	e SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	36.61	0.300	0 0	91.5	71.5	118	37.29	1.84	20	
Toluene	34.61	1.00	0 0	86.5	79.6	121	37.28	7.43	20	A
Sample ID: CCV-26002	SampType: CCV	TestCode: 8260_V	V Units: μg/L		Prep Dat	e:		Run ID: 59	75X_100707E	3
Client ID: ZZZZZ	Batch ID: 26002	TestNo: SW826	0B		Analysis Dat	e: 7/7/201	0	SeqNo: 68	5193	
Analyte	Result	PQL SPK val	ue SPK Ref Val	%REC	Low imit	Highl imit	RPD Ref Val	%RPD	RPDLimit	Qual
	rtooun			70.120	LOWLITH	g				
Ethylbenzene	32.54	1.00	40 0	81.4	80	120	0	0		
Ethylbenzene Toluene			40 0 40 0					0		
	32.54		40 0	81.4	80	120 120	0	0	75X_100707	В
Toluene	32.54 40.04	1.00	0 V Units: μg/L	81.4	80 80	120 120	0	0	_	В
Toluene Sample ID: CCV-26002	32.54 40.04 SampType: CCV	1.00 TestCode: 8260_\text{V} TestNo: SW826	0 V Units: μg/L	81.4	80 80 Prep Dat	120 120 te:	0	0 Run ID: 59	5209	B Qual
Sample ID: CCV-26002 Client ID: ZZZZZ	32.54 40.04 SampType: CCV Batch ID: 26002	TestCode: 8260_N TestNo: SW826 PQL SPK val	40 0 V Units: μg/L	81.4 100	80 80 Prep Dat Analysis Dat	120 120 te:	0 0	0 Run ID: 59 SeqNo: 68	5209 RPDLimit	

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: BTEXRBC_W

Sample ID: MB-25992	SampType: MB			e: BTEXRBC	_W Units: µg/L			e: 7/7/2010 e: 7/7/2010		Run ID: GC- SeqNo: 6850	_	
Client ID: ZZZZZ	Batch ID: 259	992	restiv	0. SW8021B			-ilalysis Dat	.e. 11112011		Coquito.		
Analyte	Re	esult	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		ND	0.300									
Toluene		0.06	0.500									J
Ethylbenzene		ND	0.500									
Xylenes, Total		0.13	1.50									J
Surr: 4-Bromofluorobenzene	1	02.3	1.00	100	0	102	74.8	126	0	0		
Sample ID: LCS-25992	SampType: LC	s	TestCod	de: BTEXRBO	_W Units: μg/L		Prep Da	te: 7/7/201	0	Run ID: GC-	4_100707A	
Client ID: ZZZZZ	Batch ID: 25	992	Test	No: SW8021B			Analysis Da	te: 7/7/201	0	SeqNo: 685	053	
Analyte	R	esult	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	4	13.79	0.300	50	0	87.6	75.8	113	0	0		
Toluene	4	17.82	0.500	50	0	95.6	77	116	0	0		
Ethylbenzene	4	45.02	0.500	50	0	90	76.6	118	0	0		
Xylenes, Total		141	1.50	150	0	94	76.7	118	0	0		
Sample ID: 1007005-01BMS	SampType: M	s	TestCo	de: BTEXRBO	C_W Units: µg/L		Prep Da	ite: 7/7/201	10	Run ID: GC	-l_100707A	
Client ID: ZZZZZ	Batch ID: 25	5992	Test	No: SW8021B			Analysis Da	ate: 7/7/201	10	SeqNo: 685	6056	
Analyte	R	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene		20.26	0.300	25	0.08	80.7	67.8	118	0	0		
Toluene		21.25	0.500	25	0.19	84.2	74.7	117	0	0		
Ethylbenzene		21.4	0.500	25	0	85.6	74.5	115	0	0		
Xylenes, Total		66.69	1.50	75	0.11	88.8	76.8	120	0	0	140.3	
Sample ID: 1007005-01BMSD	SampType: M	ISD	TestCo	de: BTEXRB	C_W Units: µg/L		Prep Da	ate: 7/7/20	10	Run ID: GC	-I_100707A	
Client ID: ZZZZZ	Batch ID: 2	5992	Test	No: SW8021	3		Analysis Da	ate: 7/7/20	10	SeqNo: 68	5057	
Analyte	F	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene		22.5	0.300	25	0.08	89.7	67.8	118	20.26	10.5	20	
Toluene		23.85	0.500	25	0.19	94.6	74.7	117	21.25	11.5	20	
Ethylbenzene		24.27	0.500	25	0	97.1	74.5	115	21.4	12.6	20	

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: BTEXRBC_W

Sample ID: 1007005-01BMSD Client ID: ZZZZZ	SampType: MSD Batch ID: 25992					Prep Dat Analysis Dat	e: 7/7/201 e: 7/7/201		Run ID: GC-I_100707A SeqNo: 685057			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Xylenes, Total	78.39	1.50	75	0.11	104	76.8	120	66.69	16.1	20		
Sample ID: CCV	SampType: CCV	TestCod	de: BTEXRBC	_W Units: µg/L		Prep Dat	te:		Run ID: GC	-l_100707A		
Client ID: ZZZZZ	Batch ID: 25992	TestN	No: SW8021B			Analysis Dat	te: 7/7/201	0	SeqNo: 685052			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	43.79	0.300	50	0	87.6	85	115	0	0			
Toluene	47.82	0.500	50	0	95.6	85	115	0	0			
Ethylbenzene	45.02	0.500	50	0	90	85	115	0	0			
Xylenes, Total	141	1.50	150	0	94	85	115	0	0			

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHDXLL_W

ample ID: MB-25987	SampType: MBLK Batch ID: 25987	TestCode: NWTPHDXLL TestNo: NWTPH-Dx	Units: mg/L	A	Prep Date Analysis Date	: 7/6/2010 : 7/7/2010		Run ID: GC- SeqNo: 685		
nalyte	Result	PQL SPK value SF	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	ND	0.0800								
ube Oil	0.0524	0.200								J
Surr: o-Terphenyl	0.2209	0 0.2	0	110	50	150	0	0		
Sample ID: LCS-25987	SampType: LCS	TestCode: NWTPHDXLL	Units: mg/L		Prep Date	: 7/6/201	0	Run ID: GC	-M_100707B	
Client ID: ZZZZZ	Batch ID: 25987	TestNo: NWTPH-Dx		,	Analysis Date	: 7/7/201	0	SeqNo: 685	094	
Analyte	Result	PQL SPK value SI	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	0.9874	0.0800 1	0	98.7	60.7	121	0	0		
Lube Oil	0.9119	0.200 1	0	91.2	64	126	0	0		
Sample ID: LCSD-25987	SampType: LCSD	TestCode: NWTPHDXLL	Units: mg/L		Prep Date	e: 7/6/201	0	Run ID: GC	-M_100707E	3
Client ID: ZZZZZ	Batch ID: 25987	TestNo: NWTPH-Dx		Analysis Dat	e: 7/7/201	0	SeqNo: 685	5095		
Analyte	Result	PQL SPK value S	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	0.9906	0.0800 1	0	99.1	60.7	121	0.9874	0.330	20	
Lube Oil	0.9332	0.200 1	0	93.3	64	126	0.9119	2.32	20	
Sample ID: CCV	SampType: CCV	TestCode: NWTPHDXL	L Units: mg/L		Prep Dat	e:		Run ID: GC	-M_1007071	В
Client ID: ZZZZZ	Batch ID: 25987	TestNo: NWTPH-Dx			Analysis Dat	te: 7/7/201	10	SeqNo: 68	5092	
Analyte	Result	PQL SPK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel	6.385	0.0800 6.045	0	106	85	115	0	0		
Lube Oil	3.119	0.200 3.007	0	104	85	115	0	0		
Sample ID: CCV	SampType: CCV	TestCode: NWTPHDXL	L Units: mg/L		Prep Da	te:		Run ID: GO	C-M_100707	В
Client ID: ZZZZZ	Batch ID: 25987	TestNo: NWTPH-Dx			Analysis Da	te: 7/7/20	10	SeqNo: 68	5111	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel	8.873	0.0800 8.06	0	110	85	115	0	0		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 5 of 11

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHDXLL_W

Sample ID: CCV Client ID: ZZZZZ	SampType: CCV Batch ID: 25987	TestCode: NWTPHDXLL Units: mg/L TestNo: NWTPH-Dx			Prep Da Analysis Da		Run ID: GC-M_100707B SeqNo: 685111				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Lube Oil	3.981	0.200	4.01	0	99.3	85	115	0	0		

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHGX_W

Sample ID: MB-26006 Client ID: ZZZZZ	SampType: MBLK Batch ID: 26006	TestCode: NWTPHGX_ Units: μg/L TestNo: NWTPH-Gx	Prep Date: 7/8/2010 Analysis Date: 7/8/2010	Run ID: GC-I_100708A SeqNo: 685282
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline Surr: 4-Bromofluorobenzene	12.46 110.5	100 0 100 0	111 50 150 0	0
Sample ID: LCS-26006 Client ID: ZZZZZ	SampType: LCS Batch ID: 26006	TestCode: NWTPHGX_ Units: µg/L TestNo: NWTPH-Gx	Prep Date: 7/8/2010 Analysis Date: 7/8/2010	Run ID: GC-I_100708A SeqNo: 685281
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	2632	100 2500 0	105 74.4 128 0	0
Sample ID: 1007016-01CDUP Client ID: ZZZZZ	SampType: DUP Batch ID: 26006	TestCode: NWTPHGX_ Units: µg/L TestNo: NWTPH-Gx	Prep Date: 7/8/2010 Analysis Date: 7/8/2010	Run ID: GC-I_100708A SeqNo: 685284
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	14.59	100 0 0	0 0 0 14.01	0 20 J
Sample ID: CCV Client ID: ZZZZZ	SampType: CCV Batch ID: 26006	TestCode: NWTPHGX_ Units: µg/L TestNo: NWTPH-Gx	Prep Date: Analysis Date: 7/8/2010	Run ID: GC-I_100708A SeqNo: 685294
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	3027	100 3000 0	101 80 120 0	0
Sample ID: CCV Client ID: ZZZZZ	SampType: CCV Batch ID: 26006	TestCode: NWTPHGX_ Units: µg/L TestNo: NWTPH-Gx	Prep Date: Analysis Date: 7/9/2010	Run ID: GC-I_100708A SeqNo: 685458
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Gasoline	2723	100 2500 0	109 80 120 0	0

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Page 7 of 11

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: NWTPHGX_W

Sample ID: CCV Client ID: ZZZZZ	SampType: CCV Batch ID: 26006		de: NWTPHG	[1] [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2				0		Run ID: GC-I_100708A SeqNo: 685461		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Gasoline	3164	100	3000	0	105	80	120	0	0			

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: PAHLL_W

Sample ID: MB-25984	SampType: MBLK Batch ID: 25984		e: PAHLL_W o: 8270SIM	Units: µg/L		Prep Date Analysis Date	e: 7/6/2010		Run ID: 5975Q_100706A SeqNo: 684835				
Client ID: ZZZZZ	Batch ID: 25984									RPDLimit	Ougl		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLIMIL	Qual		
Acenaphthene	ND	0.0500											
Acenaphthylene	ND	0.0500											
Anthracene	ND	0.0500											
Benz(a)anthracene	0.02	0.0500									J		
Benzo(a)pyrene	0.03	0.0500									J		
Benzo(b)fluoranthene	0.04	0.0500									J		
Benzo(g,h,i)perylene	0.01	0.0500									J		
Benzo(k)fluoranthene	0.03	0.0500									J		
Chrysene	0.01	0.0500									J		
Dibenz(a,h)anthracene	0.01	0.0500									J		
Fluoranthene	0.01	0.0500									J		
Fluorene	0.01	0.0500									J		
Indeno(1,2,3-cd)pyrene	0.01	0.0500									J		
Naphthalene	ND	0.0500											
Phenanthrene	0.01	0.0500									J		
Pyrene	0.01	0.0500									J		
Surr: 2-Fluorobiphenyl	76.75	1.00	100	0	76.8	18.6	106	0	0				
Surr: Nitrobenzene-d5	78.6	1.00	100	0	78.6	17	130	0	0				
Surr: p-Terphenyl-d14	120	1.00	100	0	120	39.6	131	0	0				
Sample ID: LCS-25984	SampType: LCS	TestCo	de: PAHLL_W	/ Units: μg/L		Prep Da	ite: 7/6/201	0	Run ID: 59	75Q_100706	A		
Client ID: ZZZZZ	Batch ID: 25984	Test	No: 8270SIM			Analysis Da	ite: 7/6/201	0	SeqNo: 68	4833			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua		
Acenaphthene	3.42	0.0500	5	0	68.4	35.1	100	0	0				
Benzo(g,h,i)perylene	4.68	0.0500	5	0	93.6	20.8	120	0	0				
Chrysene	4.31	0.0500	5	0	86.2	39.1	119	0	0				
Naphthalene	3.32	0.0500	5	0	66.4	25.6	106	0	0				
Phenanthrene	3.72	0.0500	5	0	74.4	38.1	106	0	0				
Pyrene	4.32	0.0500	5	0	86.4	41.3	118	0	0				
. ,													

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

Page 9 of 11

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: PAHLL_W

Sample ID: LCSD-25984 Client ID: ZZZZZ	SampType: LCSD Batch ID: 25984		ie: PAHLL_W	Units: µg/L			e: 7/6/201 e: 7/6/201		Run ID: 597 SeqNo: 684		4	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC			RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	2.81	0.0500	5	0	56.2	35.1	100	3.42	19.6	20		
Benzo(g,h,i)perylene	3.3	0.0500	5	0	66	20.8	120	4.68	34.6	20	R	
Chrysene	3.32	0.0500	5	0	66.4	39.1	119	4.31	26.0	20	R	
Naphthalene	2.72	0.0500	5	0	54.4	25.6	106	3.32	19.9	20		
Phenanthrene	2.85	0.0500	5	0	57	38.1	106	3.72	26.5	20	R	
Pyrene	3.27	0.0500	5	0	65.4	41.3	118	4.32	27.7	20	R	
Sample ID: CCV-25984	SampType: CCV	TestCo	de: PAHLL_W	Units: µg/L		Prep Da	Run ID: 5975Q_100706A					
Client ID: ZZZZZ	Batch ID: 25984	Test	No: 8270SIM		Analysis Date: 7/6/2010				SeqNo: 684832			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Acenaphthene	1.02	0.0500	1	0	102	70	130	0	0			
Acenaphthylene	1.01	0.0500	1	0	101	70	130	0	0			
Anthracene	0.91	0.0500	. 1	0	91	70	130	0	0			
Benz(a)anthracene	0.91	0.0500	1	0	91	70	130	0	0			
Benzo(a)pyrene	0.94	0.0500	1	0	94	70	130	0	0			
Benzo(b)fluoranthene	0.92	0.0500	1	0	92	70	130	0	0			
Benzo(g,h,i)perylene	1.11	0.0500	1	0	111	70	130	0	0			
Benzo(k)fluoranthene	1.18	0.0500	1	0	118	70	130	0	0			
Chrysene	1.04	0.0500	1	0	104	70	130	0	0			
Dibenz(a,h)anthracene	1.02	0.0500	1	0	102	70	130	0	0			
Fluoranthene	0.89	0.0500	1	0	89	70	130	0	0			
Fluorene	0.97	0.0500	1	0	97	70	130	0	0			
Indeno(1,2,3-cd)pyrene	1.05	0.0500	1	0	105	70	130	0	0			
Naphthalene	1	0.0500	1	0	100	70	130	0	0			
Phenanthrene	0.99	0.0500	1	0	99	70	130	0	0			
Pyrene	1.01	0.0500	1	0	101	70	130	0	0			

R - RPD outside accepted recovery limits

Environmental Compliance Northwest, Inc.

Work Order:

1007028

Project:

Powell-Molalla / 05-106

ANALYTICAL QC SUMMARY REPORT

TestCode: PAHLL_W

Sample ID: CCV-25984	SampType: CCV	TestCoo	de: PAHLL_W	Units: µg/L		Prep Da	te:		Run ID: 5975Q_100706A				
Client ID: ZZZZZ	Batch ID: 25984	TestN	TestNo: 8270SIM			Analysis Da	te: 7/7/201	SeqNo: 684	1946				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Acenaphthene	0.91	0.0500	1	0	91	70	130	0	0	S= 12 1			
Acenaphthylene	0.94	0.0500	1	0	94	70	130	0	0				
Anthracene	0.9	0.0500	1	0	90	70	130	0	0				
Benz(a)anthracene	0.86	0.0500	1	0	86	70	130	0	0				
Benzo(a)pyrene	0.86	0.0500	1	0	86	70	130	0	0				
Benzo(b)fluoranthene	0.91	0.0500	1	0	91	70	130	0	0				
Benzo(g,h,i)perylene	0.97	0.0500	1	0	97	70	130	0	0				
Benzo(k)fluoranthene	0.95	0.0500	1	0	95	70	130	0	0				
Chrysene	0.92	0.0500	1	0	92	70	130	0	0				
Dibenz(a,h)anthracene	0.89	0.0500	1	0	89	70	130	0	0				
Fluoranthene	0.88	0.0500	1	0	88	70	130	0	0				
Fluorene	0.91	0.0500	1	0	91	70	130	0	0				
Indeno(1,2,3-cd)pyrene	0.9	0.0500	1	0	90	70	130	0	0				
Naphthalene	0.92	0.0500	1	0	92	70	130	0	0				
Phenanthrene	0.89	0.0500	1	0	89	70	130	0	0				
Pyrene	1.01	0.0500	1	0	101	70	130	0	0				

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- * The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

CHAIN OF CUSTODY RECORD

Contact Person/Project Manager Tolan American

	1/
M	1/2
1/1	M
/ '	

Specialty Analytical
11711 SE Capps Road

11711 SE Capps Road Clackamas, OR 97015 Phone: 503-607-1331 Fax: 503-607-1336 Collected By: Signature Printed				A F F	oddres Phone Projec	e	3 † 2 O í Locati	3 97 on O	x 2 02 60 06 R ×		Proje	Fax 2/3 Cect NameOwell	- Mola	lla
Signature							Analys					Footab		
Printed				Tr.	П		Analys	Ses	-	T		Lab Job No.	oratory Use	
Turn Around Time _D-Normal 5-7 Business Days D Rush Specify Rush Analyses Must Be Scheduled With The Lab In Advance		No. of Containers	BTEX/TPH.6X	120m Vels	114-62	TOH . DX	DAHS					Shipped Via Air Bill No. Temperature On Reco	eipt 7	/N
Date Time Sample I.D.	Matrix			7	7		1					Comment	S	Lab I.D.
6/30/10 1200 mW-1	W	5	X		_	X			Cal S	_			1	
1200 mw-2	1	5	X	_		X		-		-				
	$\rightarrow \downarrow \!$	5		X	A		X	-	-	+	_			
1400 mw-4	<u> </u>	د		X	^	X	>	-		-				
		_												
													1 1 1	
Relinquished By: Company: Company:	Received Company								Relinqui Compar		By:		Date	Time
Unless Reclaimed, Samples Will Be Disposed of 60 Days After Receipt. Samples held beyond 60 days subject to storage fee(s) Copies: White-Original Yellow-Project File Pink-C	ustomer Co								Receive	ed For I	Lab B	Broper	Date 11/2/10	Time 1420

Page / of /