Department of Environmental Quality

Memorandum

Date: 5/14/2024

To: ECSI FILE #271

Through: Kevin Parrett, Manager

Northwest Region Cleanup Section, DEQ

From: David Lacey, Project Manager

Northwest Region Cleanup Section

Subject: Swan Island Upland Facility-Operable Unit 2, ECSI # 271

Staff Memorandum in support of a No Further Action determination

This document presents the basis for the Oregon Department of Environmental Quality's (DEQ's) recommended No Further Action (NFA) determination for the Swan Island Upland Facility-Operable Unit 2, in Portland. As discussed in this report, contaminant concentrations in soil and groundwater are below acceptable risk levels.

The proposed NFA determination meets the requirements of Oregon Administrative Rules Chapter 340 Division 122, Sections 010 to 0140 and Oregon Revised Statutes 465.200 through 465.455.

The proposal is based on information documented in the administrative record for this site. A copy of the administrative record index is presented at the end of this report.

1. BACKGROUND

Site location.

The site's location can be described as follows:

- Address: 5225 North Channel Avenue, Portland, Oregon.
- Latitude 45.5598° North, longitude -122.7128° West
- Tax lot(s): 3 TL 105 and 108, Township 1 North, Range 1 East, Section 20

Swan Island Upland Facility Setting.

Operable Unit 2 was evaluated as part of an agreement between the Port of Portland (the Port) and DEQ for the Swan Island Upland Facility – *Voluntary Agreement for Remedial Investigation, Source Control Measures, and Feasibility Study* – dated July 24, 2006 (DEQ, 2006). For the purposes of the work conducted under this agreement, the Swan Island Upland Facility has been divided into five operable units designated as follows:

• Operable Unit 1- Approximately 57 acres of upland property, formerly known as the Portland Shipyard, owned by Shipyard Commerce Center, LLC (formerly Cascade

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 2 of 23

General), and operated as the Vigor Marine (Vigor) Ship Repair Yard. DEQ issued a Final Source Control Decision for Operable Unit 1 on November 24, 2014.

- Operable Unit 2- Approximately 19 acres of upland property owned by the Port south of North Channel Avenue. Currently there are two leaseholds: 1) Heidelberg Materials plant (formerly Pacific Rock Products, formerly CEMEX) and 2) the Daimler Trucks North America LLC (Daimler) temporary truck staging area. DEQ issued a Final Source Control Decision for Operable Unit 2 on January 12, 2023.
- Operable Unit 3- Approximately 2.5 acres of upland property owned by the Port on North Lagoon Avenue that includes the property at 5420 North Lagoon Avenue and the adjacent property to the north that provides access to Berths 308 and 309. DEQ issued a Final Source Control Decision for Operable Unit 3 on April 4, 2013, and a NFA on July 10, 2013.
- Operable Unit 4- Approximately 7.8 acres of upland property between Operable Unit 1 and Operable Unit 2. Until 2008, Operable Unit 4 was part of Operable Unit 2, but was designated a separate operable unit to facilitate the sale of the property from the Port to Shipyard Commerce Center LLC. DEQ issued a Final Source Control Decision for Operable Unit 4 on February 26, 2015.
- Operable Unit 5- Approximately 5 acres of upland property that includes the riverbank adjacent to Operable Unit 2 and Operable Unit 4. Until 2014, Operable Unit 5 was part of Operable Unit 2, but was designated a separate operable unit to facilitate the potential sale of the Operable Unit 2 property. DEQ issued a Final Source Control Decision for Operable Unit 5 on April 4, 2016.

Site setting.

Figures showing the location of the Swan Island Facility and the layout of Operable Unit 2 are presented in Attachment 1. The property covers approximately 19 acres of upland property at the Swan Island Upland Facility and is owned by the Port. As discussed above, a portion of Operable Unit 2 (the riverbank) was separated into Operable Unit 5 in 2014. Therefore, figures in Attachment 1 that were prepared prior to 2014 show an older version of Operable Unit 2.

Operable Unit 2 is comprised of two leaseholds. One portion of the site is leased to Heidelberg Materials for a concrete batch plant and aggregate storage. The Heidelberg Leasehold includes approximately 12.1 acres at the northwest end of the site. The other portion is leased to Daimler and is used for temporary staging of trucks and trailers. The Daimler Leasehold covers approximately 7 acres at the southeast end of Operable Unit 2.

Operable Unit 2 does not include any riverbank property. The adjacent riverbank is part of Swan Island Upland Facility Operable Unit 5 and is being evaluated separately.

Physical setting.

Operable Unit 2 is relatively flat with land surface elevations generally ranging between 34 and 38 feet (NAVD88). The subsurface soils beneath the site are mixtures of silt, sandy silt, silty sand, and sand with gravel. In general, sand and occasional gravel are encountered to a depth of approximately 20 feet below ground surface (bgs). These materials represent Willamette

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 3 of 23

River dredged materials that were placed on Swan Island when it was reconfigured and raised in elevation in the 1920s. Underlying the fill is recent alluvium associated with the original Swan Island, consisting of variable mixtures of silt, sandy silt, silty sand, and sand.

Shallow groundwater occurs under water table conditions. The depth to groundwater ranges from approximately 18 to 30 feet bgs. The shallow groundwater flow direction is southwesterly, toward the Willamette River.

There are no surface water features at the site. The Willamette River is located 100 to 150 feet to the southwest.

Site history.

Operable Unit 2 was developed in the 1920s, and has been used for a variety of light industrial uses since, including:

- 1923 to 1931 Development of Swan Island.
- 1931 to 1941 Portland Airport.
- 1942 to 1949 Support services for military-era ship building and related industries.
- 1950 to Present Variety of light industrial uses.

Figures identifying historical features relevant to potential contamination at Operable Unit 2 are presented in Attachment 1.

The Port developed Swan Island beginning in 1923, when the main navigation channel of the Willamette River was relocated to the west side of the island. River sediments dredged as part of the project were deposited on Swan Island to raise the surface elevation and construct a causeway connecting the island to the eastern shore of the river. This filling prepared the island for development into the first Portland Airport. Airport construction was completed, and operations started in 1931. The airport operated until 1941, when it was relocated to northeast Portland. Based on historical research conducted by the Port, the only airport facilities that were located on Operable Unit 2 was a paved takeoff runway.

Between 1942 and 1949, the United States used Operable Unit 2 to support military-era ship building and related industries. Electrical substations that may have contained equipment with polychlorinated biphenyls (PCBs) were installed during this period. Two Kaiser Shipyard substations, designated substation Sub P and Sub Q, were located on Operable Unit 2.

Between 1950 and 1978, Operable Unit 2 was primarily used for material receiving and storage.

In 1978, Operable Unit 2 was used as the staging and pre-cast concrete construction site for the new ballast water treatment plant constructed at the shipyard (in OU1).

From 1985 to 1990, the site was used by Atlantic Richfield Company for construction of modular units used for oil processing on Alaska's North Slope. The modules were fabricated and painted in the central portion. An oil storage area and aboveground fuel tanks were located south of a small wooden building (Building 83) located on the east side of the site during this period.

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 4 of 23

Facility inspections at the end of this period identified petroleum staining on the ground surface in several areas.

After 1990, Operable Unit 2 was used for materials and equipment storage for ship repair activities conducted on OU1 (outdoor storage of equipment, steel, cable drums, empty portable tanks and totes, other materials); sand, gravel, and rock storage; concrete batch plant; and truck parking. In 1993, sandblast sand and yard sweepings were observed and removed from an area near the northern corner.

Currently, Daimler has the leasehold for approximately 7 acres at the southeast end of Operable Unit 2. The leased property is used to temporarily stage trucks and trailers. This portion of the site is almost entirely covered with compacted gravel. Heidelberg Materials plant (formerly Pacific Rock Products, formerly CEMEX) has a leasehold on 12.1 acres in the northwest end to operate a concrete batch plant and store rock products. Operational features include the concrete mixing plant, truck scale, mixer truck parking area, aggregate storage piles, a stormwater treatment swale, and a process water storage/settling pond. Process water and stormwater from the batch plant are collected and used in the concrete manufacturing process. In the eastern corner, near North Channel Avenue, is a truck fueling area. The fueling area uses an aboveground storage tank, which is covered and completely contained. Areas near North Channel Avenue around the truck scale and the batch plant are paved. The remainder of the ground surface is compacted gravel.

2. BENEFICIAL LAND AND WATER USE DETERMINATIONS

Land use.

The current and reasonably likely future land use for the site is industrial. It is currently zoned industrial and lies within the City of Portland Industrial Sanctuary and Swan Island Plan District. The Swan Island Upland Facility is expected to continue to be used for industrial purposes, consistent with goals and policies stated in the City of Portland's Comprehensive Plan.

Groundwater use.

The only current and reasonably likely future beneficial groundwater use at the site is discharge to surface water. Other beneficial uses of groundwater on the site are unlikely because: a public water supply system already exists and is the source of water supply to the site; there is no trend toward groundwater being developed as a source of water supply in the area; the owners of properties around the site have indicated that they have no plans for future use of groundwater; and the public water suppliers, including the City of Portland, have no plans to develop groundwater on or near the site to meet future increases in water demand.

Surface water use.

The Willamette River is less than 200 feet from the boundary of the Facility. It is used mainly for habitat (e.g., anadromous and resident fish species), commercial/industrial activities (e.g., navigation), and recreational activities (e.g., boating, sport fishing). Also, local Indigenous tribes have fishing rights on the lower Willamette River.

Historically several catch basins connected to outfalls along the riverbank. Currently there is one active catch basin on the Daimler portion which is connected to outfall WR-163. Stormwater on

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 5 of 23

the remainder of the Daimler portion pools in low lying areas and infiltrates. Stormwater on the Heidelberg portion is directed to a stormwater treatment/infiltration swale.

3. INVESTIGATION AND CLEANUP WORK

Appendix F of the Supplemental Preliminary Assessment Swan Island Facility (Port, 2006) presents a list of known and potential releases that occurred across the entire Swan Island Upland Facility. No spills or potential releases were identified in Operable Unit 2. However, elevated levels of metals thought to be associated with sand blasting grit were detected in surface soils on the Daimler Leasehold. On the Heidelberg Leasehold, low level volatile organic compounds (VOCs) were detected in groundwater, and PCBs/petroleum hydrocarbons were detected in soil samples.

3.1 Site Investigations

Since 2000, the Port has completed Remedial Investigation activities throughout the five operable units of the Swan Island Upland Facility, including Phase I Remedial Investigation soil and groundwater investigations, Phase II Remedial Investigation groundwater monitoring well installation, four quarters of groundwater sampling, and five years of annual groundwater sampling.

The Port and others also performed operable unit-specific investigation activities. Shipyard Commerce LLC performed sampling of soil and groundwater on Operable Unit 2 prior to purchase of the property from the Port (Bridgewater Group, 2000, 2001, 2002, 2003, 2004, 2005, 2006a, 2007, and 2008). The Port completed sampling of former substations (Ash Creek, 2007a and 2007b), sampling in the area where CEMEX (now Heidelberg) constructed a stormwater swale (Ash Creek. 2009), sampling of stormwater solids (Ash Creek, 2008), a soil removal to address an occupational worker arsenic hot spot (Bridgewater Group, 2006b), a Level I Scoping Ecological Risk Assessment (New Fields, 2006), a Level II Screening Ecological Risk Assessment (Formation Environmental, 2010), a Human Health Risk Assessment (Ash Creek, 2009), and soil removal to address arsenic risk to occupational workers (Ash Creek, 2015).

The following sections summarize the previous investigations for Operable Unit 2. Attachment 2 presents a sample location figure.

Pre-Remedial Investigation

In 1998, surface (0 to 2 feet bgs) and subsurface (between 14 and 22 feet bgs) soil samples were collected on the Swan Island Upland Facility to establish baseline conditions prior to the sale of the shipyard to Shipyard Commerce Center LLC. Five borings (designated Boring 2 through 6) were located on Operable Unit 2. The soil samples were analyzed for petroleum hydrocarbons, PCBs, and metals; select soil samples were analyzed for VOCs. The results of the assessment are summarized in the Remedial Investigation/Feasibility Study Work Plan (Bridgewater Group, 2000).

 Barium, chromium, mercury, silver, and selenium were not detected above their respective DEQ regional background value. Arsenic concentrations ranged from 2.14 to 49.8 milligrams per kilogram (mg/kg): one sample was above the DEQ regional background concentration of 8.8 mg/kg. Cadmium was detected in one sample with a reported concentration of 0.935 mg/kg, above the DEQ regional background Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 6 of 23

concentration of 0.63 mg/kg. Lead concentrations ranged from not detected to 267 mg/kg: the detected concentration in one sample was above DEQ regional background concentration of 79 mg/kg.

- Heavy oil range hydrocarbons were detected in four of the ten samples with concentrations ranging from 146 to 3,010 mg/kg.
- VOCs were detected in one of four samples. Methylene chloride was detected with a reported concentration of 1.21 micrograms per kilogram (μg/kg).
- PCBs were detected in one of ten samples. Aroclor 1260 was detected with a reported concentration of 133 μg/kg.

Remedial Investigation Soil Sampling

2001 Phase IA Remedial Investigation. In January 2001, the Port collected 44 soil samples from 16 borings (B-13 through B-28) and six surface soil locations (S-1 through S-16). Samples were generally collected from the borings at a depth of 2 feet bgs and just above the water table which ranged in depths from 29 to 31 feet bgs. Sample locations were a mixture of random locations and biased locations based on potential release areas.

- Antimony, arsenic, cadmium, copper, lead, nickel, silver, and zinc were detected in one or more samples at concentrations above their respective DEO regional background concentration. Chromium and mercury were not detected above their respective DEQ regional background concentration. Antimony concentrations ranged from not detected to 7.2 mg/kg; the detected concentrations are above DEQ regional background concentration of 0.53 mg/kg in five samples. Arsenic concentrations ranged from 1.5 to 652 mg/kg; the detected concentrations were above DEQ regional background concentration of 8.8 mg/kg in two samples. Cadmium concentrations ranged from not detected to 8.1 mg/kg; the detected concentrations were above DEQ regional background concentration of 0.63 mg/kg in two samples. Copper concentrations ranged from 14 to 1,800 mg/kg; the detected concentrations were above the DEQ regional background value of 34 mg/kg in 20 samples. Lead concentrations ranged from 2.7 to 602 mg/kg; the detected concentrations were above the DEQ regional background value of 79 mg/kg in three samples. Nickel concentrations ranged from 6.6 to 69.8 mg/kg; the detected concentrations were above the DEQ regional background value of 47 mg/kg in one sample. Silver was detected in one sample with a detected concentration of 1.9 mg/kg. which was above the DEQ background value of 0.82 mg/kg. Zinc concentrations ranged from 44 to 7,410 mg/kg; the detected concentrations were above the DEQ regional background value of 180 mg/kg in eleven samples.
- Residual range hydrocarbons were detected in six of 44 samples with concentrations ranging from 90 to 3,500 mg/kg.
- Diesel range hydrocarbons were detected in seven of 44 samples with concentrations ranging from 20 to 6,500 mg/kg.

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 7 of 23

- VOCs were detected in five of eight samples. Acetone was detected in five samples with concentrations ranging from 75 to 190 μg/kg.
- PCBs were detected in nine of 44 samples. Aroclor 1254 was detected in two samples with concentrations ranging from 20 to 290 μg/kg. Aroclor 1260 was detected in eight samples with concentrations ranging from 12 to 410 μg/kg.

2001 Phase IB and II Remedial Investigation. In December 2001, the Port collected three surface soil samples (S-48, S-49, and S-50) to further delineate the extent of soils containing arsenic concentrations above DEQ's highly concentrated hot spot levels.

Chromium, mercury, nickel, and silver were not detected above their respective DEQ regional background concentrations. Antimony concentrations ranged from 38.6 to 49.5 mg/kg; the detected concentrations were above DEQ regional background concentration of 0.53 mg/kg in all three samples. Arsenic concentrations ranged from 595 to 652 mg/kg; the detected concentrations were above DEQ regional background concentration of 8.8 mg/kg in all three samples. Cadmium concentrations ranged from 1.9 to 4.4 mg/kg; the detected concentrations were above DEQ regional background concentration of 0.63 mg/kg in two samples. Copper concentrations ranged from 959 to 1,810 mg/kg; the detected concentrations were above the DEQ regional background value of 34 mg/kg in all three samples. Lead concentrations ranged from 326 to 605 mg/kg; the detected concentrations were above the DEQ regional background value of 79 mg/kg in all three samples. Nickel concentrations ranged from 12.1 to 18.8 mg/kg; the detected concentrations were above the DEQ regional background value of 47 mg/kg in all three samples. Zinc concentrations ranged from 4,350 to 7,110 mg/kg; the detected concentrations were above the DEQ regional background value of 180 mg/kg in all three samples.

Historical Electrical Substations. In 2007, soil samples were collected from the two substations located on Operable Unit 2 (Sub P and Sub Q). The soil samples were analyzed for total petroleum hydrocarbons (TPH) and PCBs. No TPH was detected. PCBs as Arcolcor 1260 were detected in three samples from Sub Q with a maximum concentration of 48 μg/kg.

Groundwater Investigations

Groundwater data were collected between 2001 and 2020.

2001 Phase IA Remedial Investigation. In 2001 groundwater grab samples were collected from three borings located (B-13, B-15, and B-17). The samples were analyzed for metals, butyltins, and VOCs.

- Metals Antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc were detected.
- Butyltins No butyltins were detected.
- VOCs No VOCs were detected.

2001 Through 2007 Monitoring Well MW-11 Sampling. In December 2001, the Port installed monitoring well MW-11. One year of quarterly sampling was conducted. For the quarterly

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 8 of 23

monitoring, groundwater samples were analyzed for metals, tributyltin (TBT), VOCs, and polycyclic aromatic hydrocarbons (PAHs). In addition, five years of annual sampling of MW-11 was conducted between 2001 and 2007. The annual monitoring included one additional round for VOCs and five rounds of metals. The shift from quarterly to annual sampling coincided with the implementation of low flow sampling methods to reduce sample turbidity and provide more representative results.

- Metals Arsenic, cadmium, chromium, copper, lead, nickel, silver, and zinc were detected.
- TBT TBT was not detected.
- VOCs Vinyl chloride, chloroform, cis-1,2-Dichloroethene, trans-1,2-dichloropropane and toluene were detected with maximum concentrations of 6.5 micrograms per liter (μg/L), 1.1 μg/L, 11 μg/L, 0.32 μg/L and 0.76 μg/L, respectively.
- PAHs Naphthalene and 2-methylnaphthalene were detected in one event with concentrations of 0.093 μg/L and 0.29 μg/L, respectively.

2007 Groundwater Grab Sampling. In 2007, groundwater sampling was completed for additional VOCs data in groundwater surrounding monitoring well MW-11 to investigate the extent of vinyl chloride. Five groundwater samples (GW-1 through GW-5) were collected from just below the water table, ranging in depth from 18 to 30 feet bgs. The samples were analyzed for VOCs.

• VOCs – Vinyl chloride was detected at GW-3 with a concentration of 7.0 μg/L. Cis-1,2-dichlroethene was detected at GW-3 with a concentration of 14 μg/L.

2017 Monitoring Well MW-11 Sampling. In January 2017 the Port sampled monitoring well MW-11 for VOCs to confirm vinyl chloride concentrations in groundwater were below Portland Harbor Cleanup Levels (APEX, 2017). No VOCs were detected.

2019-2021 Monitoring Wells MW-11 Sampling. In January 2019, the Port sampled monitoring well MW-11 for PCBs and TPH to support the source control evaluation. The well was sampled again in February 2021 for aliphatic and aromatic petroleum hydrocarbons. TPH, and aliphatic and aromatic petroleum hydrocarbons were not detected above the reporting limits. Several PCB congeners were detected.

• PCBs – Total PCB congeners were detected at 1.8 nanograms per liter (ng/L).

3.2 Removal Actions

Five surface soil removal actions have been completed at OU2.

2006 Removal Action Verification Samples RA-1 through RA-5. In December 2005, a removal action was performed to address surface soil containing arsenic above the soil hot spot concentration of 160 mg/kg. Confirmation samples RA-1 through RA-5 were collected and analyzed for metals.

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 9 of 23

2006 Surface Samples S-51 through S-56. In September 2006, supplemental surface soil sampling was conducted to supplement the risk assessment. Six surface soil samples (S-51 through S-56) were collected and analyzed for metals.

2007 Cemex Development (formerly Rinker, now Heidelberg). In 2007, approximately 415 tons of impacted soil were removed during swale construction. Grab and composite soil samples were collected (Rink-001 through Rink-008 and RINK-015) and analyzed for metals, TPHs, VOCs, and PCBs.

- Metals Antimony, copper, lead, and zinc were detected above their respective DEQ regional background values.
- TPH Gasoline Range Organics concentrations ranged from 5.04 to 27.6 mg/kg. Diesel Range Organics concentrations ranged from 80.1 to 2,750 mg/kg. Residual Range Organics concentrations ranged from 209 to 10,600 mg/kg.
- VOCs No VOCs were detected.
- PCBs Aroclor 1254 concentrations ranged from not detected to 140 μg/kg. Aroclor 1260 concentrations ranged from not detected to 103 μg/kg.

In addition, six soil samples (RINK-009 through RINK-014) were collected from the bottom and side walls of an area where visually impacted soil was removed during construction of a stormwater swale.

- Metals Antimony, cadmium, copper, lead, and zinc were detected above their respective DEQ regional background values.
- TPH Gasoline Range Organics concentrations ranged from not detected to 125 mg/kg. Diesel Range Organics concentrations ranged from not detected to 1,380 mg/kg. Residual Range Organics concentrations ranged from not detected to 2,720 mg/kg.
- VOCs Naphthalene was detected at RINK-010 with a concentration of 43 μg/kg. n-Propylbenzene was detected at RINK-010 with a concentration of 19.4 μg/kg. 1,2,4-trimethylbenzene was detected at RINK-010 with a concentration of 20.1 μg/kg.
- PCBs Aroclor 1260 concentrations ranged from not detected to 6,700 μg/kg.

2012 Feasibility Study Surface Soil Sampling. In 2012, surface soil sampling was conducted to inform the feasibility study and remedial design to address unacceptable risk from arsenic in surface soil associated with sand blasting grit used during construction of the oil processing modular units. Thirty-five direct-push explorations (FS-1 through FS-35) were completed. Each sample was analyzed for arsenic. Results were presented in *Feasibility Study Operable Unit 2 Swan Island Upland Facility* (Ash Creek, 2013) and are included in Attachment 3.

2015 Removal Action Verification Sampling. In 2015, a removal action was completed to address unacceptable risk associated with arsenic in surface soil. Figure 4 from the Removal Action Completion Report Swan Island Upland Facility Operable Unit 2 (APEX, 2015) shows

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 10 of 23

the removal area and Figure 5 shows the verification sampling locations. Both figures and data summary tables are included in Attachment 3.

4. RISK EVALUATION

No spills or potential releases were identified in Operable Unit 2. However, elevated levels of metals thought to be associated with sand blasting grit were detected in surface soils on the Daimler Leasehold. On the Heidelberg Leasehold, low level VOCs were detected in groundwater, and PCBs/petroleum hydrocarbons were detected in soil samples.

To evaluate exposure to residual chemical contamination requires an assessment of the type and extent of that exposure. This is based on current and reasonably likely future site use. DEQ publishes risk-based concentrations (RBCs) for contaminants commonly encountered, for different types of exposure scenarios. These RBCs are conservative estimates of protective levels of contaminants in soil, groundwater, and air. Table 1 shows potential exposure pathways and receptors for this site. Based on this, applicable RBCs are identified and used for risk screening.

Table 1. Identification of applicable RBCs, based on pertinent pathways and receptors

Pathway	Receptor	Applicable RBC?	Basis for selection/exclusion
	SOII	Ĺ	
Ingestion, dermal	Residential	No	See Note 1
contact, and	Urban residential	No	
inhalation	Occupational	Yes	
	Construction worker	Yes	
	Excavation worker	Yes	
Volatilization to	Residential	No	See Note 1.
outdoor air	Urban residential	No	
	Occupational	Yes	
Vapor intrusion into	Residential	No	See Note 1.
buildings	Urban residential	No	
	Occupational	Yes	
Leaching to	Residential	No	See Note 2.
groundwater	Urban residential	No	
	Occupational	No	
	GROUNDY	VATER	
Ingestion and	Residential	No	See Note 3.
inhalation from tap	Urban residential	No	
water	Occupational	No	
Volatilization to	Residential	No	See Note 1.
outdoor air	Urban residential	No	
	Occupational	Yes	
Vapor intrusion into	Residential	No	See Note 1.
buildings	Urban residential	No	
	Occupational	Yes	

Pathway	Receptor	Applicable RBC?	Basis for selection/exclusion						
Groundwater in excavation	Construction and excavation worker	No	See Note 4.						
Ecological									
Soil		No							
Groundwater		Yes	See Note 5.						
Surface water		No							

- 1. Site is zoned heave industrial and future residential use is unlikely.
- 2. Groundwater is not used for drinking. This pathway is therefore not considered, in accordance with DEQ's Risk-Based Decision Making guidance.
- 3. City of Portland water is provided. Local groundwater is not currently used for drinking water and is not likely to be used for this purpose in the future.
- 4. Groundwater is approximately 18-30 feet bgs. Construction and excavation work are generally limited to a depth of approximately 15 feet bgs. Risk of construction and excavation workers to contaminated groundwater has therefore not been evaluated.
- 5. Groundwater discharge to Willamette River evaluated as part of Source Control Evaluation

Contaminant concentrations.

Investigation included chemical analysis of soil and groundwater samples to support the human health and ecological risk assessment. These data were determined to be of sufficient quality for use in a risk assessment.

A screening of the soil and groundwater chemical data was completed to identify human health chemicals of potential concern (COPCs) by the Port and was presented in Table 1 of the Baseline Human Health Risk Assessment, Operable Unit 2 (Ash Creek, 2009). The screening presented the Contaminants of Interest (COIs), maximum detected values, and RBC. This table is included in Attachment 4. The Port screened using residential RBC for direct contact and occupational RBC for vapor intrusion. This approach was intended to include chemicals that may contribute small but significant portions to overall risk. The following COPCs were identified: diesel-range organics, antimony, arsenic, chromium, copper, lead, nickel, Aroclor 1260, Total PCBs, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracne, benzo(g,h,i)perylene, vinyl, chloride, and chloroform. DEQ reviewed the RBCs used in the 2009 risk assessment for consistency with the 2017 RBC updates and no additional COPCs were identified.

Exposure point concentrations (EPCs) were evaluated using the United States Environmental Protection Agency's (EPA's) ProUCL to calculate a 90% upper confidence limit (UCL) for each COPC. Table 2 of the Baseline Human Health Risk Assessment summarized these results and is included in Attachment 4.

Human health risk.

The results of the baseline human health risk assessment are summarized as follows.

• For non-carcinogens, hazards for receptors and pathways evaluated met the acceptable hazard level.

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 12 of 23

- For carcinogens, receptors and pathways evaluated had excess lifetime cancer risk that met the acceptable risk levels in the Heidelberg (former CEMEX) area.
- For carcinogens in the Daimler area, unacceptable risk was identified for occupational and construction worker direct contact with soil containing arsenic.
- An arsenic soil hot spot was identified in the Daimler area.

Risk characterization for non-carcinogens and carcinogens were presented in Tables 4 and 5 of the Baseline Human Health Risk Assessment which are included in Attachment 4.

Ecological risk.

A Level 1 Scoping Ecological Risk Assessment (New Fields, 2006) and a Level II Screening Ecological Risk Assessment (Formation Environmental, 2010) were prepared for Operable Unit 2. These risk assessments concluded that potential ecological risk was associated with the riverbanks only. In 2013, the riverbank portion of Operable Unit 2 was separated into the new Operable Unit 5. Therefore, Operable Unit 2 no longer contains ecological habitat.

5. Focused Feasibility Study and Final Removal Action

Based on the unacceptable risk identified in the risk assessment, a feasibility study was conducted (Ash Creek, 2013). The feasibility study recommended excavation and off-site disposal of soil to address hot spot and unacceptable concentrations of arsenic.

In late 2014 and early 2015, a removal action was conducted at Operable Unit 2 for off-site disposal of soil containing hot spot and unacceptable concentrations of arsenic. Over 6,700 tons of soil were removed from the site and disposed of at a Subtitle D landfill. Confirmation sampling verified that concentrations remaining on-site are consistent with arsenic background concentrations. Figures that present the final removal action and confirmation sample locations are included in Attachment 3.

6. Source Control Decision

Based on the remedial investigation data summarized above and prior source control measures, including abandonment of three inactive stormwater outfalls and a stormwater system cleanout of outfall WR-163, the Port prepared a Source Control Evaluation (Ash Creek, 2010). DEQ requested additional information on soil concentrations surrounding the on-site catch basins. The data was collected and included in an addendum to the Source Control Evaluation (Ash Creek, 2011). Based on comments the DEQ received on the proposed Source Control Decision, DEQ requested supplemental sampling to support the final Source Control Decision. This additional sampling included the following.

- In 2017, a groundwater sample was collected from MW-11 and analyzed for VOCs (APEX, 2017).
- In 2019 through 2021, additional sampling was conducted at MW-11, the single catch basin on Operable Unit 2, and the outfall (WR-163) from the Operable Unit 2 catch basin to the Willamette River (APEX, 2021).

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 13 of 23

With this supplemental information, the DEQ prepared the final Source Control Decision (DEQ, 2023). The Operable Unit 2 Source Control Decision concluded the following.

- The site has been adequately characterized;
- The sources, nature, and extent of contamination are understood; and
- Contaminant transport pathways do not pose a significant current or likely future threat to the Willamette River.

7. RECOMMENDATION

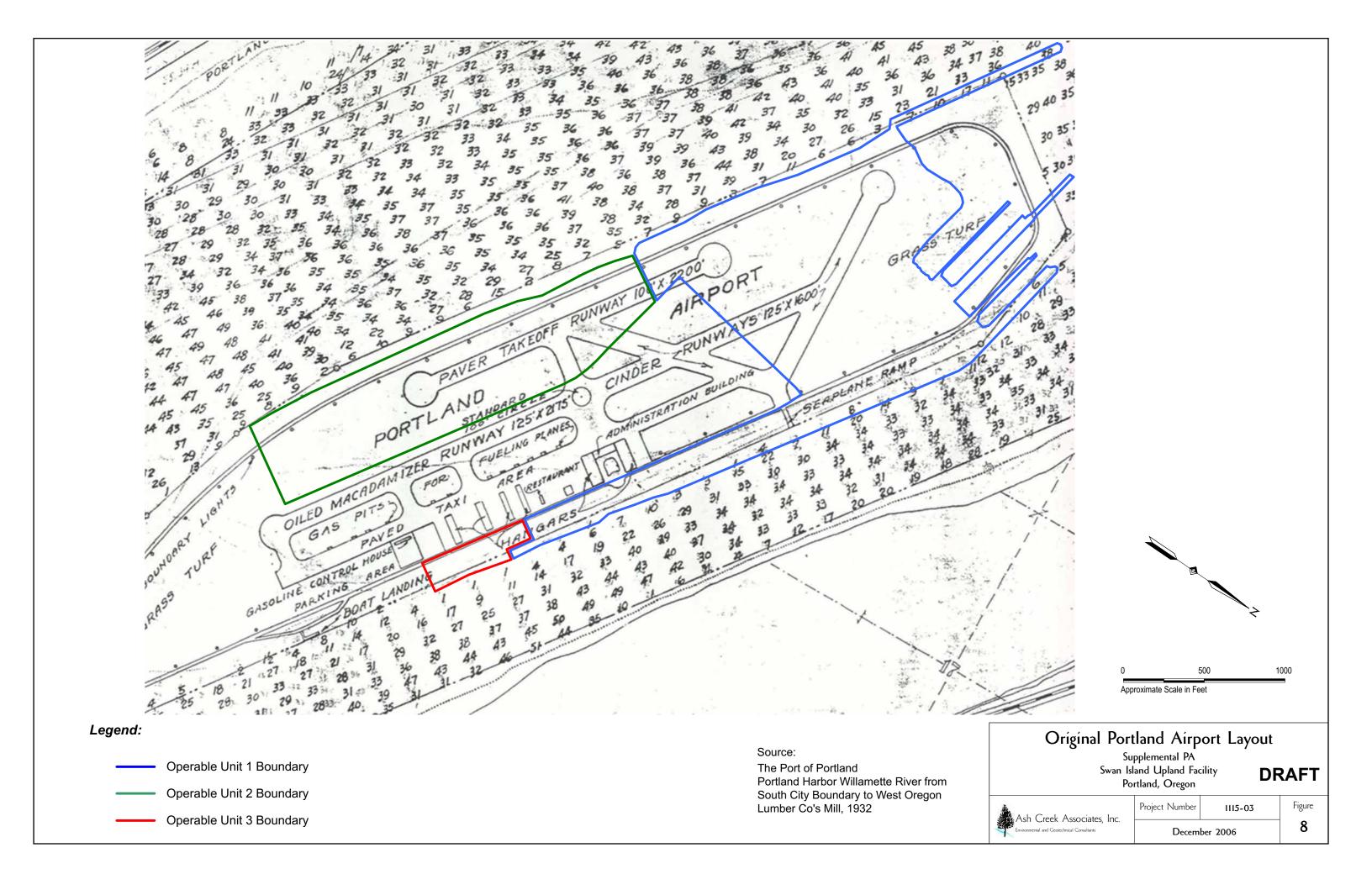
Following the removal of contaminated soil at Operable Unit 2, remaining concentrations of contaminants of concern do not exceed acceptable risk levels, and a No Further Action determination is recommended for this site. The No Further Action determination should be recorded in DEQ's Environmental Cleanup Site Information (ECSI) database (ECSI # 271).

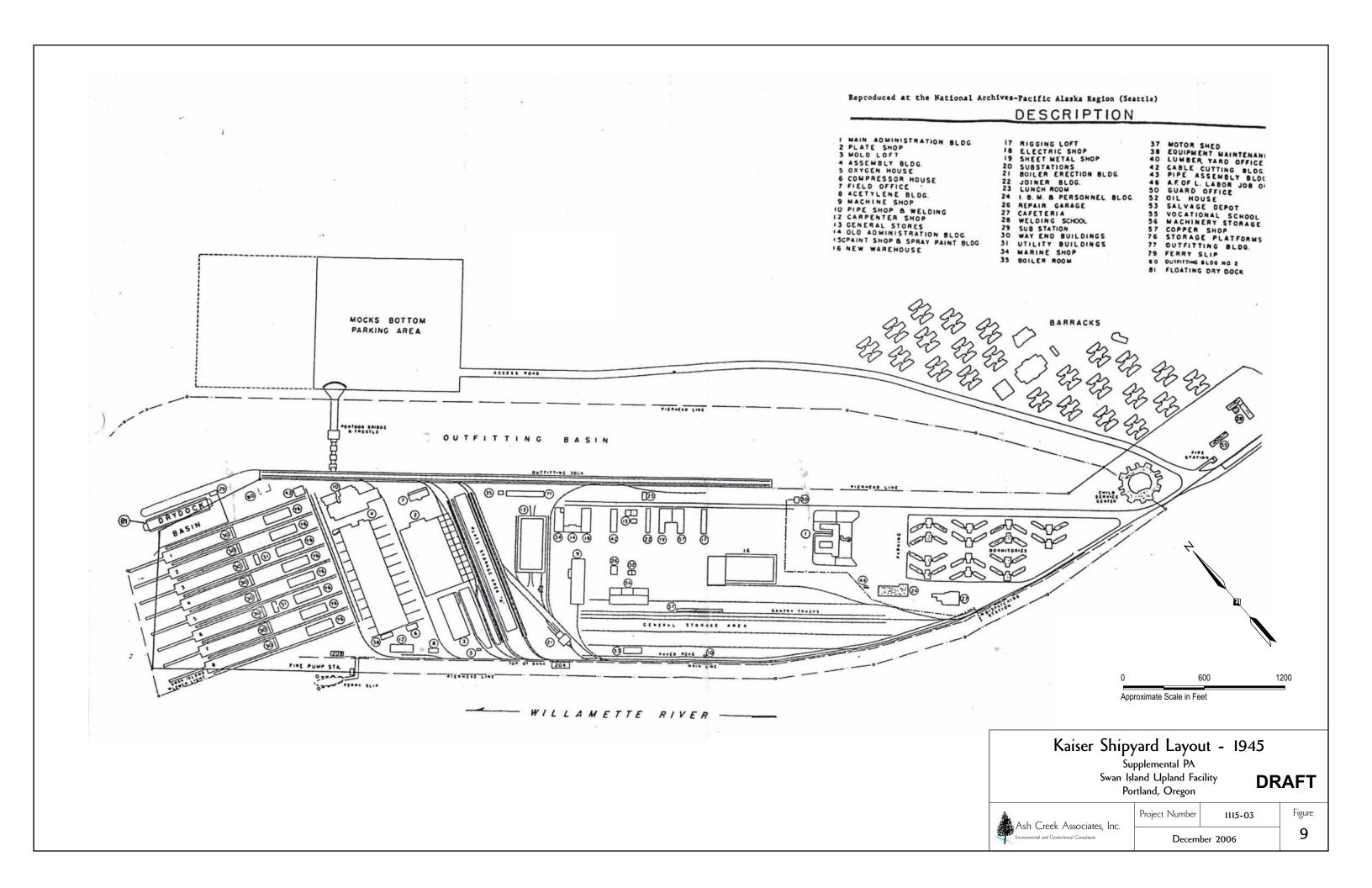
8. ADMINISTRATIVE RECORD AND REFERANCES

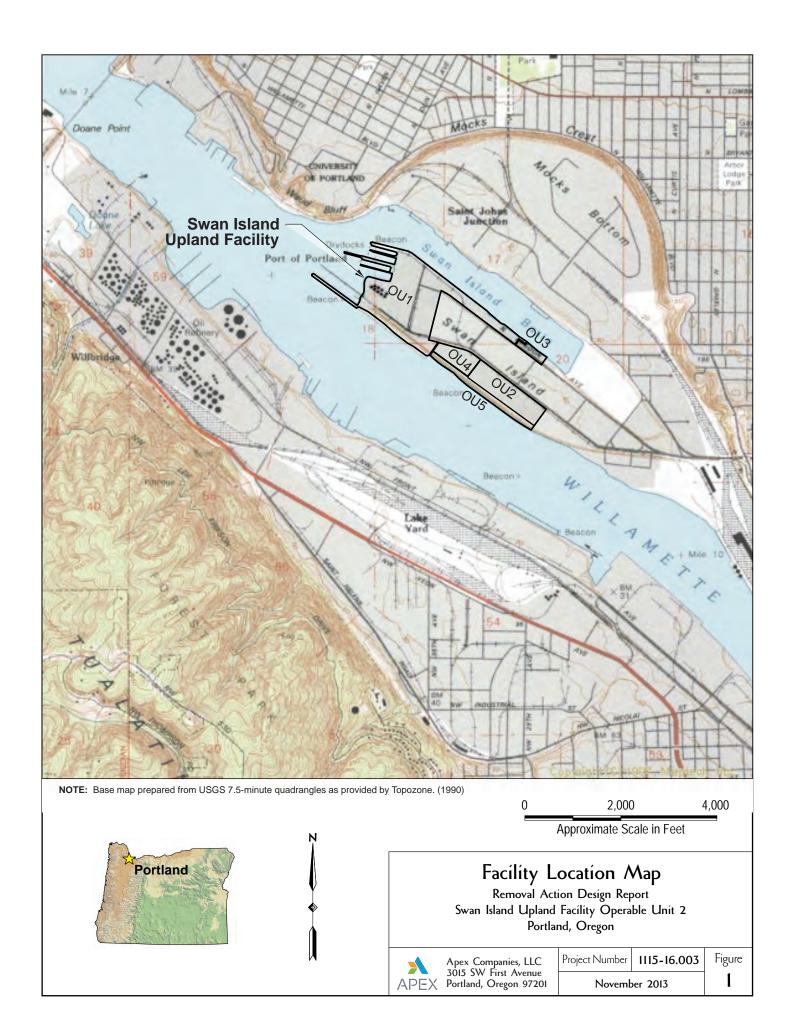
- APEX, 2015. Removal Action Completion Report Swan Island Upland Facility Operable Unit 2, prepared for the Port of Portland, April 23, 2015.
- APEX, 2017. MW-11 Groundwater Sampling Results Operable Unit 2-Swan Island Upland Facility, prepared for the Port of Portland, March 14, 2017.
- APEX, 2021. Letter from S. Misner/APEX to D. Lacey/ODEQ regarding Revised Supplemental Source Control Sampling Results, March 31, 2021.
- Ash Creek, 2006. *Draft Supplemental Preliminary Assessment, Swan Island Upland Facility*, prepared for the Port of Portland, December 2006.
- Ash Creek, 2007a. Letter from M. Pickering/Ash Creek to N. LaFranchise/Port regarding former substation sampling results, Swan Island Upland Facility, July 24, 2007.
- Ash Creek, 2007b. Letter from M. Pickering/Ash Creek to N. LaFranchise/Port regarding former substation and Berth 305 sampling results addendum, Swan Island Upland Facility, November 14, 2007.
- Ash Creek, 2008. Letter from M. Pickering/Ash Creek to K. Madalinski/Port regarding OU2 storm water system cleanout, March 24, 2008.
- Ash Creek, 2009. Baseline Human Health Risk Assessment, Operable Unit 2, Swan Island Upland Facility, Portland, Oregon, prepared for the Port of Portland, September 1, 2009.
- Ash Creek, 2010. Source Control Evaluation Operable Unit 2 Swan Island Upland Facility, prepared for the Port of Portland. April 15, 2010.
- Ash Creek, 2011. Source Control Evaluation Addendum Operable Unit 2 Swan Island Upland Facility, prepared for the Port of Portland, December 27, 2011.

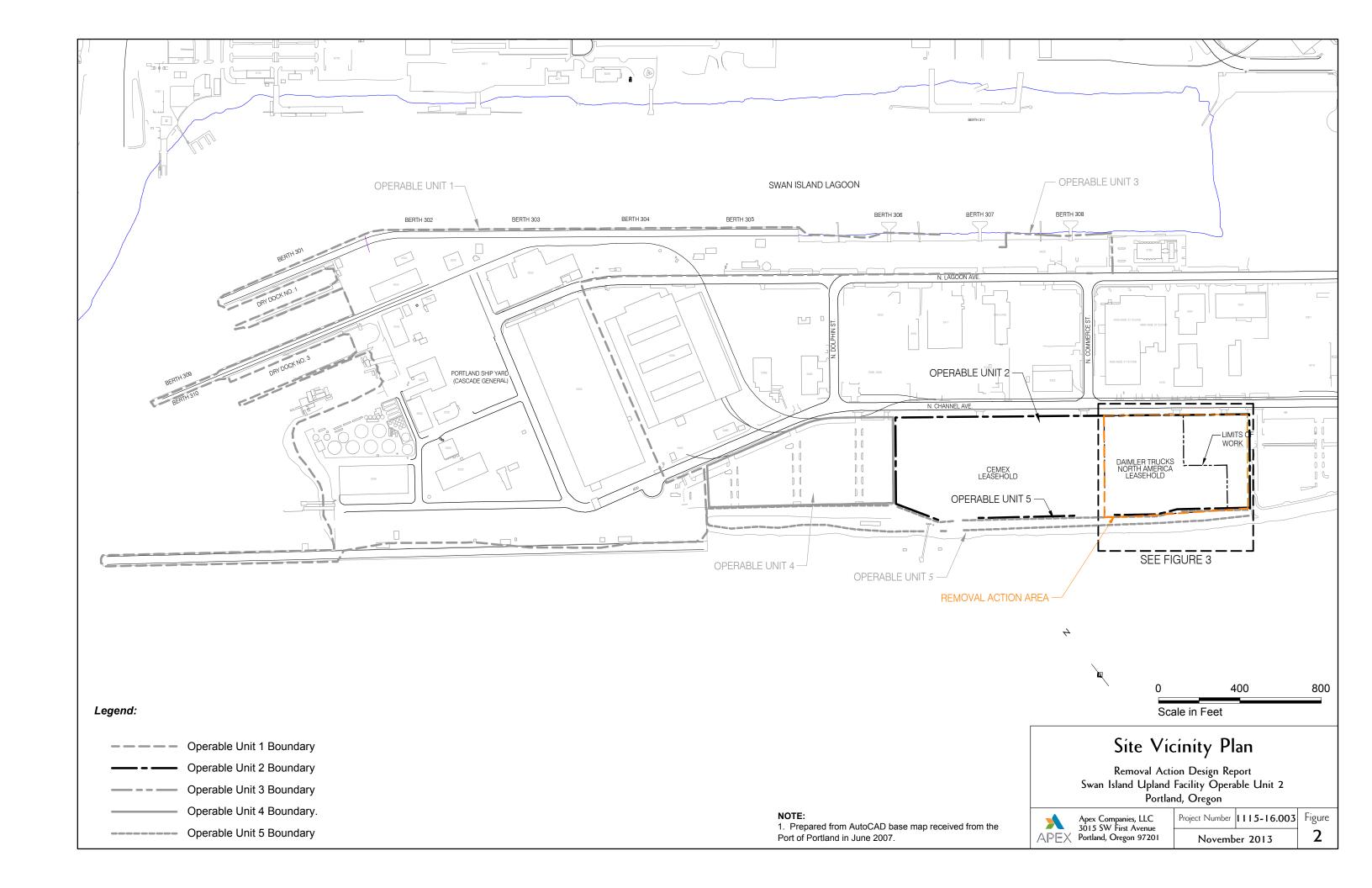
Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 14 of 23

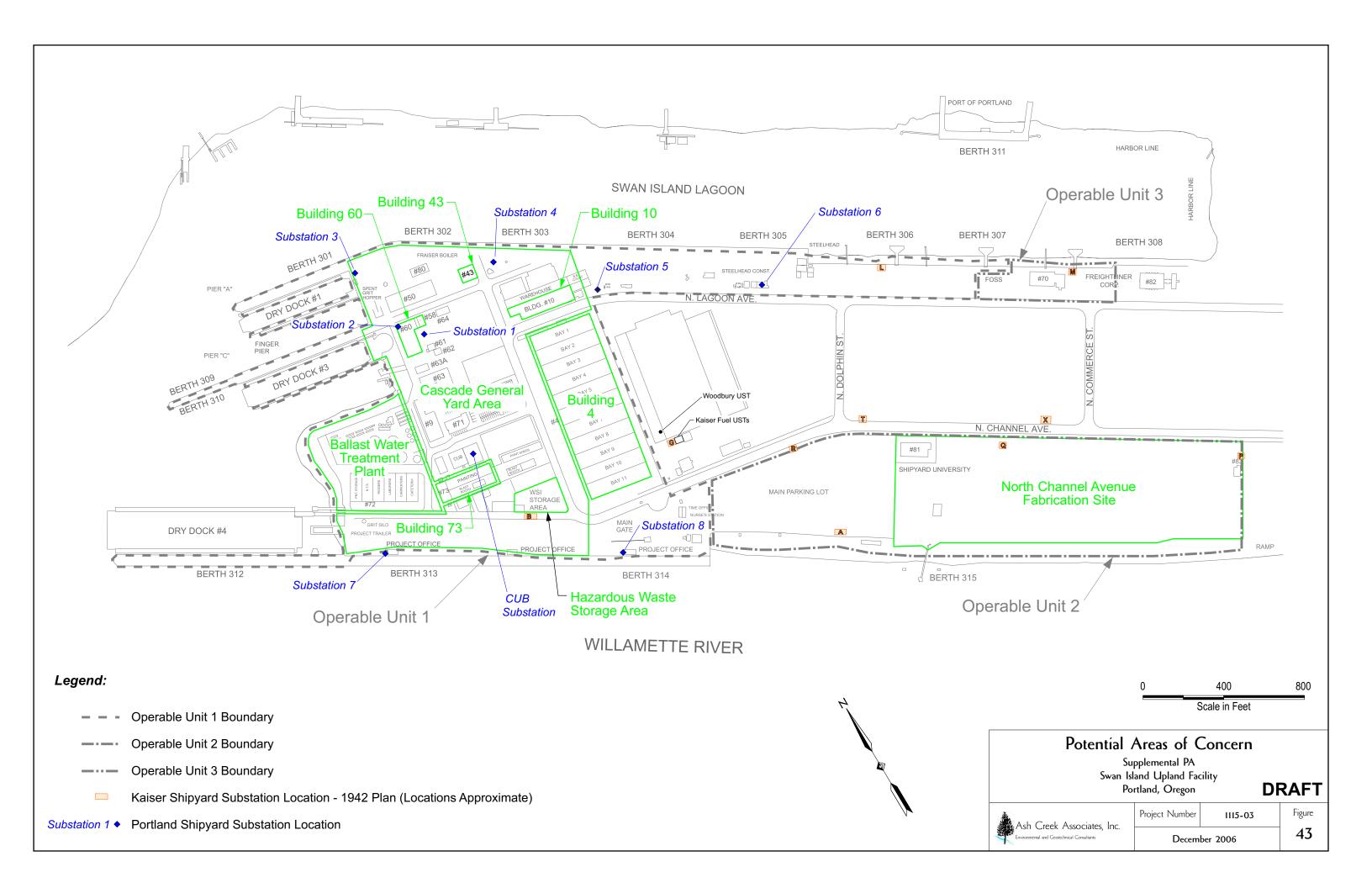
- Ash Creek, 2013. *Feasibility Study Operable Unit 2 Swan Island Upland Facility*, prepared for the Port of Portland, January 2013.
- Ash Creek, 2015. Removal Action Completion Report Swan Island Upland Facility Operable Unit 2 Swan Island Upland Facility, prepared for the Port of Portland, April 23, 2015
- Bridgewater Group, 2000. Remedial Investigation/Feasibility Study Work Plan for the Portland Shipyard, prepared for the Port of Portland. November 2, 2000.
- Bridgewater Group, 2001. *Phase IB Work Plan Addendum, Portland Shipyard Remedial Investigation*, prepared for the Port of Portland, July 13, 2001.
- Bridgewater Group, 2002. Phase IB and II Soil and Groundwater Sampling Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, June 25, 2002.
- Bridgewater Group, 2003. Phase II Third and Fourth Quarter Groundwater and Low-Flow Sampling Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, June 12, 2003.
- Bridgewater Group, 2004. 2003 Annual Groundwater Monitoring Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, July 2004.
- Bridgewater Group, 2005. 2004 Annual Groundwater Monitoring Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, November 2005.
- Bridgewater Group, 2006a. 2005 Annual Groundwater Monitoring Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, May 2006.
- Bridgewater Group, 2006b. *Operable Unit 2 Removal Action Report, Swan Island Upland Facility*, prepared for the Port of Portland, May 2006.
- Bridgewater Group, 2007. 2006 Annual Groundwater Monitoring Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, April 2007.
- Bridgewater Group, 2008. 2007 Annual Groundwater Monitoring Results, Portland Shipyard Remedial Investigation, prepared for the Port of Portland, March 2008.
- Department of Environmental Quality (DEQ), 2006. Voluntary Agreement for Remedial Investigation, Source Control Measures, and Feasibility Study, July 24, 2006.
- Department of Environmental Quality (DEQ), 2023. Operable Unit 2-Swan Island Upland Facility File ECSI#271, Source Control Decision, January 12, 2023.
- Formation Environmental, 2010. DRAFT Level II Screening Ecological Risk Assessment, Portland Shipyard Operable Unit 2, Swan Island Upland Facility, April 2010.
- New Fields, 2006. Level I Scoping Ecological Risk Assessment, Operable Unit 2, Swan Island Upland Facility, prepared for the Port of Portland, February 2006.
- Port of Portland, 2006. Supplemental Preliminary Assessment, Swan Island Upland Facility, Port of Portland, December 2006.

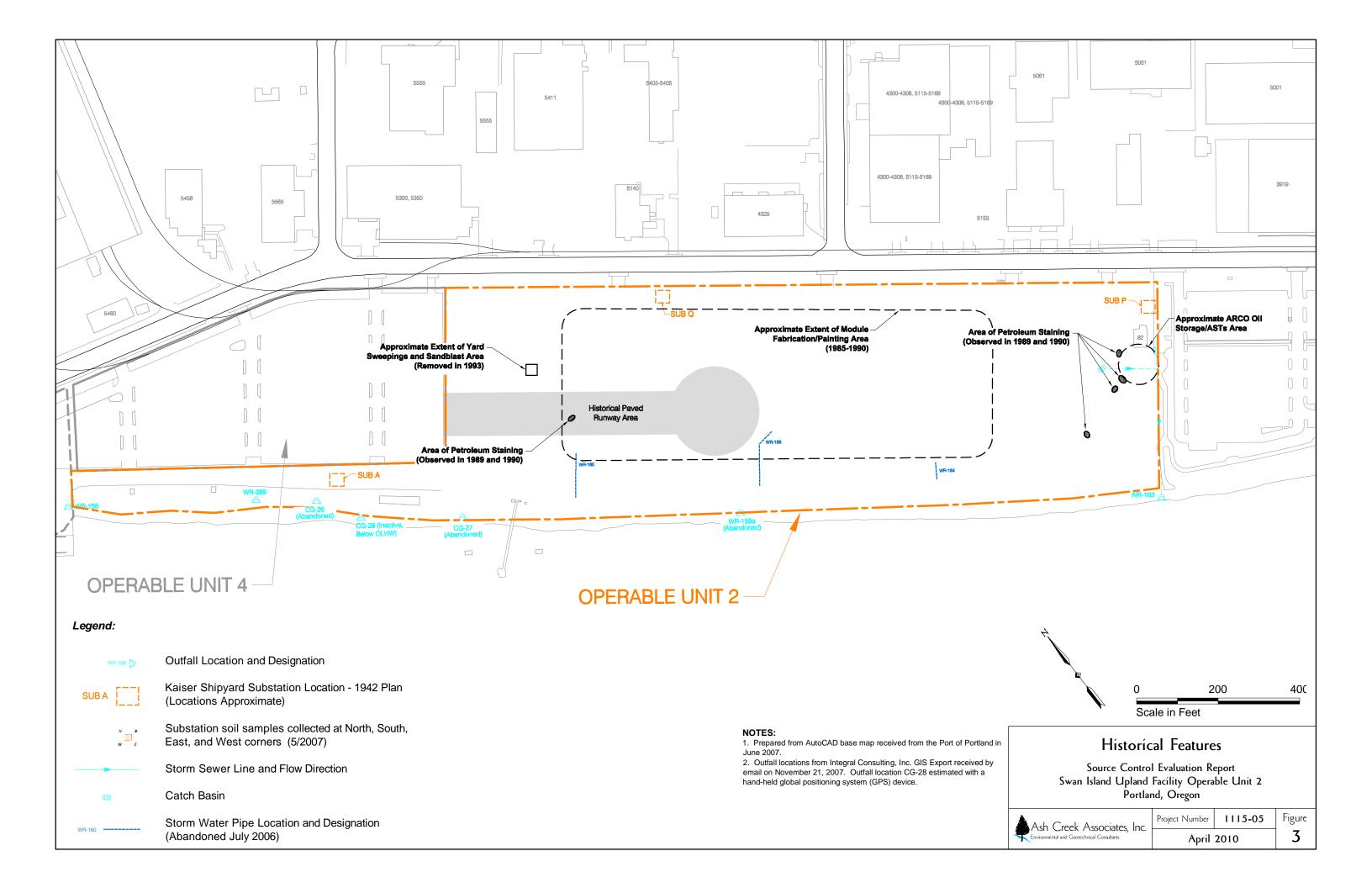

Swan Island Upland Facility-Operable Unit 2 Staff Memorandum 5/14/2024 Page 15 of 23

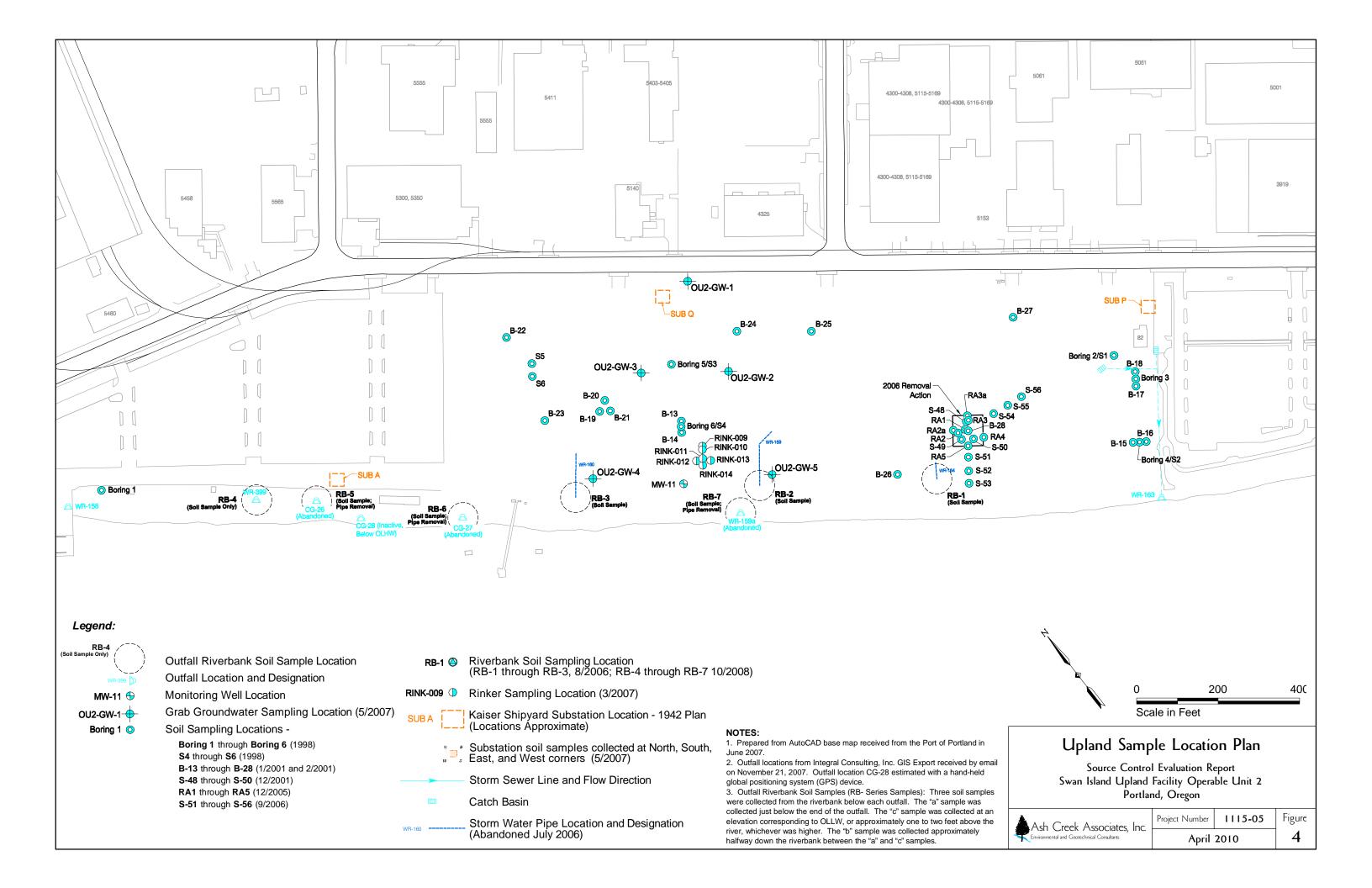

Port of Portland, 2007. Letter from N. Anderson/Port to J. Sutter/DEQ regarding Swan Island Upland Facility, Operable Unit 2 Supplemental Sampling Results, January 5, 2007.


9. ATTACHMENTS


- 1. Location Map, Facility Plan and Historical Features
- 2. Soil Sampling Locations
- 3. Soil Removal Areas and Confirmation Sampling
- 4. Human Health Risk Assessment Tables


Attachment 1 - Location Map, Facility Plan and Historical Features





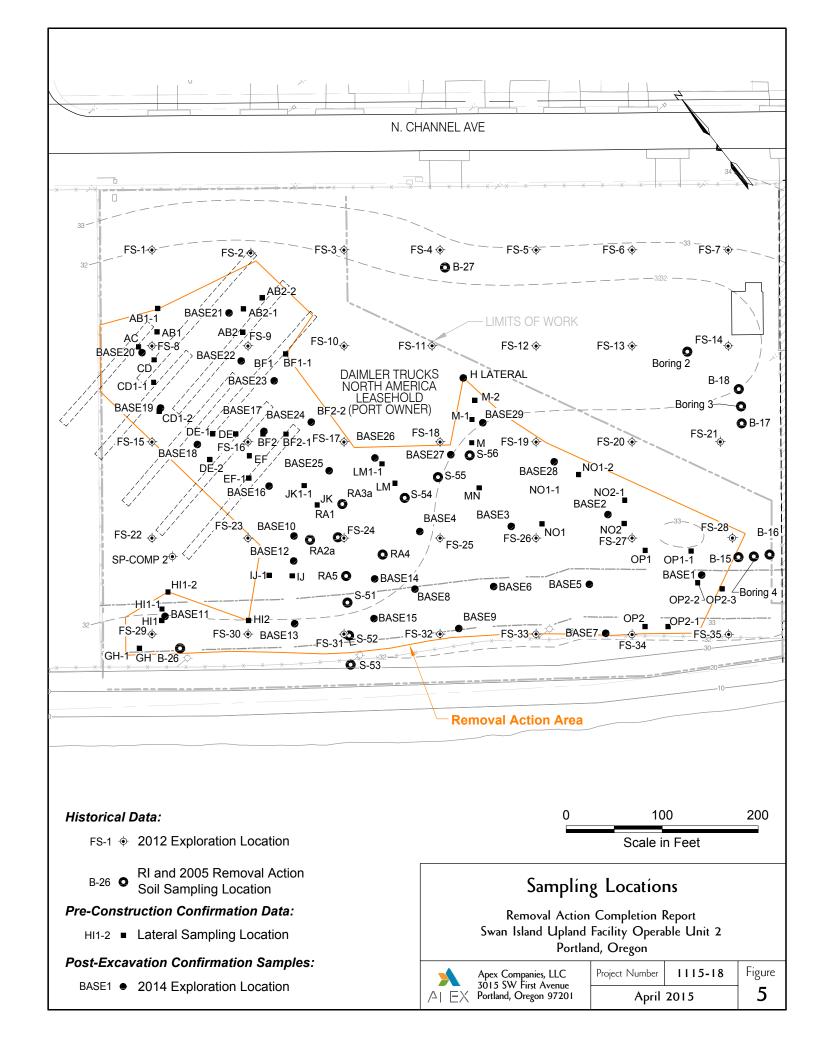
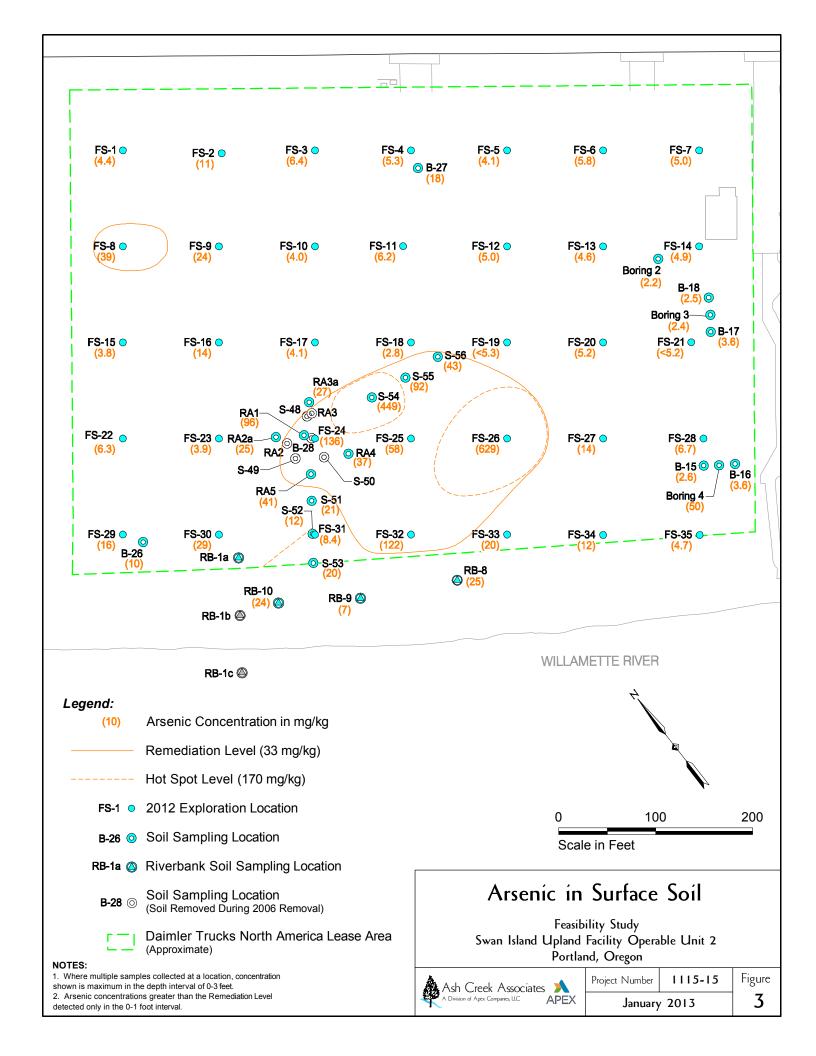



Table 5 - Confirmation Samples - Base Operable Unit 2, Daimler Leasehold Swan Island Upland Facility Portland, Oregon

			Arsenic				
Comple Nome	Depth	Comple Date	Concentration in				
Sample Name	(inches)	Sample Date	mg/kg (ppm)				
		40/00/0044	0 0 41 7				
Base 1	6 - 12	10/29/2014	3.11				
Base 2	6 - 12	10/31/2014	7.27				
Base 3	6 - 12	10/31/2014	6.67				
Base 4	6 - 12	10/31/2014	27.2				
Base 4 (8")	8 - 14	11/5/2014	37.8				
Base 4 (10")	10 - 16	11/10/2014	87.5 *				
Base 4 (12")	12 - 18	11/14/2014	1.94				
Base 5	6 - 12	11/5/2014	3.52				
Base 6	6 - 12	11/5/2014	3.53				
Base 7	6 - 12	11/7/2014	4.22 *				
Base 8	6 - 12	11/7/2014	19.8 *				
Base 8 (8")	8 - 14	11/12/2014	47.7				
Base 8 (10")	10 - 16	11/19/2014	<1.17				
Base 9	6 - 12	11/10/2014	13.3 *				
Base 9 (8") **	8 - 14	11/14/2014	14.9				
Base 9 (10")	10 - 16	11/20/2014	4.08				
Base 10	6 - 12	11/10/2014	12.0 *				
Base 10 (8")	8 - 14	11/14/2014	65.3				
Base 10 (10")	10 - 16	11/18/2014	2.94				
Base 11	6 - 12	11/12/2014	10.3				
Base 11 (8")	8 - 14	11/19/2014	7.69				
Base 12	6 - 12	11/17/2014	3.81				
Base 13	6 - 12	11/17/2014	3.28				
Base 14	6 - 12	11/17/2014	16.6				
Base 14 (8")	8 - 14	11/17/2014					
	6 - 12		1.63				
Base 15		11/17/2014	50.4				
Base 15 (8")	8 - 14	11/19/2014	5.01				
Base 16 (6")	6 - 12	11/20/2014	1.28				
Base 17	6 - 12	12/3/2014	2.71				
Base 18	6 - 12	12/3/2014	18.7				
Base 18 (8")	8 - 14	12/5/2014	1.24				
Base 19	6 - 12	12/3/2014	57.2				
Base 19 (8")	8 - 14	12/5/2014	15.9				
Base 19 (10")	10 - 16	12/9/2014	1.35				
Base 20	6 - 12	12/4/2014	35.6				
Base 20 (10")	10 - 16	12/9/2014	2.47				
Base 21	6 - 12	12/4/2014	76.9				
Base 21 (10")	10 - 16	12/9/2014	1.85				
Base 22 (6")	6 - 12	12/5/2014	47.6				
Base 22 (12")	20 - 26	12/9/2014	3.17				
Base 23	6 - 12	12/12/2014	8.84				
Base 24	6 - 12	12/12/2014	19.0				
Base 24 (8")	8 - 14	12/16/2014	2.22				
Base 25	6 - 12	12/12/2014	34.0				
Base 25 (8")	8 - 14	12/16/2014	3.24				
Base 26 (10")	10 - 16	12/22/2014	2.31				
Base 27 (10")	10 - 16	12/22/2014	2.23				
Base 28 (8")	8 - 14	12/23/2014	9.38				
Base 28 (10")	10 - 16	12/29/2014	2.82				
Base 29 (6")	6 - 12	12/23/2014	26.6				
Base 29 (8")	8 - 14	12/29/2014	10.1				
Base 29 (12")	12 - 18	12/31/2014	4.35				
SP - COMP 1	12 10	12/1/2014	31.1				
SP - COMP 2		12/3/2014	4.13				
SI - COIVII Z		12/3/2014	T. 1J				

- 1. mg/kg (ppm) = Milligrams per kilogram (parts per million).
- 2. J = Estimated concentration.

- J = Estimated Concentration.
 Arsenic is analyzed by EPA Method 6020.
 * = Samples inadvertently pulverized by the laboratory.
 ** = Sample depth mislabeled. Sample ID in lab report is Base 9 (10").
- 7. Bold values exceed DEQ default background concentration of 8.8 mg/kg.
- 8. Shaded values indicate samples that were removed by excavation.

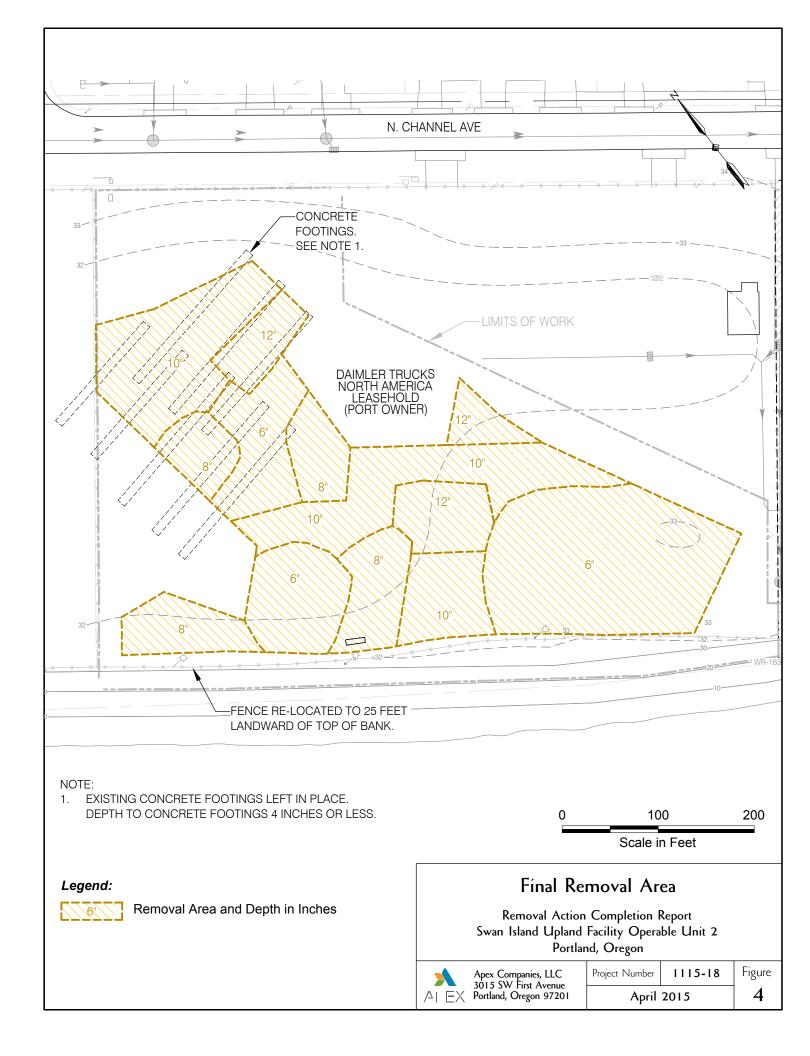


Table 2 - Confirmation Samples - Lateral Operable Unit 2, Daimler Leasehold Swan Island Upland Facility Portland, Oregon

			Arsenic
Sample Name	Depth	Cample Date	Concentration in
Sample Name	(inches)	Sample Date	mg/kg (ppm)
AB1	0 - 6	7/24/2014	21.2
AB1-1	0 - 6	8/26/2014	1.70
AB2	0 - 6	7/24/2014	32.7
AB2-1	0 - 6	8/26/2014	82.6
AB2-2	0 - 6	10/1/2014	133
AC	0 - 6	7/24/2014	127
BF1	0 - 6	7/24/2014	22.9
BF1-1	0 - 6	8/26/2014	6.30
BF2	0 - 6	7/24/2014	99.1
BF2-1	0 - 6	8/26/2014	31.1
BF2-2	0 - 6	10/1/2014	13.2
CD	0 - 6	7/24/2014	33.5
CD1-1	0 - 6	8/26/2014	35.9
CD1-2	0 - 6	10/1/2014	73.5
DE	0 - 6	7/24/2014	60.2
DE-1	0 - 6	8/27/2014	14.5
DE-2	0 - 6	10/1/2014	60.5
EF	0 - 6	7/24/2014	43.7
EF-1	0 - 6	8/27/2014	44.2
GH	0 - 6	7/24/2014	11.0
GH-1	0 - 6	8/27/2014	5.20
HI1	0 - 6	7/24/2014	17.3
HI1-1	0 - 6	8/27/2014	13.6
HI1-2	0 - 6	10/1/2014	8.29
HI2	0 - 6	7/24/2014	6.12
IJ	0 - 6	7/24/2014	22.2
IJ-1	0 - 6	8/27/2014	19.6
JK	0 - 6	7/24/2014	19.8
JK1-1	0 - 6	8/26/2014	24.5
LM	0 - 6	7/24/2014	124
LM1-1	0 - 6	8/26/2014	65.8
M	0 - 6	7/24/2014	38.2
M-1	0 - 6	8/26/2014	14.2
M-2	0 - 6	10/1/2014	16.7
Н	0 - 6	12/23/2014	13.9
H Lateral	0 - 6	12/23/2014	3.30
MN	0 - 6	7/24/2014	24.0
NO1	0 - 6	7/24/2014	138
NO1-1	0 - 6	8/27/2014	100
NO1-2	0 - 6	10/1/2014	16.8
NO2	0 - 6	7/24/2014	106
NO2-1	0 - 6	8/26/2014	13.5
OP1	0 - 6	7/24/2014	314
OP1-1	0 - 6	8/26/2014	360
OP2	0 - 6	7/24/2014	25.5
OP2-1	0 - 6	8/26/2014	19.3
OP2-2	0 - 6 0 - 6	10/1/2014 10/1/2014	117 5.95
OP2-3	0 - 0	10/1/2014	0.70

- 1. mg/kg (ppm) = Milligrams per kilogram (parts per million).
- 2. J = Estimated concentration.
- Arsenic is analyzed by EPA Method 6020.
 Bold values exceed DEQ default background concentration of 8.8 mg/kg.
- 5. Shaded values indicate samples that were removed by excavation.

Table 1 Chemicals of Potential Concern Swan Island Upland Facility - OU2

				il (see units be	elow)					Groundwater (µg/L)						Multiple Media		Chemicals of Potential					
Chemicals of Interest	Detection Frequency		Limit Range			COPC So					on Freque			Limit Range			COPC S					ening	Concern 4
	Det. / Total %	Min.	Max.	SL	Cij	Rij	COPC?	Rij/Rj C	COPC?	Det. /	Total	%	Min.	Max.	SL	Cij	Rij	COPC?	Rij/Rj	COPC?	SRij	COPC?	CONCONT
Total Petroleum Hydrocarbons	4 / 27 / 20/			mg/kg	4.05.00	4.75.04		0.75.05															
Gasoline-Range Organics	1 / 37 3%	4	57	7.2E+02	1.3E+02	1.7E-01	No	9.7E-05	No	/													D: 10 0 1
Diesel-Range Organics	16 / 73 22%	14	140	3.9E+03	6.5E+03	1.7E+00	Yes	9.3E-04	No	/													Diesel-Range Organics
Residual-Range Organics	17 / 73 23%	27	280	3.9E+03	3.5E+03	9.0E-01	No		No	/													
TPH-418.1	4 / 12 33%	100	100	3.9E+03	3.0E+03	7.7E-01	No	4.3E-04	No	/													
Metals			1	mg/kg		1		1															
Antimony	22 / 68 32%	2	14	3.1E+01	7.3E+01	2.4E+00	Yes	1.3E-03	No	3 /	14	21%	0.05	0.25	1.5E+01	4.9E-01	3.4E-02	No	3.7E-05	No	2.4E+00	Yes	Antimony
Arsenic ³	87 / 87 100%			5.8E+00	6.5E+02	1.7E+03	Yes		Yes	13 /	14	93%	0.5	0.5	6.6E-02	3.9E+01	5.9E+02	Yes	6.5E-01	Yes	2.3E+03	Yes	Arsenic
Cadmium	20 / 80 25%	1	1	1.5E+03	8.1E+00	5.4E-03	No	3.0E-06	No	10 /	14	71%	0.02	0.25	1.8E+01	3.9E+00	2.2E-01	No	2.4E-04	No	2.2E-01	No	
Chromium (total)	80 / 80 100%			2.8E+02	3.9E+01	1.4E-01	No	7.7E-05	No	13 /	14	93%	0.02	0.4	1.1E+02	9.5E+02	8.6E+00	Yes	9.5E-03	No	8.8E+00	Yes	Chromium
Copper	73 / 73 100%			2.9E+03	1.8E+03	6.2E-01	No	3.5E-04	No	14 /	14	100%			1.4E+03	1.3E+03	9.4E-01	No	1.0E-03	No	1.6E+00	Yes	Copper
Lead	93 / 97 96%	5	5	4.0E+02	6.1E+02	1.5E+00	Yes	8.4E-04	No	12 /	14	86%	0.02	0.04	1.5E+01	2.3E+02	1.5E+01	Yes	1.7E-02	No	1.7E+01	Yes	Lead
Mercury	33 / 61 54%	0.02	0.10	2.3E+01	2.3E-01	1.0E-02	No	5.6E-06	No	3 /	14	21%	0.02	0.2	1.1E+01	2.1E+00	1.9E-01	No	2.1E-04	No	2.0E-01	No	
Nickel	68 / 68 100%			1.6E+03	7.0E+01	4.4E-02	No	2.4E-05	No	14 /	14	100%			7.3E+02	9.2E+02	1.3E+00	Yes	1.4E-03	No	1.3E+00	Yes	Nickel
Silver	14 / 74 19%	0.5	2.8	3.9E+02	1.9E+00	4.9E-03	No	2.7E-06	No	7 /	14	50%	0.020	0.04	1.8E+02	2.8E+00	1.5E-02	No	1.7E-05	No	2.0E-02	No	
Zinc	73 / 73 100%			2.3E+04	7.4E+03	3.2E-01	No	1.8E-04	No	14 /	14	100%			1.1E+04	2.3E+03	2.1E-01	No	2.3E-04	No	5.3E-01	No	
Barium	12 / 12 100%			1.6E+04	1.7E+02	1.1E-02	No		No	/													
Selenium	0 / 12 0%	0.5	0.5	3.9E+02			No		No	/													
PCBs	1		1	μg/kg				1 1															
Aroclor 1254	4 / 85 5%	10	95	2.2E+02	2.9E+02	1.3E+00	No	7.3E-04	No	/													. ,
Aroclor 1260	23 / 85 27%	10	55	2.2E+02	6.7E+03	3.0E+01	Yes		No	/													Aroclor 1260
Total PCBs	23 / 85 27%	10	55	2.2E+02	6.7E+03	3.1E+01	Yes	1.7E-02	No	/													Total PCBs
PAHs		i	1	μg/kg		_ 1		1															
Naphthalene	16 / 24 67%	5.30	7	3.8E+03	2.3E+01	6.1E-03	No	3.4E-06	No	2 /	10	20%	0.019	0.020	1.2E-01	9.3E-02	7.8E-01	No	8.6E-04	No	7.8E-01	No	
2-Methylnaphthalene	14 / 24 58%	2.60	7	3.1E+05	2.3E+01	7.4E-05	No	4.1E-08	No	1 /	10	10%	0.019	0.020	1.5E+02	2.9E-02	1.9E-04	No	2.1E-07	No	2.7E-04	No	
Acenaphthylene'	18 / 24 75%	5.30	7	3.1E+05	8.4E+01	2.7E-04	No	1.5E-07	No	0 /	10	0%	0.019	0.020	1.5E+02			No		No			
Acenaphthene	11 / 24 46%	2.60	7	2.9E+06	1.7E+01	5.9E-06	No	3.3E-09	No	0 /	10	0%	0.019	0.020	3.7E+02			No		No			
Dibenzofuran di Dibenzofuran d	10 / 24 42%	2.60	7	3.1E+05	1.5E+01	4.8E-05	No	2.7E-08	No	0 /	10	0%	0.019	0.020	1.5E+02			No		No			
Fluorene	12 / 24 50%	2.60	7	2.6E+06	1.0E+01	3.8E-06	No	2.1E-09	No	0 /	10	0%	0.019	0.020	2.4E+02			No		No			
Phenanthrene ¹	18 / 24 75%	5.70	27	3.1E+05	1.9E+02	6.1E-04	No	3.4E-07	No	1 /	10	10%	0.019	0.025	1.5E+02	2.2E-02	1.5E-04	No	1.6E-07	No	7.6E-04	No	
Anthracene	18 / 24 75%	5.30	7	2.1E+07	4.9E+01	2.3E-06	No	1.3E-09	No	0 /	10	0%	0.019	0.020	1.8E+03			No		No			
Fluoranthene	21 / 24 88%	7.00	7	2.3E+06	5.0E+02	2.2E-04	No	1.2E-07	No	0 /	10	0%	0.019	0.020	1.5E+03			No		No			
Pyrene	21 / 24 88%	7.00	7	1.7E+06	6.9E+02	4.1E-04	No	2.3E-07	No	1 /	10	10%	0.019	0.037	1.1E+03	2.8E-02	2.5E-05	No	2.8E-08	No	4.3E-04	No	
Benzo(a)anthracene	21 / 24 88%	7.00	7	1.5E+02	2.3E+02	1.6E+00	Yes	8.6E-04	No	0 /	10	0%	0.019	0.020	2.9E-02			No		No			Benzo(a)anthracene
Chrysene	21 / 24 88%	7.00	7	1.5E+04	4.3E+02	2.9E-02	No	1.6E-05	No	0 /	10	0%	0.019	0.020	2.9E+00			No		No			
Benzo(b)fluoranthene	19 / 24 79%	5.70	7	1.5E+02	5.2E+02	3.5E+00	Yes	1.9E-03	No	0 /	10	0%	0.019	0.020	2.9E-02			No		No			Benzo(b)fluoranthene
Benzo(k)fluoranthene	20 / 24 83%	5.70	7	1.5E+03	3.8E+02	2.5E-01	No	1.4E-04	No	0 /	10	0%	0.019	0.020	2.9E-01			No		No			
Benzo(a)pyrene	20 / 24 83%	5.70	7	1.5E+01	5.2E+02	3.5E+01	Yes	1.9E-02	No	0 /	10	0%	0.019	0.020	2.9E-03			No		No			Benzo(a)pyrene
Indeno(1, 2, 3-cd)pyrene	20 / 24 83%	5.70	7	1.5E+02	6.6E+02	4.4E+00	Yes	2.4E-03	No	0 /	10	0%	0.019	0.020	2.9E-02			No		No			Indeno(1, 2, 3-cd)pyrene
Dibenz(a,h)anthracene	18 / 24 75%	5.30	7	1.5E+01	7.7E+01	5.1E+00	Yes		No	0 /	10	0%	0.019	0.020	2.9E-03			No		No			Dibenz(a,h)anthracene
Benzo(g, h, i)perylene ²	20 / 24 83%	5.70	7	1.5E+02	7.2E+02	4.8E+00	Yes	2.7E-03	No	1 /	10	10%	0.019	0.020	2.9E-02	2.0E-02	6.9E-01	No	7.6E-04	No	5.5E+00	Yes	Benzo(g, h, i)perylene2
Butyltins			1	μg/kg																			
Tri-n-butyltin	8 / 12 67%	5	5	1.8E+04	5.8E+02	3.2E-02	No	1.8E-05	No	0 /	8	0%	0.02	0.42	1.1E+01			No		No			
Volatile Organic Compounds			1	μg/kg		ı																	
Vinyl chloride	0 / 18 0%	0	14	3.4E+02			No		No	6 /	14	43%	0.5	0.5	2.5E-02	7.0E+00	2.8E+02	Yes	3.1E-01	Yes			Vinyl chloride
Acetone	5 / 18 28%	2	3500	6.1E+07	1.9E+02	3.1E-06	No	1.7E-09	No	0 /	14	0%	20	20	2.2E+04			No		No			
Dichloromethane (Methylene Chloride)	1 / 18 6%	1	70	2.0E+04	1.2E+00	6.1E-05	No	3.4E-08	No	0 /	14	0%	1	2	4.1E+00			No		No			
cis-1,2-Dichloroethene	0 / 18 0%	0.1	14	1.1E+05			No		No	6 /	14	43%	0.5	0.5	6.1E+01	1.4E+01	2.3E-01	No	2.5E-04	No			
Chloroform	0 / 18 0%	0.1	14	3.9E+02			No		No	1 /	14	7%	0.5	0.5	1.8E-01	1.1E+00	6.1E+00	Yes	6.7E-03	No			Chloroform
Toluene	0 / 39 0%	0.1	1100	5.4E+06			No		No	1 /	14	7%	0.5	0.5	2.3E+03	7.6E-01	3.3E-04	No	3.6E-07	No			
1,2,4-Trimethylbenzene	1 / 18 6%	0.1	29	4.9E+04	2.0E+01	4.1E-04	No		No	0 /	14	0%	2	2	1.2E+01			No		No			
Naphthalene	1 / 18 6%	0.1	29	3.8E+03	4.3E+01	1.1E-02	No		No	0 /	14	0%	2	2	1.2E-01			No		No			
n-Propylbenzene	1 / 18 6%	0.1	29	2.1E+05	1.9E+01	9.2E-05	No	5.1E-08	No	0 /	14	0%	2	2	6.1E+01			No		No			
Phthalates			1	μg/kg																			
Diethyl Phthalate	1 / 3 33%	100.0	100	4.9E+07	2.1E+00	4.3E-08	No	2.4E-11	No	/													
Butyl Benzyl Phthalate	2 / 3 67%	100.0	100	2.6E+05	1.2E+02	4.6E-04	No		No	/													
Bis(2-ethylhexyl) Phthalate	3 / 3 100%			3.5E+04	3.6E+02	1.0E-02	No	5.7E-06	No	/													
	<u>'</u>		1		Ri	1.8E+03								1		Ri	9.1E+02		1			1	
	Nii 45										Nij	19											
					1/Nij	2.2E-02										1/Nij	5.3E-02						
	•					-				•											•		

Acronyms: SL = Screening Level.

Lower of DEO RBC for Residential Direct Contact or Occupational Vapor Intrusion (October 2008). If RBC not available, EPA Regional Screening Levels (September 2008). for naturally occurring metals, screening level is not less than background as defined by Washington Department of Ecology for Clark County.

DEQ RBC for Residential Tapwater (October 2008). If RBC not available, EPA Regional Screening Levels (September 2008).

Ground walphicable.

EXCEPT: COPC = Chemical of Potential Concern.

Variables:

Cij = Maximum detected concentration of compound i in medium j.

Rij = Risk ratio for compound i in medium j (Cij/SL); compound is a COPC if Rij is greater than 1.

Rj = Sum of risk ratios for medium j.

Nij = Number of compounds i detected in medium j.

Rij/Rj = Compound is a COPC if this ratio is greater than 1/Nij.

SRij = Summary risk ratio for compound i in all media (total Rij across all media); compound is a COPC if Srij is greater than 1.

- Notes:

 1. SL for 2-methylnaphthalene used as surrogate SL.
 2. SL for indeno(1, 2, 3-cd)pyrene used as surrogate SL.
 3. SL for arsenic is background. However, because detected concentration exceeds SL, Rij calculated from risk-based concentration of 0.39 mg/kg.
 4. Chemicals with frequency of detection of less than five percent were not retained as COPC per DEQ guidance (DEQ 2000; Section 2.3.2[1]).
 5. mg/kg = Miltigrams per kilogram.
 6. μg/kg = Micrograms per kilogram.
 7. μg/L = Micrograms per kilogram.

Table 2 Summary of Exposure Point Concentrations (EPCs) Swan Island Upland Facility - OU2

				Data Di	stribution				Concentration	Concentration					
Medium	Location	Chemical		Statistical	Assessment		Mean	Maximum	90% UCL	EF					
			Normal	Lognormal	Gamma	Non-Parametric	Weali	Maximum	90% UCL	СТ	RME				
Soil in mg/kg	0 to 3 feet	Diesel Range Organics				90% KM (t)	470	6,500	1,100	470	1,100				
	Freightliner	Antimony				90% KM (BCA)	9.3	73	13	9.3	13				
		Arsenic			Approx.		38	449	57	38	57				
		Chromium	90% Student-t				22	32	24	22	24				
		Copper			Approx.		192	1,770	270	192	270				
		Lead			Approx.		69	580	96	69	96				
		Nickel				90% Student-t	24	70	28	24	28				
		Aroclor 1260				90% KM (t)	0.038	0.30	0.067	0.038	0.067				
		Total PCBs				90% KM (t)	0.057	0.59	0.11	0.057	0.11				
		Benzo(a)anthracene		Limited Sample	es - Use Maxin	num		0.068		0.068	0.068				
		Benzo(b)fluoranthene		Limited Sample	es - Use Maxin	num		0.21		0.21	0.21				
		Benzo(a)pyrene		Limited Sample	es - Use Maxin	num		0.17		0.17	0.17				
	Indeno(1, 2, 3-cd)pyrene Dibenz(a,h)anthracene			Limited Sample	es - Use Maxin	num		0.29		0.29	0.29				
			Limited Sample	es - Use Maxin	num		0.022		0.022	0.022					
		Benzo(g, h, i)perylene		Limited Sample	es - Use Maxin	num		0.36		0.36	0.36				
		Vinyl Chloride					Not Detected								
		Chloroform					Not Detected								
Soil in mg/kg	0 to 3 feet	Diesel Range Organics				90% KM (t)	43	380	65	43	65				
	Pacific Rock Products	Antimony				90% KM (t)	1.5	4.8	3.0	1.5	3.0				
		Arsenic			Approx.		3.7	8.4	4.2	3.7	4.2				
		Chromium	90% Student-t				20	32	22	20	22				
		Copper				90% Cheb	93	805	200	93	200				
		Lead				90% KM (Cheb)	29	158	50	29	50				
		Nickel	90% Student-t				20	28	22	20	22				
		Aroclor 1260				90% KM (t)	0.049	0.41	0.074	0.049	0.074				
		Total PCBs				90% KM (t)	0.053	0.42	0.08	0.053	0.08				
		Benzo(a)anthracene				90% KM (t)	0.046	0.14	0.064	0.046	0.064				
		Benzo(b)fluoranthene				90% KM (BCA)	0.083	0.31	0.12	0.083	0.12				
		Benzo(a)pyrene				90% KM (t)	0.093	0.32	0.14	0.093	0.14				
		Indeno(1, 2, 3-cd)pyrene				90% KM (t)	0.13	0.43	0.18	0.13	0.18				
		Dibenz(a,h)anthracene				90% KM (t)	0.012	0.034	0.017	0.012	0.017				
		Benzo(g, h, i)perylene				90% KM (t)	0.14	0.49	0.20	0.14	0.20				
		Vinyl Chloride					Not Detected								
		Chloroform					Not Detected								

Please refer to notes at end of table.

Table 2 Summary of Exposure Point Concentrations (EPCs) Swan Island Upland Facility - OU2

				Data D	istribution				Concentration		
Medium	Location	Chemical		Statistical	Assessment		Mean	Maximum	90% UCL		PC
			Normal	Lognormal	Gamma	Non-Parametric	Wear	Waxiiiidiii	7070 OCL	CT	RME
Soil in mg/kg	0 to 3 feet	Diesel Range Organics				90% KM (t)	23	41	34	23	34
	Berth 315 Area	Antimony		Limited Sample	es - Use Maxir	num		0.37		0.37	0.37
		Arsenic		Limited Sample	es - Use Maxir	num		3.4		3.4	3.4
		Chromium		Limited Sample				15		15	15
		Copper		Limited Sample	es - Use Maxir	num		66		66	66
		Lead		Limited Sample				58		58	58
		Nickel		Limited Sample	es - Use Maxir	num		18		18	18
		Aroclor 1260				90% KM (t)	0.030	0.078	0.064	0.030	0.064
		Total PCBs				90% KM (t)	0.035	0.091	0.073	0.035	0.073
		Benzo(a)anthracene		Limited Sample	es - Use Maxir	num		0.10		0.10	0.10
		Benzo(b)fluoranthene		Limited Sample	es - Use Maxir	num		0.045		0.045	0.045
		Benzo(a)pyrene		Limited Sample				0.070		0.070	0.070
		Indeno(1, 2, 3-cd)pyrene		Limited Sample	es - Use Maxir	num		0.077		0.077	0.077
		Dibenz(a,h)anthracene		Limited Sample	es - Use Maxir	num		0.021		0.021	0.021
		Benzo(g, h, i)perylene		Limited Sample	es - Use Maxir	num		0.081		0.081	0.081
		Vinyl Chloride					Not Detected				
		Chloroform					Not Detected				
Soil in mg/kg	0 to 15 feet	Diesel Range Organics				90% KM (t)	380	6,500	850	380	850
	Freightliner	Antimony				90% KM (t)	8.6	73	12	8.6	12
		Arsenic				90% Cheb	33	449	78	33	78
		Chromium	90% Student-t				21	32	23	21	23
		Copper			Approx.		166	1,770	230	166	230
		Lead			Approx.		61	580	84	61	84
		Nickel				90% Student-t	23	70	27	23	27
		Aroclor 1260				90% KM (t)	0.032	0.30	0.058	0.032	0.058
		Total PCBs				90% KM (t)	0.049	0.59	0.094	0.049	0.094
		Benzo(a)anthracene		Limited Sample				0.068		0.068	0.068
		Benzo(b)fluoranthene		Limited Sample				0.21		0.210	0.210
		Benzo(a)pyrene		Limited Sample				0.17		0.170	0.170
		Indeno(1, 2, 3-cd)pyrene		Limited Sample				0.29		0.290	0.290
		Dibenz(a,h)anthracene		Limited Sample				0.022		0.0220	0.022
		Benzo(g, h, i)perylene		Limited Sample	es - Use Maxir	num		0.36		0.360	0.360
		Vinyl Chloride			-		Not Detected				
		Chloroform					Not Detected				

Please refer to notes at end of table.

Table 2 Summary of Exposure Point Concentrations (EPCs) Swan Island Upland Facility - OU2

				Data D	istribution				Concentration			
Medium	Location	Chemical	Statistical Assessment				Mean	Maximum	90% UCL	El	PC	
			Normal	Lognormal	Gamma	Non-Parametric	Wealt	IVIAXIIIIUIII	90% UCL	CT	RME	
Soil in mg/kg	0 to 15 feet	Diesel Range Organics				90% KM (t)	80	1,380	140	80	140	
	Pacific Rock Products	Antimony				90% KM (t)	1.5	4.8	1.5	1.5	1.5	
		Arsenic				90% Student-t	3.4	8.4	3.8	3.4	3.8	
		Chromium	90% Student-t				20	32	22	20	22	
		Copper				90% Cheb	74	805	150	74	150	
		Lead				90% KM (Cheb)	29	256	56	29	56	
		Nickel	90% Student-t				20	28	21	20	21	
		Aroclor 1260				90% KM (Cheb)	0.23	6.7	0.82	0.23	0.82	
		Total PCBs				90% KM (BCA)	0.24	6.7	0.45	0.24	0.45	
		Benzo(a)anthracene				90% KM (Cheb)	0.043	0.14	0.078	0.043	0.078	
		Benzo(b)fluoranthene				90% KM (% Boot)	0.076	0.31	0.12	0.076	0.12	
		Benzo(a)pyrene				90% KM (t)	0.085	0.32	0.13	0.085	0.13	
		Indeno(1, 2, 3-cd)pyrene				90% KM (t)	0.11	0.43	0.17	0.11	0.17	
		Dibenz(a,h)anthracene				90% KM (t)	0.011	0.034	0.016	0.011	0.016	
		Benzo(g, h, i)perylene				90% KM (t)	0.13	0.49	0.19	0.13	0.19	
		Vinyl Chloride					Not Detected					
		Chloroform					Not Detected					
Soil in mg/kg	0 to 15 feet	Diesel Range Organics				90% KM (t)	23	41	34	23	34	
	Berth 315 Area	Antimony		Limited Sample	es - Use Maxir	mum		0.37		0.37	0.37	
		Arsenic		Limited Sample	es - Use Maxir	mum		3.4		3.4	3.4	
		Chromium		Limited Sample	es - Use Maxir	mum		15		15	15	
		Copper		Limited Sample	es - Use Maxir	mum		66		66	66	
		Lead		Limited Sample	es - Use Maxir	mum		58		58	58	
		Nickel		Limited Sample	es - Use Maxir	mum		18		18	18	
		Aroclor 1260				90% KM (t)	0.030	0.078	0.064	0.030	0.064	
		Total PCBs				90% KM (t)	0.035	0.091	0.073	0.035	0.073	
		Benzo(a)anthracene		Limited Sample	es - Use Maxir	num		0.10		0.10	0.10	
		Benzo(b)fluoranthene		Limited Sample	es - Use Maxir	mum		0.045		0.045	0.045	
		Benzo(a)pyrene		Limited Sample	es - Use Maxir	mum		0.070		0.070	0.070	
		Indeno(1, 2, 3-cd)pyrene		Limited Sample	es - Use Maxir	mum		0.077		0.077	0.077	
		Dibenz(a,h)anthracene		Limited Sample	es - Use Maxir	mum		0.021		0.021	0.021	
		Benzo(g, h, i)perylene		Limited Sample	es - Use Maxir	mum		0.081		0.081	0.081	
		Vinyl Chloride		·			Not Detected					
		Chloroform					Not Detected					
Groundwater in µg/L	MW-11	Vinyl Chloride		Limited Sample	es - Use Maxir	num		6.5		6.5	6.5	
		Chloroform		Limited Sample	es - Use Maxir	mum		1.1		1.1	1.1	

- See Appendix A for list of data used.
 See Appendix B for statistical calculations.
- 3. EPC = Exposure Point Concentration.
- 4. UCL = Upper Confidence Limit of the Mean.
 5. CT = Central Tendency.
 6. RME = Reasonable Maximum Exposure.

- mg/kg = Milligrams per kilogram.
 μg/L = Micrograms per liter.

Table 3
Summary of Human Health Risk-Based Concentrations (RBCs)
Swan Island Upland Facility - OU2

			Risk	-Based Concentrat	ions ¹	
		Occupational - Direct Contact	Occupational - Vapor Intrusion	Occupational - Outdoor Air	Construction Worker - Direct Contact and Inhalation	Excavation Worker - Direct Contact and Inhalation
Soil in mg/kg						
Diesel-Range Organics	Non-carcinogen	70,000	nv	nv	23,000	130,000
Antimony ⁵	Non-carcinogen	410	nv	nv	410	410
Arsenic	Carcinogen	1.7	nv	nv	13	370
Chromium ²	Non-carcinogen	180	nv	nv	4,600	130,000
Copper ⁵	Non-carcinogen	41,000	nv	nv	41,000	41,000
Lead		800	nv	nv	800	800
Nickel	Non-carcinogen	20,000	nv	nv	6,200	170,000
Aroclor 1260 ⁴	Carcinogen	0.98	nv	nv	4.4	120
Total PCBs	Carcinogen	0.98	nv	nv	4.4	120
Benzo(a)anthracene	Carcinogen	2.7	nv	nv	21	590
Benzo(b)fluoranthene	Carcinogen	2.7	nv	nv	21	590
Benzo(a)pyrene	Carcinogen	0.27	nv	nv	2.1	59
Indeno(1, 2, 3-cd)pyrene	Carcinogen	2.7	nv	nv	21	590
Dibenz(a,h)anthracene	Carcinogen	0.27	nv	nv	2.1	59
Benzo(g, h, i)perylene ³		27	nv	nv	210	5,900
Groundwater in µg/L						
Vinyl Chloride	Carcinogen		870	6,400		
Chloroform	Carcinogen		1,100	5,200		

- 1. RBDM Guidance (DEQ, 2003) unless noted otherwise. Default values from table updated October 3, 2008.
- 2. Conservatively uses RBC for chromium VI but in non-carcinogen analysis.
- 3. RBC for benzo(k)fluoranthene used as a surrogate.
- 4. RBC for total PCBs used as a surrogate.
- 5. EPA Industrial Regional Screening Levels (September 2008) used as surrogate.
- 6. nv = Not volatile so RBC not applicable to this COPC for this pathway.
- 7. -- = COPC in that medium not applicable to this pathway.
- 8. mg/kg = Milligrams per kilogram.
- 9. μg/L = Micrograms per liter.

Table 4 Risk Characterization: Non-Carcinogen Swan Island Upland Facility - OU2

Exposure Area	Receptor	Medium and Location	Pathway	Chemical	EF	PC	RBC	Hazard	Quotient	Hazaro	d Index
,			,		CT	RME		CT	RME	CT	RME
Freightliner	Occupational	Soil, 0 to 3 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics Antimony Chromium Copper Lead Nickel	470 9.3 22 192 69 24	1,100 13 24 270 96 28	70,000 410 180 41,000 800 20,000	7E-03 2E-02 1E-01 5E-03 9E-02 1E-03	2E-02 3E-02 1E-01 7E-03 1E-01 1E-03		
	Construction Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics Antimony Chromium Copper Lead Nickel	380 8.6 21 166 61 23	850 12 23 230 84 27	23,000 410 4,600 41,000 800 6,200	2E-02 2E-02 5E-03 4E-03 8E-02 4E-03	4E-02 3E-02 5E-03 6E-03 1E-01 4E-03	2E-01 1E-01	3E-01 2E-01
	Excavation Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics Antimony Chromium Copper Lead Nickel	380 8.6 21 166 61 23	850 12 23 230 84 27	130,000 410 130,000 41,000 800 170,000	3E-03 2E-02 2E-04 4E-03 8E-02 1E-04	7E-03 3E-02 2E-04 6E-03 1E-01 2E-04	1E-01	1E-01
Pacific Rock Products	Occupational	Soil, 0 to 3 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics Antimony Chromium Copper Lead Nickel	43 1.5 20 93 29 20	65 3.0 22 200 50 22	70,000 410 180 41,000 800 20,000	6E-04 4E-03 1E-01 2E-03 4E-02 1E-03	9E-04 7E-03 1E-01 5E-03 6E-02 1E-03	2E-01	2E-01
	Construction Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics Antimony Chromium Copper Lead Nickel	80 1.5 20 74 29 20	140 1.5 22 150 56 21	23,000 410 4,600 41,000 800 6,200	3E-03 4E-03 4E-03 2E-03 4E-02 3E-03	6E-03 4E-03 5E-03 4E-03 7E-02 3E-03	5E-02	9E-02
	Excavation Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics Antimony Chromium Copper Lead Nickel	80 1.5 20 74 29 20	140 1.5 22 150 56 21	130,000 410 130,000 41,000 800 170,000	6E-04 4E-03 2E-04 2E-03 4E-02 1E-04	1E-03 4E-03 2E-04 4E-03 7E-02 1E-04	4E-02	8E-02

Please refer to notes at end of table.

Table 4 Risk Characterization: Non-Carcinogen Swan Island Upland Facility - OU2

Exposure Area	Receptor	Medium and Location	Pathway	Chemical	EI	EPC		Hazard	Quotient	Hazaro	Index
'	'				CT	RME		CT	RME	CT	RME
Berth 315 Area	Occupational	Soil, 0 to 3 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics	23	34	70,000	3E-04	5E-04		
	·		-	Antimony	0.37	0.37	410	9E-04	9E-04		
				Chromium	15	15	180	8E-02	8E-02		
				Copper	66	66	41,000	2E-03	2E-03		
				Lead	58	58	800	7E-02	7E-02		
				Nickel	18	18	20,000	9E-04	9E-04		
										2E-01	2E-01
	Construction Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics	23	34	23,000	1E-03	1E-03		
			-	Antimony	0.37	0.37	410	9E-04	9E-04		
				Chromium	15	15	4,600	3E-03	3E-03		
				Copper	66	66	41,000	2E-03	2E-03		
				Lead	58	58	800	7E-02	7E-02		
				Nickel	18	18	6,200	3E-03	3E-03		
										8E-02	8E-02
	Excavation Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Diesel-Range Organics	23	34	130,000	2E-04	3E-04		
			-	Antimony	0.37	0.37	410	9E-04	9E-04		
				Chromium	15	15	130,000	1E-04	1E-04		
				Copper	66	66	41,000	2E-03	2E-03		
				Lead	58	58	800	7E-02	7E-02		
				Nickel	18	18	170,000	1E-04	1E-04		
										8E-02	8E-02

- 1. EPC = Exposure Point Concentration; from Table 2.
- CT = Central Tendency.
- RME = Reasonable Maximum Exposure.
- 4. RBC = Risk-Based Concentration; from Table 3.
- mg/kg = Milligrams per kilogram.
 Shaded Cell = Hazard Quotient or Hazard Index exceeds acceptable level of 1.0.

Table 5
Risk Characterization: Carcinogen
Swan Island Upland Facility - OU2

Exposure Area	Receptor	Medium	Pathway	Chemical	E	PC	RBC	Individual Chemical Excess Risk			ulative ss Risk
					CT	RME		CT	RME	CT	RME
Freightliner	Occupational	Soil, 0 to 3 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic Aroclor 1260 Total PCBs	38 0.038 0.057	57 0.07 0.11	1.7 0.98 0.98	2E-05 4E-08 6E-08	3E-05 7E-08 1E-07		
				Benzo(a)anthracene Benzo(b)fluoranthene	0.068 0.21	0.068 0.21	2.7 2.7	3E-08 8E-08	3E-08 8E-08		
				Benzo(a)pyrene Indeno(1, 2, 3-cd)pyrene	0.17 0.29	0.17 0.29	0.27 2.7	6E-07 1E-07	6E-07 1E-07		
				Dibenz(a,h)anthracene Benzo(g, h, i)perylene	0.022 0.36	0.022 0.36	0.27 27	8E-08 1E-08	8E-08 1E-08		
										2E-05	3E-05
		Groundwater, μg/L	Vapor Intrusion	Vinyl Chloride Chloroform	6.5 1.1	6.5 1.1	870 1,100	7E-09 1E-09	7E-09 1E-09	8E-09	8E-09
			Outdoor Air	Vinyl Chloride Chloroform	6.5 1.1	6.5 1.1	6,400 5,200	1E-09 2E-10	1E-09 2E-10	1E-09	1E-09
		Soil and GW Vapor Intrusion	Ingestion, Direct Contact, Inhalation	(see above)						2E-05	3E-05
		Soil and GW Outdoor Air	Ingestion, Direct Contact, Inhalation	(see above)						2E-05	3E-05
			<u> </u>	, ,						22 00	0E 00
	Construction Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic Aroclor 1260 Total PCBs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1, 2, 3-cd)pyrene Dibenz(a,h)anthracene Benzo(g, h, i)perylene	33 0.032 0.049 0.068 0.21 0.17 0.29 0.022 0.36	78 0.06 0.09 0.068 0.21 0.17 0.29 0.022 0.36	13 4.4 4.4 21 21 2 21 2 21 2 210	3E-06 7E-09 1E-08 3E-09 1E-08 8E-08 1E-08 1E-08 2E-09	6E-06 1E-08 2E-08 3E-09 1E-08 8E-08 1E-08 1E-08 2E-09	3E-06	6E-06
	Excavation Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic Aroclor 1260 Total PCBs Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1, 2, 3-cd)pyrene Dibenz(a,h)anthracene Benzo(g, h, i)perylene	33 0.032 0.049 0.068 0.21 0.17 0.29 0.022 0.36	78 0.06 0.09 0.068 0.21 0.17 0.29 0.022 0.36	370 120 120 590 590 59 59 59 59 59	9E-08 3E-10 4E-10 1E-10 4E-10 3E-09 5E-10 4E-10 6E-11	2E-07 5E-10 8E-10 1E-10 4E-10 3E-09 5E-10 4E-10 6E-11	9E-08	2E-07

Please refer to notes at end of table.

Table 5
Risk Characterization: Carcinogen
Swan Island Upland Facility - OU2

Exposure Area	Receptor	Medium	Pathway	Chemical	E	PC	RBC	Individual Chemical Excess Risk			ulative ss Risk
					CT	RME	1	CT	RME	CT	RME
Pacific Rock Products	Occupational	Soil, 0 to 3 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic Aroclor 1260	3.7 0.049	4.2 0.07	1.7 1.0	2E-06 5E-08	2E-06 8E-08		
				Total PCBs	0.053	0.08	1.0	5E-08	8E-08		
				Benzo(a)anthracene	0.046	0.064	2.7	2E-08	2E-08		
				Benzo(b)fluoranthene	0.083	0.12	2.7	3E-08	4E-08		
				Benzo(a)pyrene	0.093	0.14	0.27	3E-07	5E-07		
				Indeno(1, 2, 3-cd)pyrene	0.13	0.18	2.7	5E-08	7E-08		
				Dibenz(a,h)anthracene	0.012	0.017	0.27	4E-08	6E-08		
				Benzo(g, h, i)perylene	0.14	0.20	27	5E-09	8E-09		
										3E-06	3E-06
		Groundwater, µg/L	Vapor Intrusion	Vinyl Chloride	6.5	6.5	870	7E-09	7E-09		
				Chloroform	1.1	1.1	1,100	1E-09	1E-09		
										8E-09	8E-09
			Outdoor Air	Vinyl Chloride	6.5	6.5	6,400	1E-09	1E-09		
				Chloroform	1.1	1.1	5,200	2E-10	2E-10		
										1E-09	1E-09
		Soil and GW Vapor Intrusion	Ingestion, Direct Contact, Inhalation	(see above)						3E-06	3E-06
		Soil and GW Outdoor Air	Ingestion, Direct Contact, Inhalation	(see above)						3E-06	3E-06
	Construction Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic	3.4	3.8	13	3E-07	3E-07		
	Constituction Worker	Joil, o to 13 leet, highly	ingestion, birect contact, initialation	Aroclor 1260	0.23	0.8	4.4	5E-08	2F-07		
				Total PCBs	0.24	0.5	4.4	5E-08	1F-07		
				Benzo(a)anthracene	0.043	0.078	21	2E-09	4E-09		
				Benzo(b)fluoranthene	0.076	0.12	21	4E-09	6E-09		
				Benzo(a)pyrene	0.085	0.13	2.1	4E-08	6E-08		
				Indeno(1, 2, 3-cd)pyrene	0.11	0.17	21	5E-09	8E-09		
				Dibenz(a,h)anthracene	0.011	0.016	2.1	5E-09	8E-09		
				Benzo(g, h, i)perylene	0.13	0.19	210	6E-10	9E-10		
										4E-07	6E-07
	Excavation Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic	3.4	3.8	370	9E-09	1E-08		
			j	Aroclor 1260	0.23	0.8	120	2E-09	7E-09		
				Total PCBs	0.24	0.5	120	2E-09	4E-09		
				Benzo(a)anthracene	0.043	0.078	590	7E-11	1E-10		
				Benzo(b)fluoranthene	0.076	0.12	590	1E-10	2E-10		
				Benzo(a)pyrene	0.085	0.13	59	1E-09	2E-09		
				Indeno(1, 2, 3-cd)pyrene	0.11	0.17	590	2E-10	3E-10		
				Dibenz(a,h)anthracene	0.011	0.016	59	2E-10	3E-10		
				Benzo(g, h, i)perylene	0.13	0.19	5,900	2E-11	3E-11		
										1E-08	2E-08

Please refer to notes at end of table.

Table 5 Risk Characterization: Carcinogen Swan Island Upland Facility - OU2

Exposure Area	Receptor	Medium	Pathway	Chemical	E	PC	RBC	Individual Chemical Excess Risk			ulative ss Risk
					CT	RME		CT	RME	CT	RME
Berth 315 Area	Occupational	Soil, 0 to 3 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic Aroclor 1260	3.4 0.030	3.4 0.064	1.7 1.0	2E-06 3E-08	2E-06 7E-08		
				Total PCBs	0.035	0.073	1.0	4E-08	7E-08		
				Benzo(a)anthracene	0.10	0.10	2.7	4E-08	4E-08		
				Benzo(b)fluoranthene	0.045	0.045	2.7	2E-08	2E-08		
				Benzo(a)pyrene	0.070	0.070	0.27	3E-07	3E-07		
				Indeno(1, 2, 3-cd)pyrene	0.077	0.077	2.7	3E-08	3E-08		
				Dibenz(a,h)anthracene	0.021	0.021	0.27	8E-08	8E-08		
				Benzo(g, h, i)perylene	0.081	0.081	27	3E-09	3E-09		
										2E-06	2E-06
		Groundwater, μg/L	Vapor Intrusion	Vinyl Chloride	6.5	6.5	870	7E-09	7E-09		
				Chloroform	1.1	1.1	1,100	1E-09	1E-09		
										8E-09	8E-09
			Outdoor Air	Vinyl Chloride	6.5	6.5	6,400	1E-09	1E-09		
				Chloroform	1.1	1.1	5,200	2E-10	2E-10		
										1E-09	1E-09
		Soil and GW Vapor Intrusion	Ingestion, Direct Contact, Inhalation	(see above)						2E-06	2E-06
		Soil and GW Outdoor Air	Ingestion, Direct Contact, Inhalation	(see above)						2E-06	2E-06
	Construction Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic	3.4	3.4	13	3E-07	3E-07		
				Aroclor 1260	0.030	0.064	4.4	7E-09	1E-08		
				Total PCBs	0.035	0.073	4.4	8E-09	2E-08		
				Benzo(a)anthracene	0.10	0.10	21	5E-09	5E-09		
				Benzo(b)fluoranthene	0.045	0.045	21	2E-09	2E-09		
				Benzo(a)pyrene	0.070	0.070	2.1	3E-08	3E-08		
				Indeno(1, 2, 3-cd)pyrene	0.077	0.077	21	4E-09	4E-09		
				Dibenz(a,h)anthracene	0.021	0.021	2.1	1E-08	1E-08		
				Benzo(g, h, i)perylene	0.081	0.081	210	4E-10	4E-10	05.07	05.07
										3E-07	3E-07
	Excavation Worker	Soil, 0 to 15 feet, mg/kg	Ingestion, Direct Contact, Inhalation	Arsenic	3.4	3.4	370	9E-09	9E-09		
				Aroclor 1260	0.030	0.064	120	3E-10	5E-10		
				Total PCBs	0.035	0.073	120	3E-10	6E-10		
				Benzo(a)anthracene	0.10	0.10	590	2E-10	2E-10		
				Benzo(b)fluoranthene	0.045	0.045	590	8E-11	8E-11		
				Benzo(a)pyrene	0.070	0.070	59	1E-09	1E-09		
				Indeno(1, 2, 3-cd)pyrene	0.077	0.077	590	1E-10	1E-10		
				Dibenz(a,h)anthracene	0.021	0.021	59	4E-10	4E-10		
				Benzo(g, h, i)perylene	0.081	0.081	5,900	1E-11	1E-11	15.00	15.00
										1E-08	1E-08

- EPC = Exposure Point Concentration; from Table 2.
 CT = Central Tendency.
- 3. RME = Reasonable Maximum Exposure.
- 4. RBC = Risk-Based Concentration; from Table 3.

- 5. mg/kg = Milligrams per kilogram.
- μg/L = Micrograms per liter.
- 7. Shaded Cell = Cumulative excess risk exceeds acceptable level of 1E-06 for individual chemicals or 1E-05 for cumulative risk.