

TECHNICAL MEMORANDUM

TO: Rob Hood, Natural Specialist 4

Oregon Department of Environmental Quality

FROM: Sam Jackson, Senior Environmental Engineer

Chuck Esler, Principal Environmental Scientist

DATE: May 3, 2024

RE: PRELIMINARY SITE ASSESSMENT

2997 SOUTH MOODY AVENUE

PORTLAND, OREGON FARALLON PN: 2243-005 DEO ECSI FILE NO. 6295

On behalf of Tri-County Metropolitan Transportation District of Oregon's (TriMet), Farallon Consulting, L.L.C. (Farallon) has prepared this Preliminary Site Assessment (PSA) to document baseline environmental conditions at the former Moody Light Rail and Storage Property at 2997 South Moody Avenue in Portland, Oregon (herein referred to as the Subject Property). The area of focus for the PSA includes the Subject Property and adjacent properties within 0.1 mile of the Subject Property (herein referred to as the Project Area). The Project Area and Subject Property boundaries are shown on Figures 1 and 2. On September 9, 2022, an email scope of work (SOW) was provided to the Oregon Department of Environmental Quality (DEQ), including: (1) compiling existing data; (2) performing a screening-level evaluation of the property; and (3) documenting findings and recommendations from those efforts in a technical memo. This Technical Memorandum (TM) was performed in accordance with that SOW.

The purpose of the PSA was to identify whether environmental features of concern (EFOCs), which could be indicative of contaminated media, are present within the Subject Property, and if present, whether they pose an unacceptable risk to human health and ecological receptors under current and likely future site use scenarios. The PSA consisted of a desktop records review (Task 01) and a site reconnaissance (Task 02), which are presented below.

Task 01 Desk Top Records Review

Farallon performed a historical fire insurance map review, historical aerial photograph review, and desktop records review of reasonably ascertainable sources from federal and state regulatory

databases for information pertaining to the Subject Property and Project Area. The records search conducted by Farallon provides a cursory review of EFOCs to evaluate hazardous chemicals likely associated with the historical or current activities conducted within the Project Area. In this context, the term "hazardous substance" includes those chemicals listed as hazardous substances in the Code of Federal Regulations (CFR 171.8) and the Oregon Administrative Rules (OAR 837-090-1000), including petroleum products.

Task 02 Site Reconnaissance

This Section includes a description and land use of the Subject Property and surrounding properties, the March 27, 2024 site visit, and a summary of observations.

BACKGROUND

The Subject Property consists of Multnomah County Parcel No. 1S1E10BA-00200, a 2.33-acre, narrow, rectangular-shaped strip of land located within the South Waterfront Neighborhood approximately 1,000 feet west of the Willamette River and 1 mile south of downtown Portland, Oregon. Adjacent structures include Marquam Bridge to the north, South Moody Avenue to the east, Ross Island Bridge to the south, and Interstate 5 and associated right-of-way (ROW) to the west. The land is developed with transportation rail lines on the northern and central portions and vegetated areas, a gravel access road, a stormwater control facility, and fenced storage areas on the southern portion. Adjoining properties include South Sheridan Street to the north, South Moody Avenue to the east, commercial retail property to the south, and the Interstate 5 and the associated ROW to the west. Historically, rail lines were present on the Subject Property and adjacent properties from at least the 1880s to the present.

A 2017 Phase I Environmental Site Assessment Report¹ for the Subject Property identified a recognized environmental condition for potential soil and groundwater impacts in the Project Area based on historical use of the Subject Property and adjacent properties. To further evaluate the recognized environmental condition, additional soil and groundwater sampling was performed and documented in the 2997 SW Moody Avenue, Portland, Oregon: Phase II Environmental Site Assessment dated March 26, 2018² and the Groundwater Assessment at 2997 SW Moody Avenue, Portland, Oregon dated September 21, 2018.³ Soil and groundwater samples collected indicated the presence of metals and petroleum impacts above applicable DEQ risk-based criteria (RBCs). Based upon the presence of those constituents in soil and groundwater above applicable RBCs, DEQ listed the Subject Property in the Environmental Cleanup Site Information (ECSI) File No.

¹ Maul Foster Alongi (MFA). 2017. *Phase I Environmental Site Assessment, 2997 SW Moody Avenue, Portland, Oregon.* December 28 (2017 Phase I Report).

² MFA. 2018. *Phase II Environmental Site Assessment, 2997 SW Moody Avenue, Portland, Oregon.* March 26 (2018 Phase II Report).

³ MFA. 2018. *Groundwater Assessment at 2997 SW Moody Avenue, Portland, Oregon.* September 21 (2018 Groundwater Report).

6295. Additional detail regarding the 2018 Phase II Report and 2018 Groundwater Report are provided in the *Ecological Risk Evaluation* Section of this Technical Memorandum.

DESKTOP RECORDS REVIEW

Farallon reviewed the following federal and state environmental regulatory databases to identify listed facilities in the Project Area that were considered to have a potential to adversely impact the Subject Property. The focus of the review was on hazardous waste generators, environmental cleanup sites, and storage tank sites that may have impacted soil and/or groundwater on properties in the Project Area, along with facilities with National Pollutant Discharge Elimination System permits. Findings are reported under each section below.

According to previous environmental studies conducted in the Project Area, discussed below, groundwater was encountered at a depth of approximately 21 feet below ground surface.

U.S. ENVIRONMENTAL PROTECTION AGENCY ENVIROFACTS

Envirofacts provides a single point of access to multiple U.S. Environmental Protection Agency (EPA) databases to provide information about environmental activities that may affect air, water, and land throughout the United States. Farallon searched the EPA Envirofacts Warehouse⁴ for database listings in the Project Area. No National Pollutant Discharge Elimination System Permit (NPDES) Compliance Site listings were identified in the Project Area as of April 24, 2024.. Four hazardous waste handlers were identified as listed in the summary below.

Facility Name	Facility Address	NAICS Code	Haz. Waste Handler ID	Location/Distance from Project Area	Operational Status
Zidell Waterfront Property/ Zidell Resources, Inc. (Zidell Property)	3121 SW Moody Avenue Portland, OR	531120	ORQ000029045	Southeast-adjacent across South Moody Avenue	Historical
TriMet Willamette River Transit Bridge	3121B SW Moody Avenue Portland, OR	56291	ORQ000029289	Southeast-adjacent across South Moody Avenue	Historical
Oregon Health and Science University/ Portland State University (OHSU/PSU Property)	2730 and 2750 SW Moody Avenue Portland, OR	62211, 56291, 61131	ORD092289552, ORQ000036206, ORQ000033352	East-adjacent across South Moody Avenue	Current
Westwood Swinerton Construction (Westwood Swinerton Property)	3030 SW Moody Avenue Portland, OR	23622	ORQ000008813	East-adjacent across South Moody Avenue	Historical

⁴ EPA Envirofacts Warehouse, https://enviro.epa.gov/?name=Envirofacts%20Data%20Warehouse, accessed April 24, 2024.

www.farallonconsulting.com

OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY DATABASES

Facility Profiler-Lite Database

The DEQ Facility Profiler-Lite database⁵ contains information on current and past operations and activities, including environmental cleanup sites, hazardous waste sites, leaking underground storage tanks (USTs) and heating oil tanks, solid waste facilities, and water quality underground injection control sites. Farallon searched the DEQ Facility Profiler-Lite database for listings in the Project Area. Five facility listings were identified in the Project Area, as listed in the summary below, as of April 24, 2024.

Facility Name and Address	Database(s)	Location and Distance from Project Area				
South Waterfront – ODOT Property SW Moody and Interstate 5 Portland, OR	Environmental Cleanup Site Information	Within the Project Area				
OHSU/PSU Property 2730 and 2750 SW Moody Avenue Portland, OR	Hazardous Waste	East-adjacent across South Moody Avenue				
	Environmental Cleanup Site Information					
Westwood Swinerton Property 3030 SW Moody Avenue, Portland, OR	Hazardous Waste	East-adjacent across South Moody Avenue				
	Leaking Underground Storage Tanks	•				
	Environmental Cleanup Site Information					
	Hazardous Waste					
Zidell Property 3121 SW Moody Avenue, Portland, OR	Water Quality Site Information System	Southeast-adjacent across South Moody Avenue				
	Water Quality Underground Injection Control					

Environmental Cleanup Site Information Database

The ECSI Database⁶ lists sites in Oregon with known or potential contamination from hazardous substances. It includes facilities where investigation or cleanup has been initiated and facilities where a release of hazardous substances is suspected. Four ECSI listings were identified in the Project Area, as listed in the summary below, as of April 24, 2024.

https://www.deq.state.or.us/lq/ECSI/ecsiquery.asp?listtype=lis&listtitle=Environmental+Cleanup+Site%20Information+Database accessed April 24, 2024.

⁵ DEQ Facility Profiler-Lite, https://hdcgcx1.deq.state.or.us/Html5viewer291/?viewer=FacilityProfilerLite, accessed April 24, 2024.

⁶ ESCI Database,

ECSI No.	Facility and Address	Contaminants Of Interests	Media Impacted	Cleanup Status	Location and Distance from Project Area
6295	TriMet Light Rail and Storage Property, 2997 SW Moody Avenue Portland, OR	Total petroleum hydrocarbons (TPH), polynuclear aromatic hydrocarbons (PAHs), herbicides, creosote, pentachlorophenol, chromated copper arsenate, heavy metals	Soil, groundwater	Contamination Suspected	Within Project Area
4818	South Waterfront – ODOT Property, SW Moody and Interstate 5 Portland, OR	TPH, PAHs, heavy metals	Soil, groundwater	Project Completed	Within Project Area
1923	Westwood Swinerton Property, 3030 SW Moody Avenue Portland, OR	TPH, PAHs, polychlorinated biphenyls (PCBs)	Soil	No Further Action	East-adjacent across South Moody Avenue
689	Zidell Property 3121 SW Moody Avenue Portland, OR	TPH, PAHs, PCBs, heavy metals, tributyltin	Soil, groundwater, sediment	Operation and Maintenance	Southeast- adjacent across South Moody Avenue

Leaking Underground Storage Tank Cleanup Site Database

The DEQ Leaking Underground Storage Tanks Cleanup Site Database (LUST)⁷ identifies facilities that are currently or have been under investigation for leaking USTs. This database contains records for regulated and heating oil USTs. One record of a LUST site was identified in the Project Area as of April 24, 2024. Summary information is provided in the DEQ LUST site summary below. The summary report from the DEQ website is provided in Attachment C.

LUST ID No.	Facility ID No.	Facility and Address	Contaminants	Media Impacted	Cleanup Status	Location and Distance from Project Area
26-93- 0128	7351	Westwood Swinerton Property, 3030 SW Moody Avenue Portland, OR	Diesel	Soil, groundwater	No Further Action	East-adjacent across South Moody Avenue

Underground Storage Tank Facility List

The DEQ Underground Storage Tank Facility List shows facilities with registered regulated (non-heating oil) USTs in operation and/or decommissioned in Oregon. Four records were identified in

⁷ DEQ Leaking Underground Storage Tanks Cleanup Site Database, https://www.deq.state.or.us/lq/tanks/lust/LustPublicLookup.asp, accessed April 24, 2024.

the Project Area as of April 24, 2024. Information is provided in the DEQ Regulated Underground Storage Tanks summary below.

Facility ID No.	Facility Name	Address	Active Tank Quantity	Decommissioned Tank Quantity	Location and Distance from Project Area	
6321	Schnitzer Investment Corp (OHSU/PSU Property)	2750 SW Moody Avenue Portland, OR	0	2	East-adjacent across South Moody Avenue	
7351	Westwood Corp (Westood Swinerton Property)	2020 GW M 1 A	0	4	East-adjacent	
10435	Westwood Holding Corp (Westood Swinerton Property)	3030 SW Moody Avenue Portland, OR	0	1	across South Moody Avenue	
8038	Zidell Explorations, Inc. (Zidell Property	3121 SW Moody Avenue Portland, OR	0	3	Southeast- adjacent across South Moody Avenue	

OREGON STATE FIRE MARSHAL COMMUNITY RIGHT-TO-KNOW HAZARDOUS SUBSTANCE INCIDENT SEARCH

The Oregon State Fire Marshal Community Right-to-Know Hazardous Substance Incident Search⁸ identifies sites with a spill or where hazardous materials were encountered that required a hazardous materials response team. No records were identified in the Project Area as of April 24, 2024.

CITY OF PORTLAND UNDERGROUND STORAGE TANK PERMITS

Information specific to individual Multnomah County map taxlots can be found at www.portlandmaps.com. Farallon reviewed historical UST permits found on www.portlandmaps.com associated with the Multnomah County map taxlots in the Project Area. There were no historical UST permit listings identified in the Project Area as of April 24, 2024.

SANBORN FIRE INSURANCE MAPS

Farallon requested Sanborn Fire Insurance Maps (Sanborn maps) through Environmental Data Resources (EDR). Maps were available for 1889, 1901, 1909, 1950, and 1969 for the southern portion of the Project Area. Additionally, Farallon reviewed Multnomah County Public Library's Digital Sanborn Collection for the northern portion of the Project Area.

www.farallonconsulting.com

⁸ Oregon State Fire Marshal Community Right-to-Know Hazardous Substance Incident Search, https://www.oregon.gov/osp/programs/sfm/Pages/Community-Right-To-Know.aspx, accessed April 24, 2024.

The Multnomah County map taxlots between South Grover Street and South Baker Street from 1889 to 1909 consisted mainly of single-family residences with sheds and vacant land. Two single-family residences were apparent on the southernmost portion of the Project Area in 1909, and by 1969 the single-family residences were no longer apparent. The Multnomah County map taxlots within the Project Area consisted mainly of commercial and industrial properties in 1950 and 1960, with a few single-family residences. The Sanborn maps provided by the EDR Report are provided in Attachment D.

HISTORICAL AERIAL PHOTOGRAPHS

Farallon requested historical aerial photographs (aerial photos) through EDR. Aerial photos were available for 1948, 1951, 1955, 1960, 1963, 1970, 1975, 1981, 1990, 1994, 2000, 2005, 2009, 2012, and 2016. Additional aerial photos obtained from Google Earth were available for 1952, 1970, 1985, 1990, and 2000 through 2021. The aerial photos provided by EDR are provided in Attachment E.

SITE RECONNAISSANCE

On March 27, 2024, Farallon conducted a site reconnaissance of accessible portions of the Subject Property to observe and document general site characteristics and any physical evidence of EFOCs. The site reconnaissance consisted of a walk around the perimeter of the Subject Property and multiple transects across the interior areas. Representative site reconnaissance photographs are provided in Attachment A.

Limiting Conditions

During the site reconnaissance, the presence of homeless encampments and blackberry vines prevented Farallon from accessing and observing the entire ground surface of the Subject Property. Based on information obtained from the Desk Top Review, these limiting conditions are not expected to affect the conclusions of the PSA.

EXTERIOR OBSERVATIONS

Farallon's observations are shown in the table below and details regarding those observations follow.

EXTERIOR OBSERVATIONS	YES	NO
Odor		X
Staining and/or Corrosion		X
Storage Tank(s), Vent Pipe(s), and/or Fuel Port(s)		X
Drum(s) and/or Other Container(s)		X
Pool(s) of Liquid		X

EXTERIOR OBSERVATIONS	YES	NO
Hazardous Material(s) and/or Petroleum Product(s)		X
Hazardous Waste		X
Pit(s), Pond(s), and/or Lagoon(s)		X
Stressed Vegetation		X
Solid (Nonhazardous) Waste—Evidence of Dumping	X	
Wastewater		X
Domestic Water		X
Water Well(s)		X
Septic/Sewer System		X
Stormwater	X	
Transformer(s)		X
Significant Amount of Fill Material		X

Exterior Observation Comments

Solid (Nonhazardous) Waste—Evidence of Dumping

Farallon observed limited evidence of garbage and homeless encampments in the central and western portions of the Subject Property. A limited number of creosote-treated wood timbers were observed near the storage area on the southeastern area of the Subject Property.

Stormwater

Stormwater on the Subject Property either infiltrates directly into the permeable ground surface or is directed into a stormwater swale with an impermeable liner. Water flows through the swale for retention and evaporation, with overflow leaving the outlet on the south end of the swale, which ultimately discharges to the municipal stormwater system.

Structures

An active signals/communications building for the Tilikum bridge train signals network, which consists of a steel-sided shed (~10 feet wide by ~25 feet long), is located in the central portion of the Subject Property. No buildings are present on the Subject Property.

ECOLOGICAL RISK EVALUATION

In accordance with DEQ's Site Ecology Scoping Report Outline,⁹ Farallon prepared a Site Ecology Scoping Report for the Subject Property (Attachment B). The findings of the Ecology Scoping Report indicate there are no potentially complete exposure pathways to ecological receptors on the Subject Property; and that a risk assessment is not warranted on the Subject Property and no further action is necessary.

OTHER RESOURCES PROVIDED BY TRIMET

Farallon was provided with the 2018 Phase II Report and the 2018 Groundwater Report.

The 2018 Phase II Report was prepared in response to the findings of the 2017 Phase I Report, which Farallon was not provided. According to the 2018 Phase II Report, the 2017 Phase I Report identified a recognized environmental condition for potential soil and groundwater impacts in the Project Area based the historical use of the Project Area and the variability of the groundwater flow direction. Specifically, wooden railroad ties were observed in the Project Area. Historically, railroad ties were treated with creosote, pentachlorophenol, chromated copper arsenate, and/or associated chemicals of concern. Railway lines are known to be sprayed with oil solutions containing petroleum projects, and herbicides. Cinder, slag, and other readily available aggregate or industrial by-products are sometimes used to build the base for the rail lines and can be a potential source of metals in soil and groundwater.

The 2018 Phase II investigation included a collection of five soil samples and one groundwater sample to determine whether contamination was present in the southern portion of the Project Area (see Figure 2 for sample locations). The two surface soil samples were collected at 3 feet below ground surface (bgs), and the three deeper soil samples were collected at 7.5, 25, and 27.5 feet bgs. The groundwater sample was collected from boring B-01 at 21 feet bgs. Samples were analyzed for metals, organochlorine pesticides, PCBs, organophosphorus pesticides, chlorinated herbicides, volatile organic compounds, semivolatile organic compounds, polyaromatic hydrocarbons, TPH as diesel-range organics, TPH as oil-range organics, and TPH.

Analytical results are presented in Tables 1 and 2. Soil and groundwater results were screened against the DEQ risk-based concentrations (RBCs) for the following pathways: direct contact for urban residential, volatilization to outdoor air and vapor intrusion into buildings for urban residential and occupational workers, leaching to groundwater. All constituents, with the exception of the metals antimony and arsenic, were present at concentrations less than screening levels in four of the five soil samples. In the fifth sample collected at 7.5 feet bgs, antimony, copper, lead, and zinc were detected at concentrations slightly exceeding the DEQ clean fill criteria and the Oregon background metals concentrations for the Portland Basin; and select PAHs: benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and naphthalene were detected at concentrations exceeding the DEQ clean fill criteria. Metals, volatile organic

⁹ Oregon Department of Environmental Quality (DEQ). 2020. Appendices for: Conducting Ecological Risk Assessments.

compounds, semivolatile organic compounds, and PAHs were detected at concentrations less than all DEQ RBCs in all samples.

One reconnaissance groundwater sample was collected from location B-01. Pesticides, herbicides, and PCBs were not detected in the groundwater sample. Arsenic and lead were detected at concentrations exceeding the RBCs for ingestion for urban residential and occupational workers. Total petroleum hydrocarbons as diesel-range organics were detected at concentrations exceeding the RBCs for ingestion and inhalation for urban residential receptors.

Based on the results of the 2018 Phase II Report, MFA recommended that a cap be placed for future development to prevent direct contact with the observed soil impacts observed at 7.5 feet bgs. If future construction was to be performed in the Project Area, MFA recommended that any excavated soil should be properly characterized and appropriately managed in accordance with local, state, and federal regulations.

The 2018 Groundwater Report prepared by MFA summarized previous environmental investigations within the Project Area. Groundwater impacts in the Project Area were detected at concentrations exceeding the DEQ RBC for urban residential ingestion and were less than the DEQ RBCs for all other receptors. However, there is no evidence that off-site impacted groundwater has migrated into the Project Area. The 2018 Groundwater Report concluded that groundwater conditions in the Project Area are understood sufficiently, and additional groundwater data were not warranted.

SUMMARY OF ENVIRONMENTAL FEATURES OF CONCERN

The following facilities were identified to be EFOCs in the Project Area. The location of each site is shown on Figure 2.

	Environmental Feature(s) of	Regulatory Status
Facility Name and Address	Concern	
TriMet Light Rail and Storage Property, 2997 SW Moody Avenue, Portland, Oregon	Historical and current uses that indicate the potential for a current or historical release(s) of hazardous substances to the subsurface.	Remedial Action for this site is complete. Requires maintenance of engineered cap and containment system beneath Porter Avenue light rail station west of Tilikum Crossing.
South Waterfront – ODOT Property SW Moody and Interstate 5, Portland, Oregon	Historical uses indicate the known release(s) of hazardous substances to the subsurface, including TPH, PAHs, and heavy metals.	Open ECSI File No. 6295.

The following adjacent properties have the potential to be EFOCs. The location of each site is shown on Figure 2.

Facility Name and Address	Environmental Feature(s) of Concern	Regulatory Status
Westwood Swinerton Property 3030 SW Moody Avenue, Portland, OR	 Five decommissioned USTs Leaking UST (closed) Hazardous waste handler Historical uses indicate the potential and known release(s) of hazardous substances to the subsurface, including TPH, PAHs, and PCBs. 	Obtained a limited No Further Action determination from DEQ's UST Section in August 1996, for the former UST area on the southeastern side of the Subject Property.
Zidell Property 3121 SW Moody Avenue, Portland, OR	 Three decommissioned USTs Hazardous waste handler Underground injection control facility Historical uses that indicated the potential for a current or historical release(s) of hazardous substances to the subsurface. 	A long-term environmental management plan was submitted to DEQ in 2018. The plan outlines ongoing monitoring requirements for both the upland and in-water caps to and beyond 2031.
Schnitzer Investment Corp. (OHSU/PSU Property) 2750 SW Moody Avenue, Portland, OR	Two decommissioned USTs	

CURRENT AND LIKELY FUTURE LAND USE

The Property Area is developed with transportation rail lines on the northern and central portions; and vegetated areas, a gravel access road, a stormwater facility (drainage ditch and inlet with an impermeable liner), and a fenced storage area on the southern portion. An active signals/communications building for the Tilikum bridge train signals network, which consists of a steel-sided shed (~10 feet wide by ~25 feet long), is located in the central portion of the Subject Property. No inhabited buildings are present on the property. Drinking water is supplied by the City of Portland and no water supply wells are on the Subject Property.

There is no planned change to the land and water use on the property.

ECOLOGICAL RISK EVALUATION

As documented herein and in the ERA Report provided in Appendix E, there are no potentially complete exposure pathways to ecological receptors on the Subject Property. A risk assessment is not warranted on this Subject Property and no further action is necessary.

CONCLUSIONS AND RECOMMENDATIONS

Although residual soil and groundwater contamination exceeding DEQ RBCs has been identified in the Project Area, there are no complete exposure pathways based upon current and anticipated future use of the property. In the unlikely scenario that excavation work would occur in areas where impacted soil has been identified, this potential risk can be effectively managed by a contaminated media management plan (CMMP). Consistent with DEQ guidance, the CMMP plan would consist of:

- A description of the type, magnitude and extent of contaminants detected in soil samples;
- Procedures for the management of known contaminated soil that may be encountered during construction activities;
- Procedures for the management of Unanticipated and Unknown Soil Contamination, should any be encountered during construction activities;
- Measures to control any contaminated media present at the Site during construction activities; and
- Measures to control off-site migration of contaminated soil via erosion and/or track-off.

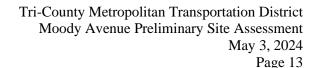
In addition, the plan would outline a soil sampling and analysis program to characterize excavated soil to determine appropriate disposal/reuse options and for worker health and safety purposes.

Based upon the absence of completed exposure pathways associated with current and future planned property use, no unacceptable risks to human or ecological receptors are present in the Project Area. Consequently, the Subject Property regulatory closure of ECSI File No. 6295 is requested.

Attachments: Figure 1, Project Area Map

Figure 2, Project Area

Table 1, Summary of Soil Analytical Results


Table 2, *Summary of Groundwater Analytical Results* Attachment A, Site Reconnaissance Photographs

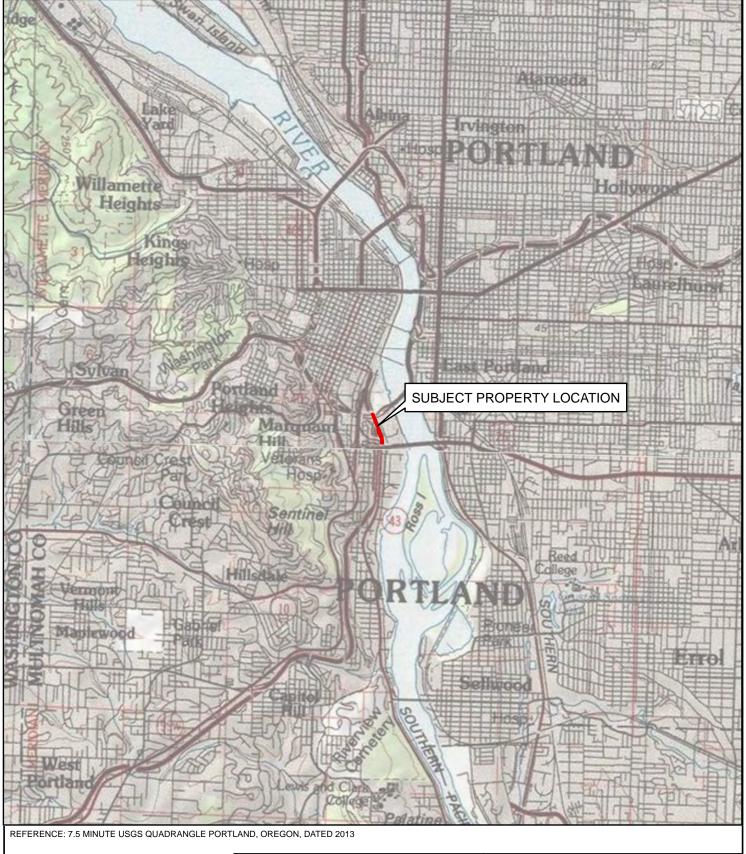
Attachment B, Ecological Risk Assessment Scoping Report

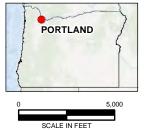
Attachment C, LUST Summary Reports

Attachment D, Sanborn Maps Attachment E, Aerial Photographs

SJ/CE:cm

GENERAL LIMITATIONS


The conclusions contained in this Technical Memorandum are based on professional opinions with regard to the subject matter and are subject to the following inherent limitations:


• Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.

This report/assessment has been prepared in accordance with the *Professional Services Contract No. RC190192KN-D2* dated November 5, 2021 between Farallon and TriMet.

FIGURES

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

Drawn By:aguse

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Baker City

California Oakland | Irvine


Your Challenges. Our Priority. | farallonconsulting.com

FARALLON PN: 2243-005

SUBJECT PROPERTY LOCATION 2997 SOUTH MOODY AVENUE PORTLAND, OREGON

FIGURE 1

Date: 7/5/2023 Disc Reference \\192.168.0.252\gis\Projects\2243 TriMet\005 2997 South Moody Ave\Mapfiles\003\Figure-01_SubjectPropertyLocation.mxc

TABLES

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

													21	7.00		
]	Location	В	01	B02	В()3
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collect	ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (feet bgs)	7.0	27.5	3.0	3.0	25.0
		Leach	: Soil, ning to dwater ¹			gestion, Do	_	Volatili	: Soil, zation to or Air ¹	Va Intrus	: Soil, por ion into ding ¹					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
Metals ² (mg/kg)																
Antimony	0.56	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.99 J	1.5 J	2.35 J	1.62 J	1.76 J
Arsenic	8.8	NV	NV	1	1.9	15	420	NV	NV	NV	NV	6.82	2.52	4.2	4.36	3.03
Beryllium	2	NV	NV	310	2,300	700	19,000	NV	NV	NV	NV	0.871	0.497	0.697	0.696	0.571
Cadmium	0.63	NV	NV	160	1,100	350	9,700	NV	NV	NV	NV	0.269 J	0.105 J	0.189 J	0.119 J	0.127 J
Chromium	76	NV	NV	230,000 ³	NV	530,000 ³	NV	NV	NV	NV	NV	29.3	22.8	25.6	20	21.3
Copper	34	NV	NV	6,200	47,000	14,000	390,000	NV	NV	NV	NV	41.1	33.4	28.4	20.9	23.1
Cyanide	NV	NV	NV	94	700	210	5,900	NV	NV	NV	NV	0.0742 J	< 0.0457	< 0.0499	< 0.0507	< 0.0487
Lead	79	30	30	400	800	800	800	NV	NV	NV	NV	79.2	6.72	9.41	7.03	4.95
Mercury	0.23	NV	NV	47	350	110	2,900	NV	NV	NV	NV	0.161	< 0.0334	< 0.0283	< 0.0357	< 0.025 J
Nickel	47	NV	NV	3,100	22,000	7,000	190,000	NV	NV	NV	NV	26.2	20.9	30.6	31	23.2
Selenium	0.71	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.987	< 0.866	< 0.948	< 0.962	< 0.924
Silver	0.82	NV	NV	780	5,800	1,800	49,000	NV	NV	NV	NV	< 0.374	< 0.328	< 0.359	< 0.364	< 0.35
Thallium	5.2	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.867	< 0.761	< 0.832	< 0.845	< 0.811
Zinc	180	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	131	64	116	64.1	58.2
Organochlorine Pesticides ⁴ (mg/kg)			•			•				•						
4,4'-DDD	NV	3.7	2.6	6.6	12	94	2,600	NV	NV	NV	NV	0.00679 J	< 0.00183	< 0.002	< 0.00203	< 0.00195
4,4'-DDE	NV	7.4	7.5	4.5	8.2	66	1,800	NV	NV	NV	NV	0.00303 J	< 0.0018	< 0.00197	< 0.002	< 0.00192
4,4'-DDT	NV	46	70	4.6	8.5	66	1,800	NV	NV	NV	NV	< 0.00267	< 0.00234	< 0.00256	< 0.0026	< 0.0025
Aldrin	NV	0.1	0.1	0.08	0.13	1.1	30	NV	NV	NV	NV	< 0.0018	< 0.00158	< 0.00173	< 0.00175	< 0.00169
alpha-BHC	NV	0.024	0.023	0.21	0.36	3	83	NV	NV	NV	NV	< 0.00181	< 0.00159	< 0.00174	< 0.00177	< 0.0017
beta-BHC	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00214	< 0.00187	< 0.00205	< 0.00208	< 0.002
Chlordane	NV	2.1	2.1	4.2	7.4	61	1,700	NV	NV	NV	NV	< 0.052	< 0.0457	< 0.0499	< 0.0507	< 0.0487
delta-BHC	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00191	< 0.00167	< 0.00183	< 0.00186	< 0.00179
Dieldrin	NV	0.037	0.03	0.085	0.14	1.2	33	NV	NV	NV	NV	< 0.00203	< 0.00178	< 0.00195	< 0.00198	< 0.0019
Endosulfan I	NV	NV	NV	760	4,900	1,600	45,000	NV	NV	NV	NV	< 0.00199	< 0.00174	< 0.00191	< 0.00194	< 0.00186
Endosulfan II (beta)	NV	NV	NV	760	4,900	1,600	45,000	NV	NV	NV	NV	< 0.00214	< 0.00187	< 0.00205	< 0.00208	< 0.002
Endosulfan sulfate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00201	< 0.00177	< 0.00193	< 0.00196	< 0.00189
Endrin	NV	NV	NV	38	250	80	2,200	NV	NV	NV	NV	< 0.00209	< 0.00184	< 0.00201	< 0.00204	< 0.00196
Endrin aldehyde	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00172	< 0.00151	< 0.00165	< 0.00168	< 0.00161

												D	801	B02	В)3
											Location	В	,01	D02	D(,,
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (feet bgs)	7.0	27.5	3.0	3.0	25.0
		Leach	: Soil, ning to dwater ¹		_	gestion, D d Inhalati	_	Volatili	: Soil, zation to or Air ¹	Va	: Soil, por ion into ding ¹					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
Organochlorine Pesticides ⁴ (mg/kg	(continued)															
Endrin ketone	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0022	< 0.00193	< 0.00211	< 0.00214	< 0.00206
Heptachlor	NV	0.063	0.048	0.28	0.45	4	110	42	230	42	230	< 0.00205	< 0.0018	< 0.00197	< 0.002	< 0.00192
Heptachlor epoxide	NV	0.018	0.016	0.14	0.24	2	56	66	NV	66	NV	< 0.00215	< 0.00189	< 0.00206	< 0.00209	< 0.00201
Hexachlorobenzene	NV	0.083	0.084	0.67	0.93	11	320	2.4	13	2.4	13	< 0.00165	< 0.00145	< 0.00159	< 0.00161	< 0.00155
Lindane	NV	0.13	0.13	1.2	2.1	17	470	NV	NV	NV	NV	< 0.00193	< 0.0017	< 0.00186	< 0.00188	< 0.00181
Methoxychlor	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00238	< 0.00208	< 0.00228	< 0.00231	< 0.00222
Toxaphene	NV	1.2	0.93	1.2	2.1	17	470	NV	NV	NV	NV	< 0.048	< 0.0422	< 0.0461	< 0.0468	< 0.0449
PCBs ⁵ (mg/kg)																
Aroclor 1016	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00467	< 0.0041	< 0.00448	< 0.00455	< 0.00437
Aroclor 1221	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00717	< 0.00629	< 0.00688	< 0.00698	< 0.0067
Aroclor 1232	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00556	< 0.00488	< 0.00534	< 0.00542	< 0.00521
Aroclor 1242	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00424	< 0.00372	< 0.00407	< 0.00413	< 0.00397
Aroclor 1248	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0042	< 0.00369	< 0.00403	< 0.00409	< 0.00393
Aroclor 1254	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0063	< 0.00553	< 0.00604	< 0.00613	< 0.00589
Aroclor 1260	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00659	< 0.00578	< 0.00633	< 0.00642	< 0.00617
Total PCBs $(ND = 0)^6$	NV	1.1	1.1	0.33	0.59	4.9	140	NV	NV	NV	NV	< 0.00717	< 0.00629	< 0.00688	< 0.00698	< 0.0067
Organophosphorus Pesticides ⁷ (mg	/kg)															
Coumaphos	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00907	< 0.00796	< 0.00871	< 0.00884	< 0.00849
Demeton	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00452	< 0.00397	< 0.00434	< 0.00441	< 0.00423
Diazinon	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00596	< 0.00523	< 0.00572	< 0.00581	< 0.00558
Dichlorvos	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0129	< 0.0113	< 0.0124	< 0.0126	< 0.0121
Dimethoate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0264	< 0.0232	< 0.0254	< 0.0257	< 0.0247
Disulfoton	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00665	< 0.00583	< 0.00638	< 0.00647	< 0.00622
Dursban	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0123	< 0.0108	< 0.0118	< 0.012	< 0.0115
Ethoprop	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0062	< 0.00544	< 0.00595	< 0.00604	< 0.00581
Fensulfothion	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0226	< 0.0198	< 0.0216	< 0.022	< 0.0211
Fenthion	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00811	< 0.00712	< 0.00779	< 0.0079	< 0.00759
Guthion	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00504	< 0.00443	< 0.00484	< 0.00491	< 0.00472
Merphos	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00719	< 0.00631	< 0.0069	< 0.007	< 0.00673

											Location	R	301	B02	В	03
											_ocanon			202	Ь	
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (feet bgs)	7.0	27.5	3.0	3.0	25.0
		Leach	: Soil, ning to dwater ¹			estion, De	_	RBC: Soil, Volatilization to Outdoor Air ¹		RBC: Soil, Vapor Intrusion into Building ¹						
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
Organophosphorus Pesticides ⁷ (m																
Methyl parathion	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00893	< 0.00783	< 0.00857	< 0.00869	< 0.00835
Mevinphos	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0136	< 0.0119	< 0.0131	< 0.0133	< 0.0127
Naled	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00558	< 0.00489	< 0.00535	< 0.00543	< 0.00522
Parathion	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00762	< 0.00669	< 0.00731	< 0.00742	< 0.00713
Phorate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00628	< 0.00551	< 0.00603	< 0.00612	< 0.00588
Ronnel	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00583	< 0.00512	< 0.0056	< 0.00568	< 0.00546
Santox	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00683	< 0.00599	< 0.00656	< 0.00665	< 0.00639
Stirofos	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00717	< 0.00629	< 0.00688	< 0.00698	< 0.0067
Sulfotepp	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00515	< 0.00452	< 0.00494	< 0.00502	< 0.00482
Sulprofos	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00739	< 0.00649	< 0.00709	< 0.0072	< 0.00692
Sumitox	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00934	< 0.0082	< 0.00896	< 0.0091	< 0.00874
Tetraethylpyrophosphate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.209	< 0.184	< 0.201	< 0.204	< 0.196
Tokuthion	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00806	< 0.00707	< 0.00773	< 0.00785	< 0.00754
Trichloronate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00886	< 0.00777	< 0.0085	< 0.00863	< 0.00829
Chlorinated Herbicides ⁸ (mg/kg)																
2,4,5-T	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0114	< 0.00998	< 0.0109	< 0.0111	< 0.0106
2,4-D	NV	8.5	16	1,300	8,200	2,700	74,000	NV	NV	NV	NV	< 0.00937	< 0.00822	< 0.00899	< 0.00912	< 0.00876
2,4-DB	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0396	< 0.0348	< 0.038	< 0.0386	< 0.0371
Dalapon	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0151	< 0.0132	< 0.0145	< 0.0147	< 0.0141
Dicamba	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0209	< 0.0184	< 0.0201	< 0.0204	< 0.0196
Dichlorprop	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0327	< 0.0287	< 0.0314	< 0.0318	< 0.0306
Dinoseb	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0093	< 0.00816	< 0.00893	< 0.00906	< 0.0087
MCPA	NV	0.41	0.61	63	410	130	3,700	NV	NV	NV	NV	< 0.591	< 0.519	< 0.567	< 0.576	< 0.553
MCPP (Mecoprop)	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.49	< 0.43	< 0.47	< 0.477	< 0.458
Silvex	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0143	< 0.0125	< 0.0137	< 0.0139	< 0.0134

Table 1 Summary of Soil Analytical Results 2997 South Moody Avenue

Portland, Oregon Farallon PN: 2243-005

										I	Location	В	01	B02	В	03
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	on Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
									Collection	depth (f	feet bgs)	7.0	27.5	3.0	3.0	25.0
		Leacl	: Soil, ning to dwater ¹			estion, D	_	Volatili	: Soil, zation to or Air ¹	Va	: Soil, por ion into					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
VOCs ⁹ (mg/kg)																
1,1,1,2-Tetrachloroethane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00035	< 0.00031	< 0.00034	< 0.00034	< 0.00033
1,1,1-Trichloroethane	NV	430	880	110,000	870,000	470,000	NV	NV	NV	NV	NV	< 0.00038	< 0.00034	< 0.00037	< 0.00037	< 0.00036
1,1,2,2-Tetrachloroethane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00049	< 0.00043	< 0.00047	< 0.00047	< 0.00046
1,1,2-Trichloroethane	NV	0.019	0.029	6.3	26	54	1,500	6.7	24	0.38	4.2	< 0.00037	< 0.00032	< 0.00036	< 0.00036	< 0.00035
1,1-Dichloroethane	NV	0.2	0.2	190	260	3,200	89,000	130	240	1.1	5.9	< 0.00027	< 0.00023	< 0.00026	< 0.00026	< 0.00025
1,1-Dichloroethene	NV	16	32	3,500	29,000	13,000	370,000	NV	NV	54	680	< 0.0004	< 0.00036	< 0.00039	< 0.00039	< 0.00038
1,1-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00042	< 0.00037	< 0.00041	< 0.00041	< 0.0004
1,2,3-Trichlorobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00041	< 0.00036	< 0.00039	< 0.0004	< 0.00038
1,2,3-Trichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00099	< 0.00087	< 0.00095	< 0.00096	< 0.00093
1,2,3-Trimethylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00038	< 0.00034	< 0.00037	< 0.00037	< 0.00036
1,2,4-Trichlorobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00052	< 0.00045	< 0.0005	< 0.0005	< 0.00048
1,2,4-Trimethylbenzene	NV	5.6	12	220	2,000	2,000	54,000	230	980	16	210	< 0.00028	< 0.00025	< 0.00027	< 0.00027	< 0.00026
1,2-Dibromo-3-chloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0014	< 0.00123	< 0.00134	< 0.00136	< 0.00131
1,2-Dibromoethane	NV	0.00056	0.00056	0.53	0.73	9	250	0.35	0.65	0.028	0.16	< 0.00046	< 0.0004	< 0.00044	< 0.00045	< 0.00043
1,2-Dichlorobenzene	NV	86	160	4,400	36,000	20,000	560,000	NV	NV	NV	NV	< 0.00041	< 0.00036	< 0.00039	< 0.0004	< 0.00038
1,2-Dichloroethane	NV	0.013	0.013	12	16	200	5600	8.1	15	0.18	1	< 0.00035	< 0.00031	< 0.00034	< 0.00034	< 0.00033
1,2-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00048	< 0.00042	< 0.00046	< 0.00047	< 0.00045
1,3,5-Trimethylbenzene	NV	110	110	1,600	12,000	3,500	98,000	NV	NV	NV	NV	< 0.00036	< 0.00031	< 0.00034	< 0.00035	< 0.00033
1,3-Dichlorobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00032	< 0.00028	< 0.00031	< 0.00031	< 0.0003
1,3-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00028	< 0.00024	< 0.00027	< 0.00027	< 0.00026
1,4-Dichlorobenzene	NV	0.27	0.25	62	64	1,300	36,000	19	36	2.3	13	< 0.0003	< 0.00027	< 0.00029	< 0.00029	< 0.00028
2,2-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00037	< 0.00033	< 0.00036	< 0.00036	< 0.00035
2-Butanone	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00624	< 0.00548	< 0.00599	< 0.00608	< 0.00584
2-Chlorotoluene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0004	< 0.00035	< 0.00039	< 0.00039	< 0.00038
4-Chlorotoluene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00032	< 0.00028	< 0.00031	< 0.00031	< 0.0003
4-Isopropyltoluene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00027	< 0.00024	< 0.00026	< 0.00027	< 0.00026
4-Methyl-2-pentanone	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00251	< 0.0022	< 0.00241	< 0.00244	< 0.00235
Acetone	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0133	< 0.0117	< 0.0128	< 0.013	< 0.0125
Acrylonitrile	NV	0.0016	0.0017	2.5	4	40	1,100	3.1	5.8	0.19	1	< 0.00239	< 0.0021	< 0.00229	< 0.00233	< 0.00223

Table 1 Summary of Soil Analytical Results 2997 South Moody Avenue

Portland, Oregon Farallon PN: 2243-005

											Location	P	801	B02	BO)3
											20cation		.01	B02		55
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (feet bgs)	7.0	27.5	3.0	3.0	25.0
		Leach	: Soil, ling to dwater ¹			estion, D l Inhalati		Volatili	: Soil, zation to or Air ¹	Va	: Soil, por ion into					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
VOCs ⁹ (mg/kg) (continued)																
Benzene	NV	0.1	0.1	24	37	380	11,000	27	50	0.38	2.1	< 0.00036	< 0.00032	< 0.00035	< 0.00035	< 0.00034
Bromobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00038	< 0.00033	< 0.00036	< 0.00037	< 0.00036
Bromodichloromethane	NV	0.01	0.01	12	15	230	6,300	5.7	11	0.1	0.53	< 0.00034	< 0.0003	< 0.00033	< 0.00033	< 0.00032
Bromoform	NV	0.2	0.22	170	260	2,700	74,000	190	360	19	110	< 0.00057	< 0.0005	< 0.00054	< 0.00055	< 0.00053
Bromomethane	NV	0.19	0.4	92	750	370	10,000	170	700	1.3	17	< 0.00179	< 0.00157	< 0.00172	< 0.00174	< 0.00167
Carbon tetrachloride	NV	0.06	0.06	21	34	320	8,900	35	65	0.28	1.6	< 0.00044	< 0.00038	< 0.00042	< 0.00043	< 0.00041
Chlorobenzene	NV	14	27	1,100	8,700	4,700	130,000	NV	NV	77	NV	< 0.00028	< 0.00025	< 0.00027	< 0.00028	< 0.00027
Chloroethane	NV	620	1,300	320,000	NV	NV	NV	NV	NV	NV	NV	< 0.00126	< 0.00111	< 0.00121	< 0.00123	< 0.00118
Chloroform	NV	0.016	0.015	22	26	410	11,000	9.2	17	0.074	0.41	< 0.00031	< 0.00027	< 0.00029	< 0.0003	< 0.00029
Chloromethane	NV	4.3	9.1	2,900	25,000	25,000	700,000	NV	NV	24	300	< 0.0005	< 0.00044	< 0.00048	< 0.00049	< 0.00047
cis-1,2-Dichloroethene	NV	2.3	4.5	310	2,300	710	20,000	NV	NV	NV	NV	< 0.00031	< 0.00028	< 0.0003	< 0.00031	< 0.00029
cis-1,3-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00035	< 0.00031	< 0.00034	< 0.00034	< 0.00033
Dibromochloromethane	NV	0.011	0.011	12	17	210	5,800	7.8	14	0.53	2.9	< 0.0005	< 0.00044	< 0.00048	< 0.00049	< 0.00047
Dibromomethane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00051	< 0.00045	< 0.00049	< 0.0005	< 0.00048
Dichlorodifluoromethane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00095	< 0.00084	< 0.00091	< 0.00093	< 0.00089
Ethylbenzene	NV	0.94	0.9	110	150	1,700	49,000	85	160	3	17	< 0.0004	< 0.00035	< 0.00038	< 0.00039	< 0.00037
Freon 113	NV	NV	NV	800,000	NV	NV	NV	NV	NV	NV	NV	< 0.00049	< 0.00043	< 0.00047	< 0.00047	< 0.00046
Hexachlorobutadiene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00046	< 0.0004	< 0.00044	< 0.00044	< 0.00043
Isopropyl Ether	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00033	< 0.00029	< 0.00032	< 0.00032	< 0.00031
Isopropylbenzene	NV	280		7,000	57,000	27,000	750,000	NV	NV	NV	NV	< 0.00032	< 0.00029	< 0.00031	< 0.00032	< 0.0003
Methyl tert-butyl ether	NV	0.5	0.54	730	1,100	12,000	320,000	810	1,500	20	110	< 0.00028	< 0.00025	< 0.00027	< 0.00028	< 0.00027
Methylene chloride	NV	0.44	2.4	170	1,600	2,100	58,000	NV	NV	48	950	< 0.00133	< 0.00117	< 0.00128	< 0.0013	< 0.00125
Naphthalene	NV	0.37	0.34	25	23	580	16,000	15	83	15	83	< 0.00133	< 0.00117	< 0.00128	< 0.0013	< 0.00125
n-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00034	< 0.0003	< 0.00033	< 0.00034	< 0.00032
n-Propylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00028	< 0.00024	< 0.00026	< 0.00027	< 0.00026
sec-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00027	< 0.00024	< 0.00026	< 0.00026	< 0.00025
Styrene	NV	430	800	16,000	130,000	56,000	NV	NV	NV	NV	NV	< 0.00031	< 0.00027	< 0.0003	< 0.0003	< 0.00029
tert-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00028	< 0.00024	< 0.00026	< 0.00027	< 0.00026
Tetrachloroethene	NV	1.9	1.9	540	1,000	1,800	50,000	NV	NV	6.6	36	< 0.00037	< 0.00032	< 0.00035	< 0.00036	< 0.00035

Table 1 Summary of Soil Analytical Results 2997 South Moody Avenue

Portland, Oregon Farallon PN: 2243-005

												D	301	B02	В	72
										1	Location	Б	001	D02	D()3
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (f	feet bgs)	7.0	27.5	3.0	3.0	25.0
		RBC Leach Ground	ing to			estion, De	_	Volatili	: Soil, zation to	Va	: Soil, por on into ding ¹					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
VOCs ⁹ (mg/kg) (continued)					,		1	1	ı		1		ı	1	1	T
Toluene	NV	310	490	12,000	88,000	28,000	770,000	NV	NV	NV	NV	< 0.00058	< 0.00051	< 0.00056	< 0.00056	< 0.00054
trans-1,2-dichloroethene	NV	26	51	3,100	23,000	7,100	200,000	NV	NV	NV	NV	< 0.00035	< 0.00031	< 0.00034	< 0.00034	< 0.00033
trans-1,3-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00036	< 0.00031	< 0.00034	< 0.00035	< 0.00033
Trichloroethene	NV	0.053	0.087	17	51	470	13,000	33	96	0.26	2.3	< 0.00037	< 0.00033	< 0.00036	< 0.00036	< 0.00035
Trichlorofluoromethane	NV	140	280	15,000	130,000	69,000	NV	NV	NV	190	NV	< 0.00051	< 0.00045	< 0.00049	< 0.0005	< 0.00048
Vinyl chloride	NV	0.0014	0.01	0.8	4.4	34	950	6.5	89	0.053	2.2	< 0.00039	< 0.00034	< 0.00037	< 0.00038	< 0.00036
Xylenes (total)	NV	49	100	2,900	25,000	20,000	560,000	NV	NV	160	NV	< 0.00093	< 0.00082	< 0.00089	< 0.00091	< 0.00087
SVOCs ¹⁰ (mg/kg)																
1,2,4-Trichlorobenzene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0117	< 0.0103	< 0.0112	< 0.0114	< 0.0109
2,4,6-Trichlorophenol	NV	8.9	8.9	120	210	270	7,400	NV	NV	NV	NV	< 0.0104	< 0.00912	< 0.00998	< 0.0101	< 0.00973
2,4-Dichlorophenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00995	< 0.00873	< 0.00955	< 0.00969	< 0.00931
2,4-Dimethylphenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0628	< 0.0551	< 0.0603	< 0.0612	< 0.0588
2,4-Dinitrophenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.131 J	< 0.115 J	< 0.125 J	< 0.127 J	< 0.122 J
2,4-Dinitrotoluene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0081 J	< 0.00711 J	< 0.00777 J	< 0.00789 J	< 0.00758 J
2,6-Dinitrotoluene	NV	0.035	0.049	0.9	1.5	13	350	NV	NV	NV	NV	< 0.00983	< 0.00863	< 0.00944	< 0.00958	< 0.0092
2-Chloronaphthalene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00853	< 0.00748	< 0.00818	< 0.0083	< 0.00798
2-Chlorophenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0111	< 0.00973	< 0.0106	< 0.0108	< 0.0104
2-Nitrophenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0173	< 0.0152	< 0.0166	< 0.0169	< 0.0162
3,3-Dichlorobenzidine	NV	0.67	1	3	5.1	42	1,200	NV	NV	NV	NV	< 0.106	< 0.093	< 0.102	< 0.103	< 0.0991
4,6-Dinitro-2-methylphenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.165	< 0.145	< 0.159	< 0.161	< 0.155
4-Bromophenylphenyl ether	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0152	< 0.0133	< 0.0146	< 0.0148	< 0.0142
4-Chloro-3-methylphenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00637	< 0.00559	< 0.00611	< 0.0062	< 0.00595
4-Chlorophenylphenyl ether	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00837	< 0.00734	< 0.00803	< 0.00815	< 0.00783
4-Nitrophenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0701	< 0.0615	< 0.0672	< 0.0682	< 0.0655
Acenaphthene	NV	NV	NV	9,400	70,000	21,000	590,000	NV	NV	NV	NV	0.0279 J	< 0.00752	< 0.00822	< 0.00834	< 0.00801
Acenaphthylene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.151	< 0.00786	< 0.00859	< 0.00872	< 0.00838
Anthracene	NV	NV	NV	47,000	350,000	110,000	NV	NV	NV	NV	NV	0.339	< 0.0074	< 0.00809	< 0.00821	< 0.00789
Benzidine	NV	0.00012	0.0007	0.0012	0.01	0.082	2.3	NV	NV	NV	NV	< 0.085	< 0.0746	< 0.0816	< 0.0828	< 0.0795
Benzo(a)anthracene	NV	2.3	8.8	0.34	2.9	24	660	NV	NV	NV	NV	0.553	< 0.00501	< 0.00548	< 0.00556	< 0.00534

Table 1

Summary of Soil Analytical Results 2997 South Moody Avenue Portland, Oregon

										I	Location	В	01	B02	В)3
												D01 C0 7	DO1 CO 27 5	B02-SO-3	D02 50 2	D02 CO 25
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
											ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection			7.0	27.5	3.0	3.0	25.0
										RBC	: Soil,					
			: Soil,						: Soil,	Va	por					
			ing to			estion, D	_		zation to		ion into					
		Groun	dwater ¹	Co	ntact, and	l Inhalati	on'	Outdo	or Air ¹	Buil	ding ¹					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
SVOCs ¹⁰ (mg/kg) (continued)	•															
Benzo(a)pyrene	NV	1.9	NV	0.034	0.29	2.4	67	NV	NV	NV	NV	0.404	< 0.00642	< 0.00702	< 0.00712	< 0.00684
Benzo(b)fluoranthene	NV	NV	NV	0.34	2.9	24	670	NV	NV	NV	NV	0.534	< 0.00814	< 0.0089	< 0.00903	< 0.00868
Benzo(ghi)perylene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.189	< 0.00844	< 0.00923	< 0.00937	< 0.009
Benzo(k)fluoranthene	NV	NV	NV	3.4	29	240	6,700	NV	NV	NV	NV	0.201	< 0.00681	< 0.00745	< 0.00756	< 0.00727
Bis(2-chloro-1-methylethyl)ether	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0101	< 0.0089	< 0.00973	< 0.00988	< 0.00949
Bis(2-chloroethoxy)methane	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0103	< 0.00902	< 0.00986	< 0.01	< 0.00961
Bis(2-chloroethyl)ether	NV	0.0002	0.0009	0.96	1.3	16	450	1.2	6.9	1.2	6.9	< 0.012	< 0.0105	< 0.0115	< 0.0116	< 0.0112
Bis(2-ethylhexyl)phthalate	NV	NV	NV	97	160	1,300	37,000	NV	NV	NV	NV	0.02 J	< 0.0141	< 0.0154	< 0.0156	< 0.015
Butylbenzylphthalate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0137	< 0.0121	< 0.0132	< 0.0134	< 0.0129
Chrysene	NV	NV	NV	34	290	2,400	67,000	NV	NV	NV	NV	0.495	< 0.0065	< 0.00711	< 0.00721	< 0.00693
Dibenzo(a,h)anthracene	NV	NV	NV	0.034	0.29	2.4	67	NV	NV	NV	NV	0.0491	< 0.00961	< 0.0105	< 0.0107	< 0.0102
Diethyl phthalate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00922	< 0.00809	< 0.00885	< 0.00898	< 0.00863
Dimethyl phthalate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00721	< 0.00632	< 0.00692	< 0.00702	< 0.00674
Di-n-butyl phthalate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.025 J	< 0.0128	< 0.014	< 0.0142	< 0.0136
Di-n-octyl phthalate	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0121	< 0.0106	< 0.0116	< 0.0118	< 0.0113
Fluoranthene	NV	NV	NV	4,800	30,000	10,000	280,000	NV	NV	NV	NV	1.64	< 0.00581	< 0.00635	< 0.00645	< 0.00619
Fluorene	NV	NV	NV	6,300	47,000	14,000	390,000	NV	NV	NV	NV	0.199	< 0.00799	< 0.00873	< 0.00886	< 0.00851
Hexachlorobenzene	NV	0.083	0.084	0.67	0.93	11	320	2.4	13	2.4	13	< 0.0114	< 0.01	< 0.011	< 0.0111	< 0.0107 < 0.0125
Hexachlorobutadiene	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	NV NV	< 0.0133 < 0.0783	< 0.0117 < 0.0687	< 0.0128 < 0.0752	< 0.013 < 0.0763	< 0.0123
Hexachlorocyclopentadiene Hexachloroethane	NV											< 0.0783	< 0.0087	< 0.0732	< 0.0763	< 0.0753
Indeno(1,2,3-cd)pyrene	NV	0.095 NV	0.087 NV	0.34	32 2.9	180 24	5,100 670	19 NV	36 NV	1.4 NV	7.6 NV	0.176	< 0.00904	< 0.00989	< 0.0174	< 0.00964
Isophorone	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00697	< 0.00504	< 0.00668	< 0.00678	< 0.00652
Naphthalene	NV	0.37	0.34	25	23	580	16,000	15	83	15	83	0.13	< 0.0104	< 0.0114	< 0.0116	< 0.00032
Nitrobenzene	NV	NV	NV	NV	NV	NV	10,000 NV	NV	NV	NV	NV	< 0.00927	< 0.00814	< 0.00114	< 0.00903	< 0.00868
N-Nitrosodimethylamine	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.0863	< 0.0758	< 0.0829	< 0.0841	< 0.0808
N-Nitrosodiphenylamine	NV	39	45	280	470	3,800	110,000	NV	NV	NV	NV	< 0.00793	< 0.00696	< 0.00761	< 0.00772	< 0.00742
N-Nitrosodipropylamine	NV	0.0038	0.0054	0.19	0.33	2.7	74	NV	NV	NV	NV	< 0.0121	< 0.0106	< 0.0116	< 0.0118	< 0.0113
Pentachlorophenol	NV	0.23	0.0034	2.6	4	34	960	NV	NV	NV	NV	< 0.0641	< 0.0562	< 0.0615	< 0.0624	< 0.0599
Phenanthrene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.29	< 0.00618	< 0.00676	< 0.00686	< 0.00659
Phenol	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00927	< 0.00814	< 0.0089	< 0.00903	< 0.00868
Pyrene	NV	NV	NV	3,600	23,000	7,500	210,000	NV	NV	NV	NV	0.963	< 0.0144	< 0.0158	< 0.016	< 0.0154

										I	Location	В	01	B02	В	03
										Samp	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	ion Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (f	feet bgs)	7.0	27.5	3.0	3.0	25.0
			: Soil, ing to dwater ¹		Soil, Ing			Volatili	: Soil, zation to or Air ¹	Va	: Soil, por ion into ding ¹					
Parameter	Oregon Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
PAHs ¹¹ (mg/kg)				T						,	,			1	1	
1-Methylnaphthalene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0812	< 0.00234	< 0.00256	< 0.0026	< 0.0025
2-Chloronaphthalene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	< 0.00267	< 0.00234	< 0.00256	< 0.0026	< 0.0025
2-Methylnaphthalene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.0664	< 0.00234	< 0.00256	< 0.0026	< 0.0025
Acenaphthene	NV	NV	NV	9,400	70,000	21,000	590,000	NV	NV	NV	NV	0.0486	< 0.0007	< 0.00077	< 0.00078	< 0.00075
Acenaphthylene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.197	< 0.0007	< 0.00077	< 0.00078	< 0.00075
Anthracene	NV	NV	NV	47,000	350,000	110,000	NV	NV	NV	NV	NV	0.465	< 0.0007	< 0.00077	< 0.00078	< 0.00075
Benzo(a)anthracene	NV	2.3	8.8	0.34	2.9	24	660	NV	NV	NV	NV	0.702	< 0.0007	0.00191 J	< 0.00078	< 0.00075
Benzo(a)pyrene	NV	1.9	NV	0.034	0.29	2.4	67	NV	NV	NV	NV	0.464	< 0.0007	0.00197 J	< 0.00078	< 0.00075
Benzo(b)fluoranthene	NV	NV	NV	0.34	2.9	24	670	NV	NV	NV	NV	0.459	< 0.0007	0.00272 J	< 0.00078	< 0.00075
Benzo(ghi)perylene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	0.222	< 0.0007	0.00349 J	< 0.00078	< 0.00075
Benzo(k)fluoranthene	NV	NV	NV	3.4	29	240	6,700	NV	NV	NV	NV	0.215	< 0.0007	0.00122 J	< 0.00078	< 0.00075
Chrysene	NV	NV	NV	34	290	2,400	67,000	NV	NV	NV	NV	0.585	< 0.0007	0.00175 J	< 0.00078	< 0.00075
Dibenzo(a,h)anthracene	NV	NV	NV	0.034	0.29	2.4	67	NV	NV	NV	NV	0.0422	< 0.0007	< 0.00077	< 0.00078	< 0.00075
Fluoranthene	NV	NV	NV	48,00	30,000	10,000	280,000	NV	NV	NV	NV	1.47	< 0.0007	0.00258 J	< 0.00078	< 0.00075
Fluorene	NV	NV	NV	6,300	47,000	14,000	390,000	NV	NV	NV	NV	0.288	< 0.0007	< 0.00077	< 0.00078	< 0.00075
Indeno(1,2,3-cd)pyrene	NV	NV	NV	0.34	2.9	24	670	NV	NV	NV	NV	0.226	< 0.0007	0.00184 J	< 0.00078	< 0.00075
Naphthalene	NV	0.37	0.34	25	23	580	16,000	15	83	15	83	0.0975	< 0.0234 J	< 0.0256 J	< 0.0026	< 0.025 J
Phenanthrene	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	1.44	< 0.0007	0.00127 J	< 0.00078	< 0.00075
Pyrene	NV	NV	NV	3,600	23,000	7,500	210,000	NV	NV	NV	NV	1.3	< 0.0007	0.00261 J	< 0.00078	< 0.00075

Table 1

Summary of Soil Analytical Results 2997 South Moody Avenue

Portland, Oregon Farallon PN: 2243-005

										I	ocation	В	01	B02	BO)3
										Sampl	le Name	B01-SO-7	B01-SO-27.5	B02-SO-3	B03-SO-3	B03-SO-25
										Collecti	on Date	01/19/2018	01/19/2018	01/19/2018	01/19/2018	01/19/2018
								(Collection	depth (f	eet bgs)	7.0	27.5	3.0	3.0	25.0
	Oregon	RBC: Leach Ground	ing to lwater ¹		ntact, and	estion, Do	_	Volatili	: Soil, zation to or Air ¹	_	por on into ling ¹					
Parameter	Background Metals, Portland Basin	Urban Residential	Occupational	Urban Residential	Occupational	Construction Worker	Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational					
TPH (mg/kg)																
Gasoline-Range Organics ¹²	NV	31	130	2,500	20,000	9,700	NV	5,900	69,000	94	NV	0.0549 J	< 0.0397	< 0.0434	< 0.0441	< 0.0423
Diesel-Range Organics ¹³	NV	9,500	NV	2,200	14,000	4,600	NV	NV	NV	NV	NV	68.3	1.92 J	< 1.69	< 1.72	2.29 J
Residual-Range Organics ¹³	NV	9,500 ¹⁴	NV	$2,200^{14}$	14,000 ¹⁴	4,600 ¹⁴	NV	NV	NV	NV	NV	182	28.2	< 4.23	< 4.29	16

Notes:

Results in **bold** indicate analyte detected at or exceeding the method detection limit (MDL).

Results in **bold** and shaded **yellow** indicate exceedance of Oregon DEQ RBCs or Oregon Background Metals, Portland Basin concentrations.

< denotes analyte not detected at or exceeding the listed MDL.

¹State of Oregon Department of Environmental Quality Risk-Based Concentrations Table, November 1, 2015.

²Analyzed by US Environmental Protection Agency (EPA) Method 6010B, 6020, 7471A, or 4500CN E-2011.

³RBC for trivalent chromium is applied, as value for total chromium is not available.

⁴Analyzed by EPA Method 8081.

⁵Analyzed by EPA Method 8082.

⁶Total PCBs are sum of all PCB Aroclors. Results are summed at one-half the reported value when non-detect. When all PCB Aroclor results are non-detect, the highest value is reported.

⁷Analyzed by EPA Method 8141.

⁸Analyzed by EPA Method 8151.

⁹Analyzed by EPA Method 8260B.

¹⁰Analyzed by EPA Method 8270.

¹¹Analyzed by EPA Method 8270D/SIM.

¹²Analyzed by Northwest Method NWTPH-Gx.

¹³Analyzed by Northwest Method NWTPH-Dx.

¹⁴Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

bgs = below ground surface

DEQ = Oregon Department of Environmental Quality

J = Result is an estimate

mg/kg = milligrams per kilogram

NV = no value, value exceeds 1,000,000 mg/kg, or RBC exceeds limit

of three-phase equilibrium partitioning

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

R = result is rejected

RBCs = risk-based concentrations

SVOC = semivolatile organic compound

 $TPH = total\ petroleum\ hydrocarbons$

VOC = volatile organic compound

							Location	B01
							mple Name	B01-GW
			•	•		Colle	ection Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	Grour Vapor	BC: ndwater, Intrusion building ¹	
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Total Metals ² (µg/l)								
Antimony	NV	NV	NV	NV	NV	NV	NV	0.922 Ј
Arsenic	0.21	0.31	6,300	NV	NV	NV	NV	31
Beryllium	150	330	270,000	NV	NV	NV	NV	< 5.66
Cadmium	73	160	130,000	NV	NV	NV	NV	0.861 J
Chromium	110,000 ³	250,000 ³	9,4003	NV	NV	NV	NV	137
Copper	2,900	6,500	5,400,000	NV	NV	NV	NV	270
Cyanide	44	98	81,000	NV	NV	NV	NV	< 1.8
Lead	15	15	NV	NV	NV	NV	NV	62.3
Mercury	22	49	NV	NV	NV	NV	NV	0.12 Ј
Nickel	1,500	3,300	13,446,802	NV	NV	NV	NV	137
Selenium	NV	NV	NV	NV	NV	NV	NV	< 7.4
Silver	370	820	1,100,000	NV	NV	NV	NV	< 2.8
Thallium	NV	NV	NV	NV	NV	NV	NV	0.97 J
Zinc	NV	NV	NV	NV	NV	NV	NV	446
Organochlorine Pesticides ⁴ (µg/l)								
4,4'-DDD	0.1	0.074	31	NV	NV	NV	NV	< 0.017

NV

NV

3.5

18

NV

< 0.0164

< 0.0177

< 0.00813

< 0.0166

0.21

0.92

0.0042

0.028

0.21

1.4

0.0042

0.027

4,4'-DDE

4,4'-DDT

alpha-BHC

Aldrin

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingesti Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	Groun Vapor	BC: idwater, Intrusion uilding ¹	
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
beta-BHC	NV	NV	NV	NV	NV	NV	NV	< 0.0184
Chlordane	0.2	0.21	NV	NV	NV	NV	NV	< 0.0977
delta-BHC	NV	NV	NV	NV	NV	NV	NV	< 0.0197
Dieldrin	0.0061	0.005	2.4	NV	NV	NV	NV	< 0.00751
Endosulfan I	NV	NV	NV	NV	NV	NV	NV	< 0.0179
Endosulfan II (beta)	NV	NV	NV	NV	NV	NV	NV	< 0.0176
Endosulfan sulfate	NV	NV	NV	NV	NV	NV	NV	< 0.0196
Endrin	9.5	8.6	170	NV	NV	NV	NV	< 0.0189
Endrin aldehyde	NV	NV	NV	NV	NV	NV	NV	< 0.0142
Endrin ketone	NV	NV	NV	NV	NV	NV	NV	< 0.017
Heptachlor	0.0051	0.0039	1.8	NV	NV	NV	NV	< 0.0108
Heptachlor epoxide	0.0059	0.0053	3.2	NV	NV	NV	NV	< 0.0175
Hexachlorobenzene	0.045	0.045	NV	NV	NV	NV	NV	< 0.0134
Lindane	0.16	0.16	100	NV	NV	NV	NV	< 0.0176
Methoxychlor	NV	NV	NV	NV	NV	NV	NV	< 0.0193
Toxaphene	0.053	0.04	18	NV	NV	NV	NV	< 0.168
PCB Aroclors ⁵ (µg/l)								
Aroclor 1016	NV	NV	NV	NV	NV	NV	NV	< 0.1
Aroclor 1221	NV	NV	NV	NV	NV	NV	NV	< 0.073
Aroclor 1232	NV	NV	NV	NV	NV	NV	NV	< 0.042
Aroclor 1242	NV	NV	NV	NV	NV	NV	NV	< 0.047
Aroclor 1248	NV	NV	NV	NV	NV	NV	NV	< 0.086
Aroclor 1254	NV	NV	NV	NV	NV	NV	NV	< 0.047

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	Groun Vapor	BC: dwater, Intrusion uilding ¹	
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Aroclor 1260	NV	NV	NV	NV	NV	NV	NV	< 0.12
Total PCBs (ND = 0) ⁶	0.028	0.028	30	NV	NV	NV	NV	< 0.12
Organophosphorus Pesticides ⁷ (μg/l)							
Coumaphos	NV	NV	NV	NV	NV	NV	NV	< 0.277
Demeton	NV	NV	NV	NV	NV	NV	NV	< 0.341
Diazinon	NV	NV	NV	NV	NV	NV	NV	< 0.377
Dichlorvos	NV	NV	NV	NV	NV	NV	NV	< 0.212
Dimethoate	NV	NV	NV	NV	NV	NV	NV	< 0.105
Disulfoton	NV	NV	NV	NV	NV	NV	NV	< 0.277
Dursban	NV	NV	NV	NV	NV	NV	NV	< 0.245
Ethoprop	NV	NV	NV	NV	NV	NV	NV	< 0.354
Fensulfothion	NV	NV	NV	NV	NV	NV	NV	< 0.13
Fenthion	NV	NV	NV	NV	NV	NV	NV	< 0.266
Guthion	NV	NV	NV	NV	NV	NV	NV	< 0.348
Merphos	NV	NV	NV	NV	NV	NV	NV	< 0.267 J
Methyl parathion	NV	NV	NV	NV	NV	NV	NV	< 0.257
Organophosphorus Pesticides ⁷ (μg/l) (continue	d)						
Mevinphos	NV	NV	NV	NV	NV	NV	NV	< 0.118
Naled	NV	NV	NV	NV	NV	NV	NV	< 0.289
Parathion	NV	NV	NV	NV	NV	NV	NV	< 0.292
Phorate	NV	NV	NV	NV	NV	NV	NV	< 0.282
Ronnel	NV	NV	NV	NV	NV	NV	NV	< 0.252
Santox	NV	NV	NV	NV	NV	NV	NV	< 0.261

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatil	oundwater, ization to oor Air ¹	Groun Vapor	BC: ndwater, Intrusion uilding ¹	
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Stirofos	NV	NV	NV	NV	NV	NV	NV	< 0.226
Sulfotepp	NV	NV	NV	NV	NV	NV	NV	< 0.202
Sulprofos	NV	NV	NV	NV	NV	NV	NV	< 0.205
Sumitox	NV	NV	NV	NV	NV	NV	NV	< 0.173
Tetraethylpyrophosphate (TEPP)	NV	NV	NV	NV	NV	NV	NV	9.74 R
Tokuthion	NV	NV	NV	NV	NV	NV	NV	< 0.254
Trichloronate	NV	NV	NV	NV	NV	NV	NV	< 0.213
Chlorinated Herbicides ⁸ (µg/l)								
2,4,5-T	NV	NV	NV	NV	NV	NV	NV	< 0.843
2,4-D	670	1,200	77,000	NV	NV	NV	NV	< 0.744
2,4-DB	NV	NV	NV	NV	NV	NV	NV	< 0.775
Dalapon	NV	NV	NV	NV	NV	NV	NV	< 1.04
Dicamba	NV	NV	NV	NV	NV	NV	NV	< 0.813
Dichlorprop	NV	NV	NV	NV	NV	NV	NV	< 0.778
Dinoseb	NV	NV	NV	NV	NV	NV	NV	< 0.795
MCPA	30	47	1,700	NV	NV	NV	NV	< 13.1
MCPP (Mecoprop)	NV	NV	NV	NV	NV	NV	NV	< 7.15
Silvex	NV	NV	NV	NV	NV	NV	NV	< 0.845
VOCs ⁹ (µg/l)								
1,1,1,2-Tetrachloroethane	NV	NV	NV	NV	NV	NV	NV	< 0.385
1,1,1-Trichloroethane	30,000	37,000	1,100,000	NV	NV	NV	NV	< 0.319
1,1,2,2-Tetrachloroethane	NV	NV	NV	NV	NV	NV	NV	< 0.13
1,1,2-Trichloroethane	1.3	1.3	49	5,600	21,000	1,000	11,000	< 0.383
1,1-Dichloroethane	13	13	10,000	37,000	68,000	2,600	14,000	< 0.259
1,1-Dichloroethene	1,100	1,400	44,000	570,000	2,400,000	29,000	360,000	< 0.398
1,1-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	< 0.352
1,2,3-Trichlorobenzene	NV	NV	NV	NV	NV	NV	NV	< 0.23
1,2,3-Trichloropropane	NV	NV	NV	NV	NV	NV	NV	< 0.807
1,2,3-Trimethylbenzene	NV	NV	NV	NV	NV	NV	NV	< 0.321

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ction Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	Groun Vapor	BC: dwater, Intrusion uilding ¹	
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
1,2,4-Trichlorobenzene	NV	NV	NV	NV	NV	NV	NV	< 0.355
1,2,4-Trimethylbenzene	54	61	1,700	NV	NV	5,800	NV	< 0.373
1,2-Dibromo-3-chloropropane	NV	NV	NV	NV	NV	NV	NV	< 1.33
1,2-Dibromoethane	0.034	0.034	27	430	790	110	590	< 0.381
1,2-Dichlorobenzene	1,200	1,400	37,000	NV	NV	NV	NV	< 0.349
1,2-Dichloroethane	0.78	0.78	630	4,900	9,000	700	3,900	< 0.361
1,2-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	< 0.306
1,3,5-Trimethylbenzene	500	600	15,000	NV	NV	NV	NV	< 0.387
1,3-Dichlorobenzene	NV	NV	NV	NV	NV	NV	NV	< 0.22
1,3-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	< 0.366
1,4-Dichlorobenzene	2.3	2.1	1,500	12,000	21,000	1,300	7,100	< 0.274
2,2-Dichloropropane	NV	NV	NV	NV	NV	NV	NV	< 0.321
2-Butanone	NV	NV	NV	NV	NV	NV	NV	< 3.93
2-Chlorotoluene	NV	NV	NV	NV	NV	NV	NV	< 0.375
4-Chlorotoluene	NV	NV	NV	NV	NV	NV	NV	< 0.351
4-Isopropyltoluene	NV	NV	NV	NV	NV	NV	NV	< 0.35
4-Methyl-2-pentanone	NV	NV	NV	NV	NV	NV	NV	< 2.14
Acetone	NV	NV	NV	NV	NV	NV	NV	< 10
Acrolein	NV	NV	NV	NV	NV	NV	NV	8.87 R
Acrylonitrile	0.23	0.25	250	5,300	9,800	1,700	9,200	< 1.87
Benzene	2	2.1	1.800	7,400	14.000	510	2,800	< 0.331

							Location	B01
						Saı	mple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	RBC: Groundwater, Vapor Intrusion into Building ¹		
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Bromobenzene	NV	NV	NV	NV	NV	NV	NV	< 0.352
Bromodichloromethane	0.62	0.6	450	3200	6,000	420	2,300	< 0.38
Bromoform	15	16	14,000	300,000	550,000	85,000	470,000	< 0.469
VOCs ⁹ (µg/l) (continued)								
Bromomethane	28	36	1,200	32,000	130,000	2,100	27,000	< 0.866
Carbon tetrachloride	2	2.1	1,800	4,200	7,700	220	1,200	< 0.379
Chlorobenzene	290	350	10,000	NV	NV	67,000	NV	< 0.348
Chloroethane	76,000	88,000	2,400,000	NV	NV	2,800,000	NV	< 0.453
Chloroform	1	0.98	720	3,400	6,300	290	1,600	< 0.324
Chloromethane	690	790	22,000	440,000	1,800,000	26,000	330,000	< 0.276
cis-1,2-Dichloroethene	140	260	18,000	NV	NV	NV	NV	< 0.26
cis-1,3-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	< 0.418
Dibromochloromethane	0.77	0.77	610	9,300	17,000	2,300	13,000	< 0.327
Dibromomethane	NV	NV	NV	NV	NV	NV	NV	< 0.346
Dichlorodifluoromethane	NV	NV	NV	NV	NV	NV	NV	6.33
Ethylbenzene	6.7	6.4	4,500	23,000	43,000	1,500	8,200	< 0.384
Freon 113	NV	NV	NV	NV	NV	NV	NV	< 0.303
Hexachlorobutadiene	NV	NV	NV	NV	NV	NV	NV	< 0.256
Isopropyl Ether	NV	NV	NV	NV	NV	NV	NV	< 0.32
Isopropylbenzene	1,800	2,000	51,000	NV	NV	NV	NV	< 0.326
Methyl tert-butyl ether	64	68	63,000	830,000	1,500,000	160,000	870,000	< 0.367
Methylene chloride	37	200	79,000	1,900,000	12,581,128	160,000	3,300,000	< 1
Naphthalene	0.78	0.72	500	8,500	16,000	2,000	11,000	< 1
n-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	< 0.361
n-Propylbenzene	NV	NV	NV	NV	NV	NV	NV	< 0.349
sec-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	< 0.365
Styrene	4,600	5,700	170,000	NV	NV	NV	NV	< 0.307

Farallon PN: 2243-005	llon PN: 2243-0	05
-----------------------	-----------------	----

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	RBC: Groundwater, Vapor Intrusion into Building ¹		
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
tert-Butylbenzene	NV	NV	NV	NV	NV	NV	NV	< 0.399
Tetrachloroethene	49	48	5,600	150,000	NV	8,700	48,000	< 0.372
Toluene	4,400	6,300	220,000	NV	NV	NV	NV	1.06
trans-1,2-dichloroethene	1,400	2,600	180,000	NV	NV	NV	NV	< 0.396
trans-1,3-Dichloropropene	NV	NV	NV	NV	NV	NV	NV	< 0.419
Trichloroethene	2	3.3	3,000	6,900	20,000	430	3,700	< 0.398
Trichlorofluoromethane	4,200	5,200	160,000	780,000	NV	36,000	460,000	< 1.2
Vinyl chloride	0.066	0.49	960	430	5,900	21	880	< 0.259
Xylenes (total)	710	830	23,000	NV	NV	86,000	NV	1.32 J
SVOCs ¹⁰ (ug/L)	•		•					
1,2,4-Trichlorobenzene	NV	NV	NV	NV	NV	NV	NV	< 0.355
2,4,6-Trichlorophenol	17	16	1,700	NV	NV	NV	NV	< 0.297
2,4-Dichlorophenol	NV	NV	NV	NV	NV	NV	NV	< 0.284
2,4-Dimethylphenol	NV	NV	NV	NV	NV	NV	NV	< 0.264
2,4-Dinitrophenol	NV	NV	NV	NV	NV	NV	NV	< 3.25
2,4-Dinitrotoluene	NV	NV	NV	NV	NV	NV	NV	< 1.65
2,6-Dinitrotoluene	0.19	0.27	830	NV	NV	NV	NV	< 0.279
2-Chloronaphthalene	NV	NV	NV	NV	NV	NV	NV	< 0.33
2-Chlorophenol	NV	NV	NV	NV	NV	NV	NV	< 0.283
2-Nitrophenol	NV	NV	NV	NV	NV	NV	NV	< 0.32
3,3-Dichlorobenzidine	0.69	1	NV	NV	NV	NV	NV	< 2.02
4,6-Dinitro-2-methylphenol	NV	NV	NV	NV	NV	NV	NV	< 2.62
4-Bromophenylphenyl ether	NV	NV	NV	NV	NV	NV	NV	< 0.335
4-Chloro-3-methylphenol	NV	NV	NV	NV	NV	NV	NV	< 0.263
4-Chlorophenylphenyl ether	NV	NV	NV	NV	NV	NV	NV	< 0.303
4-Nitrophenol	NV	NV	NV	NV	NV	NV	NV	< 2.01
Acenaphthene	2,400	2,500	NV	NV	NV	NV	NV	< 0.316
Acenaphthylene	NV	NV	NV	NV	NV	NV	NV	< 0.309

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingest Inha	RBC: Groundwater, Ingestion and Inhalation from Tap Water¹ RBC: Groundwater in Excavation¹ RBC: Groundwater, Volatilization to Outdoor Air¹		Groun Vapor	BC: idwater, Intrusion uilding ¹			
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Anthracene	NV	NV	NV	NV	NV	NV	NV	< 0.291
Benzidine	0.00034	0.0019	17	NV	NV	NV	NV	< 4.32
Benzo(a)anthracene	0.043	0.17	NV	NV	NV	NV	NV	< 0.0975
Benzo(a)pyrene	0.011	0.064	NV	NV	NV	NV	NV	< 0.34
Benzo(b)fluoranthene	0.11	0.64	NV	NV	NV	NV	NV	< 0.0896
Benzo(ghi)perylene	NV	NV	NV	NV	NV	NV	NV	< 0.161
Benzo(k)fluoranthene	NV	NV	NV	NV	NV	NV	NV	< 0.355
Bis(2-chloro-1-methylethyl)ether	NV	NV	NV	NV	NV	NV	NV	< 0.445
SVOCs ¹⁰ (ug/L) (continued)								
Bis(2-chloroethoxy)methane	NV	NV	NV	NV	NV	NV	NV	< 0.329
Bis(2-chloroethyl)ether	0.062	0.063	51	13,000	30,000	5,500	30,000	< 1.62
Bis(2-ethylhexyl)phthalate	22	33	NV	NV	NV	NV	NV	< 0.709
Butylbenzylphthalate	NV	NV	NV	NV	NV	NV	NV	< 0.275
Chrysene	NV	NV	NV	NV	NV	NV	NV	< 0.332
Dibenzo(a,h)anthracene	0.011	0.064	NV	NV	NV	NV	NV	< 0.279
Diethyl phthalate	NV	NV	NV	NV	NV	NV	NV	< 0.282
Dimethyl phthalate	NV	NV	NV	NV	NV	NV	NV	< 0.283
Di-n-butyl phthalate	NV	NV	NV	NV	NV	NV	NV	< 0.266
Di-n-octyl phthalate	NV	NV	NV	NV	NV	NV	NV	< 0.278
Fluoranthene	NV	NV	NV	NV	NV	NV	NV	< 0.31
Fluorene	1400	1300	NV	NV	NV	NV	NV	< 0.323
Hexachlorobenzene	0.045	0.045	NV	NV	NV	NV	NV	< 0.341
Hexachlorobutadiene	NV	NV	NV	NV	NV	NV	NV	< 0.329
Hexachlorocyclopentadiene	NV	NV	NV	NV	NV	NV	NV	< 2.33
Hexachloroethane	1.5	1.3	700	12,000	22,000	1,400	7,500	< 0.365

Location								
						Sai	nple Name	B01-GW
						Colle	ection Date	01/19/2018
	Ingest Inha	oundwater, ion and lation p Water ¹	RBC: Groundwater in Excavation ¹	Volatili	oundwater, ization to oor Air ¹	RBC: Groundwater, Vapor Intrusion into Building ¹		
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Indeno(1,2,3-cd)pyrene	0.11	NV	NV	NV	NV	NV	NV	< 0.279
Isophorone	NV	NV	NV	NV	NV	NV	NV	< 0.272
Naphthalene	0.78	0.72	500	8,500	16,000	2,000	11,000	< 0.372
Nitrobenzene	NV	NV	NV	NV	NV	NV	NV	< 0.367
N-Nitrosodimethylamine	NV	NV	NV	NV	NV	NV	NV	< 1.26
N-Nitrosodiphenylamine	49	57	NV	NV	NV	NV	NV	< 0.304
N-Nitrosodipropylamine	0.043	0.062	370	NV	NV	NV	NV	< 0.403
Pentachlorophenol	0.15	0.12	53	NV	NV	NV	NV	< 0.313
Phenanthrene	NV	NV	NV	NV	NV	NV	NV	< 0.366
Phenol	NV	NV	NV	NV	NV	NV	NV	0.802 J
Pyrene	NV	NV	NV	NV	NV	NV	NV	< 0.33
PAHs ¹¹ (µg/l)								
1-Methylnaphthalene	NV	NV	NV	NV	NV	NV	NV	0.0251 J
2-Chloronaphthalene	NV	NV	NV	NV	NV	NV	NV	< 0.00647
2-Methylnaphthalene	NV	NV	NV	NV	NV	NV	NV	0.0401 J
Acenaphthene	2,400	2,500	NV	NV	NV	NV	NV	< 0.01
Acenaphthylene	NV	NV	NV	NV	NV	NV	NV	< 0.012
Anthracene	NV	NV	NV	NV	NV	NV	NV	< 0.014
Benzo(a)anthracene	0.043	0.17	NV	NV	NV	NV	NV	< 0.0041
Benzo(a)pyrene	0.011	0.064	NV	NV	NV	NV	NV	< 0.0116
Benzo(b)fluoranthene	0.11	0.64	NV	NV	NV	NV	NV	< 0.05 J
Benzo(ghi)perylene	NV	NV	NV	NV	NV	NV	NV	< 0.05 J
Benzo(k)fluoranthene	NV	NV	NV	NV	NV	NV	NV	< 0.0136

Table 2

Summary of Groundwater Analytical Results 2997 South Moody Avenue

Portland, Oregon Farallon PN: 2243-005

							Location	B01
						Sar	nple Name	B01-GW
						Colle	ction Date	01/19/2018
	Ingest Inha	Inhalation		RBC: Groundwater, Volatilization to Outdoor Air ¹		Groun Vapor	BC: dwater, intrusion uilding ¹	
Parameter	Urban Residential	Occupational	Construction and Excavation Worker	Urban Residential	Occupational	Urban Residential	Occupational	
Chrysene	NV	NV	NV	NV	NV	NV	NV	< 0.0108
Dibenzo(a,h)anthracene	0.011	0.064	NV	NV	NV	NV	NV	< 0.00396
Fluoranthene	NV	NV	NV	NV	NV	NV	NV	< 0.0157
Fluorene	1,400	1,300	NV	NV	NV	NV	NV	< 0.0085
Indeno(1,2,3-cd)pyrene	0.11	NV	NV	NV	NV	NV	NV	< 0.0148
Naphthalene	0.78	0.72	500	8,500	16,000	2,000	11,000	< 0.25 J
Phenanthrene	NV	NV	NV	NV	NV	NV	NV	< 0.0082
Pyrene	NV	NV	NV	NV	NV	NV	NV	< 0.0117
TPH (μg/l)								
Gasoline-Range Organics ¹²	110	450	14,000	NV	NV	22,000	NV	< 31.6
Diesel-Range Organics ¹³	100	430	NV	NV	NV	NV	NV	228
Residual-Range Organics ¹³	10014	430 ¹⁴	NV	NV	NV	NV	NV	287

Results in **bold** indicate analyte detected at or exceeding the method detection limit (MDL). Results in **bold** and shaded **yellow** indicate exceedance of Oregon DEQ RBCs.

Concentrations Table, November 1, 2015.

²Analyzed by US Environmental Protection Agency (EPA) Method 6010, 6020, 7470A, or 4500CN-E-2011.

³RBC for trivalent chromium is applied, as value for total chromium is not available.

DEQ = Oregon Department of Environmental Quality.

J = result is an estimate

NV = no value or value exceeds the solubility limit.

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

R = result is rejected

RBCs = risk-based concentrations

SVOC = semivolatile organic compound

TPH = total petroleum hydrocarbons

VOC = volatile organic compound

μg/l = micrograms per liter

< denotes analyte not detected at or exceeding the listed MDL.

¹State of Oregon Department of Environmental Quality Risk-Based

⁴Analyzed by EPA Method 8081.

⁵Analyzed by EPA Method 8082.

⁶Total PCBs are sum of all PCB Aroclors. Results are summed at one-half the reported value when non-detect. When all PCB Aroclor results are non-detect, the highest value is reported.

⁷Analyzed by EPA Method 8141.

⁸Analyzed by EPA Method 8151.

⁹Analyzed by EPA Method 8260B.

¹⁰Analyzed by EPA Method 8270.

¹¹ Analyzed by EPA Method 8270D/SIM.

 $^{^{\}rm 12}\mbox{Analyzed}$ by Northwest Method NWTPH-Gx.

 $^{^{\}rm 13}\mbox{Analyzed}$ by Northwest Method NWTPH-Dx.

¹⁴Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

ATTACHMENT A SITE RECONNAISSANCE PHOTOGRAPHS

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

SITE PHOTOGRAPHS

Preliminary Site Assessment 2997 South Moody Avenue Portland, Oregon Farallon PN: 2243-005

- Photograph 1. Northwest corner, looking east.
- Photograph 2. Northwest corner, looking west.
- **Photograph 3.** Northwest corner, looking south.
- Photograph 4. Northeast corner, looking east.
- Photograph 5. Northeast corner, looking north.
- Photograph 6. Northeast corner, looking south.
- Photograph 7. Northeast corner, looking north.
- Photograph 8. Northeast corner, looking west.
- Photograph 9. South Meade Street, looking northeast.
- Photograph 10. South Meade Street, looking east.
- Photograph 11. South Meade Street, looking south.
- Photograph 12. Southeast corner, looking south.
- Photograph 13. Southeast corner, looking west.
- Photograph 14. Southeast corner, looking east.
- Photograph 15. Southeast corner, looking north.
- Photograph 16. Southwest corner, looking east.
- Photograph 17. Southwest corner, looking northeast.
- **Photograph 18.** Southwest corner, looking northwest.
- Photograph 19. Southwest corner, looking south.
- Photograph 20. Southwest corner, looking west.
- Photograph 21. Maintenance shed, looking east.
- Photograph 22. Maintenance shed, looking south.
- Photograph 23. Maintenance shed, looking northwest.
- Photograph 24. TriMet light rail and storage box.
- **Photograph 25.** TriMet light rail, looking southwest.
- **Photograph 26.** TriMet light rail and storage box, looking southwest.
- Photograph 27. Stormwater swale, looking east.
- **Photograph 28.** Stormwater swale, looking southwest.
- Photograph 29. Stormwater swale, looking west.
- Photograph 30. TriMet light rail, looking northwest.

Photograph 31. TriMet light rail, looking northwest.

Photograph 32. TriMet light rail, looking east.

Photograph 33. TriMet light rail, looking north.

Photograph 34. Fenced storage area.

Photograph 1. Northwest corner, looking east.

Photograph 2. Northwest corner, looking west.

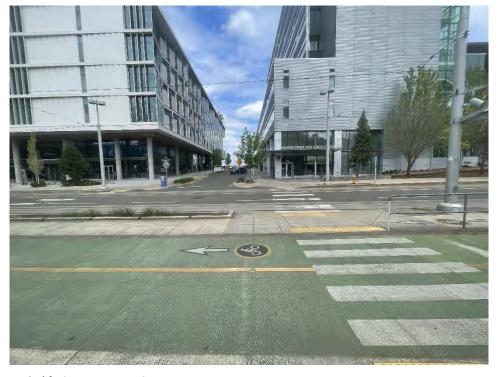
Photograph 3. Northwest corner, looking south.

Photograph 4. Northeast corner, looking east.

Photograph 5. Northeast corner, looking north.

Photograph 6. Northeast corner, looking south.

Photograph 7. Northeast corner, looking north.



Photograph 8. Northeast corner, looking west.

Photograph 9. South Meade Street, looking northeast.

Photograph 10. South Meade Street, looking east.

Photograph 11. South Meade Street, looking south.

Photograph 12. Southeast corner, looking south.

Photograph 13. Southeast corner, looking west.

Photograph 14. Southeast corner, looking east.

Photograph 15. Southeast corner, looking north.

Photograph 16. Southwest corner, looking east.

Photograph 17. Southwest corner, looking northeast.

Photograph 18. Southwest corner, looking northwest.

Photograph 19. Southwest corner, looking south.

Photograph 20. Southwest corner, looking west.

Photograph 21. Maintenance shed, looking east.

Photograph 22. Maintenance shed, looking south.

Photograph 23. Maintenance shed, looking northwest.

Photograph 24. TriMet light rail and storage box.

Photograph 25. TriMet light rail, looking southwest.

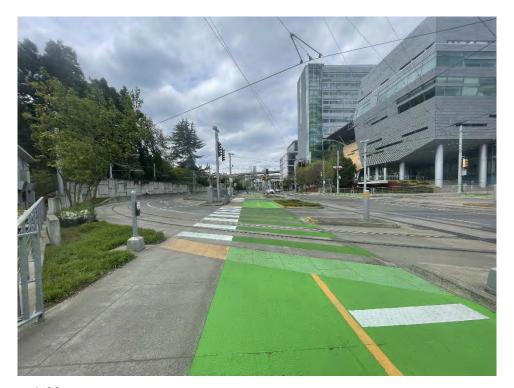
Photograph 26. TriMet light rail and storage box, looking southwest.

Photograph 27. Stormwater swale, looking east.

Photograph 28. Stormwater swale, looking southwest.

Photograph 29. Stormwater swale, looking west.

Photograph 30. TriMet light rail, looking northwest.



Photograph 31. TriMet light rail, looking south.

Photograph 32. TriMet light rail, looking east.

Photograph 33. TriMet light rail, looking north.

Photograph 34. Fenced storage area.

ATTACHMENT B ECOLOGICAL RISK SCOPING REPORT

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

TECHNICAL MEMORANDUM

TO: Rob Hood, Natural Specialist 4

Oregon Department of Environmental Quality

FROM: Sam Jackson, Senior Environmental Engineer

Chuck Esler, Principal Environmental Scientist

DATE: May 3, 2024

RE: TIER I ECOLOGICAL RISK ASSESSMENT SCOPING REPORT

2997 SOUTH MOODY AVENUE

PORTLAND, OREGON FARALLON PN: 2243-005

Farallon Consulting, L.L.C. (Farallon) has prepared a Tier I Ecological Risk Assessment Scoping Report (ERA Report) to support Tri-County Metropolitan Transportation District of Oregon (TriMet) to implement a regulatory closure strategy for the former Moody Light Rail and Storage Property at 2997 South Moody Avenue in Portland, Oregon (herein referred to as the Subject Property). The area of focus for the ERA Report includes the Subject Property and adjacent properties within 0.1 mile of the Subject Property (herein referred to as the Project Area). The Project Area and Subject Property boundaries are shown on Figures 1 and 2.

The purpose of the Report is to assemble basic site information to describe ecological features and species present and evaluate the potential for complete exposure pathways between receptors and site-related contaminants.

In preparing the ERA Report, Farallon used the Oregon Department of Environmental Quality (DEQ) Conducting Ecological Risk Assessments¹ and Site Ecology Scoping Report Outline². This ERA Report includes a summary review of the Project Area and vicinity to evaluate for the known or suspected presence of hazardous substances, sensitive environments, and threatened/endangered species. In this context, the term "hazardous substance" includes those chemicals listed as hazardous substances in the Code of Federal Regulations (CFR 171.8) and the Oregon Administrative Rules (OAR 837-090-1000), including petroleum products.

¹ DEQ. 2020. Conducting Ecological Risk Assessments. September 14.

² DEQ. 2020. Site Ecology Scoping Report Outline.

The ERA Report follows the Oregon Department of Environmental Quality's *Site Ecology Scoping Report Outline* (DEQ, 2020), which is highlighted, below.

- (1) A description of current and historical site use.
- (2) Contaminants of interest (COIs) known or suspected to be present.
- (3) Current and future land use and zoning.
- (4) Surface features and transport pathways, such as pavement, storm water catch basins, outfalls.
- (5) Habitat type present on or adjacent to the site.

(1) CURRENT AND HISTORICAL SITE USE

a) Site location

The Subject Property consists of Multnomah County Parcel No. 1S1E10BA-00200, a 2.33-acre, narrow, rectangular-shaped strip of land located within the South Waterfront Neighborhood near the western bank of the Willamette River approximately 1 mile south of downtown Portland, Oregon. Adjacent structures include Marquam Bridge to the north, South Moody Avenue to the east, Ross Island Bridge to the south, and Interstate 5 and associated right-of-way (ROW) to the west. The land is developed with transportation rail lines on the northern portion and vegetated areas, a gravel access road, a stormwater control facility, and fenced storage areas on the southern portion. Adjoining properties include South Sheridan Street to the north; South Moody Avenue to the east; commercial retail property to the south, and the Interstate 5 and the associated ROW to the west. Historically, rail lines were present on the Subject Property and adjacent properties from at least the 1880s to the present.

According to previous environmental studies conducted in the Project Area, discussed below, groundwater is encountered at approximately 25 feet below ground surface (bgs).

b) Site land and/or water use(s)

(i) Historical

From 1889 to 1909, the Project Area consisted mainly of single-family residences with sheds and vacant land. Two single-family residences were constructed on the southernmost portion of the Project Area in that period. By 1969, the single-family residences were replaced by commercial and industrial uses. A presentation of the Site history is provided in this ERA Report.

(ii) Current

The Property Area is developed with transportation rail lines and landscaped areas on the northern portion and vegetated areas, a gravel access road, a stormwater facility (drainage ditch and inlet with an impermeable liner), and a fenced storage area on the southern portion. An active

signals/communications building for the Tilikum bridge train signals network, which consists of a steel-sided shed (~10 feet wide by ~25 feet long) is located in the central portion of the Subject Property. No habitable buildings are present on the Subject Property. Drinking water is supplied by the City of Portland and no water supply wells are on the Subject Property.

(2) COIs KNOWN OR SUSPECTED TO BE PRESENT

A summary of COIs known or suspected to be presented based on documents reviewed and a Site visit performed in March 2024 is presented in this ERA Report.

3. CURRENT AND FUTURE LAND USE AND ZONING

The Property Area is developed with transportation rail lines and landscaped areas on the northern portion and vegetated areas, a gravel access road, a stormwater facility (drainage ditch and inlet with an impermeable liner), and a fenced storage area on the southern portion. The Property Area is zoned Central Commercial (CX). The CX zone is defined as "a high density commercial zone intended for development within Portland's most urban and intense areas. The CX zone allows for intense development with high building coverage and large buildings placed close together. Development is intended to be pedestrian oriented with a strong emphasis on a safe and attractive streetscape." (City of Portland, Title 33.130.030(F)).

There is no planned change to the land use on the Subject Property.

4. SURFACE FEATURES AND TRANSPORT PATHWAYS

Pavement and Transportation Infrastructure

The Property is developed with transportation rail lines on the northern portion and vegetated areas, a gravel access road, a stormwater control facility, and fenced storage areas on the southern portion. Adjoining properties include South Sheridan Street to the north; South Moody Avenue to the east; commercial retail property to the south, and the Interstate 5 and the associated ROW to the west. Adjacent structures include Marquam Bridge to the north, South Moody Avenue to the east, Ross Island Bridge to the south, and Interstate 5 and associated ROW to the west.

Stormwater

Stormwater on the Subject Property either infiltrates directly into the permeable ground surface or is directed into a stormwater swale with an impermeable liner. Water flows through the swale for retention and evaporation, with overflow leaving the outlet on the south end of the swale, which ultimately discharges into the municipal stormwater system.

Structures

An active signals/communications building for the Tilikum bridge train signals network, which consists of a steel-sided shed (~10 feet wide by ~25 feet long) is located in the central portion of the Subject Property. No habitable buildings are present on the Subject Property.

5. HABITAT TYPE PRESENT ON OR ADJACENT TO THE SITE

(c) Ecological features (Part 3, Attachment 1)

The specific evaluation of ecological receptors / habitat checklist is included as Part 3 of Attachment 1. The majority of the site is characterized by constructed rail line area. Less than 20 percent of the area is characterized by ruderal vegetation.

(d) Ecologically important species/habitats (Part 4, Attachment 1)

Ecologically important species/habitats were not observed during the site visit. The specific evaluation of ecologically important species/habitats is included as Part 4 of Attachment 1.

(i) Threatened and/or endangered species

Based on a review of databases provided by Oregon Biodiversity Information Center, US Fish and Wildlife Service, and National Marine Fisheries Service, threatened and/or endangered species are not expected to occur on the Site. The databases indicate that the following threatened species are potentially present on the Subject Property: Northern Spotted Owl (*Strix occidentalis caurina*); Streaked Horned Lark (*Eremophila alpestris strigata*); Yellow-billed Cuckoo (*Coccyzus americanus*); and Nelson's Checker-mallow (*Sidalcea nelsoniana*). However, the Subject Property location does not overlap critical habitat areas for those potentially present threatened and/or endangered species and none were observed during the Site walk.

The character of parcels adjacent and to the north, east, and south of the Subject Property are pavement and urbanized impermeable features. A wooded ROW for Interstate 5 is the adjacent property to the west; as shown on Figure 3, approximately 0.5 acre of the ROW is wooded and defined as low value or not designated by Metro Fish and Wildlife Title 13 Habitat Conservation Area (HCA). The adjacent parcels do not overlap critical habitat for threatened and/or endangered species.

(e) Exposure pathways (Attachment 2)

There are no complete exposure pathways at the Subject Property.

Chemicals of interests in historical soil samples collected from surficial soils (surface to 3 feet bgs), either were not detected or were detected at concentrations less than the DEQ risk-based concentration (RBC) for urban residential direct ingestion pathway. Direct contact with contaminated surface soil and subsequent ingestion is a not a complete exposure pathway. COIs were detected at concentrations above the DEQ RBC for urban residential ingestion in one soil sample collected at 7 feet bgs.

In historical groundwater samples, total petroleum hydrocarbons (TPH) as diesel-range organics and TPH as residual-range oil were detected at concentrations exceeding the DEQ RBC for urban residential ingestion and inhalation and less than the DEQ RBC for urban residential ingestion and

inhalation. These constituents are present at low concentrations and additional groundwater data is not warranted.

(3) RECOMMENDATIONS

As documented herein, there are no potentially complete exposure pathways to ecological receptors on the Subject Property. A risk assessment is not warranted on the Subject Property and no further action is necessary.

GENERAL LIMITATIONS

The conclusions contained in this Technical Memorandum are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted industry practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

• Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.

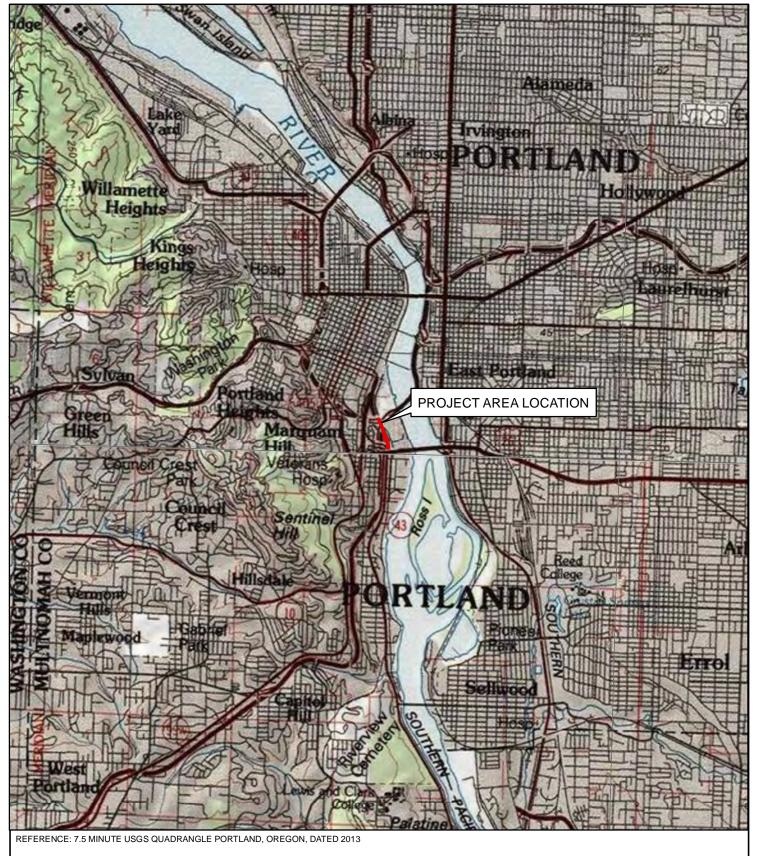
For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Project Area is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the ERA Report.

This ERA Report has been prepared in accordance with the *Professional Services Contract No. RC190192KN-D2* dated November 5, 2021 between Farallon and TriMet. This assessment is not intended to comply with ASTM International E1527 for a Phase I Environmental Site Assessment. No other warranties, representations, or certifications are made.

Attachments: Figure 1, Project Vicinity Map

Figure 2, *Project Plan*Figure 3, *Project Vicinity*Figure 4, *Topographic Map*

Figure 5, Project Plan Surface Features


Attachment A, Oregon Biodiversity Information Center Data Search Attachment B, Ecological Screening, Part 3, Attachments 1 and 2

SJ/CE:cm

FIGURES

TIER I ECOLOGICAL RISK ASSESSMENT SCOPING REPORT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

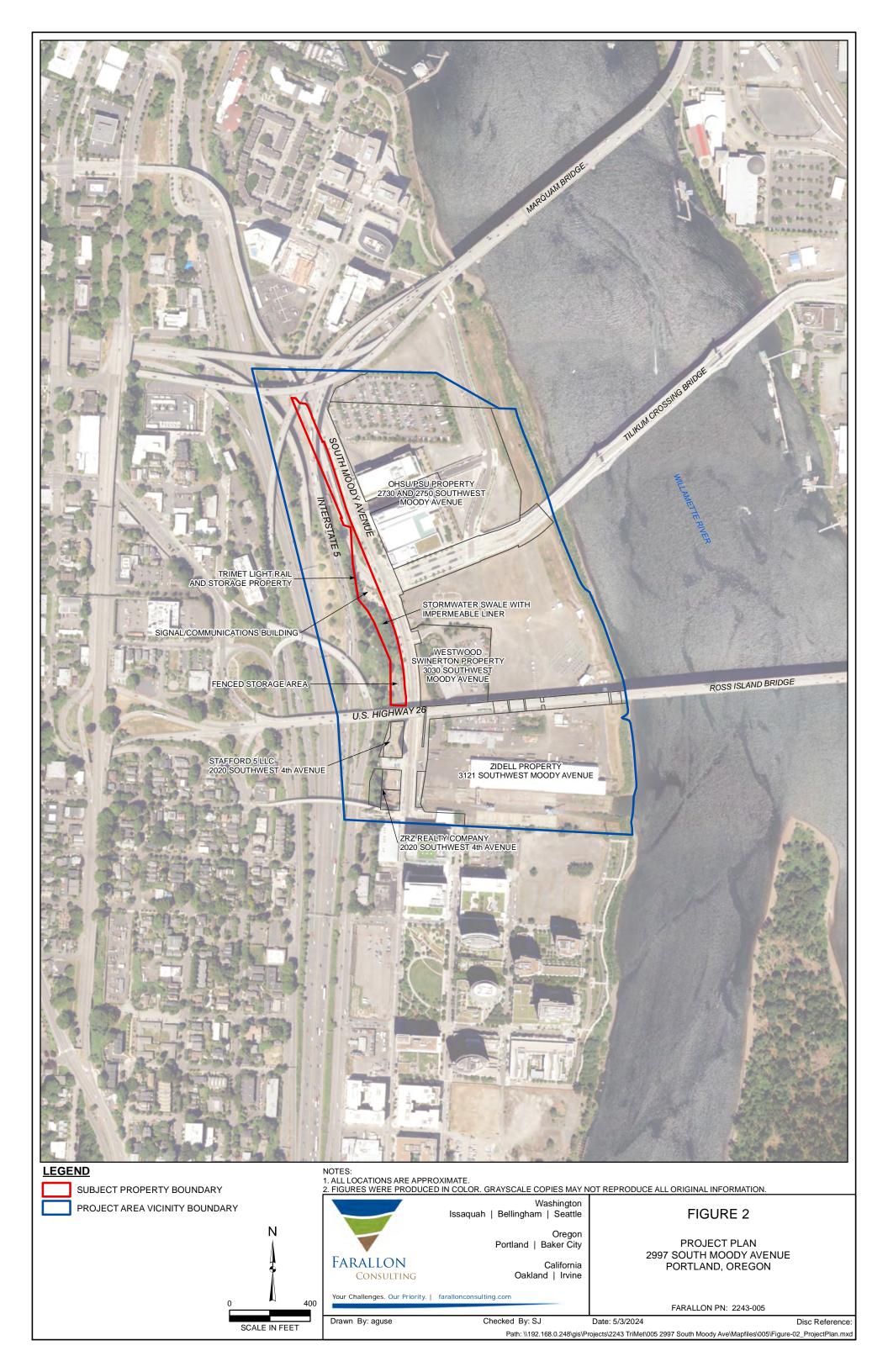
Drawn By:chartman

Washington Issaquah | Bellingham | Seattle

Oregon Portland | Baker City

California Oakland | Irvine

Challenges. Our Priority. | farallonconsulting.com


FARALLON PN: 2243-005

PROPERTY AREA VICINITY MAP 2997 SOUTH MOODY AVENUE PORTLAND, OREGON

FIGURE 1

Date: 8/25/2022

Disc Reference \\edgefs02\GIS\Projects\2243 TriMet\005 2997 South Moody Ave\Mapfiles\003\Figure-01_PropertyVicinity.mxd

ATTACHMENT A OREGON BIODIVERSITY INFORMATION CENTER DATA SEARCH

TIER I ECOLOGICAL RISK ASSESSMENT SCOPING REPORT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

Oregon Fish And Wildlife Office

(503) 231-6179

(503) 231-6195

NOT FOR CONSULTATION

2600 Southeast 98th Avenue, Suite 100 Portland, OR 97266-1398

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status</u> <u>page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).

2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Birds

NAME STATUS

Northern Spotted Owl Strix occidentalis caurina

Threatened

Wherever found

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/1123

Streaked Horned Lark Eremophila alpestris strigata

Threatened

Wherever found

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/7268

Yellow-billed Cuckoo Coccyzus americanus

Threatened

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/3911

Insects

NAME STATUS

Monarch Butterfly Danaus plexippus

Candidate

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/9743

Flowering Plants

NAME STATUS

Nelson's Checker-mallow Sidalcea nelsoniana

Threatened

Wherever found

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/7340

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

There are no critical habitats at this location.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern https://www.fws.gov/program/migratory-birds/species
- Measures for avoiding and minimizing impacts to birds
 https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds
- Nationwide conservation measures for birds https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf

The birds listed below are birds of particular concern either because they occur on the USFWS Birds of Conservation Concern (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ below. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the E-bird data mapping tool (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found below.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME	BREEDING SEASON
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.	Breeds Jan 1 to Sep 30
Black Swift Cypseloides niger This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/8878	Breeds Jun 15 to Sep 10
California Gull Larus californicus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Mar 1 to Jul 31
Cassin's Finch Carpodacus cassinii This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/9462	Breeds May 15 to Jul 15
Clark's Grebe Aechmophorus clarkii This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Jun 1 to Aug 31
Evening Grosbeak Coccothraustes vespertinus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 15 to Aug 10
Golden Eagle Aquila chrysaetos This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1680	Breeds Jan 1 to Aug 31

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Olive-sided Flycatcher Contopus cooperi

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3914

Breeds May 20 to Aug 31

Rufous Hummingbird selasphorus rufus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/8002

Breeds Apr 15 to Jul 15

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds Jun 1 to Aug 10

Western Grebe aechmophorus occidentalis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/6743

Breeds Jun 1 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

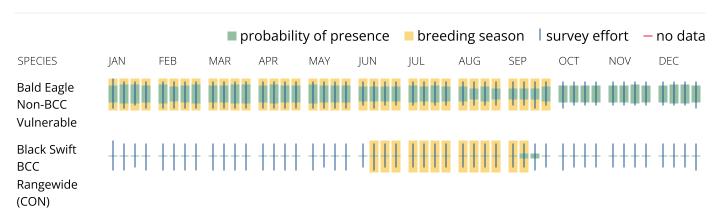
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

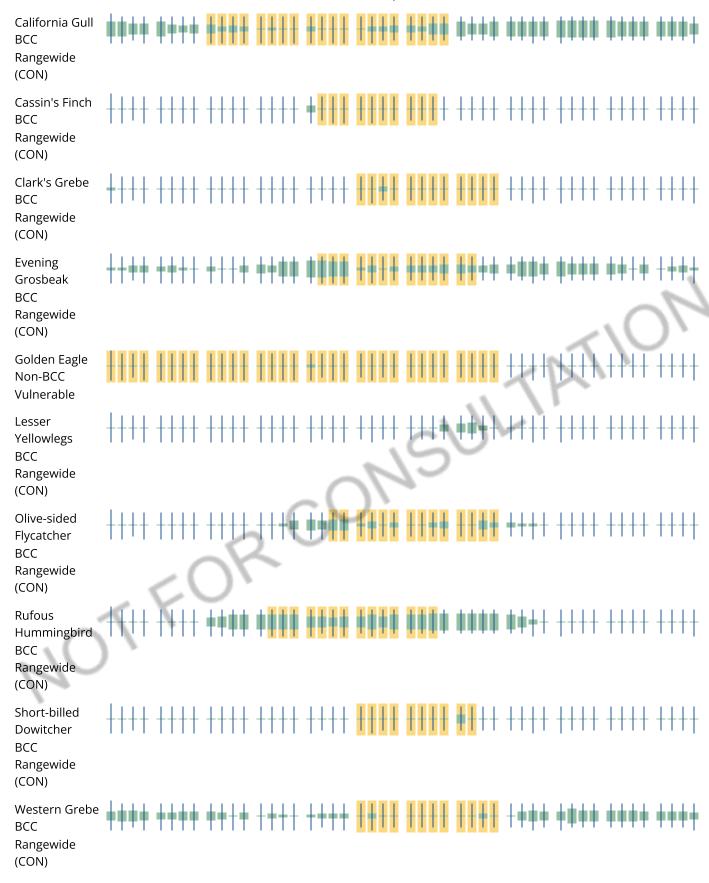
Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the list of migratory birds that potentially occur in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>Rapid Avian Information Locator (RAIL) Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering or migrating in my area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may query your location using the RAIL Tool and look at the range maps provided for birds in your area at the bottom of the profiles provided for each bird in your results. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin

Islands);

- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Fagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be

confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Coastal Barrier Resources System

Projects within the John H. Chafee Coastal Barrier Resources System (CBRS) may be subject to the restrictions on Federal expenditures and financial assistance and the consultation requirements of the Coastal Barrier Resources Act (CBRA) (16 U.S.C. 3501 et seq.). For more information, please contact the local Ecological Services Field Office or visit the CBRA Consultations website. The CBRA website provides tools such as a flow chart to help determine whether consultation is required and a template to facilitate the consultation process.

There are no known coastal barriers at this location.

Data limitations

The CBRS boundaries used in IPaC are representations of the controlling boundaries, which are depicted on the <u>official CBRS maps</u>. The boundaries depicted in this layer are not to be considered authoritative for in/out determinations close to a CBRS boundary (i.e., within the "CBRS Buffer Zone" that appears as a hatched area on either side of the boundary). For projects that are very close to a CBRS boundary but do not clearly intersect a unit, you may contact the Service for an official determination by following the instructions here: https://www.fws.gov/service/coastal-barrier-resources-system-property-documentation

Data exclusions

CBRS units extend seaward out to either the 20- or 30-foot bathymetric contour (depending on the location of the unit). The true seaward extent of the units is not shown in the CBRS data, therefore projects in the offshore areas of units (e.g., dredging, breakwaters, offshore wind energy or oil and gas projects) may be subject to CBRA even if they do not intersect the CBRS data. For additional information, please contact CBRA@fws.gov.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

There are no refuge lands at this location.

Fish hatcheries

There are no fish hatcheries at this location.

Wetlands in the National Wetlands Inventory (NWI)

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Wetland information is not available at this time

This can happen when the National Wetlands Inventory (NWI) map service is unavailable, or for very large projects that intersect many wetland areas. Try again, or visit the <u>NWI map</u> to view wetlands at this location.

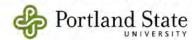
Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions


Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate Federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Oregon Biodiversity Information

Institute for Natural Resources

Mail Stop: INR Post Office Box 751 Portland, Oregon 97207 503.725.9950 http://inr.oregonstate.edu/orbic

December 5, 2022

Sam Jackson Farallon Consulting, LLC 4380 SW Macadam, Suite 500 Portland, OR 97239

Dear Mr. Jackson:

Thank you for requesting information from the Oregon Biodiversity Information Center (ORBIC). We have conducted a data system search for rare, threatened, and endangered plant, animal, and fungi records for your 2997 S Moody Ave Project in Portland.

Fifteen (15) element occurrence records were noted within a two-mile radius of your project and are included on the enclosed database report.

Please remember that a lack of rare element information from a given area does not necessarily indicate there are no significant elements present, only that there is no information known to us from the site. To ensure there are no significant elements present that may be affected by your project, you should inventory the site during the appropriate season.

This data is confidential and for the specific purposes of your project and is **not to be distributed**. Please also note that as our database is continually updated, the data in this report should be considered current for a maximum of one year from the date it was generated and should not be cited thereafter.

Please forward the included invoice to the appropriate party in your organization for payment.

If you need additional information or have any further questions, please do not hesitate to contact me.

Sincerely,

Lindsey Wise

Biodiversity Data Manager

lindsey.wise@pdx.edu

503.725.9951

encl.: invoice (INR-120522-LKW3)

database report and data key

Oregon Biodiversity Information Center

Institute for Natural Resources

Portland State

Mail Stop: INR
Post Office Box 751
Portland, Oregon 97207
503.725.9950
http://inr.oregonstate.edu/orbic

Invoice Number: INR-120522-LKW3

Index: OBC104

INVOICE

TO: Farallon Consulting, LLC 4380 SW Macadam, Suite 500

Portland, OR 97239

ATTN: Accounts Payable

DATE: 12/5/2022

RE: Data system search for rare, threatened, and endangered plants, animals, and fungi in the vicinity of Portland. Requested by Sam Jackson (sjackson@farallonconsulting.com) for the 2997 S Moody Ave Project.

For services and products:

TOTAL DUE (UCD).	@ 155 35
Staff time (0.75 hours @ \$115/hour)	\$ 86.25
Computer fee (flat rate)	\$ 60.00
Computer records (15 @ \$0.6/record)	\$ 9.00

TOTAL DUE (USD):

\$ 155.25

Please make checks payable to: PSU - Institute for Natural Resources

Please include invoice number INR-120522-LKW3 on your check.

Remit to:

Institute for Natural Resources / INR Portland State University P.O. Box 751 Portland, OR 97207-0751

Terms: Net 30

170900120202 - Balch Creek-Willamette River

Scientific Name: Acipenser medirostris EO NUM: 1

Common Name: Green sturgeon EO ID: 19198

Category: Vertebrate Animal Federal Status: SOC G Rank: G2 ORBIC List: ELCODE: AFCAA01030 State Status: SRank: S3 Tracked: N

Confirmed: First Obs: 1991-Pre Last Obs: 1991-Pre EO Rank:

Directions: COLUMBIA RIVER AND ESTUARY, UPSTREAM TO BONNEVILLE DAM. WILLAMETTE RIVER BELOW WILLAMETTE

FALLS.

County Name Owner Name/Type Ecoregion Watershed Clackamas CR STATE 170800010801 - Tanner Creek-Columbia River ME Clatsop 170800010802 - Woodard Creek-Columbia River WC Columbia 170800010803 - Bridal Veil Creek-Columbia River WV Multnomah 170800010804 - Latourell Creek-Columbia River 170800030200 - Hayden Island-Columbia River 170800030900 - Cathlamet Channel-Columbia River 170800060500 - Baker Bay-Columbia River 170900070405 - Tanner Creek-Willamette River 170900120104 - Oswego Creek-Willamette River

Managed Area Name

Oregon Island Wilderness Area

Oregon bloatversity information ochter	December	LULL
Town/Range Sect Meridian TRS Note 001N001E - 01 - WM -	QuadCode 45121-E8	QuadNan Tanner B
001N001E - 01 - WM -	45121-F8	Bonnevill
001N001E - 18 - WM -	45122-C5	
001N001E - 19 - WM -	45122-D5	Gladston
001N001E - 20 - WM -	45122-D6	Lake Osv
	45122-E1	Multnoma
001N001E - 27 - WM -	45122-E2	Bridal Ve
001N001E - 28 - WM - 001N001E - 34 - WM -	45122-E3	Washoug
001N001W - 02 - WM -	45122-E4	Camas
001N001W - 11 - WM -	45122-E5	Mount Ta
001N001W - 11 - WM -	45122-E6	Portland
001N001W - 12 - WM -	45122-E7	Linnton
001N002E - 03 - WM -	45122-F6	
001N002E - 04 - WM -	45122-F7	Sauvie Is
001N002E - 05 - WM -	45122-G7	Saint Hel
001N002E - 06 - WM -	45122-H7	Deer Isla
001N002E - 10 - WM -	46122-A7	
001N002E - 10 - WM -	46122-A8	
001N002E - 12 - WM -	46122-B8	
001N003E - 07 - WM -	46123-B1	Coal Cre
001N003E - 13 - WM -	46123-B2	
001N003E - 13 - WM -	46123-B3	Nassa Po
001N003E - 15 - WM -	46123-B4	Cathlame
001N003E - 16 - WM -	46123-B6 46123-B7	Cathlame Astoria
001N003E - 17 - WM -	46123-B8	Warrento
001N004E - 18 - WM -	46123-C4	Skamoka
001N004E - 20 - WM -	46123-C5	
001N004E - 26 - WM -	46123-C6	Rosburg
001N004E - 27 - WM -	46124-B1	Clatsop S
001N004E - 27 - WM -	1012121	Cidicop C
001N005E - 12 - WM -		
001N005E - 14 - WM -		
001N005E - 15 - WM -		
001N005E - 19 - WM -		
001N005E - 20 - WM -		
001N005E - 21 - WM -		
001N006E - 03 - WM -		
001N006E - 04 - WM -		
001N006E - 07 - WM -		
001N006E - 08 - WM -		
001S001E - 03 - WM -		
001S001E - 10 - WM -		
001S001E - 15 - WM -		
001S001E - 22 - WM -		
001S001E - 26 - WM -		
001S001E - 27 - WM -		
001S001E - 35 - WM -		
002N001E - 19 - WM -		
002N001E - 20 - WM -		
002N001E - 28 - WM -		
002N001E - 29 - WM -		
002N001E - 33 - WM -		
002N001E - 34 - WM -		
002N001E - 35 - WM -		
002N001W - 02 - WM -		
002N001W - 11 - WM -		
002N001W - 13 - WM -		
002N001W - 14 - WM -		
002N001W - 14 - WM -		
002N001W - 23 - WM -		
552,100 (11 - 20 - 1111) -		

ime Butte lle Dam City ne swego nah Falls eil igal abor /er Island elens and eek nt oint net net Bay on awa iver Spit

2997 S Moody Ave Project - Page 2 of 27

002N001W - 24 - WM -002N001W - 27 - WM -002N001W - 34 - WM -002N001W - 35 - WM -002N006E - 34 - WM -002N006E - 35 - WM -002N006E - 36 - WM -002N007E - 21 - WM -002N007E - 29 - WM -002N007E - 30 - WM -002N007E - 31 - WM -002S001E - 02 - WM -002S001E - 11 - WM -002S001E - 13 - WM -002S001E - 14 - WM -002S001E - 24 - WM -002S002E - 19 - WM -002S002E - 30 - WM -002S002E - 31 - WM -003N001W - 02 - WM -003N001W - 11 - WM -003N001W - 26 - WM -003N001W - 35 - WM -004N001W - 03 - WM -004N001W - 10 - WM -004N001W - 15 - WM -004N001W - 22 - WM -004N001W - 27 - WM -004N001W - 35 - WM -005N001W - 04 - WM -005N001W - 09 - WM -005N001W - 16 - WM -005N001W - 21 - WM -005N001W - 27 - WM -005N001W - 34 - WM -006N001W - 07 - WM -006N001W - 18 - WM -006N001W - 19 - WM -006N001W - 20 - WM -006N001W - 29 - WM -006N001W - 33 - WM -006N002W - 01 - WM -006N002W - 12 - WM -007N002W - 06 - WM -007N002W - 07 - WM -007N002W - 08 - WM -007N002W - 15 - WM -007N002W - 16 - WM -007N002W - 23 - WM -007N002W - 25 - WM -007N002W - 26 - WM -007N002W - 36 - WM -007N003W - 01 - WM -008N003W - 19 - WM -008N003W - 20 - WM -008N003W - 27 - WM -

008N003W - 28 - WM -008N003W - 35 - WM -008N003W - 36 - WM -008N004W - 10 - WM -008N004W - 11 - WM -

```
008N004W - 13 - WM -
  008N004W - 16 - WM -
  008N004W - 17 - WM -
  008N004W - 19 - WM -
  008N004W - 20 - WM -
  008N005W - 24 - WM -
  008N005W - 25 - WM -
  008N005W - 26 - WM -
  008N005W - 27 - WM -
  008N005W - 28 - WM -
  008N005W - 29 - WM -
  008N005W - 30 - WM -
  008N006W - 04 - WM -
  008N006W - 09 - WM -
  008N006W - 15 - WM -
  008N006W - 16 - WM -
  008N006W - 22 - WM -
  008N006W - 23 - WM -
  008N006W - 25 - WM -
  008N006W - 26 - WM -
  008N009W - 03 - WM -
  008N009W - 07 - WM -
  008N010W - 04 - WM -
  008N010W - 10 - WM -
  008N010W - 12 - WM -
  009N006W - 18 - WM -
  009N006W - 20 - WM -
  009N006W - 28 - WM -
  009N006W - 33 - WM -
  009N007W - 15 - WM -
  009N008W - 20 - WM -
  009N008W - 21 - WM -
  009N008W - 22 - WM -
  009N008W - 29 - WM -
  009N009W - 35 - WM -
  009N009W - 36 - WM -
  009N010W - 31 - WM -
                                                                        Annual Observations
                 Uncertainty Type (Distance) [Use Class]
Source Feature
19198 - Line
                                   Undetermined
                  Linear (8 m)
38085 - Line
                                   Undetermined
                  Linear (8 m)
 SFeat ID Visit Date
                       Visit Data
                                                                                       Visit Dataset
                                                                                                        Dataset Record ID
Occurence Data
        EO Type: YEAR-ROUND - fish
                                                                            Min. Elev.(m):
 Population Data: NO COLLECTION INFORMATION AVAILABLE, GREEN STURGEON ADULTS ARE ABUNDANT AND THE NUMBERS ARE
                 STABLE IN THE LOWER COLUMBIA RIVER. THEY ARE RARELY FOUND IN THE COLUMBIA RIVER FROM PUGET ISLAND
                 (RM40) UPSTREAM TO BONNEVILLE DAM AND TO WILLAMETTE FALLS IN THE WILLAMETTE RIVER. (1995 ODFW BIENNIAL
                 REPORT ON THE STATUS OF WILD FISH IN OREGON)
         Habitat:
       Protection:
    Management:
      References: NOAA 1991; Oregon Department of Fish and Wildlife 1995; Smith
      Specimens:
         GENERAL: GREEN STURGEON NOT ABUNDANT IN ANY PACIFIC COAST ESTUARY, LITTLE IS KNOWN ABOUT ITS LIFE
                 HISTORY. THIS SPECIES MORE MARINE ORIENTED THAN WHITE STURGEON AND SPENDS LIMITED AMOUNT
```

OF TIME IN FRESHWATER (EXCEPT PERHAPS EARLY JUVENILES AND SPAWNING ADULTS). B91NOA01ORUS.

Scientific Name: Batrachoseps wrighti

Common Name: Oregon slender salamander

EO NUM: 272

EO ID: 36895

Category: Vertebrate Animal Federal Status: SOC G Rank: G3 ORBIC List: 4
ELCODE: AAAAD02100 State Status: S S Rank: S3 Tracked: W

Confirmed: First Obs: 2007 Last Obs: 2007 EO Rank: E - Verified extant (viability not assessed)

Directions: On the East Side of the River, across from the Ross Island Bridge.

<u>County Name</u> <u>Ecoregion</u> <u>Owner Name/Type</u> <u>Watershed</u>

Multnomah WV 170900120202 - Balch Creek-Willamette River

Town/Range Sect Meridian TRS Note QuadCode QuadName Managed Area Name

001S001E - 14 - WM - 45122-D6 Lake Oswego

Source Feature Uncertainty Type (Distance) [Use Class]

Annual Observations

74754 - Point Estimated (100 m) Not applicable

<u>SFeat ID</u> <u>Visit Date</u> <u>Visit Data</u> <u>Visit Data</u> <u>Dataset Record ID</u>

74754 2007 2 salamanders observed during ODFW Oregon Slender Project.

Occurence Data

EO Type: Min. Elev.(m): 61

Population Data: 2007: 2 salamanders observed.

Habitat: Protection: Management:

References: Oregon Department of Fish and Wildlife 2014

Specimens: General:

Scientific Name: Chrysemys picta EO NUM: 61
Common Name: Painted turtle EO ID: 20014

Category: Vertebrate Animal Federal Status: G Rank: G5 ORBIC List: 2
ELCODE: ARAAD01010 State Status: SC S Rank: S2 Tracked: Y

Confirmed: First Obs: 1965-04-10 Last Obs: 1965-04-10 EO Rank: H - Historical

Directions: HOYT PARK, FAIRVIEW BOULEVARD.

County Name Ecoregion Owner Name/Type Watershed

Multnomah CR CITY 170900120202 - Balch Creek-Willamette River

Town/Range Sect Meridian TRS Note QuadCode QuadName Managed Area Name

001S001E - 05 - WM - 45122-E6 Portland

Source Feature Uncertainty Type (Distance) [Use Class] Annual Observations

20014 - Point Estimated (800 m) Not applicable

<u>SFeat ID</u> <u>Visit Date</u> <u>Visit Data</u> <u>Visit Data</u> <u>Visit Dataset</u> <u>Dataset Record ID</u>

20014 1965-04-10 1965: 1 INDIVIDUAL COLLECTED OBSERVER: CAVANAGH, R.

PORTLAND STATE UNIVERSITY SPECIMEN #002431.

Occurence Data

EO Type: Min. Elev.(m): 235

Population Data: 1965: 1 INDIVIDUAL COLLECTED

Habitat: Protection: Management: References: Bruce

Specimens:

General: OBSERVER: CAVANAGH, R. PORTLAND STATE UNIVERSITY SPECIMEN #002431.

Scientific Name: Cimicifuga elata var. elata

Common Name: Tall bugbane

EO NUM: 51

EO ID: 14823

Category: Vascular Plant Federal Status: G Rank: G4T3? ORBIC List: 3
ELCODE: PDRAN0T012 State Status: C S Rank: S3? Tracked: Y

Confirmed: First Obs: 1990 Last Obs: 1990-07-11 EO Rank: D - Poor estimated viability

Directions: SENTINEL HILL, PORTLAND, JUST EAST OF POWERLINE BELOW INTERSECTION OF FAIRMOUNT BLVD. AND

MARQUAM HILL RD.

<u>County Name</u> <u>Ecoregion</u> <u>Owner Name/Type</u> <u>Watershed</u>

Multnomah CR PRIVATE 170900120202 - Balch Creek-Willamette River

Town/Range Sect Meridian TRS Note QuadCode QuadName Managed Area Name

001S001E - 09 - WM - 45122-D6 Lake Oswego

Source Feature Uncertainty Type (Distance) [Use Class] Annual Observations

14823 - Point Estimated (50 m) • 1990 - 1 PLANT

SFeat ID Visit Date Visit Data Visit Data Dataset Record ID

Occurence Data

EO Type: Min. Elev.(m): 244

Population Data: 1 PLANT, IN FLOWER.

Habitat: NORTH FACING SLOPE 2 METERS ABOVE SMALL INTERMITTENT STREAM: ACMA OVERSTORY, WITH ACCI,

COCO, SYAL, POMU. THICK CARPET OF IVY COVERING THE GROUND.

Protection: THREATS: DEVELOPMENT, IVY ENCROACHMENT.

Management:

References: Alverson

Specimens: General:

Scientific Name: Corynorhinus townsendii EO NUM: 94
Common Name: Townsend's big-eared bat EO ID: 6409

Category: Vertebrate Animal Federal Status: No status G Rank: G4 ORBIC List: 2
ELCODE: AMACC08010 State Status: SC S Rank: S2 Tracked: Y

Confirmed: First Obs: 1914 Last Obs: 1928-09-05 EO Rank: H - Historical

Directions: Sensitive Data - contact ORBIC for more information

County Name Ecoregion Owner Name/Type Watershed

Multnomah WV PRIVATE 170800030104 - Lake River-Frontal Columbia River 170800030200 - Hayden Island-Columbia River

170900100401 - Beaverton Creek 170900100502 - Fanno Creek 170900120103 - Lower Johnson Creek 170900120201 - Columbia Slough

170900120202 - Balch Creek-Willamette River

Town/Range Sect Meridian TRS Note Managed Area Name

001N001E - 25 - WM -

Source Feature Uncertainty Type (Distance) [Use Class]

Annual Observations

6409 - Point Estimated (8050 m) Undetermined

<u>SFeat ID</u> <u>Visit Data</u> <u>Visit Data</u> <u>Dataset Record ID</u>

EO Type: Min. Elev.(m): 46

Population Data: Sensitive Data - contact ORBIC for more information

Habitat: Protection: Management:

Occurence Data

References: Bailey 1936; Maser 1981

Specimens:

General:

Entosphenus tridentatus Scientific Name:

Common Name: Pacific lamprey EO NUM: 56

EO ID: 38458

Category:

Vertebrate Animal

Ecoregion

CR

WV

Federal Status: SOC

G Rank: G4

ORBIC List: 2

ELCODE:

County Name

Clackamas

Multnomah

Columbia

AFBAA02100

State Status: S

S Rank: S1S2

Tracked: Y

Confirmed:

First Obs: 2011

Last Obs: 2012

Owner Name/Type

EO Rank: E - Verified extant (viability not assessed)

Directions: Lower Columbia to Willamette

Watershed

170800010804 - Latourell Creek-Columbia River

170800030200 - Hayden Island-Columbia River

170800030900 - Cathlamet Channel-Columbia River

170900070405 - Tanner Creek-Willamette River

170900120101 - Upper Johnson Creek

170900120102 - Kellogg Creek

170900120103 - Lower Johnson Creek

170900120104 - Oswego Creek-Willamette River

170900120202 - Balch Creek-Willamette River

170900120301 - South Scappoose Creek

170900120302 - North Scappoose Creek

170900120303 - Milton Creek

170900120304 - Scappoose Creek

170900120305 - Multnomah Channel

oregon bloatversity information (
Town/Range Sect Meridian TRS Note 001N001E - 18 - WM -
001N001E - 19 - WM -
001N001E - 20 - WM -
001N001E - 21 - WM -
001N001E - 27 - WM -
001N001E - 28 - WM -
001N001E - 34 - WM -
001N001W - 02 - WM -
001N001W - 11 - WM -
001N001W - 12 - WM -
001N001W - 13 - WM -
001N002E - 03 - WM -
001N002E - 04 - WM -
001N002E - 05 - WM -
001N002E - 06 - WM -
001N002E - 11 - WM -
001N002E - 12 - WM -
001N003E - 07 - WM -
001N003E - 13 - WM -
001N003E - 14 - WM -
001N003E - 15 - WM -
001N003E - 16 - WM -
001N003E - 17 - WM -
001S001E - 03 - WM -
001S001E - 10 - WM -
001S001E - 15 - WM -
001S001E - 22 - WM -
001S001E - 23 - WM -
001S001E - 24 - WM -
001S001E - 26 - WM -
001S001E - 27 - WM -
001S001E - 35 - WM -
001S001E - 36 - WM -
001S002E - 13 - WM -
001S002E - 15 - WM -
001S002E - 19 - WM -
001S002E - 20 - WM -
001S002E - 21 - WM -
001S002E - 22 - WM - 001S002E - 23 - WM -
001S002E - 23 - WM - 001S002E - 24 - WM -
001S002E - 24 - WM -
001S002E - 26 - WM -
001S002E - 29 - WM -
001S002E - 30 - WM -
001S002E - 34 - WM -
001S002E - 35 - WM -
001S003E - 16 - WM -
001S003E - 17 - WM -
001S003E - 18 - WM -
002N001E - 19 - WM -
002N001E - 20 - WM -
002N001E - 28 - WM -
002N001E - 29 - WM -
002N001E - 34 - WM -
002N001E - 35 - WM -
002N001W - 02 - WM -
002N001W - 11 - WM -
002N001W - 13 - WM -
002N001W - 14 - WM -

DEC 15 1 10 1	2022	- Carta 1004 CA 17 April 17
uadCode		Managed Area Name
15122-C5		
15122-D4		
15122-D5	Gladstone	
15122-D6	Lake Oswego	
15122-E4		
15122-E5		
15122-E6		
15122-E7		
	Vancouver	
	Sauvie Island	
15122-F8		
15122-G7		
15122-G8		
15122-H8	Trenholm	

- 002N001W 22 WM -
- 002N001W 23 WM -
- 002N001W 24 WM -
- 002N001W 27 WM -
- 002N001W 34 WM -
- 002N001W 35 WM -
- 002S001E 01 WM -
- 002S001E 02 WM -
- 002S001E 11 WM -
- 00200012 11 11111
- 002S001E 13 WM -
- 002S001E 14 WM -
- 002S001E 24 WM -
- 002S002E 03 WM -
- 002S002E 04 WM -
- 002S002E 05 WM -
- 002S002E 06 WM -
- 002S002E 19 WM -
- 002S002E 30 WM -
- 003N001W 02 WM -
- 003N001W 23 WM -
- 003N001W 26 WM -
- 003N001W 35 WM -
- 003N002W 01 WM -
- 003N002W 02 WM -
- 003N002W 12 WM -
- 003N002W 13 WM -
- 003N002W 14 WM -
- 003N002W 15 WM -
- 003N002W 22 WM -
- 004N001W 03 WM -
- 004N001W 04 WM -
- 004N001W 05 WM -
- 004N001W 06 WM -004N001W - 09 - WM -
- 004N001W 10 WM -
- 004N001W 10 WM -
- 004N001W 16 WM -
- 004N001W 17 WM -
- 004N001W 20 WM -
- 004N001W 22 WM -
- 004N001W 27 WM -
- 004N001W 29 WM -004N001W - 30 - WM -
- 004N001W 31 WM -
- 004N001W 35 WM -
- 004N002W 01 WM -
- 004N002W 02 WM -
- 004N002W 27 WM -
- 004N002W 34 WM -
- 004N002W 35 WM -004N002W - 36 - WM -
- 005N001W 31 WM -
- 005N001W 32 WM -
- 005N002W 16 WM -
- 005N002W 17 WM -005N002W - 21 - WM -
- 005N002W 22 WM -
- 005N002W 26 WM -
- 005N002W 27 WM -
- 005N002W 35 WM -

Source Fea	ture	Uncertainty Type (Dist	ance) [Use Class] Annual Observations
76686 - Li	ne	Negligible (8 m)	Freshwater
76684 - Li	ne	Negligible (8 m)	Freshwater
63524 - Li	ne	Negligible (8 m)	Undetermined
3315 - Li	ne	Negligible (8 m)	Undetermined
32956 - Li	ne	Negligible (8 m)	Undetermined
3625 - Li		Negligible (8 m)	Undetermined
3420 - Li		Negligible (8 m)	Undetermined
3081 - Li		Negligible (8 m)	Undetermined
3084 - Li		Negligible (8 m)	Undetermined
3684 - Li		Negligible (8 m)	Undetermined
3393 - Li	37	Negligible (8 m)	Undetermined
3936 <i>-</i> Li		Negligible (8 m)	Freshwater
3373 - Li			
		Negligible (8 m)	Undetermined
3920 - Li		Negligible (8 m)	Freshwater
3853 - Li		Negligible (8 m)	Freshwater
3854 - Li		Negligible (8 m)	Freshwater
3852 - Li	ne	Negligible (8 m)	Freshwater
SFeat ID	Visit Da	ate Visit Data	Visit Dataset
63684	2012	Use type: Unkn data steward: E	own. Downstream documented fish observation. Agency crik Suring.
63625	2012	Use type: Unkn data steward: E	own. Downstream documented fish observation. Agency rik Suring.
62956	2011	Use type: Unkn	own. Documented fish observation. Agency data steward: .
63420	2011	Use type: Unkn data steward: E	own. Downstream documented fish observation. Agency
63081	2011	Use type: Unknown. Documented fish observation. Agency data steward: Erik Suring.	
63084	2011	Use type: Unkn data steward: E	own. Downstream documented fish observation. Agency rik Suring.
63393	2011	Use type: Spaw Eric Brown.	rning. Documented fish observation. Agency data steward:
63936	2011	Eric Brown.	vning. Documented fish observation. Agency data steward:
63373	2011	Eric Brown.	vning. Documented fish observation. Agency data steward:
63920	2011	Eric Brown.	vning. Documented fish observation. Agency data steward:
63853	2011	Eric Brown.	vning. Documented fish observation. Agency data steward:
63854 63852	2011	Eric Brown.	ning. Documented fish observation. Agency data steward:
63524	2011	Eric Brown.	vning. Documented fish observation. Agency data steward: vning. Documented fish observation. Agency data steward:
63315	2011	Eric Brown.	ning. Documented fish observation. Agency data steward:
		Eric Brown.	Ting. Documented list observation. Agency data steward.
ccurence			Min Floy (m):
	O Type:	2011: Use type: Unkny	Min. Elev.(m):
opulation			own. Documented fish observation. Agency data steward: .
Pro	Habitat: otection:		
Mana	gement:		
	•	ODFW 2012	
Spe	cimens:		
			of the ODFW Oregon Fish Habitat Distribution - Pacific Lamprey geodatabase; these data are
	Serieral.		d describe areas of suitable habitat currently and historically used by Pacific lamprey populations.

Scientific Name: Fluminicola fuscus EO NUM: 20

Common Name: Columbia pebblesnail EO ID: 41137

Category: Invertebrate Animal Federal Status: SOC G Rank: G2 ORBIC List: 2
ELCODE: IMGASG3500 State Status: S Rank: S1 Tracked: Y

Confirmed: First Obs: 1999 Last Obs: 1999 EO Rank: E - Verified extant (viability not assessed)

Directions: North of the Morrison Bridge, Downtown Portland

<u>County Name</u> <u>Ecoregion</u> <u>Owner Name/Type</u> <u>Watershed</u>

Multnomah WV City of Portland 170900120202 - Balch Creek-Willamette River

Town/Range Sect Meridian TRS Note QuadCode QuadName Managed Area Name

001N001E - 34 - WM - 45122-E6 Portland

Source Feature Uncertainty Type (Distance) [Use Class] Annual Observations
82529 - Point Estimated (50 m) Not applicable

Annual Observations
• 1999 - 2 snails

SFeat ID Visit Date Visit Data Visit Data Visit Dataset Record ID

82529 1999 Catalog Number:473990; Specimen Count: 2; Accessed: 2012; Conditions:

Dry

Occurence Data

EO Type: Min. Elev.(m): 15

Population Data: 1999: 2 specimen observed

Habitat: Protection: Management:

References: Smithsonian National Museum of Natural History 2012; Xerces 2017

Specimens

General: Data was retrieved from the Xerces Society rare invertebrate database of 2017

Scientific Name: Fluminicola virens EO NUM: 1

Common Name: Olympia pebblesnail EO ID: 32254

Category: Invertebrate Animal Federal Status: G Rank: G2 ORBIC List: 2
ELCODE: IMGASG3600 State Status: S Rank: S2 Tracked: Y

Confirmed: First Obs: 1996-pre Last Obs: 1996-pre EO Rank: H - Historical Directions: Willamette River, from Corvallis to its mouth, and the lower Columbia River below Portland.

 County Name
 Ecoregion
 Owner Name/Type
 Watershed

 Benton
 WV
 170800030200 - Hayden Island-Columbia River

 Clackamas
 170900030609 - Frazier Creek-Willamette River

| Transport | Tran

170900070301 - Croisan Creek-Willamette River
170900070303 - Glenn Creek-Willamette River
170900070304 - Lambert Slough-Willamette River
170900070307 - Hess Creek-Willamette River
170900070401 - Corral Creek-Willamette River
170900070402 - Coffee Lake Creek-Willamette River

17090070405 - Tanner Creek-Willamette River 170900120104 - Oswego Creek-Willamette River 170900120202 - Balch Creek-Willamette River

Oregon Biodiversity Information
Town/Range Sect Meridian TRS No
001N001E - 18 - WM -
001N001E - 19 - WM -
001N001E - 20 - WM -
001N001E - 21 - WM -
001N001E - 27 - WM -
001N001E - 28 - WM -
001N001E - 34 - WM -
001N001W - 02 - WM -
001N001W - 11 - WM -
001N001W - 12 - WM -
001N001W - 13 - WM -
001S001E - 03 - WM -
001S001E - 10 - WM -
001S001E - 15 - WM -
001S001E - 22 - WM -
001S001E - 26 - WM -
001S001E - 27 - WM -
001S001E - 35 - WM -
002N001W - 13 - WM -
002N001W - 14 - WM -
002N001W - 22 - WM -
002N001W - 23 - WM -
002N001W - 27 - WM -
002N001W - 34 - WM -
002N001W - 35 - WM -
002S001E - 02 - WM -
002S001E - 11 - WM -
002S001E - 13 - WM -
002S001E - 14 - WM -
002S001E - 24 - WM -
002S001E - 36 - WM -
002S002E - 19 - WM -
002S002E - 30 - WM -
002S002E - 31 - WM -
003S001E - 01 - WM -
003S001E - 02 - WM -
003S001E - 10 - WM -
003S001E - 11 - WM -
003S001E - 15 - WM -
003S001E - 19 - WM -
003S001E - 20 - WM -
003S001E - 21 - WM -
003S001E - 22 - WM -
003S001E - 23 - WM -
003S001E - 27 - WM -
003S001W - 22 - WM -
003S001W - 23 - WM -
003S001W - 24 - WM -
003S001W - 27 - WM -
003S001W - 28 - WM -
003S001W - 29 - WM -
003S001W - 31 - WM -
003S001W - 32 - WM -
003S002W - 29 - WM -
003S002W - 30 - WM -
003S002W - 31 - WM -
003S002W - 32 - WM -
003S002W - 33 - WM -
003S002W - 34 - WM -
003S002W - 35 - WM -

QuadCode	QuadName	Managed Area Name
44123-E2	Riverside	
44123-E3	Corvallis	
44123-F1	Albany	
44123-F2	Lewisburg	
44123-G1	Sidney	
44123-G2	Monmouth	
44123-H1	Salem West	
44123-H2	Rickreall	
45122-A8	Gervais	
45122-B8	Saint Paul	
45122-C5	Oregon City	
45122-C6	Canby	
45122-C7	Sherwood	
45122-C8	Newberg	
45122-D5	Gladstone	
45122-D6	Lake Oswego	
45122-E6	Portland	
45122-E7	Linnton	
45122-F7	Sauvie Island	
45123-A1	Mission Bottom	
45123-B1	Dayton	
45123-C1	Dundee	

003S003W - 36 - WM -004S001W - 06 - WM -004S002W - 01 - WM -004S002W - 02 - WM -004S003W - 01 - WM -004S003W - 12 - WM -004S003W - 13 - WM -004S003W - 14 - WM -004S003W - 15 - WM -004S003W - 22 - WM -004S003W - 23 - WM -004S003W - 26 - WM -004S003W - 27 - WM -004S003W - 35 - WM -004S003W - 36 - WM -005S003W - 01 - WM -005S003W - 02 - WM -005S003W - 10 - WM -005S003W - 11 - WM -005S003W - 13 - WM -005S003W - 14 - WM -005S003W - 24 - WM -005S003W - 25 - WM -005S003W - 26 - WM -005S003W - 34 - WM -005S003W - 35 - WM -006S003W - 04 - WM -006S003W - 09 - WM -006S003W - 16 - WM -006S003W - 20 - WM -006S003W - 21 - WM -006S003W - 29 - WM -006S003W - 32 - WM -006S003W - 33 - WM -007S003W - 03 - WM -007S003W - 04 - WM -007S003W - 10 - WM -007S003W - 15 - WM -007S003W - 21 - WM -007S003W - 22 - WM -007S003W - 28 - WM -007S003W - 29 - WM -007S003W - 30 - WM -007S003W - 31 - WM -007S004W - 25 - WM -007S004W - 36 - WM -008S004W - 01 - WM -008S004W - 11 - WM -008S004W - 12 - WM -008S004W - 14 - WM -008S004W - 21 - WM -008S004W - 22 - WM -008S004W - 23 - WM -008S004W - 28 - WM -008S004W - 33 - WM -008S004W - 34 - WM -

008S004W - 35 - WM -008S004W - 36 - WM -009S003W - 05 - WM -009S003W - 06 - WM -009S003W - 07 - WM -

22425

EO ID:

```
009S003W - 08 - WM -
  009S003W - 18 - WM -
  009S004W - 01 - WM -
  009S004W - 13 - WM -
  009S004W - 23 - WM -
  009S004W - 24 - WM -
  009S004W - 26 - WM -
  009S004W - 35 - WM -
  009S004W - 36 - WM -
  010S003W - 29 - WM -
  010S003W - 30 - WM -
  010S003W - 32 - WM -
  010S004W - 02 - WM -
  010S004W - 11 - WM -
  010S004W - 13 - WM -
  010S004W - 14 - WM -
  010S004W - 24 - WM -
  010S004W - 25 - WM -
  011S003W - 05 - WM -
  011S003W - 06 - WM -
  011S004W - 01 - WM -
  011S004W - 02 - WM -
  011S004W - 03 - WM -
  011S004W - 09 - WM -
  011S004W - 10 - WM -
  011S004W - 16 - WM -
  011S004W - 20 - WM -
  011S004W - 21 - WM -
  011S004W - 28 - WM -
  011S004W - 29 - WM -
  011S004W - 30 - WM -
  011S005W - 25 - WM -
  011S005W - 35 - WM -
  011S005W - 36 - WM -
  012S005W - 02 - WM -
                                                                              Annual Observations
                  Uncertainty Type (Distance) [Use Class]
Source Feature
55506 - Point
                    Linear (8 m)
                                      Not applicable
55507 - Point
                    Linear (8 m)
                                      Not applicable
55505 - Point
                                      Not applicable
                    Linear (8 m)
55508 - Point
                    Linear (8 m)
                                      Not applicable
 SFeat ID Visit Date
                         Visit Data
                                                                                                                 Dataset Record ID
                                                                                               Visit Dataset
Occurence Data
        EO Type:
                                                                                  Min. Elev.(m):
  Population Data: Five occurences along the Willamette River (from Portland to Corvallis), as described by Hershler and Frest, 1996. Precise locations
                  and collection dates not reported.
          Habitat:
       Protection:
     Management:
      References: Hershler and Frest 1996
       Specimens:
         General: 5 snails collected along Willamette, as described by Hershler and Frest, 1996.
                                                                                                                     EO NUM: 586
```

Haliaeetus leucocephalus Scientific Name:

Common Name:

Bald eagle

Federal Status: DL ORBIC List: 4 Category: Vertebrate Animal G Rank: G5 ELCODE: ABNKC10010 State Status: S Rank: S4B,S4N Tracked: W

EO NUM: 37

3164

EO ID:

First Obs: 1996 Last Obs: 2007

Directions: Ross Island, in the Willamette River, Portland.

County Name Multnomah WV

Ecoregion Owner Name/Type

QuadCode QuadName

Town/Range Sect Meridian TRS Note 45122-D6 Lake Oswego 001S001E - 15 - WM -

Uncertainty Type (Distance) [Use Class] Source Feature 22425 - Point Estimated (25 m) Breeding

Watershed

170900120202 - Balch Creek-Willamette River

EO Rank: E - Verified extant (viability not assessed)

Managed Area Name

Annual Observations • 2007 - 1 fledged • 2006 - 2 fledged

• 2005 - 2 fledged

2004 - active, outcome unknown

• 2003 - 1 fledged • 2002 - 2 fledged 2001 - 2 fledged

• 2000 - BREEDING FAILURE • 1999 - NESTING FAILURE • 1998 - 3 FLEDGED

 1997 - 1 FLEDGED • 1996 - 1 FLEDGED

1995 - STATUS UNKNOWN

SFeat ID Visit Date Visit Data Visit Dataset Dataset Record ID

Occurence Data

EO Type: BREEDING SITE Min. Elev.(m). 6

Population Data: See annual observations.

Habitat: Protection: Management:

References: Issaccs, F.B. and R.G. Anthony 2003; Isaacs 2008; Isaacs & Anthony 2006; Isaacs 2000

Specimens:

General: Isaacs and Anthony nests 697, 932, 1209. 2003: nest 697 no longer exists. 2006: Nest 932 down.

Oncorhynchus kisutch pop. 1 Scientific Name:

Coho salmon (Lower Columbia River ESU) Common Name:

Category: Vertebrate Animal Federal Status: T G Rank: G5T2Q ORBIC List: 1 ELCODE: AFCHA02031 State Status: LE S Rank: S2 Tracked: Y

Confirmed: First Obs: 2001-pre Last Obs: 2009 EO Rank: E - Verified extant (viability not assessed) Directions: SCAPPOOSE BAY, MULTNOMAH CHANNEL, WILLAMETTE RIVER

County Name Ecoregion

Clackamas WV Columbia

Multnomah

Owner Name/Type

170800030200 - Hayden Island-Columbia River 170800030900 - Cathlamet Channel-Columbia River 170900070405 - Tanner Creek-Willamette River

170900120102 - Kellogg Creek 170900120103 - Lower Johnson Creek

170900120104 - Oswego Creek-Willamette River

170900120201 - Columbia Slough

170900120202 - Balch Creek-Willamette River 170900120301 - South Scappoose Creek 170900120302 - North Scappoose Creek

170900120303 - Milton Creek 170900120304 - Scappoose Creek 170900120305 - Multnomah Channel

Oregon Blodiversity inio	rmation
Town/Range Sect Meridian	TRS Note
001N001E - 05 - WM -	
001N001E - 06 - WM -	
001N001E - 17 - WM -	
001N001E - 18 - WM -	
001N001E - 19 - WM -	
001N001E - 20 - WM -	
001N001E - 21 - WM -	
001N001E - 27 - WM -	
001N001E - 28 - WM -	
001N001E - 34 - WM -	
001N001W - 02 - WM -	
001N001W - 11 - WM -	
001N001W - 12 - WM -	
001N001W - 13 - WM -	
001S001E - 03 - WM -	
001S001E - 10 - WM -	
001S001E - 15 - WM -	
001S001E - 22 - WM -	
001S001E - 26 - WM -	
001S001E - 27 - WM -	
001S001E - 35 - WM -	
001S001E - 36 - WM -	
002N001E - 30 - WM -	
002N001E - 30 - WM -	
002N001E - 32 - WM -	
002N001W - 03 - WM -	
002N001W - 04 - WM -	
002N001W - 06 - WM -	
002N001W - 07 - WM -	
002N001W - 13 - WM -	
002N001W - 14 - WM -	
002N001W - 17 - WM -	
002N001W - 18 - WM -	
002N001W - 20 - WM -	
002N001W - 21 - WM -	
002N001W - 22 - WM -	
002N001W - 23 - WM -	
002N001W - 24 - WM -	
002N001W - 25 - WM -	
002N001W - 27 - WM -	
002N001W - 28 - WM -	
002N001W - 34 - WM -	
002N001W - 35 - WM -	
002N001W - 36 - WM -	
002N002W - 01 - WM -	
002N002W - 12 - WM -	
002S001E - 02 - WM -	
002S001E - 03 - WM -	
002S001E - 10 - WM -	
002S001E - 11 - WM -	
002S001E - 13 - WM -	
002S001E - 14 - WM -	
002S001E - 24 - WM -	
002S002E - 19 - WM -	
002S002E - 30 - WM -	
003N001W - 03 - WM -	
003N001W - 04 - WM -	
003N001W - 09 - WM -	
003N001W - 10 - WM -	
003N001W - 15 - WM -	
2301100 111 - 10 - 1111 -	

45122-C5 Oregon City 45122-D5 Gladstone 45122-D6 Lake Oswego 45122-E6 Portland 45122-E7 Linnton 45122-F6 Vancouver 45122-F7 Sauvie Island 45122-F8 Dixie Mountai 45122-G7 Saint Helens
45122-D6 Lake Oswego 45122-E6 Portland 45122-E7 Linnton 45122-F6 Vancouver 45122-F7 Sauvie Island 45122-F8 Dixie Mountai
45122-E6 Portland 45122-E7 Linnton 45122-F6 Vancouver 45122-F7 Sauvie Island 45122-F8 Dixie Mountai
45122-E7 Linnton 45122-F6 Vancouver 45122-F7 Sauvie Island 45122-F8 Dixie Mountai
45122-F6 Vancouver 45122-F7 Sauvie Island 45122-F8 Dixie Mountai
45122-F7 Sauvie Island 45122-F8 Dixie Mountai
45122-F8 Dixie Mountai
45122-G7 Saint Helens
45122-G8 Chapman
45122-H7 Deer Island

Managed Area Name
Scappoose Bay State Natural Area

```
003N001W - 16 - WM -
  003N001W - 17 - WM -
  003N001W - 19 - WM -
  003N001W - 20 - WM -
  003N001W - 21 - WM -
  003N001W - 22 - WM -
  003N001W - 23 - WM -
  003N001W - 27 - WM -
  003N001W - 28 - WM -
  003N001W - 29 - WM -
  003N001W - 30 - WM -
  003N001W - 31 - WM -
  003N001W - 33 - WM -
  003N001W - 34 - WM -
  003N001W - 35 - WM -
  003N002W - 01 - WM -
  003N002W - 02 - WM -
  003N002W - 12 - WM -
  003N002W - 13 - WM -
  003N002W - 14 - WM -
  003N002W - 25 - WM -
  003N002W - 36 - WM -
  004N001W - 03 - WM -
  004N001W - 08 - WM -
  004N001W - 09 - WM -
  004N001W - 10 - WM -
  004N001W - 16 - WM -
  004N001W - 17 - WM -
  004N001W - 20 - WM -
  004N001W - 21 - WM -
  004N001W - 27 - WM -
  004N001W - 28 - WM -
  004N001W - 29 - WM -
  004N001W - 30 - WM -
  004N001W - 31 - WM -
  004N001W - 33 - WM -
  004N001W - 34 - WM -
  004N002W - 36 - WM -
  005N001W - 34 - WM -
                                                                             Annual Observations
                  Uncertainty Type (Distance) [Use Class]
Source Feature
  Data currently not available.
 SFeat ID Visit Date
                         Visit Data
                                                                                              Visit Dataset
                                                                                                               Dataset Record ID
Occurence Data
        EO Type: REARING & MIGRATION - fish
                                                                                 Min. Elev.(m):
  Population Data: 2009: Classified as rearing by ODFW. Undocumented fish observations. 2001: ODFW DISTRIBUTION MAPS USED TO CREATE
                  THE 1:24,000 COVERAGE.
          Habitat: Rearing & migration use.
       Protection:
     Management:
      References: ODFW 2009; ODFW 2000; Bennett ; Massey ; ODFW ; ODFW 2004
      Specimens:
         General: Distribution information used in this EOR was derived from ODFW geographic resources data produced and distributed
                  in 1999. Unless specific data exists in the data field, the information presented in this EOR represents the "best
                  professional judgement" by ODFW's district fisheries biologist; the presence of coho in described areas should be
                  considered undocumented but as having a potential of being present. EOR was updated using ODFW geographic
                  resources data produced and distributed in 2004. Updated with 2009 ODFW data.
```

Scientific Name: Oncorhynchus mykiss pop. 27

Common Name: Steelhead (Lower Columbia River ESU, winter run)

EO NUM: 1 EO ID: 851

Category: Vertebrate Animal

Federal Status: LT

ORBIC List: 1

ELCODE: AFCI

AFCHA02132

State Status: SC

G Rank: G5T2Q S Rank: S2

Tracked: Y

Confirmed:

First Obs: 1999-PRE

Last Obs: 2009

EO Rank: E - Verified extant (viability not assessed)

Directions: SCAPPOOSE BAY, MULTNOMAH CHANNEL, WILLAMETTE RIVER

County Name
Clackamas

Columbia

Multnomah

Ecoregion WV Owner Name/Type

Watershed

170900070405 - Tanner Creek-Willamette River

170900120102 - Kellogg Creek

170900120103 - Lower Johnson Creek

170900120104 - Oswego Creek-Willamette River

170900120201 - Columbia Slough

170900120202 - Balch Creek-Willamette River

170900120303 - Milton Creek 170900120304 - Scappoose Creek 170900120305 - Multnomah Channel

Scappoose Bay State Natural Area

Oregon Blodiversity inio	rmation
Town/Range Sect Meridian	TRS Not
001N001E - 05 - WM -	
001N001E - 06 - WM -	
001N001E - 17 - WM -	
001N001E - 18 - WM -	
001N001E - 19 - WM -	
001N001E - 20 - WM -	
001N001E - 21 - WM -	
001N001E - 27 - WM -	
001N001E - 28 - WM -	
001N001E - 34 - WM -	
001N001W - 02 - WM -	
001N001W - 02 - WM -	
001N001W - 11 - WM -	
001N001W - 12 - WM -	
001S001E - 03 - WM -	
001S001E - 10 - WM -	
001S001E - 15 - WM -	
001S001E - 22 - WM -	
001S001E - 26 - WM -	
001S001E - 27 - WM -	
001S001E - 35 - WM -	
001S001E - 36 - WM -	
002N001E - 30 - WM -	
002N001E - 31 - WM -	
002N001E - 32 - WM -	
002N001W - 06 - WM -	
002N001W - 07 - WM -	
002N001W - 14 - WM -	
002N001W - 17 - WM -	
002N001W - 18 - WM -	
002N001W - 20 - WM -	
002N001W - 21 - WM -	
002N001W - 22 - WM -	
002N001W - 23 - WM -	
002N001W - 24 - WM -	
002N001W - 25 - WM -	
002N001W - 27 - WM -	
002N001W - 28 - WM -	
002N001W - 34 - WM -	
002N001W - 35 - WM -	
002N001W - 36 - WM -	
002N002W - 01 - WM -	
002N002W - 12 - WM -	
002S001E - 02 - WM -	
002S001E - 10 - WM -	
002S001E - 11 - WM -	
002S001E - 13 - WM -	
002S001E - 14 - WM -	
002S001E - 24 - WM -	
002S002E - 19 - WM -	
002S002E - 30 - WM -	
003N001W - 03 - WM -	
003N001W - 04 - WM -	
003N001W - 09 - WM -	
003N001W - 10 - WM -	
003N001W - 15 - WM -	
003N001W - 16 - WM -	
003N001W - 17 - WM -	
003N001W - 17 - WM -	
003N001W - 19 - WM -	
0031400 1 VV - 20 - VVIVI -	

QuadCode	QuadName	Managed Area Name
	Oregon City	Scappoose Bay State
45122-D5	Gladstone	21,000,000
45122-D6	Lake Oswego	
45122-E6		
45122-E7		
	Vancouver	
	Sauvie Island	
	Saint Helens	
45122-G8	Chapman	

```
003N001W - 21 - WM -
  003N001W - 22 - WM -
  003N001W - 23 - WM -
  003N001W - 27 - WM -
  003N001W - 28 - WM -
  003N001W - 30 - WM -
  003N001W - 31 - WM -
  003N001W - 33 - WM -
  003N001W - 34 - WM -
  003N001W - 35 - WM -
  003N002W - 25 - WM -
  003N002W - 36 - WM -
  004N001W - 04 - WM -
  004N001W - 05 - WM -
  004N001W - 08 - WM -
  004N001W - 09 - WM -
  004N001W - 10 - WM -
  004N001W - 16 - WM -
  004N001W - 17 - WM -
  004N001W - 19 - WM -
  004N001W - 20 - WM -
  004N001W - 21 - WM -
  004N001W - 27 - WM -
  004N001W - 28 - WM -
  004N001W - 30 - WM -
  004N001W - 31 - WM -
  004N001W - 33 - WM -
  004N001W - 34 - WM -
  004N002W - 25 - WM -
  004N002W - 36 - WM -
  005N001W - 32 - WM -
                                                                          Annual Observations
Source Feature
                 Uncertainty Type (Distance) [Use Class]
  Data currently not available.
 SFeat ID Visit Date
                        Visit Data
                                                                                         Visit Dataset
                                                                                                          Dataset Record ID
Occurence Data
        EO Type: REARING & MIGRATION - fish
                                                                              Min. Elev.(m):
 Population Data: 2009: Classified as rearing by ODFW. Undocumented fish observation.
                  WINTER RUN: ODFW DISTRIBUTIION MAPS USED TO CREATE THE 1:24,000 COVERAGE
          Habitat:
       Protection:
    Management:
      References: ODFW 2000; Bennett; Massey; ODFW
      Specimens:
         General: DISTRIBUTION INFORMATION USED IN THIS EOR WAS DERIVED FROM ODFW GEOGRAPHIC RESOURCES
                 DATA PRODUCED AND DISTRIBUTED IN 1999. UNLESS SPECIFIC DATA EXISTS IN THE DATA FIELD, THE
```

Scientific Name: Oncorhynchus tshawytscha pop. 21 EO NUM: 6

Common Name: Chinook salmon (Lower Columbia River ESU, spring run) EO ID: 3132

CONSIDERED UNDOCUMENTED BUT AS HAVING A POTENTIAL OF BEING PRESENT.

INFORMATION PRESENTED IN THIS EOR REPRESENTS THE "BEST PROFESSIONAL JUDGMENT" BY ODFW'S DISTRICT FISHERIES BIOLOGIST; THE PRESENCE OF STEELHEAD IN DESCRIBED AREAS SHOULD BE

Category: Vertebrate Animal Federal Status: LT G Rank: G5T2Q ORBIC List: 1

ELCODE: AFCHA0205W State Status: SC S Rank: S2 Tracked: Y

Confirmed: First Obs: 1999-PRE Last Obs: 2009 EO Rank: E - Verified extant (viability not assessed)

Directions: SCAPPOOSE BAY, MULTNOMAH CHANNEL, WILLAMETTE RIVER

County Name	Ecoregion	Owner Name/Type	Watershed
Clackamas	WV		170900070405 - Tanner Creek-Willamette River
Columbia			170900120104 - Oswego Creek-Willamette River
Multnomah			170900120202 - Balch Creek-Willamette River
			170900120303 - Milton Creek
			170900120304 - Scappoose Creek
			170900120305 - Multnomah Channel

Oregon Blodiversity information	OH
Town/Range Sect Meridian TRS N	lote
001N001E - 18 - WM -	
001N001E - 19 - WM -	
001N001E - 20 - WM -	
001N001E - 21 - WM -	
001N001E - 27 - WM -	
001N001E - 28 - WM -	
001N001E - 34 - WM -	
001N001W - 02 - WM -	
001N001W - 11 - WM -	
001N001W - 12 - WM -	
001N001W - 13 - WM -	
001S001E - 03 - WM -	
001S001E - 10 - WM -	
001S001E - 15 - WM -	
001S001E - 22 - WM -	
001S001E - 26 - WM -	
001S001E - 27 - WM -	
001S001E - 35 - WM -	
002N001W - 06 - WM -	
002N001W - 07 - WM -	
002N001W - 07 - WM -	
002N001W - 17 - WM -	
002N001W - 18 - WM -	
002N001W - 20 - WM -	
002N001W - 21 - WM -	
002N001W - 22 - WM -	
002N001W - 23 - WM -	
002N001W - 27 - WM -	
002N001W - 28 - WM -	
002N001W - 34 - WM -	
002N001W - 35 - WM -	
002N002W - 01 - WM -	
002N002W - 12 - WM -	
002S001E - 02 - WM -	
002S001E - 11 - WM -	
002S001E - 13 - WM -	
002S001E - 14 - WM -	
002S001E - 24 - WM -	
002S002E - 19 - WM -	
002S002E - 30 - WM -	
003N001W - 04 - WM -	
003N001W - 09 - WM -	
003N001W - 16 - WM -	
003N001W - 17 - WM -	
003N001W - 19 - WM -	
003N001W - 20 - WM -	
003N001W - 30 - WM -	
003N001W - 31 - WM -	
003N002W - 25 - WM -	
003N002W - 36 - WM -	
004N001W - 09 - WM -	
004N001W - 10 - WM -	
004N001W - 16 - WM -	
004N001W - 17 - WM -	
004N001W - 20 - WM -	
004N001W - 21 - WM -	
004N001W - 27 - WM -	
004N001W - 28 - WM -	
004N001W - 33 - WM -	
004N001W - 34 - WM -	
- Paris Standard - January 2000	

_				
		QuadName	Managed Area Name	
		Oregon City	Scappoose Bay State	Natural Area
	45122-D5	Gladstone		
	45122-D6	Lake Oswego		
	45122-E6			
	45122-E7	Linnton		
		Sauvie Island		
		Saint Helens		

Source Feature Uncertainty Type (Distance) [Use Class]

nty Type (Distance) [Use Class]

Annual Observations

Data currently not available.

<u>SFeat ID</u> <u>Visit Date</u> <u>Visit Data</u> <u>Visit Data</u> <u>Dataset Record ID</u>

Occurence Data

EO Type: REARING & MIGRATION - fish Min. Elev.(m):

Population Data: SPRING RUN; ODFW DISTRIBUTION MAPS USED TO CREATE THE 1:24,000 COVERAGE

Habitat: Protection: Management:

References: ODFW 2000; Bennett; Massey; ODFW

Specimens:

General: DISTRIBUTION INFORMATION USED IN THIS EOR WAS DERIVED FROM ODFW GEOGRAPHIC RESOURCES

DATA PRODUCED AND DISTRIBUTED IN 1999. UNLESS SPECIFIC DATA EXISTS IN THE DATA FIELD, THE INFORMATION PRESENTED IN THIS EOR REPRESENTS THE "BEST PROFESSIONAL JUDGMENT" BY ODFW'S

DISTRICT FISHERIES BIOLOGIST; THE PRESENCE OF CHINOOK IN DESCRIBED AREAS SHOULD BE

CONSIDERED UNDOCUMENTED BUT AS HAVING A POTENTIAL OF BEING PRESENT.

Scientific Name: Oncorhynchus tshawytscha pop. 22

EO NUM: 6

Common Name: Chinook salmon (Lower Columbia River ESU, fall run)

EO ID: 778

Category: Vertebrate Animal Federal Status: LT ELCODE: AFCHA0205Y State Status: SC

G Rank: G5T2Q S Rank: S2 ORBIC List: 1 Tracked: Y

Confirmed: First Obs: 1999-PRE Last Obs: 2009 EO Rank: E - Verified extant (viability not assessed)

Directions: SCAPPOOSE BAY & TRIBUTARIES, WILLAMETTE RIVER & TRIBUTARIES

<u>County Name</u> <u>Ecoregion</u> <u>Owner Name/Type</u> <u>Watershed</u>

Clackamas WV 170900070405 - Tanner Creek-Willamette River

Columbia 170900120102 - Kellogg Creek

Multnomah 170900120103 - Lower Johnson Creek

170900120104 - Oswego Creek-Willamette River

170900120201 - Columbia Slough

170900120202 - Balch Creek-Willamette River 170900120301 - South Scappoose Creek

170900120301 - South Scappoose Cree

170900120303 - Milton Creek 170900120304 - Scappoose Creek 170900120305 - Multnomah Channel

Town/Range Sect Meridian TRS Note 001N001E - 05 - WM - 001N001E - 18 - WM - 001N001E - 19 - WM - 001N001E - 20 - WM - 001N001E - 21 - WM - 001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 28 - WM - 001N001W - 11 - WM - 001N001W - 11 - WM - 001N001W - 13 - WM - 001S001E - 30 - WM - 001S001E - 10 - WM - 001S001E - 26 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 37 - WM - 001S001E - 37 - WM - 001S001E - 37 - WM - 001S001E - 27 - WM - 001S001E - 27 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 17 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 28 - WM - 002N001W - 28 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 30 - WM - 003N001W - 00 - WM - 003N001W - 00 - WM - 003N001W - 00 - WM - 003N001W - 01 - WM - 003N001W - 01 - WM - 003N001W - 02 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 07 - WM - 003N001W - 09 - WM - 003N001W - 01 - WM -	Oregon Bloatversity information
001N001E - 06 - WM - 001N001E - 18 - WM - 001N001E - 19 - WM - 001N001E - 20 - WM - 001N001E - 21 - WM - 001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 15 - WM - 001S001E - 27 - WM - 001S001E - 26 - WM - 001S001E - 27 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 30 - WM - 003N001W - 30 - WM - 003N001W - 30 - WM - 003N001W - 30 - WM -	
001N001E - 18 - WM - 001N001E - 19 - WM - 001N001E - 20 - WM - 001N001E - 21 - WM - 001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 02 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 22 - WM - 001S001E - 27 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 22 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 25 - WM - 002N001W - 35 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001N001E - 19 - WM - 001N001E - 20 - WM - 001N001E - 21 - WM - 001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 02 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 31 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002S001E - 12 - WM - 002S001E - 12 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 003N001W - 07 - WM - 003N001W - 08 - WM - 003N001W - 09 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001N001E - 20 - WM - 001N001E - 21 - WM - 001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 34 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 12 - WM - 001N001E - 30 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 31 - WM - 001S001E - 31 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002S001E - 12 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 003N001W - 09 - WM - 003N001W - 09 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001N001E - 21 - WM - 001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 31 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 17 - WM - 002N001W - 22 - WM - 002N001W - 22 - WM - 002N001W - 25 - WM - 002N001W - 25 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 38 - WM - 002N001W - 38 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S002E - 31 - WM - 003N001W - 09 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 20 - WM -	
001N001E - 27 - WM - 001N001E - 28 - WM - 001N001W - 02 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 31 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 17 - WM - 002N001W - 22 - WM - 002N001W - 22 - WM - 002N001W - 25 - WM - 002N001W - 25 - WM - 002N001W - 36 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 38 - WM - 002N001W - 38 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S002E - 30 - WM - 003N001W - 09 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001N001E - 28 - WM - 001N001W - 34 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 26 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 30 - WM - 003N001W - 30 - WM -	
001N001E - 34 - WM - 001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 36 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 17 - WM - 002N001W - 14 - WM - 002N001W - 22 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 38 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 30 - WM - 003N001W - 30 - WM -	
001N001W - 02 - WM - 001N001W - 11 - WM - 001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 22 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 38 - WM - 002N001W - 30 - WM - 002S001E - 11 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 30 - WM - 003N001W - 04 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 15 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM -	
001N001W - 11 - WM - 001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 22 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W	
001N001W - 12 - WM - 001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 12 - WM - 002N001W - 36 - WM - 002N001W - 12 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 37 - WM - 002N001W - 38 - WM - 002N001W - 30 - WM - 002N001E - 11 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 31 - WM - 002S002E - 31 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 07 - WM - 003N001W - 08 - WM - 003N001W - 10 - WM -	
001N001W - 13 - WM - 001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001E - 10 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 30 - WM - 002S001E - 31 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 07 - WM - 003N001W - 10 - WM -	
001S001E - 03 - WM - 001S001E - 10 - WM - 001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 001S001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 36 - WM - 002N001E - 11 - WM - 002S001E - 10 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 002N001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	001S001E - 03 - WM -
001S001E - 15 - WM - 001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 35 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 002N001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001S001E - 22 - WM - 001S001E - 26 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 002N001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 17 - WM - 002S001E - 18 - WM - 002S001E - 19 - WM - 002S001E - 19 - WM - 002S001E - 30 - WM - 003N001W - 09 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
001S001E - 26 - WM - 001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 002N001W - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N002W - 11 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 30 - WM - 002S002E - 30 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 07 - WM - 003N001W - 10 - WM -	
001S001E - 27 - WM - 001S001E - 35 - WM - 001S001E - 36 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 04 - WM - 002N001W - 07 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 30 - WM - 002S001E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	
001S001E - 36 - WM - 002N001W - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 06 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 31 - WM - 002N001W - 12 - WM - 002N001W - 12 - WM - 002N001W - 13 - WM - 002N001W - 36 - WM - 002N001W - 12 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	
001S001E - 36 - WM - 002N001W - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 06 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 31 - WM - 002N001W - 12 - WM - 002N001W - 12 - WM - 002N001W - 13 - WM - 002N001W - 36 - WM - 002N001W - 12 - WM - 002S001E - 12 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	
002N001E - 31 - WM - 002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 06 - WM - 002N001W - 14 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 12 - WM - 002N002W - 11 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 30 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
002N001W - 03 - WM - 002N001W - 04 - WM - 002N001W - 06 - WM - 002N001W - 14 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N002W - 11 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
002N001W - 04 - WM - 002N001W - 06 - WM - 002N001W - 07 - WM - 002N001W - 14 - WM - 002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 30 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 04 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 11 - WM - 003N001W - 12 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	
002N001W - 07 - WM - 002N001W - 14 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 19 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	
002N001W - 07 - WM - 002N001W - 14 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 11 - WM - 002S001E - 14 - WM - 002S001E - 14 - WM - 002S001E - 19 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM -	002N001W - 06 - WM -
002N001W - 17 - WM - 002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N001W - 07 - WM -
002N001W - 18 - WM - 002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 01 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 14 - WM -
002N001W - 20 - WM - 002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 01 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 17 - WM -
002N001W - 21 - WM - 002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 01 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 18 - WM -
002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N001W - 20 - WM -
002N001W - 22 - WM - 002N001W - 23 - WM - 002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N001W - 21 - WM -
002N001W - 24 - WM - 002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	
002N001W - 25 - WM - 002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 23 - WM -
002N001W - 27 - WM - 002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 24 - WM -
002N001W - 28 - WM - 002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 30 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N001W - 25 - WM -
002N001W - 34 - WM - 002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N001W - 27 - WM -
002N001W - 35 - WM - 002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 28 - WM -
002N001W - 36 - WM - 002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 34 - WM -
002N002W - 01 - WM - 002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002N001W - 35 - WM -
002N002W - 12 - WM - 002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N001W - 36 - WM -
002S001E - 02 - WM - 002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	
002S001E - 11 - WM - 002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002N002W - 12 - WM -
002S001E - 13 - WM - 002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002S001E - 02 - WM -
002S001E - 14 - WM - 002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002S001E - 11 - WM -
002S001E - 24 - WM - 002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002S001E - 13 - WM -
002S002E - 19 - WM - 002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002S001E - 14 - WM -
002S002E - 30 - WM - 002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 19 - WM -	002S001E - 24 - WM -
002S002E - 31 - WM - 003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002S002E - 19 - WM -
003N001W - 03 - WM - 003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	002S002E - 30 - WM -
003N001W - 04 - WM - 003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 20 - WM -	002S002E - 31 - WM -
003N001W - 09 - WM - 003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM -	003N001W - 03 - WM -
003N001W - 10 - WM - 003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 20 - WM -	003N001W - 04 - WM -
003N001W - 15 - WM - 003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 20 - WM -	003N001W - 09 - WM -
003N001W - 16 - WM - 003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 20 - WM -	
003N001W - 17 - WM - 003N001W - 19 - WM - 003N001W - 20 - WM -	003N001W - 15 - WM -
003N001W - 19 - WM - 003N001W - 20 - WM -	003N001W - 16 - WM -
003N001W - 20 - WM -	003N001W - 17 - WM -
	003N001W - 19 - WM -
003N001W - 21 - WM -	
	003N001W - 21 - WM -

Managed Area Name QuadCode QuadName 45122-C5 Oregon City Scappoose Bay State Natural Area 45122-D5 Gladstone 45122-D6 Lake Oswego 45122-E6 Portland 45122-E7 Linnton 45122-F7 Sauvie Island 45122-G7 Saint Helens

003N001W - 22 - WM -003N001W - 23 - WM -003N001W - 27 - WM -003N001W - 28 - WM -003N001W - 29 - WM -003N001W - 30 - WM -003N001W - 31 - WM -003N001W - 33 - WM -003N001W - 34 - WM -003N001W - 35 - WM -003N002W - 01 - WM -003N002W - 25 - WM -003N002W - 36 - WM -004N001W - 09 - WM -004N001W - 10 - WM -004N001W - 15 - WM -004N001W - 16 - WM -004N001W - 17 - WM -004N001W - 20 - WM -004N001W - 21 - WM -004N001W - 27 - WM -004N001W - 28 - WM -004N001W - 29 - WM -004N001W - 30 - WM -004N001W - 31 - WM -004N001W - 33 - WM -004N001W - 34 - WM -004N002W - 36 - WM -Uncertainty Type (Distance) [Use Class] Source Feature

Annual Observations

Data currently not available.

SFeat ID Visit Date Visit Data Visit Dataset Dataset Record ID

Occurence Data

EO Type: REARING & MIGRATION - fish Min. Elev.(m):

Population Data: 2009: Classified as rearing by ODFW. Undocumented fish observation. FALL RUN; ODFW DISTRIBUTION MAPS USED TO

CREATE THE 1:24,000 COVERAGE

Habitat: Protection: Management:

References: Caldwell 1999; ODFW 2000; Bennett ; Massey ; ODFW

Specimens:

Common Name:

General: DISTRIBUTION INFORMATION USED IN THIS EOR WAS DERIVED FROM ODFW GEOGRAPHIC RESOURCES

DATA PRODUCED AND DISTRIBUTED IN 1999. UNLESS SPECIFIC DATA EXISTS IN THE DATA FIELD, THE INFORMATION PRESENTED IN THIS EOR REPRESENTS THE "BEST PROFESSIONAL JUDGMENT" BY ODFW'S DISTRICT FISHERIES BIOLOGIST: THE PRESENCE OF CHINOOK IN DESCRIBED AREAS SHOULD BE

CONSIDERED UNDOCUMENTED BUT AS HAVING A POTENTIAL OF BEING PRESENT. Updated with 2009 ODFW

1:24,000 coverage.

Oncorhynchus tshawytscha pop. 23 Scientific Name:

EO NUM: 91 EO ID: 31243 Chinook salmon (Upper Willamette River ESU, spring run)

Federal Status: LT G Rank: G5T2Q ORBIC List: 1 Category: Vertebrate Animal ELCODE: AFCHA02052 State Status: SC S Rank: S2 Tracked: Y

First Obs: 2009-pre Last Obs: 2009 EO Rank: E - Verified extant (viability not assessed)

Directions: From the mouth of the Willamette River to confluence with the Clackamas River.

being present.

County Name Clackamas Multnomah	Ecoregion WV	Owner Name/Type		Watershed 170800030200 - Hayden Island-Columbia River 170900070405 - Tanner Creek-Willamette River 170900120104 - Oswego Creek-Willamette River 170900120202 - Balch Creek-Willamette River
Town/Range Se	ect Meridian TRS	Note QuadCode	QuadName	Managed Area Name
001N001E - 1		11010	Oregon City	
001N001E - 1			Gladstone	
001N001E - 2		45122-D6	Lake Oswego	
001N001E - 2		45122-E6	Portland	
001N001E - 2		45122-E7	Linnton	
001N001E - 2		45122-F7	Sauvie Island	
001N001E - 3				
001N001W - 0				
001N001W - 1				
001N001W - 1				
001N001W - 1				
001S001E - 0				
001S001E - 1				
001S001E - 1				
001S001E - 2				
001S001E - 2				
001S001E - 2				
001S001E - 3				
002N001W - 1				
002N001W - 1				
002N001W - 2				
002N001W - 2				
002N001W - 2				
002N001W - 3				
002N001W - 3				
002S001E - 0				
002S001E - 1				
002S001E - 1				
002S001E - 1				
002S001E - 24				
002S002E - 19				
002S002E - 3	0 - WM -			
Source Feature Data currently		e (Distance) [Use Class]		Annual Observations
SFeat ID Visit		a		Visit Dataset Dataset Record ID
7		-		Datases, Datases record in
Occurence Data				
EO Type	e:			Min. Elev.(m):
Population Data	a: 2009: Classified	as rearing by ODFW.		
Habita Protectio				
Managemer				
Reference				
Specimen				
		mation used in this FOR w	vas derived from C	DDFW 1:24,000 scale geographic resources data produced
School	and distributed in	n 2009. Use type was dete	ermined by ODFW and the best profess	and other natural resources agency field staff based on sional judgement of the field biologists. Unless otherwise considered undocumented but as having a potential of

Scientific Name: Progne subis

Common Name: Purple martin

EO NUM: 121

EO ID: 6359

Category: Vertebrate Animal Federal Status: G Rank: G5 ORBIC List: 2
ELCODE: ABPAU01010 State Status: SC S Rank: S2B Tracked: Y

Confirmed: First Obs: 1998-07-18 Last Obs: 1998-07-18 EO Rank: H - Historical

Directions: THIS COLONY IS IN WILLAMETTE PARK-OFF MCADAM IN DOWNTOWN PORTLAND. THE GOURD RACK IS JUST N OF

THE BOAT RAMP, BESIDE THE PATH. THE HOUSEBOATS ACROSS THE RIVER FROM THE PARK HAVE NESTBOXES

ON PILINGS.

<u>County Name</u> <u>Ecoregion</u> <u>Owner Name/Type</u> <u>Watershed</u>

Multnomah WV CITY 170900120202 - Balch Creek-Willamette River

Town/Range Sect Meridian TRS Note QuadCode QuadName Managed Area Name

001S001E - 15 - WM - 45122-D6 Lake Oswego

Source Feature Uncertainty Type (Distance) [Use Class] Annual Observations

6359 - Point Estimated (50 m) Undetermined

<u>SFeat ID</u> <u>Visit Data</u> <u>Visit Data</u> <u>Dataset Record ID</u>

6359 1998-07-18 1998: 2 PAIRS.

Occurence Data

EO Type: Min. Elev.(m): 9

Population Data: 1998: 2 PAIRS.

Habitat: Protection: Management:

References: Horvath 1999

Specimens: General:

15 records total

Key to Oregon Biodiversity Information Center Data Reports

Field Name	Description
Scientific Name	The scientific name of the species.
Common Name	The common name of the species.
EO NUM	The number of the Element Occurrence (EO) for this species. An element occurrence is an area of land or water where the species is or was known to occur and has conservation value. EOs are the main tracking unit for Heritage Programs.
EO ID	Unique identifier for the Element Occurrence (EO). Unique for each occurrence in the database
Category	Value that indicates the broad biological category for each species.
ELCODE	Unique NatureServe code for identifying this element. 1st and 2nd byte (PD=Plant dicot, PM=Plant monocot, PG=Plant gymnosperm, PP=Plant pteridophyte, AA=amphibian, AB=bird, AF=fish, AM=mammal, AR=reptile, I=invertebrate. 3rd-5th byte (family abbreviation). 6th-7th (genus code). 8th-9th (species). 10th (tie breaker).
Federal Status	US Fish and Wildlife Service or NOAA Fisheries status. E=endangered, T=threatened, PE or PT=proposed endangered or threatened, C=candidate for listing with enough information available for listing, SOC or SC=species of concern, PS:xx=partial status for species, XE=experimental population, essential. XN=experimental population, non-essential.
State Status	PDL=Proposed for delisting. DL=Delisted. UR=Under Review. For animals, Oregon Department of Fish and Wildlife status: LE=listed endangered, PE=proposed endangered, LT=listed threatened, PT=proposed threatened, SC or C=sensitive-critical, S=sensitive. For plants, Oregon Department of Agriculture status: LE=listed endangered, LT=listed threatened, C=candidate.
G Rank / S Rank	ORBIC participates in an international system for ranking rare, threatened and endangered species throughout the world. The system was developed by The Nature Conservancy and is now maintained by NatureServe in cooperation with Heritage Programs or Conservation Data Centers (CDCs) in all 50 states, in 4 Canadian provinces, and in 13 Latin American countries. The ranking is a 1-5 scale, primarily based on the number of known occurrences, but also including threats, sensitivity, area occupied, and other biological factors. In this book, the ranks occupy two lines. The top line is the Global Rank and begins with a "G". If the taxon has a trinomial (a subspecies, variety or recognized race), this is followed by a "T" rank indicator. A "Q" at the end of this line indicates the taxon has taxonomic questions. The second line is the State Rank and begins with the letter "S". The ranks are summarized as follows: 1 = Critically imperiled because of extreme rarity or because it is somehow especially vulnerable to extinction or extirpation, typically with 5 or fewer occurrences; 2 = Imperiled because of rarity or because other factors demonstrably make it very vulnerable to extinction (extirpation), typically with 6-20 occurrences; 3 = Rare, uncommon or threatened, but not immediately imperiled, typically with 21-100 occurrences; 4 = Not rare and apparently secure, but with cause for long-term concern, usually with more than 100 occurrences; 5 = Demonstrably widespread, abundant, and secure; H= Historical Occurrence, formerly part of the native biota with the implied expectation that it may be rediscovered; X = Presumed extirpated or extinct; U = Unrankable due to conflicting information; ? = assigned rank is uncertain; NR = not yet ranked.
ORBIC List	All rare species in Oregon are assigned a list number of 1, 2, 3 or 4, where 1=threatened or endangered throughout range, 2=threatened or endangered in Oregon but more common elsewhere, 3=Review List (more information is needed), 4=Watch List (currently stable, but could become threatened). A null value indicates the species is not currently on our rare species list.

Key to Oregon Biodiversity Information Center Data Reports

Field Name	Description
Tracked	We currently obtain and computerize locational information for only those elements marked with $\mathbf{Y}(es)$. Those species marked with $\mathbf{N}(o)$ or $\mathbf{W}(atch)$ have incomplete data as we do not actively track them at this time.
Confirmed	Indication of whether taxonomic identification of the Element represented by this occurrence has been confirmed by a reliable individual. Blank=unknown, assumed to be correctly identified.
	Y=Yes, confident identification. ?=identification questions.
First Obs	First reported sighting date for this occurrence in the form YYYY-MM-DD. Fuzzy dates are possible (e.g., 2001-08 meaning sometime in August 2001; 1990-Pre meaning before 1990).
Last Obs	Last reported sighting date, usually in the form YYYY-MM-DD. Fuzzy dates are possible (e.g., 2001-08 meaning sometime in August 2001; 1990-Pre meaning before 1990).
EO Rank	ORBIC's determination of the viability of the occurrence. A-D ranks from highest to lowest quality/stability. E =extant, viability not assessed. F =failed to find. H =historical (species could still be present but has not been recently observed). X =extirpated; population no longer exists
Directions	Site name and/or directions to site.
County	County name(s) in which EO is mapped.
Ecoregion	Physiographic Province in which EO is mapped: CR=Coast Range, WV=Willamette Valley, KM=Klamath Mountains, WC=West slope and crest of the Cascades, EC=East slope of the Cascades, BM=Ochoco, Blue and Wallowa Mts., BR=Basin and Range, CB=Columbia Basin, SP=Snake River Plains. ME=Marine and Estuarine.
Owner Name/Type	Federal, State, Private, etc.
Watershed	Watershed(s), identified according to the U.S. Geological Survey (USGS) Hydrologic Unit Map 10-digit code, within which the Element Occurrence is located.
Town-Range, Sec, and TRS Note	United States rectangular land survey (also known as the Public Land Survey System) legal township, range, and section descriptions in which the EO is mapped. Township first (4 bytes) range second (4 bytes). For example: 004S029E = Township 4S, Range 29E. All locations are with reference to the Willamette Meridian. Fractional ranges or townships are indicated in the Note field.
Quadcode	USGS code for the USGS topographic quadrangle map(s) where the record is mapped.
Quadname	Name of the USGS topographic quadrangle map(s) where the record is mapped.
Managed Area Name	Name of managed area, if applicable, e.g., BLM District, USFS Forest, Private Preserve
Source Feature	A Source Feature is the initial translation of a discrete unit of observation data as a spatial feature.
	Creation of a Source Feature requires an interpretive process. The likely location and extent of an observation is determined through consideration of the amount and direction of any variability between the recorded and actual locations of the observation data. In most cases, the Source Feature is delineated to encompass locational uncertainty.
	A Source Feature can be a point, line, or polygon. The type of Source Feature developed depends on both the preceding conceptual feature type and the locational uncertainty associated with the feature.
Uncertainty Type (Distance)	The recorded location of an observation of an Element may vary from its true location due to many factors, including the level of expertise of the data collector, differences in survey techniques and equipment used, and the amount and type of information obtained. This inaccuracy is characterized as locational uncertainty, and is assessed for Source Feature(s) based on the uncertainty associated with the underlying information on the location of the observation.

Key to Oregon Biodiversity Information Center Data Reports

Field Name	Description
	Four categories of locational uncertainty have been identified, as follows:
	<u>Negligible</u> uncertainty is less than or equal to 6.25 meters in any dimension. Source Features with negligible uncertainty are based on a comprehensive field survey with high quality mapping and a high degree of certainty.
	<u>Linear</u> uncertainty is greater than 6.25 meters, and varies along an axis (e.g., a path, stream, ridgeline). The true location of an observation with linear uncertainty may be visualized as effectively sliding along a line that delineates the uncertainty.
	Areal delimited uncertainty is greater than 6.25 meters, and varies in more than one dimension. The true location of an observation can be visualized as floating within an area with a boundary that can be specifically delimited. Boundaries can be defined using roads, bodies of water, etc.
	Areal estimated uncertainty is greater than 6.25 meters, and varies in more than one dimension. A boundary cannot be specifically delimited based on the observation information, i.e., the actual extent is unknown. The true location of the observation can be visualized as floating within an area for which boundaries cannot be specifically delimited. Source Features with areal estimated uncertainty require that the user specify an estimated uncertainty distance to be used for buffering the feature to incorporate the locational uncertainty.
Use Class	How the source feature is used by migratory species (e.g., breeding, maternity colony, hibernaculum).
Annual Observations	Summary of yearly observations from most recent to oldest.
SFeat ID	Unique identifier for source feature.
Visit Date	Date of the visit to this source feature. Fuzzy dates are possible (e.g., 2001-08 meaning sometime in August 2001; 1990-Pre meaning before 1990).
Visit Data	Information about individual visits to each source feature, when available.
Visit Dataset	Name of dataset that was the source of the visit data, if applicable.
Dataset Record ID	Unique ID of the record that was the source of the visit data, if applicable
ЕО Туре	For animals, type of occurrence, e.g., roost, nest, spawning, migration.
Minimum Elevation	Minimum elevation of the area covered by the range of the taxon, in meters. Negative numbers or blank=not determined.
Population Data	Summary of species and population biology for the EO – may include number observed, number of sites, reproduction data, assessment of viability, etc.
Habitat	Habitat information, e.g., aspect, slope, soils, associated species, community type.
Protection	Comments on site protection and threats.
Management	Comments on how the site is managed.
References	Abbreviated list of references for the site (author/surveyor and date if known/applicable).
Specimens	Details on specimens that have been collected at this occurrence site. Order of information is: Collector (Collector's number). Year collected. Acquisition number. Collection code.
General	Miscellaneous comments, usually pertaining to references and data sources.

ATTACHMENT B ECOLOGICAL SCREENING, PART 3, ATTACHMENTS 1 AND 2

TIER I ECOLOGICAL RISK ASSESSMENT SCOPING REPORT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

General Site Information

ECSI File No. or LUST File No.: DEQ ECSI File No. 6295

Site Name: 2997 S Moody Ave

Site Location (address, city, and/or county): 2997 S Moody Ave, Portland

Latitude/Longitude or other location documentation for site: No. 1S1E10BA-00200

Current and Historical Site Use (gas station, dry cleaner, jet hangar, etc.) 1: Rail lines were present on the Property Area and adjacent properties since at least the 1880s to the present.

Zoning: General Commercial

Site² Features: The Site totals 2.33 acres of land developed with transportation rail lines on the northern portion and vegetated areas, a gravel access road, fenced storage areas, stormwater infiltration areas, and a vegetated swale.

Chemicals of Interest³: Arsenic, lead, TPH, PAHs

_

¹ Include contaminant management, treatment, storage or disposal and areas where a release may have occurred. Historical sources should be identified using sources of information which help in identifying current or past uses or occupants of a site including aerial photographs, fire insurance maps, property tax files, recorded land title records, United States Geological Survey (USGS) 7.5 minute topographic maps, local street directories, building department records, zoning or land use records. Any previous site assessments, environmental assessments or studies should be summarized

² Facility or Site (OAR 340-122-0115(26)) means any building, structure, installation, equipment, pipe or pipeline including any pipe into a sewer or publicly owned treatment works, well, pit, pond, lagoon, impoundment, ditch, landfill, storage container, above ground tank, underground storage tank, motor vehicle, rolling stock, aircraft, or any site or area where a hazardous substance has been deposited, stored, disposed of, or placed, or otherwise come to be located and where a release has occurred or where there is a threat of a release, but does not include any consumer product in consumer use or any vessel.

³ A COI list should include chemicals that are detected or are suspected to be present based on historical and current operations. For Stage 1, the site-specific history of hazardous substance uses and releases is usually the source of potential chemical information. Identify hazardous substances that have the potential to bioaccumulate in Section C2 of Attachment 1.

Site Conditions – Provide Approximate Areas (acres)

These habitats may occur in a range of natural and protected areas, including parks and green space found within urban areas. More information and habitat classification can be found at: https://oregonexplorer.info/content/classification-wildlife-habitats

Site; Adjacent to Site

- **0.2**; **0.5** Terrestrial Open Habitat / Grasslands: Dominated by short to medium-tall grasses, low to medium shrubs, or bare soil.
- **0.1; 0.5** Forest or Woodland Habitats: Woodlands (maple, alder, aspen), conifer forest (Douglas fir, hemlock, cedar, spruce), mixed-woodland, juniper, pine (ponderosa, lodgepole).
- **0.0; 0.5 Wetland**⁴: May be either tidal or non-tidal wetlands with emergent herbaceous plants.
- **0.0**; **0.5** Riparian Zone: Patches or linear strips of land adjacent to waterbodies (rivers,

streams, waterbodies), or on nearby floodplains and terraces. May be impacted by periodic riverine flooding or perennial flowing water. May or may not also contain wetlands.

- **0.0; 0.0** Aquatic Open Water: Ponds, lakes, reservoirs, rivers, creeks, streams, bays estuaries, and nearshore marine and intertidal.
- **2.0; 40.0** Impermeable Surface: Pavement, structures.

Documentation

- Aerial Site Vicinity Map(s) identifying zoning and Site features. Include topographic map.
- Summarize known or potential contaminated soil, groundwater, migration pathways.
- Figure illustrating source/release areas, sample locations, estimated areas of contamination, and surface features such as pavement, stormwater catch basins/drainage system including outfalls, dry wells or stormwater swales.
- Aerial Map showing habitat types described above both within and adjacent to the Site by at least 1/4 mile from Site boundary. Definitions and tools⁵ for identifying wetlands include:

⁴ Covered Under Oregon Statewide Wetlands Inventory (ORS 196.674) https://www.oregon.gov/dsl/WW/Pages/SWI.aspx

⁵ Information shown on the Local Wetland Inventory maps is for planning purposes only, as wetland information is subject to change. There may be unmapped wetland and waters subject to regulation and all wetlands and waters boundary mapping is approximate. In all cases, actual field conditions determine the presence, absence and boundaries of wetlands and waters.

https://www.oregon.gov/dsl/WW/Pages/Inventories.aspx			
http://tools.oregonexplorer.info/oe_map_viewer_2_0/viewer.html?Viewer=orwap			
National Wetlands Inventory: https://www.fws.gov/wetlands/Data/Mapper.html			
Checklist Completed By:	Sam Jackson, PE	Date: 12/12/2022	
(name and title/expertise)		12, 12,2022	

ATTACHMENT 1 Ecological Scoping Checklist

Site Name	2997 S Moody
Date of Site Visit	9/12/2022
Site Location	2997 S Moody, Portland
Site Visit Conducted by	Sam Jackson, PE

Part **0**

CONTAMINANTS OF INTEREST IN LOCALITY OF FACILITY [†] Types, Classes, Or Specific Hazardous Substances [‡] Known Or Suspected	Upland	Aquatic
Lead, arsenic, PAHs, TPH	yes	No

[‡] As defined by OAR 340-122-115(30)

Part 2

OBSERVED IMPACTS OBSERVED IN THE LOCALITY OF THE FACILITY	Finding	
Onsite vegetation (None, Limited, Extensive)	L	
Vegetation in the locality of the site (None, Limited, Extensive)	L	
Onsite wildlife such as macroinvertebrates, reptiles, amphibians, birds, mammals, other (None, Limited, Extensive)	L	
Wildlife such as macroinvertebrates, reptiles, amphibians, birds, mammals, other in the locality of the site (None, Limited, Extensive)	L	
Other readily observable impacts (None, Discuss below)	D	
Discussion: Railroad ties and trash associated with homeless encampments. See attached report for additional information.		

 $^{^{\}dagger}$ As defined by OAR 340-122-115(34)

ATTACHMENT 1 Ecological Scoping Checklist (cont'd)

Part **6**

SPECIFIC EVALUATION OF ECOLOGICAL RECEPTORS / HABITAT	Findi	ng
Terrestrial - Wooded		
Percentage of site that is wooded	10	
Dominant vegetation type (Evergreen, Deciduous, Mixed)	M	P *
Prominent tree size at breast height, i.e., four feet (<6", 6" to 12", >12")	6-12	
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,		
Mammals, Other)	В	
Terrestrial - Scrub/Shrub/Grasses		
Percentage of site that is scrub/shrub	10	
Dominant vegetation type (Scrub, Shrub, Grasses, Other)	Sh	P
Prominent height of vegetation (<2', 2' to 5', >5')	>5 f	ìt
Density of vegetation (D ense, P atchy, S parse)	P	P
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,		
Mammals, Other)		
Terrestrial - Ruderal		
Percentage of site that is ruderal	10	
Dominant vegetation type (Landscaped, Agriculture, Bare ground)	L	P
Prominent height of vegetation (0', >0' to <2', 2' to 5', >5')	0-2	
Density of vegetation (D ense, P atchy, S parse)	P	P
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,	D	
Mammals, Other)	В	
Aquatic - Non-flowing (lentic)		
Percentage of site that is covered by lakes or ponds	0	
Type of water bodies (Lakes, Ponds, Vernal pools, Impoundments, Lagoon, Reservoir,		
Canal)	<u> </u>	
Size (acres), average depth (feet), trophic status of water bodies		
Source water (River, Stream, Groundwater, Industrial discharge, Surface water runoff)		
Water discharge point (None, River, Stream, Groundwater, Wetlands impoundment)	<u> </u>	
Nature of bottom (Muddy, Rocky, Sand, Concrete, Other)		P
Vegetation present (Submerged, Emergent, Floating)		P
Obvious wetlands present (Yes / No)		
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds,		
Mammals, Other)		
Aquatic - Flowing (lotic)		
Percentage of site that is covered by rivers, streams (brooks, creeks), intermittent		
streams, dry wash, arroyo, ditches, or channel waterway	2	
Type of water bodies (Rivers, Streams, Intermittent Streams, Dry wash, Arroyo,	D	
Ditches, Channel waterway)	D	
Size (acres), average depth (feet), approximate flow rate (cfs) of water bodies	<0.1ac, 5ft, 0	cfs P
Bank environment (cover: Vegetated, Bare / slope: Steep, Gradual / height (in feet))	V, S	

SPECIFIC EVALUATION OF ECOLOGICAL RECEPTORS / HABITAT	Finding
Source water (River, Stream, Groundwater, Industrial discharge, Surface water runoff)	S
Tidal influence (Yes / No)	N
Water discharge point (None, River, Stream, Groundwater, Wetlands impoundment)	N
Nature of bottom (Muddy, Rocky, Sand, Concrete, Other)	О
Vegetation present (Submerged, Emergent, Floating)	E
Obvious wetlands present (Yes / No)	N
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds, Mammals, Other)	В
Aquatic - Wetlands	
Obvious or designated wetlands present (Yes / No)	N
Wetlands suspected as site is/has (Adjacent to water body, in Floodplain, Standing water, Dark wet soils, Mud cracks, Debris line, Water marks)	
Vegetation present (Submerged, Emergent, Scrub/shrub, Wooded)	
Size (acres) and depth (feet) of suspected wetlands	
Source water (River, Stream, Groundwater, Industrial discharge, Surface water runoff)	
Water discharge point (None, River, Stream, Groundwater, Impoundment)	
Tidal influence (Yes / No)	
Evidence / observation of wildlife (Macroinvertebrates, Reptiles, Amphibians, Birds, Mammals, Other)	

Photographic documentation of these features is highly recommended.

Part 4

HABITATS AND SPECIES OBSERVED OR DOCUMENTED IN LOF
Trees, 6-12 inch diameter
Shrubs, 5-12 ft tall
Ruderal species
Stormwater conveyance ditch

ATTACHMENT 2 Evaluation of Receptor-Pathway Interactions

EVALUATION OF RECEPTOR-PATHWAY INTERACTIONS	Y	N	U
Are hazardous substances present or potentially present in surface waters? This			
includes tidal or seasonally inundated areas and wetlands.			
AND		N	
Could hazardous substances reach these receptors via surface water?			
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in surface waters.			
• Ability of hazardous substances to migrate to surface waters. Consider migration			
pathways such as erosion of soils adjacent to aquatic environments (e.g., banks or			
riparian areas), subsurface preferential pathways (e.g., pipes), outfalls, groundwater			
discharges, and surface migration (e.g., ditches).			
• Terrestrial organisms may be dermally exposed to water-borne contaminants as a result			
of wading or swimming in contaminated waters. Aquatic receptors may be exposed			
through osmotic exchange, respiration or ventilation of surface waters.			
• Contaminants may be taken-up by terrestrial plants whose roots are in contact with			
surface waters.			
• Terrestrial receptors may ingest water-borne contaminants if contaminated surface			
waters are used as a drinking water source.			
Are hazardous substances present or potentially present in groundwater?			
AND		N	
Could hazardous substances reach these receptors via groundwater?			
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in groundwater.			
Ability of hazardous substances to migrate to groundwater.			
• Potential for hazardous substances to migrate via groundwater and discharge into			
habitats and/or surface waters.			
• Contaminants may be taken-up by terrestrial and rooted aquatic plants whose roots are			
in contact with groundwater present within the root zone (~1m depth).			
• Terrestrial wildlife receptors generally will not contact groundwater unless it is discharged to the surface.			

[&]quot;Y" = yes; "N" = No, "U" = Unknown (counts as a "Y")

ATTACHMENT 2 Evaluation of Receptor-Pathway Interactions (cont'd)

EVALUATION OF RECEPTOR-PATHWAY INTERACTIONS		N	U
Are hazardous substances present or potentially present in sediments? This includes			
tidal or seasonally inundated areas and wetlands.			
AND		N	
Could hazardous substances reach receptors via contact with sediments?			
When answering the above questions, consider the following:			
Known or suspected presence of hazardous substances in sediment.			
• Ability of hazardous substances to leach or erode from surface soils and be carried into sediment via surface runoff.			
• Potential for contaminated groundwater to upwell through, and deposit contaminants in, sediments.			
• If sediments are present in an area that is only periodically inundated with water, both			
aquatic and terrestrial species may exposed. Aquatic receptors may be directly exposed			
to sediments or may be exposed through osmotic exchange, respiration or ventilation of sediment pore waters.			
• Terrestrial species may be exposed to sediment in an area that is only periodically inundated with water.			
• If sediments are present in an area that is only periodically inundated with water,			
terrestrial species may have direct access to sediments for the purposes of incidental			
ingestion. Aquatic receptors may regularly or incidentally ingest sediment while foraging.			
Are hazardous substances present or potentially present in prey or food items of			
ecologically important receptors?			
AND		N	
Could hazardous substances reach these receptors via consumption of food items?			
When answering the above questions, consider the following:			
• Higher trophic level terrestrial and aquatic consumers and predators may be exposed through consumption of contaminated food sources.			
• In general, organic contaminants with log $K_{ow} > 3.5$ may accumulate in terrestrial			
mammals and those with a log $K_{ow} > 5$ may accumulate in aquatic vertebrates.			

[&]quot;Y" = yes; "N" = No, "U" = Unknown (counts as a "Y")

ATTACHMENT 2 Evaluation of Receptor-Pathway Interactions (cont'd)

EVALUATION OF RECEPTOR-PATHWAY INTERACTIONS	Y	N	U	
Are hazardous substances present or potentially present in surficial soils?				
AND	Y			
Could hazardous substances reach these receptors via incidental ingestion of or				
dermal contact with surficial soils?				
When answering the above questions, consider the following:				
• Known or suspected presence of hazardous substances in surficial (~1m depth) soils.				
Ability of hazardous substances to migrate to surficial soils.				
• Significant exposure via dermal contact would generally be limited to organic				
contaminants which are lipophilic and can cross epidermal barriers.				
• Exposure of terrestrial plants to contaminants present in particulates deposited on leaf and stem surfaces by rain striking contaminated soils (i.e., rain splash).				
• Contaminants in bulk soil may partition into soil solution, making them available to roots.				
• Incidental ingestion of contaminated soil could occur while animals grub for food				
resident in the soil, feed on plant matter covered with contaminated soil or while				
grooming themselves clean of soil.				
Are hazardous substances present or potentially present in soils?				
AND				
Could hazardous substances reach these receptors via vapors or fugitive dust carried				
in surface air or confined in burrows?				
When answering the above questions, consider the following:				
• Volatility of the hazardous substance (volatile chemicals generally have Henry's Law constant > 10 ⁻⁵ atm-m ³ /mol and molecular weight < 200 g/mol).				
• Exposure via inhalation is most important to organisms that burrow in contaminated				
soils, given the limited amounts of air present to dilute vapors and an absence of air				
movement to disperse gases.				
• Exposure via inhalation of fugitive dust is particularly applicable to ground-dwelling				
species that could be exposed to dust disturbed by their foraging or burrowing activities				
or by wind movement.				
• Foliar uptake of organic vapors would be limited to those contaminants with relatively				
high vapor pressures.				
• Exposure of terrestrial plants to contaminants present in particulates deposited on leaf				
and stem surfaces.				

[&]quot;Y" = yes; "N" = No, "U" = Unknown (counts as a "Y")

ATTACHMENT C LUST SUMMARY REPORTS

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

Leaking Underground Storage Tanks (LUST) Site Information

(Use "Back" button on browser to return to previous search results)

Leaking Underground Storage Tank (LUST) Site Information

Log Nbr: 26-93-0128 Basic Incident Information Status: CLOSED

Site Name: WESTWOOD CORP. Received Date: 8/3/1993
Address: 3030 SW MOODY AVE UST Facility Id: 7351

City: PORTLAND Zip Code: 97201 County: MULTNOMAH

Site Type: Groundwater File Status: No Further Action Heating Oil Tank (HOT): Regulated Tank: YES

Assessment Information 26-93-0128

Cause: UNKNOWN Source: Not Reported Discovery: SITE ASSESSMENT

Media EffectedContaminants Released>Soil >GroundWater>Deisel >OtherPetro

Free Product Removed: Free Vapor Removed: CAP Requested: Delineate Groundwater: Groundwater Delineated: CAP Submitted: Delineate Soil: Soil Delineated: CAP Approved:

Compliance Monitoring:

Management Information 26-93-0128

Release Stopped Date: 8/24/1994 Cleanup Start Date: 8/24/1994 Cleanup End Date: 8/19/1996

Work Reported Information 26-93-0128

Work ReportedReported ByReported DateInitial ResponseData Conversion 20061/1/1901

This information may not reflect current status of site. For further detail, refer to the <u>DEQ Regional Office</u> file.

This website application cannot be made compliant with the Americans with Disabilities Act. We apologize for any inconvenience and invite you to contact DEQ at 800-452-4011 or email deqinfo@deq.state.or.us for assistance in accessing this site

This page last updated: January 9, 2006

DEQ Online is the official web site for the Oregon Department of Environmental Quality.

ATTACHMENT D SANBORN MAPS

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

2997 South Moody Avenue 2997 South Moody Avenue Portland, OR 97201

Inquiry Number: 7094621.1

August 23, 2022

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

08/23/22

Site Name: Client Name:

2997 South Moody Avenue 2997 South Moody Avenue Portland, OR 97201

EDR Inquiry # 7094621.1

Farallon Consulting, LLC

4380 South Macadam Avenue, Suite 500

Portland, OR 97239 Contact: Brittany Train

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Farallon Consulting, LLC were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 8035-449B-8B5E

PO# NA

2243-005-003 **Project**

Maps Provided:

1969

1950

1909

1901

1889

Sanborn® Library search results

Certification #: 8035-449B-8B5E

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of Congress

University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Farallon Consulting, LLC (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

page 2

Sanborn Sheet Key

This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1969 Source Sheets

Volume 2, Sheet 191 1969

1950 Source Sheets

Volume 2, Sheet 168 1950

Volume 2, Sheet 191 1950

1909 Source Sheets

Volume 2, Sheet 164 1909

Volume 2, Sheet 168 1909

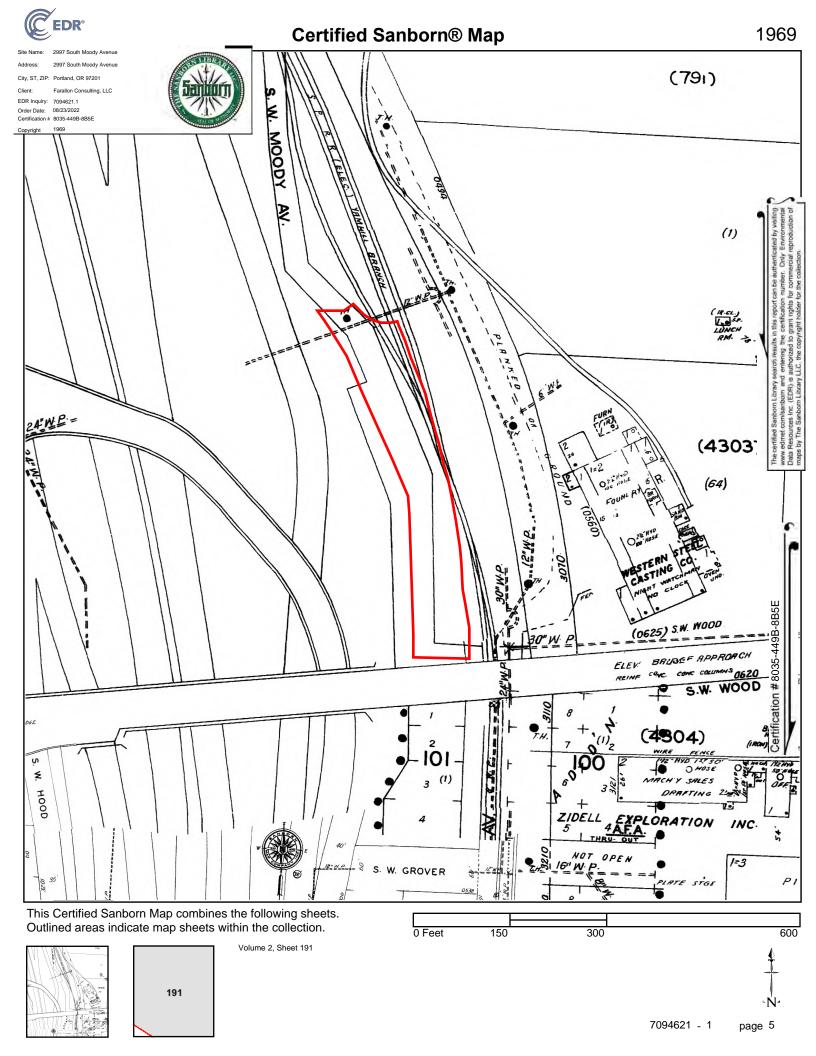
1901 Source Sheets

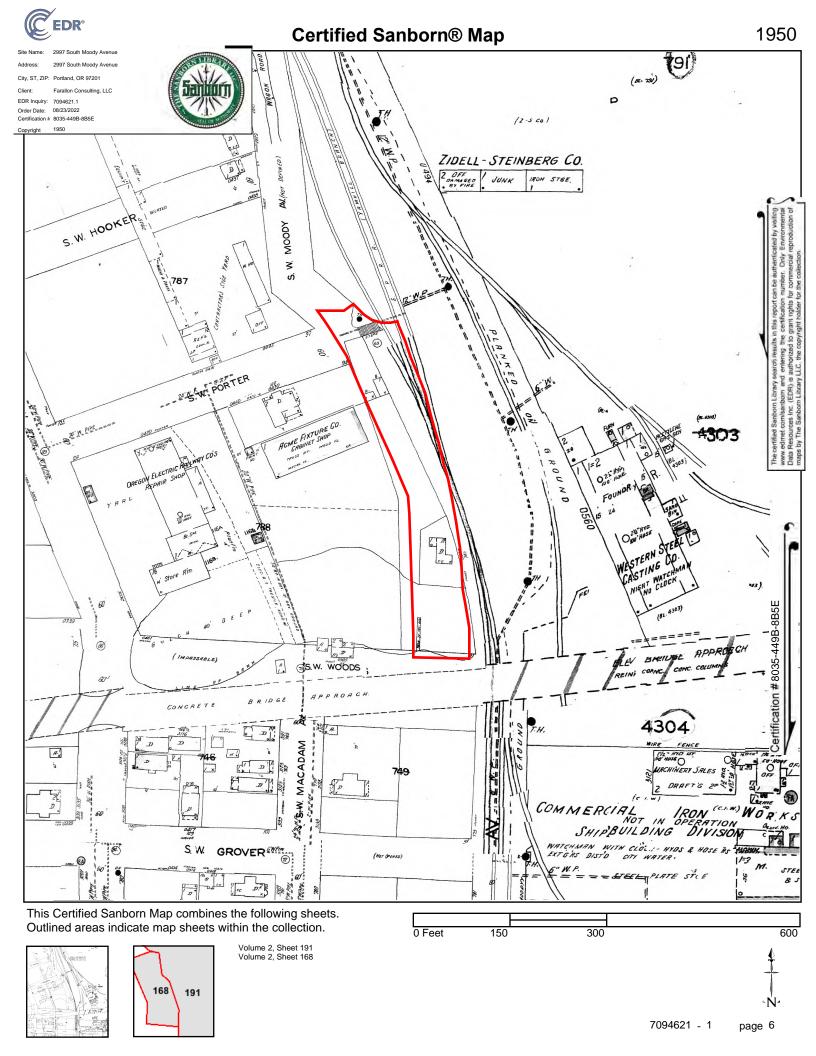
Volume 1, Sheet 14 1901

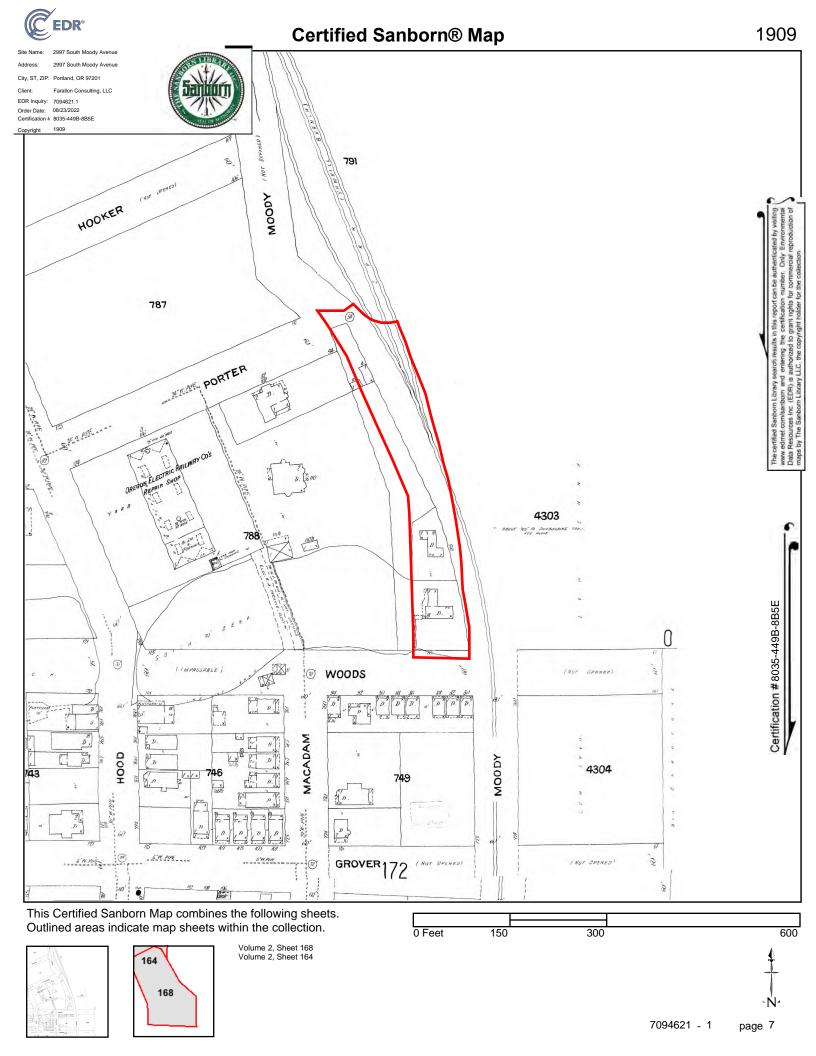
Volume 1, Sheet 18 1901

Sanborn Sheet Key

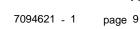
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.


1889 Source Sheets




Volume 1, Sheet 9 1889

Volume 1, Sheet 9 1889



ATTACHMENT E AERIAL PHOTOGRAPHS

PRELIMINARY SITE ASSESSMENT 2997 South Moody Avenue Portland, Oregon

Farallon PN: 2243-005

2997 South Moody Avenue

2997 South Moody Avenue Portland, OR 97201

Inquiry Number: 7094621.3

August 23, 2022

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

08/23/22

Site Name: Client Name:

2997 South Moody Avenue 2997 South Moody Avenue Portland, OR 97201

EDR Inquiry # 7094621.3

4380 South Macadam Avenue, Suite 500 Portland, OR 97239 Contact: Brittany Train

Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Farallon Consulting, LLC

Search Results:

<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2016	1"=500'	Flight Year: 2016	USDA/NAIP
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2005	1"=500'	Flight Year: 2005	USDA/NAIP
2000	1"=500'	Acquisition Date: January 01, 2000	USGS/DOQQ
1994	1"=500'	Acquisition Date: June 20, 1994	USGS/DOQQ
1990	1"=500'	Acquisition Date: January 01, 1990	USGS/DOQQ
1981	1"=500'	Flight Date: July 26, 1981	USDA
1975	1"=500'	Flight Date: September 13, 1975	USGS
1970	1"=500'	Flight Date: July 05, 1970	USGS
1963	1"=500'	Flight Date: November 04, 1963	USDA
1960	1"=500'	Flight Date: July 17, 1960	USGS
1955	1"=500'	Flight Date: August 06, 1955	USDA
1951	1"=500'	Flight Date: July 27, 1951	USGS
1948	1"=500'	Flight Date: July 24, 1948	USDA

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.


Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2022 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

UNMAPPED

LINMAPPED

UNMAPPED

UNMAPPED

INMAPPEL

JNMAPPED

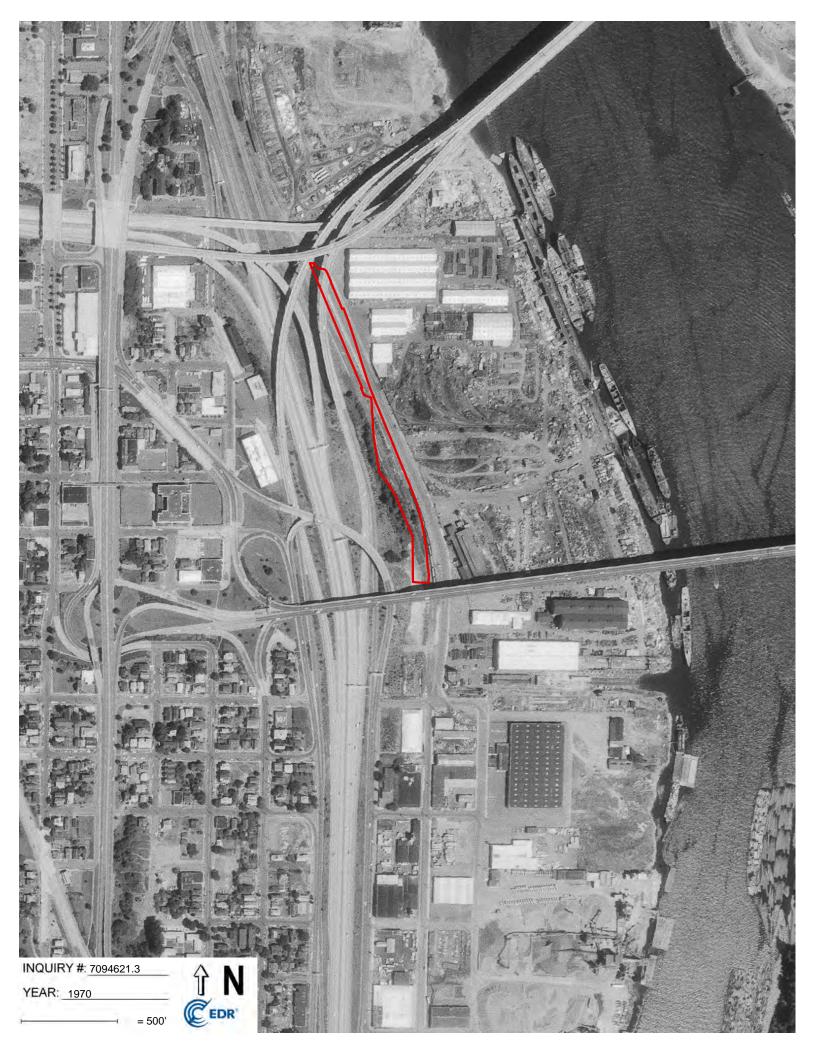
INQUIRY #: 7094621.3

YEAR: 1990

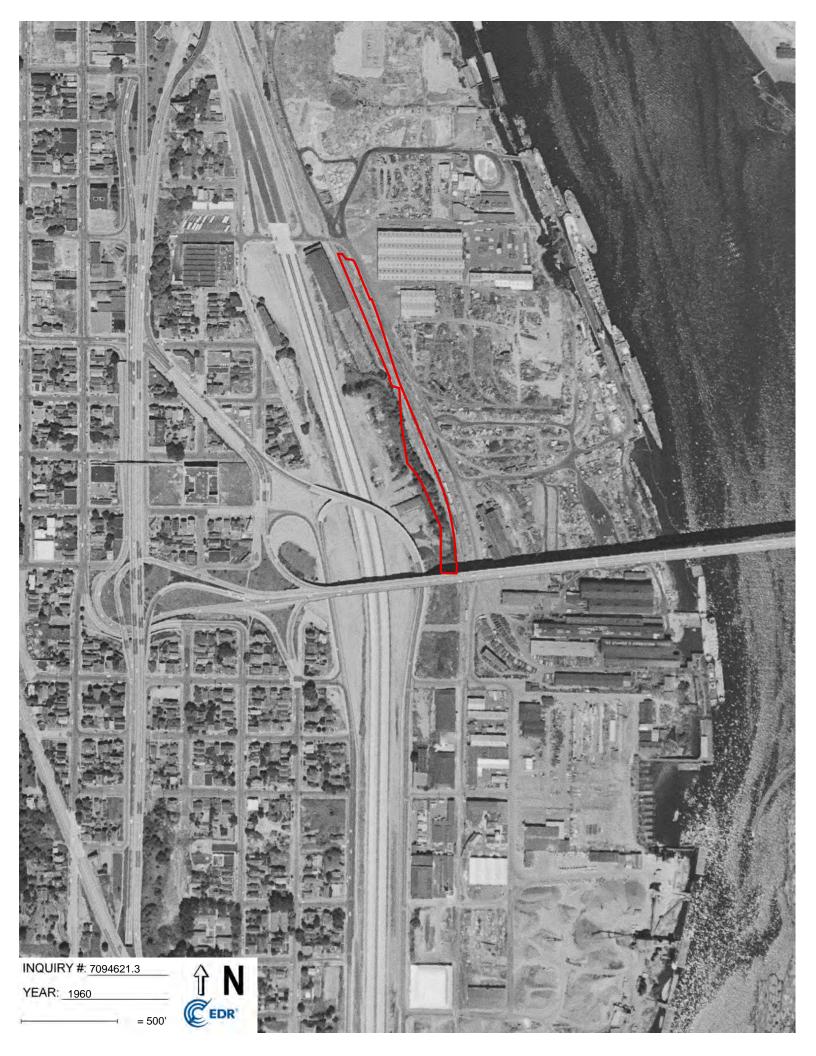
P N

= 500'

UNMAPPED


LIMMAPPER

LIMMAPPER


LINIMAPPED

