

May 8, 2024

Ellen Woods Oregon Department of Environmental Quality 165 East 7th Avenue, Suite 100. Eugene, Oregon 97401

Re: Summary of Soil Vapor and Groundwater Sampling

Former LKQ Facility, 3871 Boone Rd SE, ECSI No. 842

Salem, Oregon

Dear Ms. Woods:

On behalf of LKQ Corporation (LKQ), Apex Companies, LLC (Apex) is submitting this summary of groundwater and soil vapor sampling at the former LKQ facility located at 3871 Boone Road SE in Salem, Oregon (Site). The scope of work was completed in accordance with the *Revised Work Plan for Soil Vapor/Groundwater Sampling and Proposed New Production Well (Revised Work Plan*, Apex, February 15, 2024). The original Work Plan was submitted to the Oregon Department of Environmental Quality (DEQ) on January 24, 2024 (Apex, January 2024). The *Revised Work Plan* incorporated comments on the January 24 Work Plan received from DEQ via email dated January 29, 2024 including one additional soil vapor sampling location and clarification of the groundwater monitoring and sampling procedures. The DEQ approved the *Revised Work Plan* via email dated February 21, 2024.

Background

Figure 1 is a Site location map. The Site is located in an area of mixed commercial use southeast of Salem, Oregon, and consists of a 6.14-acre parcel of land, bounded to the south by Boone Road SE; to the east and north by Salem Pallet Company; and to the west by the Union Pacific rail line. Figure 2 is a Site Map. The Site is developed with a 10,000-square-foot single-story building and gravel and paved parking areas. A production well is located in the west-central portion of the Site (see Figure 2). The closest residential buildings are located approximately 0.5 miles southwest of the Site. Mill Creek is the closest body of water, located approximately 900 feet east of the Site. The Site is currently unoccupied, but recently operated as an LKQ automotive dismantling facility.

In September 2021, Apex performed a limited site investigation. Based on the results of the limited site investigation, the remnants of the oil/water separator, three catch basins, associated piping, and contaminated soils near the separator were removed and transported to a permitted landfill for disposal in October 2021.

Additional remedial excavation was completed to remove contaminated soils inside the building to the maximum extent practicable in November 2021. The bottom of the excavation and initial backfill lift was amended with the PersulfOx® remediation compound.

Site characterization activities were completed between February and April 2022 to delineate the extent of petroleum hydrocarbons in soil and groundwater which included advancing soil borings, collection of soil and reconnaissance groundwater samples, installation and sampling of five groundwater monitoring wells (MW-1 through MW-5, see Figure 2) and collection of a water sample from the existing production well. The Site characterization activities were summarized in the Corrective Action Plan (CAP, Apex, 2023).

The DEQ provided comments on the CAP in an email dated November 17, 2023. In summary, DEQs comments included: agreement with the recommendation to prepare a Contaminated Media Management Plan (CMMP) as part of institutional controls for the site; prepare and implement a work plan for conducting one additional round of sampling on the production well; and a request for a soil gas investigation. The scope of work described in the *Revised Work Plan* addresses DEQs comments on the CAP and is summarized below. Preparation of a CMMP will be part of a future scope of work.

Soil Vapor and Groundwater Sampling Activities

The scope of work included the following activities:

- Collected and analyzed three (3) soil vapor samples using soil vapor probes in the warehouse section of the building;
- Installed one soil vapor sample point inside the office section of the building and collect and analyze one (1) sub-slab vapor sample;
- Collected and analyzed five (5) groundwater samples from the existing groundwater monitoring wells; and
- Collected and analyzed one (1) groundwater sample from the existing production well.

Preparatory Activities

Health and Safety Plan. A Site-specific HASP was prepared for the previous monitoring activities in general accordance with the Occupational Safety and Health Act (OSHA) and the Oregon Administrative Rules (OAR). A copy of the HASP was maintained on-site during the field activities.

Underground Utility Location. Prior to advancing soil vapor probes activities, Apex contacted the Oregon Utility Notification Center to mark public underground facilities. In addition, Apex subcontracted Applied Professional Services (APS) to perform private underground utility locating services in the soil vapor point area.

Soil Vapor Sampling

On February 28, 2024, Apex advanced three soil vapor probes (SV-1, SV-2 and SV-4) and installed one sub slab vapor point (SV-3) in the locations displayed on Figure 3. Soil vapor probes SV-1 and SV-2 were installed in the vicinity of the soil removal and MW-1, while soil vapor probe SV-4 was installed in the vicinity of soil borings B-10 and B-15, where elevated levels of TPH was detected in grab groundwater samples and one sub-slab soil vapor sample in the office portion of the building. The concrete slab in the warehouse portion of the building has been removed so soil vapor samples in that area were collected from 3 to 4 feet below ground surface and above the groundwater surface using soil vapor probes driven into the subsurface. A Vapor Pin® was installed into the concrete slab in the office portion of the building for collection of the sub slab vapor sample.

The soil vapor samples were submitted to Eurofins Air Toxics located in Folsom, California for analysis of TPH-Gx and VOCs using Environmental Protection Agency (EPA) Method TO-15 and TPH-Dx using EPA Method TO-17.

Soil vapor sample analytical results are presented in Table 2 and summarized on Figure 3. Concentrations of VOCs, TPH-D and TPH-G in the soil-vapor samples collected during the February 28, 2024, monitoring event, were not detected in excess of the DEQ RBCs for chronic exposure in a commercial setting.

TPH-G was detected in all three of the soil vapor samples points. SV-1 at 570 μ g/m³, SV-2 at 490 μ g/m³, and SV-4 at 740 μ g/m³. These detected values are at least one order of magnitude lower than the DEQ RBCs. TPH-G was not detected in the sub slab vapor point SV-3.

TPH-D was not detected in any of the soil vapor sampling points or the sub slab vapor point at concentrations above the minimum reporting limit.

VOCs detected in all three soil vapor points and the sub slab vapor point were below the DEQ RBCs for chronic exposure in a commercial setting.

Groundwater Monitoring

Groundwater Levels. On February 29, 2024, groundwater levels were measured using an electronic water level indicator for monitoring wells MW-1 through MW-5. Groundwater elevation and elevation contours are presented on Figure 4. All wells were opened and the water level was allowed to equilibrate before the measurements were taken. The depth to groundwater was measured in each well to the nearest 0.01 foot. The depth to groundwater and groundwater elevations are presented in Table 1. Water level documentation is included in Appendix A.

In general, the February 29, 2024, groundwater elevation data suggests a groundwater flow across the Site with primarily a northeast flow direction with a westerly component on the west side of the monitoring area under a hydraulic gradient of approximately 0.05 foot per foot. The groundwater flow direction and gradients observed during the February monitoring event are generally consistent with previous events.

Groundwater Sampling. On February 29 and March 1, 2024, groundwater samples were collected from the existing five groundwater monitoring wells (MW-1 through MW-5). A duplicate sample was collected from monitoring well MW-2. The depth to groundwater was measured in monitoring wells MW-1 through MW-5 prior to purging and sampling. Monitoring wells were purged and sampled with a peristaltic pump using a low-flow sampling methods. Water quality parameters including DO, pH, ORP, conductivity, and temperature were recorded and evaluated before sample collection to obtain samples representative of the existing groundwater conditions.

In addition, Apex collected a water sample from the existing production well. The production well was sampled by operating the well pump for a period of approximately one-half hour to purge approximately three casing volumes of water from the well prior to collection of a representative water sample directly from the on-site hose bib.

The groundwater samples were submitted to Apex Laboratories located in Tigard, Oregon for analysis of TPH-Gx, TPH-Dx, and Risk-Based Decision Making (RBDM) VOCs, polycyclic aromatic hydrocarbons (PAHs) and dissolved metals (Resource Conservation and Recovery Act 8 metals: arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver).

Groundwater sample analytical results are summarized in Table 3. The groundwater analytical results of the February 2024 sampling event and previous events are presented on Figure 5. Total petroleum hydrocarbon concentrations were not detected with the exception of the sample collected from monitoring well MW-1. The sample collected from monitoring well MW-1 contained a TPH-Dx concentration of 2,470 micrograms per liter (ug/L) and a TPH-Gx concentration of 2,710 ug/L which exceed the DEQ Risk-Based concentrations (RBCs) of 1,700 ug/L and 520 ug/L, respectively for the commercial volatilization to indoor air pathway. PAHs were not detected except for low detections of naphthalene (and naphthalene-related compounds) in the sample collected from MW-1 of 25.4 ug/L and naphthalene in the sample collected from monitoring well MW-4 of 0.07 ug/L, which are below the RBC of 50 ug/L. Dissolved metals were not detected, except for arsenic in samples collected from monitoring wells MW-1 and MW-4 and barium in samples collected from each of the monitoring wells, which were well below the EPA Maximum Contaminant Levels of 10 ug/L and 2,000 ug/L, respectively.

None of the analyzed constituents were detected in the sample collected from the water well except for dissolved arsenic and barium at concentrations of 1.1 ug/L and 1.94 ug/L, respectively.

Conclusions

Based on the results of February 2024 groundwater monitoring data, concentrations of detected analytes continued to decrease in the groundwater monitoring wells. The only RBC exceedance was TPH-Gx and TPH-Dx in the groundwater sample collected from monitoring well MW-1. PAHs were not detected except for a low detection of naphthalene in the samples collected from MW-1 and MW-4 (well below the RBC). Dissolved metals were not detected except for arsenic and barium, which were well below the EPA Maximum Contaminant Level.

There were no detections of any of the constituents in the production well sample, except for arsenic and barium, which were well below the MCLs.

The results of the soil vapor sampling indicate that the gasoline vapor concentrations are at least one order of magnitude lower than the RBCs and no diesel was detected. VOCs detected in all three soil vapor points and the sub slab vapor point were below the DEQ RBCs for chronic exposure in a commercial setting.

Based on the results of the groundwater and soil vapor sampling conducted to date, LKQ is requesting a No Further Action determination from DEQ.

If you have any questions or require additional information, please contact me at our Tigard, Oregon office at (503) 974-0429.

Sincerely,

Apex Companies, LLC

Steve Misner, R.G. Senior Associate

Cc: Mr. Tim Klein, LKQ Corporation

Attachments

Figure 1: Site Location Map

Figure 2: Site Plan

Figure 3: Soil Vapor Sampling Locations and Results Figure 4: Groundwater Contours (February 29, 2024)

Figure 5: Groundwater Analytical Results

Reference

Apex Companies, LLC (Apex), 2023. Corrective Action Plan, Former LKQ Facility, Salem, Oregon. March 3, 2023.

EOLOGIS

Apex, 2024. Work Plan for Soil Vapor/Groundwater Sampling and Proposed New Production Well, Former LKQ Facility, 3871 Boone Rd SE, Salem, Oregon. January 24, 2024, Revised February 15, 2024.

Table 1 Groundwater Elevation Data Former LKQ Facility Salem, Oregon

Well Identification	Date	Depth to Water	Groundwater Elevation
Top of Casing (feet msl)	Date	(feet bgs)	(feet MSL)
MW-1	4/6/2022	4.84	233.28
238.12	5/20/2022	4.63	233.49
	8/16/2022	7.96	230.16
	11/2/2022	6.15	231.97
	2/10/2023	5.63	232.49
	9/14/2023	7.87	230.25
	2/29/2024	3.81	234.31
MW-2	4/6/2022	5.06	232.62
237.68	5/20/2022	4.91	232.77
	8/16/2022	8.08	229.60
	11/2/2022	5.92	231.76
	2/10/2023	5.55	232.13
	9/14/2023	8.25	229.43
	2/29/2024	4.40	233.28
MW-3	4/6/2022	4.90	232.92
237.82	5/20/2022	4.75	233.07
	8/16/2022	8.12	229.70
	11/2/2022	5.23	232.59
	2/10/2023	5.22	232.60
	9/14/2023	8.29	229.53
	2/29/2024	3.99	233.83
MW-4	4/6/2022	4.53	233.26
237.79	5/20/2022	4.31	233.48
	8/16/2022	7.65	230.14
	11/2/2022	4.99	232.80
	2/10/2023	5.03	232.76
	9/14/2023	8.73	229.06
	2/29/2024	3.51	234.28
MW-5	4/6/2022	5.41	232.58
237.99	5/20/2022	5.28	232.71
	8/16/2022	7.65	230.34
	11/2/2022	5.97	232.02
	2/10/2023	5.83	232.16
	9/14/2023	8.53	229.46
	2/29/2024	4.99	233.00

Table 2 Soil Vapor Analytical Results Former LKQ Facility Salem, Oregon

Sample Location	SV-1	SV-2	SV-3	SV-4	DEQ Commercial Soil
Date	2/28/2024	2/28/2024	2/28/2024	2/28/2024	Vapor (Chronic) RBCs
TPH (Diesel Range C10-C22) by EPA Method TO-17 in	µg/m³				
TPH Diesel	<5,000	<5,000	<5,000	<5,000	14,000
Volatile Organic Compounds (VOCs) and Gasoline by	EPA Method TO-	15 in µg/m ³			
TPH Gasoline	570	490	<400	740	40,000
Acetone	110	100	100	300	
Benzene	<3.2	<3.2	<3.1	<3.4	52
Benzyl Chloride	<5.1	<5.1	<5.1	<5.5	8.3
Bromodichloromethane	<6.6	<6.6	<6.6	<7.2	11
Bromoform	<10	<10	<10	<11	370
Bromomethane	<38	<38	<38	<42	730
1,3-Butadiene	<2.2	<2.2	<2.2	<2.4	14
Carbon Disulfide	<12	<12	<12	<13	100,000
Carbon Tetrachloride	<6.2	<6.2	<6.2	<6.7	68
Chlorobenzene	<4.6	<4.6	<4.5	<4.9	7,300
Chloroethane	<10	<10	<10	<11	580,000
Chloroform	<4.8	<4.8	<4.8	<5.2	18
Chloromethane	<20	<20	<20	<22	13,000
Cyclohexane	<3.4	<3.4	<3.4	<3.7	880,000
Chlorodibromomethane	<8.4	<8.4	<8.3	<9.1	
1,2-Dibromoethane	<7.6	<7.6	<7.5	<8.2	0.68
1,2-Dichlorobenzene	<6.0	<6.0	<5.9	<6.4	29,000
1,3-Dichlorobenzene	<6.0	<6.0	<5.9	<6.4	
1,4-Dichlorobenzene	<6.0	<6.0	<5.9	<6.4	37
1,2-Dichloroethane	<4.0	<4.0	<4.0	<4.3	16
1,1-Dichloroethane	<4.0	<4.0	<4.0	<4.3	260
1,1-Dichloroethene	<3.9	<3.9	<3.9	<4.2	29,000
cis-1,2-Dichloroethene	<3.9	<3.9	<3.9	<4.2	5,800
trans-1,2-Dichloroethene	<3.9	<3.9	<3.9	<4.2	5,800
1,2-Dichloropropane	<4.6	<4.6	<4.5	<4.9	110
cis-1,3-Dichloropropene	<4.5	<4.5	<4.4	<4.8	100
trans-1,3-Dichloropropene	<4.5	<4.5	<4.5	<4.5	100
1,4-Dioxane	<14	<14	<14	<15	82
Ethanol	<19	<19	1,200 E	21	
Ethylbenzene	<4.3	<4.3	<4.2	<4.6	160
4-Ethyltoluene	<4.9	<4.9	<4.8	<5.3	
Trichlorofluoromethane	<5.6	<5.6	<5.5	<6.0	
Dichlorodifluoromethane	<4.9	<4.9	<4.8	<5.3	15,000

Please see notes at end of table

Table 2 Soil Vapor Analytical Results Former LKQ Facility Salem, Oregon

Sample Location	SV-1	SV-2	SV-3	SV-4	DEQ Commercial Soil Vapor (Chronic)
Date	2/28/2024	2/28/2024	2/28/2024	2/28/2024	RBCs
Volatile Organic Compounds (VOCs) and Gasoline by	EPA Method TO-	15 in µg/m ³			
1,1,2-Trichlorotrifluoroethane	<5.4	<5.4	<5.3	<5.8	26
1,2-Dichlorotetrafluoroethane	<6.9	<6.9	<6.8	<7.5	
Heptane	<4.0	<4.0	<4.0	<4.4	58,000
Hexachloro-1,3-butadiene	<42	<42	<42	<46	19
Hexane	4.8	5.8	<3.4	17	2,000
Isopropylbenzene	<4.9	<4.9	<4.8	<5.2	58,000
Methylene Chloride	<34	<34	<34	<37	41,000
Methyl Butyl Ketone	<16	<16	<16	<18	440,000
2-Butanone (MEK)	16	18	<12	18	730,000
4-Methyl-2-pentanone (MIBK)	<4.0	<4.0	<4.0	<4.4	440,000
MTBE	<14	<14	<14	<15	1,600
2-Propanol	<9.7	<9.7	23	<10.0	29,000
n-Propylbenzene	<4.9	<4.9	<4.8	<5.3	150,000
Styrene	<4.2	<4.2	<4.2	<4.6	150,000
1,1,2,2-Tetrachloroethane	<6.8	<6.8	<6.7	<7.3	55
Tetrachloroethylene	<6.7	<6.7	<6.6	<7.2	1,600
Tetrahydrofuran	<2.9	<2.9	4.3	<3.2	290,000
Toluene	<7.5	<7.5	8.6	<8.1	730,000
1,2,4-Trichlorobenzene	<29	<29	<29	<32	290
1,1,1-Trichloroethane	<5.4	<5.4	<5.3	<5.8	730,000
1,1,2-Trichloroethane	<5.4	<5.4	<5.3	<5.8	26
Trichloroethylene	<5.3	<5.3	<5.3	<5.8	100
1,2,4-Trimethylbenzene	<4.9	<4.9	<4.8	<5.2	8,800
1,3,5-Trimethylbenzene	<4.9	<4.9	<4.8	<5.3	8,800
2,2,4-Trimethylpentane	<4.6	<4.6	<4.6	<5.0	
Vinyl Chloride	<2.5	<2.5	<2.5	<2.7	93
m&p-Xylene	<8.6	<8.6	<8.5	<9.3	15,000
o-Xylene	<4.3	<4.3	<4.2	<4.6	15,000

Notes:

- 1. $\mu g/m^3 = Micrograms per cubic meter.$
- 2. Bold values indicate concentration detected above the minimum reporting limit.
- 3. -- = Not established.
- 4. E = Exceeds instrument calibration range.
- 5. DEQ RBCs = Risk-Based Concentrations from the DEQ's *Risk-Based Decision Making for the Remediation of Petroleum*-Contaminated Sites (updated June 2023).
- 6. TPH Gasoline = TPH Reference to Gasoline (Molecular Weight = 100)

Groundwater Analytical Results Former LKQ Facility Salem, Oregon

Sample ID			MW-1 MW-2								MV	V-3					-	MW-4			MW-5					Chronic Vapor						
Sample Date	4/6/2022	8/16/2022	11/2/2022	2/10/2023	9/14/2023	2/29/2024	4/6/2022	8/16/2022	11/2/2022	2/10/2023	9/14/2023	3/1/2024	3/1/2024 DUP-1	4/6/2022	8/16/2022	11/2/2022	2/10/2023	9/14/2023	2/29/2024	4/6/2022	8/16/2022	11/2/2022	2/10/2023	9/14/2023	2/29/2024	4/6/2022	8/16/2022	11/2/2022	2/10/2023	9/14/2023	2/29/2024	Intrusion RBCs
		-1		1		<u> </u>			l .	l .				<u> </u>	Concentration	ons in µg/L				<u> </u>					-							
Total Petroleum Hydrocarbons	(TPH) by NWTPI	H-Dx and NWTPH	-Gx																												-	
Diesel Range Organics	3,430 J+	16,100 J	7,720	10,100 J	6,430	2,470	173	166 J	209	<76.9	<86	<80	134	<7.92	145 J	<76.2	<75.5	<83	<79	726	618 J	240	<75.5	<80	<83	2,640 J+	2,560 J	709	443	267	<80	1,700
Oil Range Organics	9,240	<800	481	3,560 J	<167	<157	<172	<157	<151	<154	<172	<160	<158	<158	<157	164	<151	<165	<158	<163	330 J	225	<151	<160	<167	1,900	1,850	634	768	199	<160	1,500
Gasoline Range Organics	1,220	1,500	2,270	8,410	8,890	2,710	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	699	343	127	120	<100	4,720	3,360	1,360	1,140	885	<100	520
Volatile Organic Compounds (\																																
Benzene	13.2	96.7	90.3	27.8	87.7	5.75	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<0.200	<20.0	<0.200	<0.200	<0.200	<0.200	0.490	3.60	3.10	<0.200	1.45	<0.200	15.2	10.5	2.29	2.33	1.02	<0.200	12 150,000
Toluene	64.0	134	176	74.4 J	796	6.25	<1.00	<1.00	<1.00 <0.500	<1.00	<1.00 <0.500	<1.00	<1.00	<1.00	<1.00	<1.00 <0.500	<1.00 <0.500	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00 <0.500	<20.0	<10.0	<1.00	<1.00	<1.00	<1.00 <0.500	150,000
Ethylbenzene Total Xylenes	43.9 14.7 J	35.3 51.8	28.3 148	166 1,060 J	125 800	43.4 218	<0.500 <1.50	<0.500 <1.50	<0.500	<0.500 <1.50	<1.50	<0.500 <1.50	<0.500 <1.50	<0.500 <1.50	<0.500 <1.50	<1.50	<1.50	<0.500 <1.50	<0.500 <1.50	2.69 5.67	23.1 4.04	20.2 15.1	<0.500 <1.50	<0.500 <1.50	<1.50	68.4 487	19.2 139	7.18 9.95	5.98 6.02	1.38 <1.50	<0.500	3,300
Methyl tert-butyl ether (MTBE)	<1.00	<10.0	<10.0	<1.00	<5.00	<5.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<20.0	<10.0	<1.00	<1.00	<1.00	<1.00	3,200
Naphthalene	55.5	<20.0	<40.0	70.4	32.9	25.4	<2.00	<5.00	<4.00	<2.00	<4.00	<4.00	<1.00	<2.00	<5.00 UJ	<4.00	<2.00	<4.00	<4.00	<2.00	9.59	<4.00	<2.00	<4.00	<4.00	42.6	29.4	9.61	3.07	<4.00	<4.00	5,200
1,2-Dibromoethane (EDB)	<0.500	<5.00	<5.00	<0.500	<2.50	23.4 <2.5	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<10.0	<5.00	<0.500	<0.500	<1.00	<0.500	1.5
1,2-Dichloroethane (EDC)	<0.500	<4.00	<4.00	<0.500	<2.00	<2.0	<0.500	<0.400	<0.400	<0.500	<0.400	<0.400	<0.400	<0.500	<0.400	<0.400	<0.500	<0.400	<0.400	<0.500	<0.400	<0.400	<0.500	<0.400	<0.400	<10.0	<4.00	<0.400	<0.500	<1.00	<0.400	18
Isopropylbenzene	4.90	<10.0	<10.0	7.65	<5.00	<5.0	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	2.22	1.68	<1.00	1.09	<1.00	<20.0	<10.0	4.72	3.71	4.23	<1.00	9,100
1,2,4-Trimethylbenzene	<1.00	<10.0	17.8	225 J	157	214	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	19.8	9.89	<1.00	<1.00	<1.00	288	216	113	56.5	7.79	<1.00	2,400
1,3,5-Trimethylbenzene	<1.00	<10.0	<10.0	58.3	46.1	19.6	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	3.49	2.46	<1.00	<1.00	<1.00	<20.0	45.1	16.5	2.47	<1.00	<1.00	1,700
	olycyclic Aromanyolacumanic Hydrocarbons (PAHs) by EPA Method 870E																															
Acenaphthene	T -	_	_	_	_	<0.191	-	_	_	_	_	< 0.0317	< 0.0320	_	_	_	_	-	< 0.0320	-	-	_	_	_	< 0.0346	-	-	-	_	_	< 0.0356	NITI
Acenaphthylene			_	_		<0.191	_	_	_	_	_	< 0.0317	< 0.0320	_	_		-	-	< 0.0320	_	-				< 0.0346		_	-			< 0.0356	NE
Anthracene			_	_		<0.191	_	_	_	_	_	< 0.0317	< 0.0320	_	_		-	-	<0.0320	_	-				< 0.0346		_	-			< 0.0356	NITI
Benz(a)anthracene			-			< 0.0954	-	-	_	_	-	<0.0158	< 0.0160	-	-		-	-	<0.0160	_	-			-	< 0.0173	-	-	-			<0.0178	2,300
Benzo(a)pyrene	-	-	-	_	-	< 0.0954	-	-	_	_	-	<0.0158	< 0.0160	-	-	-	-	-	<0.0160	-	-	-	-	-	< 0.0173	-	_	-	_	-	<0.0178	NV
Benzo(b,j)fluoranthene(s)			-			< 0.0954	-	-	_	_	-	<0.0158	< 0.0160	-	-		-	-	<0.0160	_	-			-	< 0.0173	-	-	-			<0.0178	NV
Benzo(k)fluoranthene	-		-	-		< 0.0954	-	-	_	-	-	<0.0158	< 0.0160	-	-	-	-	-	<0.0160	-	-	-	-	-	< 0.0173	-	-	-		-	<0.0178	NV
Benzo(g,h,i)perylene			-	-		<0.191	-	-	-	-	-	< 0.0317	< 0.0320		-			-	<0.0320	-				-	< 0.0346		-	-			< 0.0356	NE
Chrysene		-	-			< 0.0954	-	-	-	-	-	<0.0158	< 0.0160	-	-	-	-	-	<0.0160	-	-			-	< 0.0173	-	-	-			<0.0178	NV
Dibenz(a,h)anthracene			-	-		< 0.0954	-	-	-	-	-	<0.0158	< 0.0160		-			-	<0.0160	-				-	< 0.0173		-	-			<0.0178	NV
Fluoranthene	-	-	-	-	-	<0.191	-	-	-	-	-	<0.0317	< 0.0320	-	-	-	-	-	<0.0320	-	-	-	-	-	<0.0346	-	-	-		-	< 0.0356	NITI, NV
Fluorene		-	-			<0.191	-	-	-	-	-	<0.0317	< 0.0320	-	-		-	-	<0.0320	-				-	< 0.0346	-	-	-			< 0.0356	NITI
Indeno(1,2,3-cd)pyrene	-	-	-	-	-	<0.0954	-	-	-	-	-	<0.0158	<0.0160	-	-	-	-	-	<0.0160	-	-	-	-		<0.0173	-	-	-	-		<0.0178	NV
1-Methylnaphthalene	-	-	-	-	-	4.69	-	-	-	-	-	<0.0633	<0.0640	-	-	-	-	-	<0.0640	-	-	-	-	-	<0.0691	-	-	-	-	-	<0.0712	NITI
2-Methylnaphthalene	-	-	-	-	-	7.56	-	-	-	-	-	<0.0633	<0.0640	-	-	-	-	-	<0.0640	-	-	-	-	-	<0.0691	-	-	-	-	-	<0.0712	NITI
Naphthalene		-	-	-	-	24.6	-	-	-	-	-	<0.0633	<0.0640	-	-	-	-	-	<0.0640	-	-			-	0.0713	-	-	-	-	-	<0.0712	50
Phenanthrene		-	-	-	-	<0.382	-	-	-	-	-	<0.0633	<0.0640	-	-	-	-	-	<0.0640	-	-			-	<0.0691	-	-	-	-	-	<0.0712	NE
Pyrene	-	-	-	-	-	<0.191	-	-	-	-	-	<0.0317	<0.0320	-	-	-	-	-	<0.0320	-	-	- 1	-	-	<0.0346	-	-	-	-	-	<0.0356	NITI
Dibenzofuran		-			-	<0.191	-	-	-	_	-	<0.0317	<0.0320	_	-	-	_	-	<0.0320		-		-	_	<0.0346		_	_	-	-	<0.0356	NITI
Dissolved Metals by EPA Metho	00 0020B	1		1		4.00			1	ı		×1.00	z4 00	1			_	_	-1 nn						1.04	1			1	Ī	<1.00	NB/
Arsenic	-	_	_	_	_	1.99	_	-	_	_	-	<1.00	<1.00	_	-	-	-		<1.00	-	-			_	1.04	_	_	-	-	_	<1.00	NV NV
Barium Cadmium	-	_	_	_	_	16.2 <0.200	_	-	_	_	-	17.2 <0.200	16.9 < 0.200	_	-	-	-		11.1 <0.200	_	-			_	30.4 <0.200	-	_	-	_	-	8.35 <0.200	NV NV
	_	_	-	_	_	<0.200	-	-	_	_	-	<0.200	<0.200	-	-	-	-		<0.200	-	-	-	_	_	<0.200	1 -	_	-	_	_	<0.200	NV NV
Chromium	_		-		_	<0.200	-	-	_	_	-	<0.200	<0.200	_		-	-		<0.200	I -	-			_	<0.200	_		-		_	<0.200	INV NE
Mercury						<0.200		_ [_		-	<0.200	<0.200	1 -	[_	1 -		<0.0800	1 -		"		-	<0.0800	1 -		_			<0.200	11
Mercury Selenium	_	_	_	_	_	<0.0800	_	-	_	-	-	<2.00	<2.00	1 -	-	-	-	-	<0.0800	-	_	-	_	_	<0.0800	1 -	_	-	_	_	<0.0800	NV
Silver	_		1 -			<0.200	[[-	[<0.200	<0.200	1 -	[_	-		<0.200	1 -				-	<0.200	1 [-		-	<0.200	NITI. NV
Olivei						~ 0.200						~U.2UU	~ 0.200						~ 0.200						\U.ZUU						<u>\0.200</u>	INITI, INV

- Notes:

 1. µg/L = Micrograms per liter.

 2. Chronic Vapor Intrusion RBCs = Oregon Department of Environmental Quality's Commercial Risk-Based Concentrations for Volitalization to Indoor Air, June 2023.

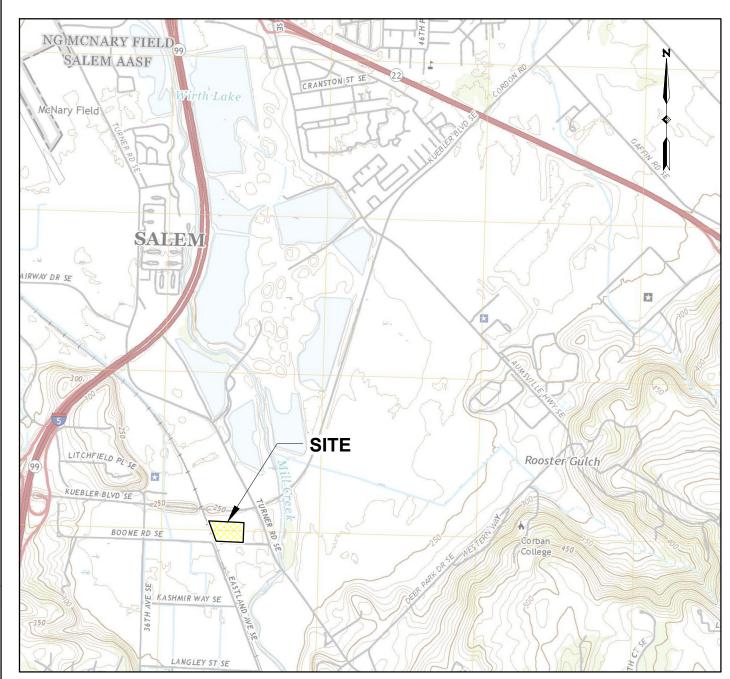
 3. Bold values indicate concentration detected above the minimum reporting limit.

 4. Shaded values indicate concentrations detected above the DEQ chronic Vapor Intrusion RBCs,

 5. <= Concentration was not detected above the shown minimum reporting limit.

 6. J = Result is an estimated value.

 7. UJ = The not detected result is estimated. The reporting limit may be inaccurate or imprecise.

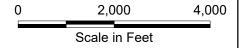

 8. J+= Result is an estimated value and may be biased high.

 9. -- = Not analyzed

 10. NITI = No inhalation toxicity information

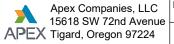
 11. NE = No value established

 12. NV = Not volatile


Salem East, Oregon

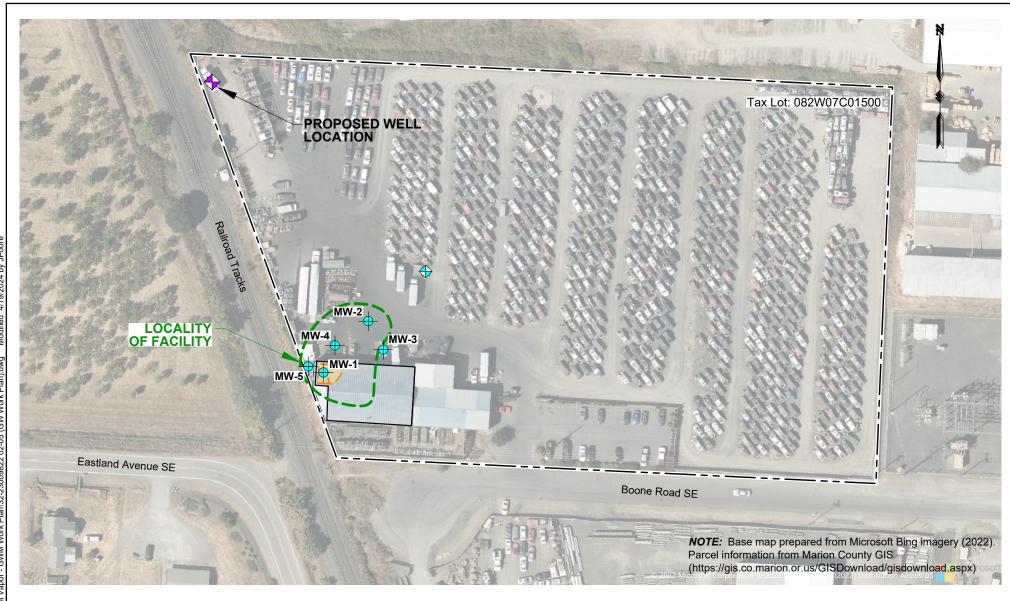
United States Geological Survey 7.5 Minute Series Topographic Map Contour Interval: 10 feet Scale: 1 inch = 24,000 feet

Date: 2020



OREGON

Site Location Map


Groundwater Monitoring Report 3871 Boone Road Southeast Salem, Oregon

Project Number: 32-23009822	Drawn: JP	Approved: SM	
May	2024		

Figure 1 May 2024

I:ClientiLKQ Corporation/32-23009822/Soil Vapor - GWM Work Plan/32-23009822 01 (Site Location Map),dwg Modified 4/11/2024 by JPoore

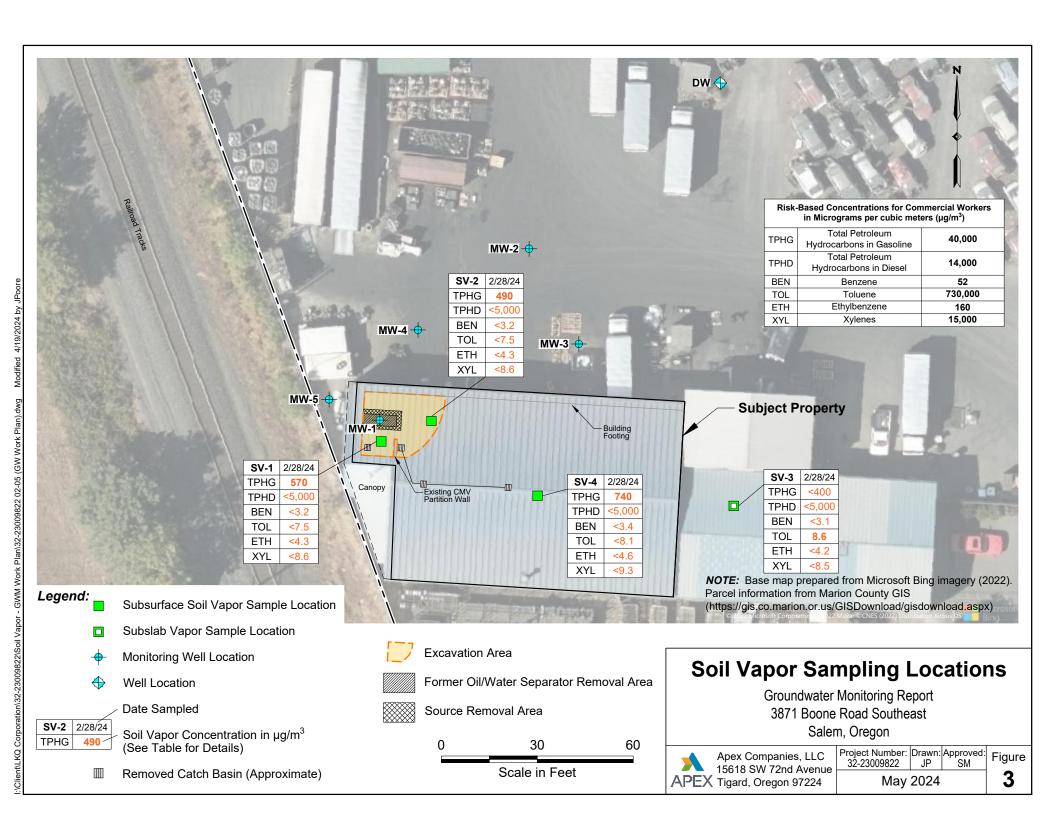
Legend:

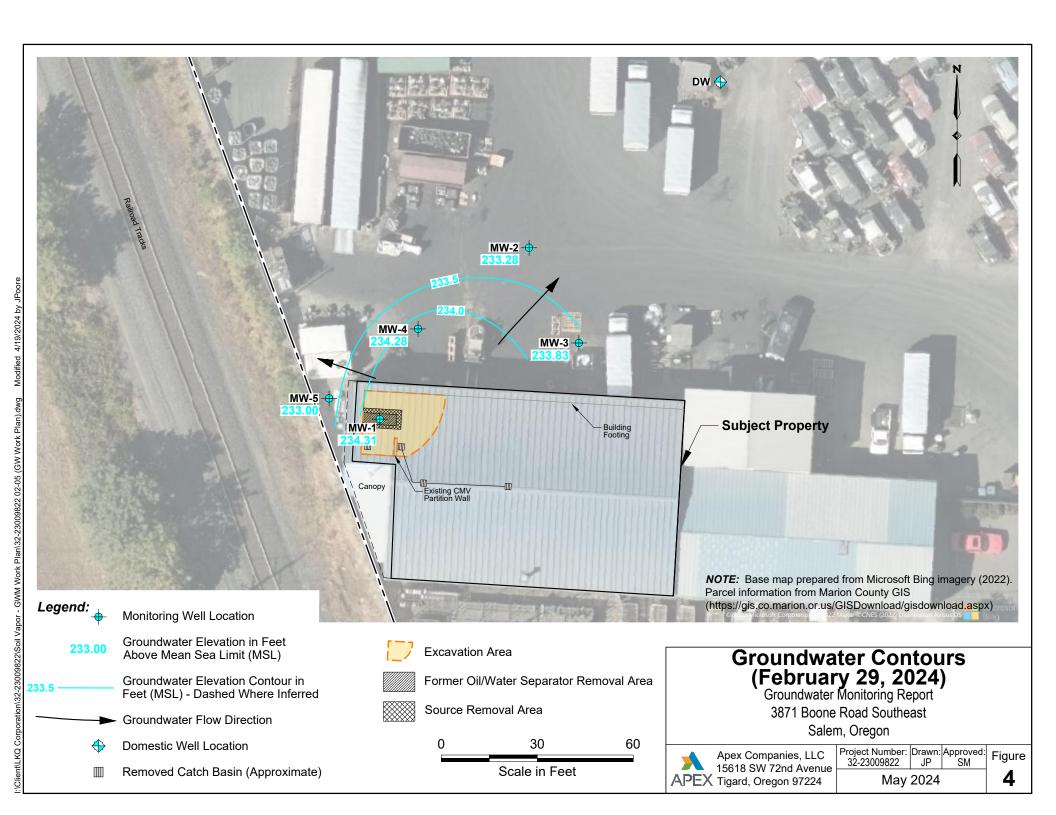
Excavation Area

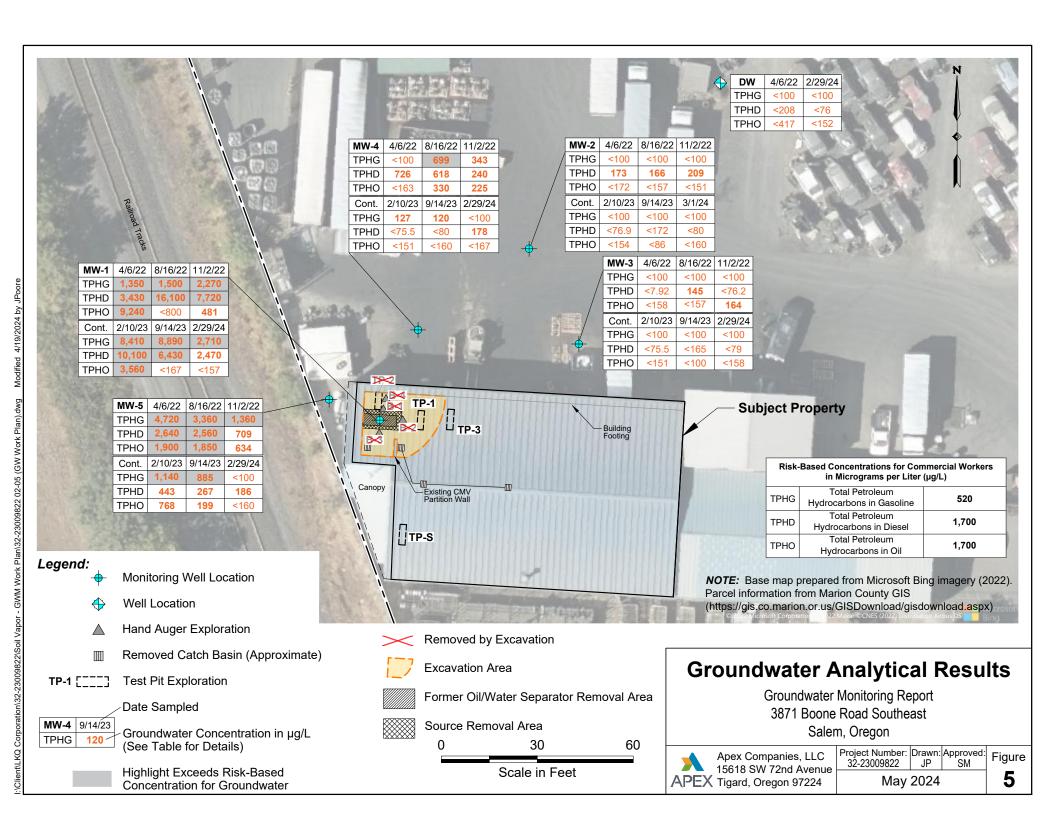
Well Location

Monitoring Well Location

Proposed Well Location




Site Plan


Groundwater Monitoring Report 3871 Boone Road Southeast Salem, Oregon

-	Apex Companies, LLC
	15618 SW 72nd Avenue
APEX	Tigard, Oregon 97224

Project Number: 32-23009822	Drawn: JP	Approved: SM	Figure
May	2024		2

Field Data Sheets

CAJGING WELL GAGING DATA SHEET

		Apex Compar	nies IIC	Client:	LKQ Corporati	on	Job Number:	23009822
		15618 SW 72		Project:	Former LK0 3871 Boone Road	Facility	Date:	2-28-2024
AP	EX	Portland, OR		Weather:	Rainy ,		Sampler:	D. Kolpacki JS. Misner
7 11		T Orticality, C. C.			EVEL DATA			
Well I.D.	Time	Depth to Free Product (feet)	Depth to Water (feet)	Depth to Well Bottom (feet)	Product Thickness (feet)	Water Column Height (feet)	No	tes/Other Remarks
MW-1	1055	_	3.81					
MW-2	1101		4.40					
MW-3	1059		3.99					
MW-4	1105		3.51					
MW-5	1108		4.99					
	*							
				1 1 1 1 1 1				
				,	1			
				1 1 1 1				
						-		
				1				

VAPOR MONITORING DATA SHEET

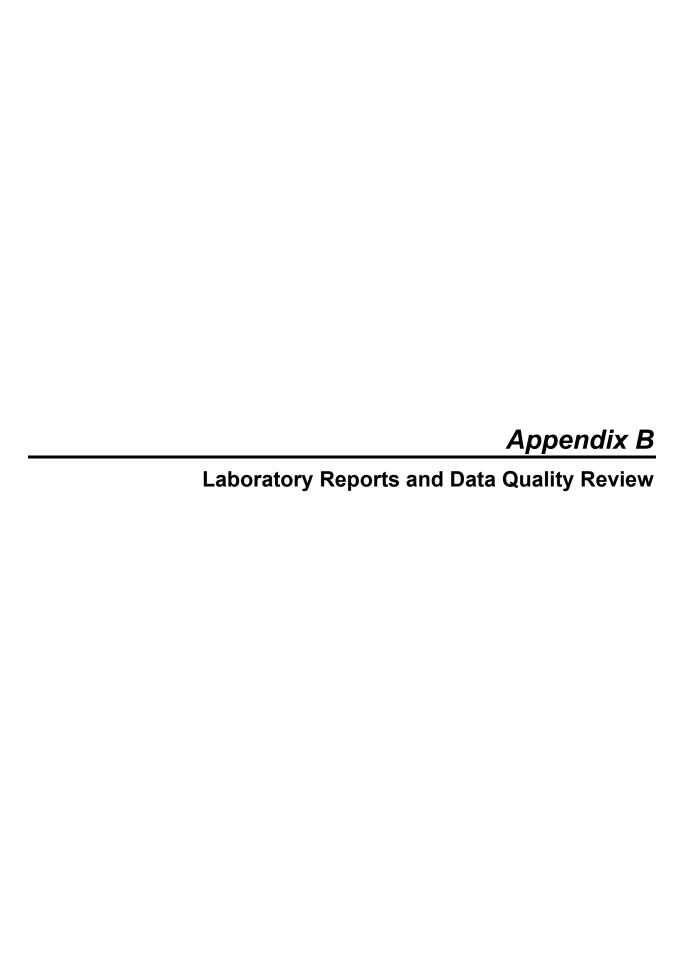
					Oliente LKO Corporation	Job Number: 23009822
		Apex Comp			Client: LKQ Corporation Former LKQ	i 1
4 D		15618 SW	72nd Av	e.	Project: 3871 Boone Road SE, Salem, OR	Date: 2/28/24
API	二人	Portland, O	R 97224		Weather: Rain, 49°	Sampler: D. Kolpacki
Date (2024)	Time Start	Pressure Start	Time End	Pressure End	Location	Notes / Other
2/28					TP-LSV-	95" from S wall
2/20					38 ppm 810	85" from Wwall
					SN: 238869	188" from N door
	Rec	-25			1157 / 200 mL	
	1205	-25	1207	-3		9
~	Rec	-28	-		12 gpm PID	96" from N. Wall
2/28	1346	-28	1354	-5	5V-Z	262" from W. wall
1	,				SN: 233959	
					1344 / 200 ml	
M					/	
2/28		Rec-20	No. 2015 Bridging And Colors of Basic of Chinasan	Annual and the second s	SV-Y	
700	1514	-26	1520	-\$	(N:86935b	381' from N wall
					3 ppm flD	121" from Inside towal
					1570 200 m -	<u> </u>
					SV-3	56" from W wall
		POC -27			SN: 869308	189" from N wall 9
	1610	27	1618	-5	1605/200 mL	In 468' from E wall)
					ı	of rall building to
						West interior wall

Notes:			

_		Apex Com	npanies, L	LC	Well I.D.	100	WW-8	prw-	Job Number: 23009		
		15618 SW	/ 72nd Av	/e.	Client:	LK	Q Corporat	tion	Date:	2/20	1/24
API	EX	Portland,	OR 97224	4	Project:	3871 Boo	Former LKQ ne Road SE, S	Salem, OR	Sampler:	D. Kolpac	ki
					Weather:	400,00	ainy		Time In/Out:	1420	1520
					W	VELL DÁTA	,				/
Well Depth:					Well Diamet	er:	2.0"		Water Height		
Depth to Wa	ater:	2.	35		Screened Interval:				x Multiplier		
Water Colur	mn Length:				Depth to Free Product:				x Casing Vo	lumes	
Purge Volun	me:		71		Free Produc	t Thickness:			= Purge Vol	ume	
Water H	leight Multi	pliers (gal)	1-inch	= 0.041	2-inch	= 0.162	4-inch	n = 0.653	1 gallon = 3	3.785 liters	
					PU	RGING DATA	-	,			
Purge Meth	od:	Jow	- flou	,	Pump Intake	e Depth:	6			С	omments
Sampling M	ethod:		-flou	J	Tubing Type	e:	ſ	Pely			
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	pН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORD MW-2	Turbidity (NTUs)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
23			2.35	0.33	5.40	1017	1038	0.00	46.7		C, black Pl
1434			2.36	6.33	5.2b	10.15	948	0.00	59.6		C, biack, p
1437			2.36	033	5.20	9.96	849	0.00	74.2		C
1440			2.36	0.3	5.16	9,93	794	0.00	82.0		<u></u>
1443,			2.36	0.53	5,14	9.91	77/	0-00	86.7		Constitution
1440			2.35	0.25	5.13	9.91	759	0_06	89.9		
		Clar	rity: VC = v	ery cloudy		SC = slightly		C = almost cle	ear, C = clear		
		NW MY	-1	T		0.2		A	1	Ass	· ·
Samp					Flow Rate	77		Analytical La		Ape.	1477
Sample		1450			pth to Water:			Did Well De			19,5
	ners/Type	1		1	sis/Method	Field F yes	iltered	Filte	er Size	MS/MSD	Duplicate ID
2 12	Sml am	no	ne	pah		yes	6				
2 ambe		HC	i	dx		yes	6				
250 m/	poly	HNO	3	diss	metal	yes	no no	0,4	5 pm		
	S:					yes	1 110				

	Apex Com	panies, L	LC	Well I.D.	Mu	0-2		Job Number:	2300	9822
				Client:	LKQ	Corp		Date:	3/1	124
	Portland, C	OR 97224	1	Project:	Former	LKW -	Salem	Sampler:	D. Kel	packs
				Weather:	43°, Mo	stly C	loudy	Time In/Out:	1335	1450
		77.11		W	ELL DATA					
				Well Diamete	er:	2.0)	Water Heigh		
	2.	30		Screened Int	erval:			x Multiplier		
ength:				Depth to Fre	e Product:			x Casing Vol	umes	
	5L			Free Produc	t Thickness:					
Multip	oliers (gal)	1-inch	= 0.041	2-inch = 0.162			= 0.653	1 gallon = 3	.785 liters	
		//		PUI	RGING DATA					
		1.		Pump Intake	Depth:				C	omments
d:		-How		Tubing Type	: I	Pe	4			
rged	Volume Purged	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
	(intere)			+/-0.1	+/-0.5° C	+/-5%		- /	+/-10%	< Stabilization Criteria
		3.68	0.33	6.00	12.13	131	1.64	157.		C
		3.99	0.25	5-78	12.12	132	1.49	168.7		C
		4.16	0.25	5.58	11.99	132	1,44	181.0		C
		4.26	0.25	5.51	12-04			186.3		C
		4.2b	0.25	5,44	12.15					C
		4.28	0.20	5.39	12-03	136	1.32	1		C
	5L	4.28	0-20	5.34	12.02	138	1.24	198.4		C
111 21										
	Cla	rity: VC =	very cloudy	, CI = Cloudy	, SC = slightly	cloudy, AC	= almost cle	ar, C = clear		
	1 =	2	T				A m g . 4! = = .	aborator:::	An	o Y
D:	_				11	4 4			110	No
	1				-				MS/MSE	Duplicate ID
			Analy	sis/Method			Filte	er Size	IVIS/IVISL	DUP-1
			a	1-						DUP-1
	_	- 2	Pa	/						DUP-1
			gx /	0			1.40	444		DUP-1
1 250ml Poly	HIVA	<u>. </u>	Viss.	Mesal	yes	no	0.4> Jun			
					yes	no				
					COMMENTS					
	ength: d: lume rged ters) D: me: /Type	Portland, C Portl	15618 SW 72nd Av Portland, OR 97224	15618 SW 72nd Ave. Portland, OR 97224 Portland Port	15618 SW 72nd Ave. Project: Project: Weather: SCreened Int. Depth to Free SCC Free Product Multipliers (gal) 1-inch = 0.041 2-inch Purger Purger	15618 SW 72nd Ave. Client: LKQ Project: Former Weather: 43", Meather: 51	15618 SW 72nd Ave. Client: LKQ Corp Project: Former LKQ Weather: 43", Mestly Client: LKQ Corp Project: Former LKQ Weather: 43", Mestly Client: LKQ Corp Project: Former LKQ Weather: 43", Mestly Client: LKQ Corp Weather: 43", Mestly Client: LKQ Corp Project: Former LKQ Weather: 43", Mestly Client: LKQ Corp Weather: 2.0 Client: LKQ Corp Project: Former LKQ Weather: 2.0 Client: LKQ Corp Project: Former LKQ Client: LKQ Corp Project: Former LKQ Client: LKQ Client: LKQ Corp Project: Former LKQ Client: LKQ Cl	Solid Switch Sw	Client: LKQ Corp Date: Sampler: Sampler: Sampler: Weather: 43°, Mosthy Cloudy Time In/Out: Well Diameter: 2 .0 Water Height Screened Interval: x Multiplier x Casing Volume Vo	15618 SW 72nd Ave. Client: LKQ Corp Date: 3 1

		Apex Con	npanies, l	LC	Well I.D.	MW-3			Job Number: 23009822			
		15618 SW	72nd Av	/e.	Client:	ĽK	Q Corpora		Date:	2/29/	124	
AP	EX	Portland,	OR 9722	4	Project:	3871 Boo	Former LKQ ne Road SE,		Sampler:	D. Kolpack	D. Kolpacki	
					Weather:	38°, snow drizzle		Time In/Out:	940	1100		
					W	ELL DATA				/		
Well Depth:					Well Diameter:		2.0"		Water Height			
Depth to Wa	ater:	7.4	124		Screened In	terval:			x Multiplier			
Water Colu	mn Length:				Depth to Free Product:				x Casing Vo	umes		
Purge Volu	me:	1)	1.5		Free Produc	t Thickness:			= Purge Volu	ıme		
Water F	leight Multi	oliers (gal)	1-inch	= 0.041		= 0.162		n = 0.653	1 gallon = 3	.785 liters		
			//		PUI	RGING DATA						
Purge Method: low - Ylow		Pump Intake	Depth:		12'		C	omments				
Sampling M	lethod:	//v Cumulative	v-Hou	v	Tubing Type): 		Poly				
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks	
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-2*0mV	+/-10%	< Stabilization Criteria	
947												
950			2.63	63	7-13	907	99	6.67	139.8		C	
953	,		2.62	0.27	6.35	901	98	10.39	166.5		C	
956			2.62	0-25	5.94	9.10	99	2,87	180,4		C	
959			2.62	0.25	5.69	9.06	99	2-7/	187.3		C	
1002			2.61	0.15	5.46	9.26	98	2.74	195.4		C	
1005			2.61	6.25	5.35	9.28	98	278	202.3		C	
1008			2.60	0.24	5.24	9.27	99	2.79	207.9		-	
1011			2.60	0.24	5.14	9.30	99	2.80	212.0		C	
1014			259	0.24	5.07	9.30	99	2.82	214.9		C	
1017			2.59	0.24	4.99	9.33	99	2.83	217.8		C	
		Clar	ity: VC = v	ery cloudy,	CI = Cloudy,	SC = slightly /IPLING DAT		C = almost cle	ar, C = clear			
C	I- ID.	B.614	1-B	Camarlina		IF LING DAT	^	Applytical La	borotony			
Sample	e Time:	jus			Flow Rate oth to Water:			Analytical La				
# Contain		Preser			sis/Method	Field F	iltered		r Size	MS/MSD	Duplicate ID	
3 V0			L	9x	VOC	yes	ng ng	1 1100	. 0120	, VICANIOD	Dapilodio ID	
	int poly		ne		ah	yes	0					
2 ambe	11 1	HC		di		yes	0					
250 m L	poly	HNOS		diss.	metal	yes	no	0	45 pm			
	+ /			,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		yes	no					
COMMENT	S:											
										1 3/13/		
Fr a siring												


		Apex Con	nanies I	LC	Well I.D.	Asv	U-B	contid	Job Number:	7300	9822
		15618 SW			Client:	LKQ	Corp	(BNI OI	Date:	2/	29/24
AP	ΕX				Project:	Former		-Salem	Sampler:	01	Colpacki
7 (1		Portland, OR 97224		Weather:	200 00 000 0000	SNOW O	1 1	Time In/Out:	OILA	1100	
						/ELL DATA	sinon c	N W	Time m/Out.	140	1100
Well Depth:					Well Diamete		Z. C)	Water Heigh	nt	
Depth to Wa		2.4	44		Screened Int		C-		x Multiplier		
Water Colu			/ /		Depth to Fre				x Casing Vo	lumes	
Purge Volur		11.5			Free Produc				= Purge Vol		
Water Height Multipliers (gal) 1-inch = 0.041		= 0.041		= 0.162	4-inch	n = 0.653	1 gallon = 3				
vvateri	reignt waiti	olicis (gai)	1-inch	- 0.041	100	RGING DATA		1 - 0.000	1 gallott = 0	.700 111013	
Purge Meth	oq.	laur	flow		Pump Intake			21		0	comments
Sampling M			- flou	ز	Tubing Type			Poly			
camping w	Volume	Cumulative		Purge	rubing Type			/			
Time	Purged (liters)	Volume Purged (liters)	DTW (btc)	Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP (mV)	Turbidity (NTUs)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/- 2 0mV	+/-10%	< Stabilization Criteria
1017			2.59	024	4.99	9.33	99	Z-83	2178		C
1020			259	0.24	4.93	9.32	99	2.82	219.9		e
1023			2.59	0.24	4,88	9.34	99	289	221.9		C
1025			259	0.24	4.86	9.43	99	2.87	223.0		C
,											
									2		
		Clar	ity: VC = v	ery cloudy,	CI = Cloudy,			= almost clea	ar, C = clear		
					SAN	IPLING DATA				1	
Samp	ole ID:	MW-		Sampling	Flow Rate	0-2		Analytical La		1	pex
Sample		1030)	Final Dep	oth to Water:	2-3	6	Did Well De	water?		10
# Contain	ners/Type	Preser		Analys	is/Method	Field F	iltered	Filte	r Size	MS/MSD	Duplicate ID
- 4	2 / Land			dx	1	yes	no j				
	VOA			gx	NOC	yes	_0			23.44	
2	and Ky	00	ne	pal	1	yes					
				<u> </u>		yes	Ø				
		HNO	3	diss	metal	y@s	no	0.45	Spun		
					C	yes OMMENTS	no			<u> </u>	
	*		,								

WELL MONITORING DATA SHEE	WEL	L	MO	NITC	RING	DATA	SHEET
---------------------------	-----	---	----	------	------	------	-------

		Apex Con	npanies,	LLC	Well I.D.		MW-4		Job Number:	23009822	
		15618 SV	(5)		Client:	L	(Q Corpora	ation	Date:	_ /	9/24
AP	EX	Portland,			Project:		Former LKO	3	Sampler:	D. Kolpacki	
		,			Weather:	40-	dr12		Time In/Out:		11315
						VELL DATA	DUVIE		Time m/Out.	1-30	1111
Well Depth:					Well Diamet	er:	2.0"		Water Heigh	nt	
Depth to W	ater:	1.0	48		Screened Interval:				x Multiplier		
Water Colu					Depth to Fre				x Casing Vol	lumes	
Purge Volui			36		Free Produc				= Purge Volu		
Water F	Height Multi			= 0.041		= 0.162	4-inc	h = 0.653	1 gallon = 3		
					PUI	RGING DATA					
Purge Meth	od:	low	- How		Pump Intake	Depth:	12	(С	comments
Sampling M	lethod:	low			Tubing Type		Po	ly			
Time	Volume Purged (liters)	Cumulative Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP MAN-2	Turbidity (NTUs)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/- 1 0mV	+/-10%	< Stabilization Criteria
1241			2.08	0.3	4.97	10.59	2.09	0.24	112.3		AC
1244			2.07	0.27	4.95	10.41	206	0.29	111.4		C
1247		34	2.06	0.25	4.90	10.35	204	0.24	112.2		C
1250 -	=7 San	rple.									
									,		
7											
									i.		
		Clari	ty: VC = v	ery cloudy,	Cl = Cloudy,	SC = slightly	cloudy, AC	C = almost clea	ar, C = clear		
					SAM	PLING DATA	4				
Samp	le ID:	MW		Sampling	Flow Rate	0.29		Analytical La	boratory:	Apr	ex
Sample	Time:	1250		Final Dep	th to Water:	2.9	5	Did Well Dev	vater?	N	0
# Contain	ers/Type	Preser	vative	Analys	is/Method	Field Fi	-	Filter	Size	MS/MSD	Duplicate ID
3 VO	A	HCI		9x	lvoc	yes	r6				
2 125 n	Lander	none	2	Pa	h	yes	100				
2 ambe	rIL	HC)		do	١ , ,	yes	0	123.11			
250 ml	Poly	HNO	3	diss	metal	yes)	no	0.45	um		
	,					yes	no		,	8	
COMMENT	S:										

WELL	TIMON	ORING	DATA	SHEET
------	-------	-------	------	-------

					ALLE MOIN	TORING DA	TA OTILL				
		Apex Con	npanies,	LLC	Well I.D.		MW-5		Job Number: 23009822		
		15618 SV	V 72nd A	ve.	Client:	LK	Q Corpora		Date:	2/2	9/24
AP	EX	Portland,	OR 9722	24	Project:	3871 Boo	Former LKO ne Road SE		Sampler:	D. Kolpac	* /
					Weather: 40°, y		rainy		Time In/Out:	1375	11:420
					V	WELL DATA	3				/
Well Depth:					Well Diame	ter:	2.0"		Water Heigh	nt	
Depth to Wa	ater:	2	13		Screened In	nterval:			x Multiplier		
Water Colu	mn Length:				Depth to Fre	ee Product:			x Casing Vo	umes	
Purge Volui	me:	7			Free Produc	ct Thickness:			= Purge Volu	ume	
Water F	leight Multi	pliers (gal)	1-inch	= 0.041	2-inch	= 0.162	4-inc	h = 0.653	1 gallon = 3	.785 liters	
		Γ			PU	RGING DATA					
Purge Meth					Pump Intake	e Depth:		121		С	omments
Sampling M		Cumulative			Tubing Type	e: T					
Time	Volume Purged (liters)	Volume Purged (liters)	DTW (btc)	Purge Rate (L/min)	рН	Temp (°C)	Cond (μS/cm)	DO (ppm)	ORP MW-2	Turbidity (NTUs)	Clarity/Color Other Remarks
					+/-0.1	+/-0.5° C	+/-5%	+/- 0.5 ppm	+/-20mV	+/-10%	< Stabilization Criteria
1333			2.30	0.33	5.25	9.17	103	6.44	1145		AC, orange
1336			2.30	0.33	5.3	9.11	95	6.73	116.5		Al, orange
1339			2.30	0.33	5.87	9.07	88	7.18	120.4		AC, orange
1342			2.28	0.27	5.4%	8.99	81	7,62	124.0		C, orange
1345			2.28	0.22	5.44	8.98	76	8.94	1286		C, slight
1348			2.29	0.22	5,43	7.96	74	8.24	132.9		C, Slight
135			2.29	0.22	5.43	8,99	74	8,33	136.5		Ciovange
1354		71	2.29	0:22	5.42.	8.98	72	8,50	140.4		(Sight
										71,12	
		Clarit	VC = v	any aloudy	Cl = Claudy	CC = aliability	alaudu AC	= almost clea			
		Clarit	.y. vC – ve	ery cloudy,	The second secon	IPLING DATA		= almost clea	ir, C = clear		
Sample	e ID:	MW	-5	Sampling F		0.2		Analytical Lat	ooratory:	Ap.	- W
Sample		1357			th to Water:	2,1		Did Well Dew		17	
# Containe		Preserv	ative		s/Method	Field Fill		Filter		MS/MSD	Duplicate ID
2	1 Camber	ACL		doe		yes	O				2 0 0 10 10
	Makey	non		pal		yes	00				
3	lea	Hel		1	100	yes	500				
		ANO3		diss.	metal	yes	no	0.45	lean		
		,				yes	no				
COMMENTS	:										

This appendix documents the results of a quality assurance/quality control (QA/QC) review of the analytical data for the February/March 2024 monitoring event at the former LKQ facility located at 3871 Boone Road SE in Salem, Oregon. The groundwater samples were submitted to Apex Laboratories located in Tigard, Oregon and the soil vapor samples were submitted to Eurofins, Air Toxics located in Folsom, California for analysis. Copies of the analytical laboratory reports are included in this appendix.

Laboratory Report	Date Reported
2403010	March 14, 2024
2403118	March 14, 2024
A4C0884	March 20, 2024

1.0 Analytical Methods

Chemical analyses of groundwater samples included in this QA/QC Review consisted of the following:

- TPH as gasoline (TPH-Gx) by Northwest Method NWTPH-Gx;
- TPH as diesel (TPH-Dx) by Northwest Method NWTPH-Dx Volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260D;
- Polyaromatic Hydrocarbons (PAHs) by EPA 8270E; and
- Dissolved metals by EPA Method 6020B.

Chemical analyses of soil vapor samples included in this QA/QC review consisted of the following:

- TPH-Gx and VOCs by EPA Method TO-15; and
- TPH as diesel (TPH-Dx) by Modified Method TO-17.

2.0 Data Validation

The QA/QC review included examination and validation of the laboratory data packages for the following:

- Analytical preparation and quantitation methods;
- Analytical method holding times;
- Sample handling;
- Chain of custody procedures;
- Detection and reporting limits;
- Method blank detections;
- Laboratory control samples, matrix spikes, and surrogates to assess accuracy; and

Appendix B - QA/QC Review

Laboratory control sample duplicates and matrix spike duplicates.

The QA/QC review did not include a review of raw data.

This QA/QC review documents the relationship between analytical findings and data quality objectives based on precision and accuracy. It also summarizes possible error or bias and the effect on data quality and usability.

The laboratory quality control (QC) samples provided in data packages were used to evaluate laboratory contamination or background interferences, sample preparation efficiency and instrumentation performance. The QC samples provided by the analytical laboratory include method blanks, laboratory control samples (LCS/LCSD), and matrix spikes (MS/MSD). Surrogates are also required for VOC and TPH-Gx analysis to assess sample preparation efficiency and matrix interferences.

2.1 Data Qualifiers

Any data that is found to have possible bias or error was qualified and flagged. The following are definitions of qualifiers used in this data quality report and data tables.

- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

3.0 Data Quality Assurance Review

The general QA objectives for this project were to develop and implement procedures for obtaining, evaluating, and confirming the usability of data of a specified quality. To collect such information, analytical data must have an appropriate degree of accuracy and reproducibility, samples collected must be representative of actual field conditions, and samples must be collected and analyzed using unbroken chain of custody procedures.

Reporting limits and analytical results were compared to cleanup and screening levels for each parameter in the matrix of concern. Precision, accuracy, completeness, and comparability parameters used to indicate data quality are discussed below.

3.1 Reporting Limits

Reporting limits are the lowest concentration an instrument is capable of accurately detecting an analyte. Reporting limits are determined by the laboratory and are based on instrumentation capabilities, the matrix of field samples, sample preparation procedures, and EPA suggested reporting limits.

The reporting limits were consistent with method standards and were generally below applicable screening level values.

3.2 Holding Times and Sample Receipt

The holding time is the minimum amount of time the sample can be stored before analytes start to degrade and are not representative of initial sampling concentrations. Holding times are defined by analytical methods and samples were analyzed within the method specified holding time.

The integrity of the groundwater and soil vapor samples received was documented by the Apex Laboratories and Eurofins, Air Toxics *Cooler Receipt Information* and *Receiving Notes*, which ensures that samples are representative of the field and were not compromised during shipment. Four TO-17 tube samples were received by Eurofins with a temperature blank measured greater than 6°C. Coolant in the form of blue ice was present.

The chain of custody followed an unbroken procedure and was relinquished by the Apex Companies sampler and received by the analytical laboratory as indicated by signatures. The sample ID, collection time and requested analyses were all clearly and properly filled in by the Apex Companies sampler.

3.3 Method Blanks

A method – or laboratory – blank is a sample prepared in the laboratory along with the actual samples and analyzed for the same parameters at the same time. It is used to assess if detected compounds may have been the result of contamination or background levels in the laboratory.

Groundwater. No analyte concentrations were detected above the reporting limits in the groundwater method blanks for NWTPH-Dx, NWTPH-Gx, VOCs, or PAHs.

Soil Vapor. No analyte concentrations were detected above the reporting limits in the soil vapor method blanks for Modified TO-17 TPH (Diesel Range C10-C22) or TO-15 GC/MS full scan.

3.4 Accuracy

Accuracy is assessed through the comparison of analytes of known concentration to concentrations determined analytically. A percent recovery is calculated from the analytical concentration to the known concentration of analyte, which must be within control limits established by methods. If the percent recovery is outside of control limits, then data might be compromised. The analytical laboratory will provide quality control samples and surrogates to help determine the accuracy of the data provided. These quality control samples and surrogates are discussed below.

3.4.1 Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control duplicate samples (LCSD) were analyzed by the laboratory to assess the analytical methods. One set of LCS and LCSDs were analyzed per analytical batch. The samples were prepared from an analyte-free matrix that is then spiked with known levels of constituents of interest (COI; i.e. a standard). The concentrations were measured, and the results compared to the known spiked levels. This comparison is expressed as a percent recovery. Constituents were within recovery limits.

3.4.2 Matrix Samples

A matrix spike QC sample is used to assess the performance of the analytical method by determining potential matrix interferences. Matrix spike (MS) and matrix spike duplicate (MSD) analyses are performed on one environmental sample per analytical batch. A matrix spike sample uses an environmental sample that is spiked with known concentrations of analytes of interest. The matrix spike is then prepared and analyzed with the same analytical procedures as environmental samples in the analytical batch. The resulting concentration of the matrix spike is then compared to the known – or true – values added to the non-spiked environmental sample concentration. This comparison is expressed as a percent recovery.

3.4.3 Surrogates

Surrogates are organic compounds that are similar in chemical composition to the analytes of interest but are not likely to be found in the environment. They are spiked into environmental and batch QC samples prior to sample preparation and analysis. Surrogate recoveries for environmental samples are used to evaluate matrix interference and sample preparation and analysis efficiency on a sample-specific basis. Surrogates were recovered within control limits.

Groundwater. Acenaphthylene-d8 (Surr) and Benzo(a)pyrene-d12 (Surr) associated with the PAH Dibenzofuran analyte for the MW-1 groundwater sample of report A4C0884, was qualified with S-05 (Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference). However, the recovery was within acceptable limits for benzo(a)pyrene-d12.

Appendix B - QA/QC Review

3.5 Precision

Precision is measured by how close concentrations of duplicate analyses are to each other. These duplicate analyses are of separate aliquots of the same sample that are prepared or analyzed at the same (or similar) time. Precision in the field ensures that samples taken are representative of field concentrations. Field precision is demonstrated by field duplicates. Analytical precision is measured by the laboratory through duplicate analysis of samples and quality control samples. Precision is estimated by the relative percent difference (RPD) between the original analysis and the duplicate analysis.

3.5.1 Laboratory Control Samples

LCSD analyte concentrations were compared to LCS analyte concentrations to assess the precision of the analytical method. This comparison can be expressed by the relative percent difference (RPD) between the LCS and LCSD samples. RPD values for LCS/LCSDs were within control limits.

3.5.2 Matrix Spike Duplicate

Similar to the LCS/LCSD, the analytical batch MS/MSD analyte concentrations are also compared to each other and expressed as an RPD. RPD values for MS/MSDs were within control limits.

Groundwater. The results of the method NWTPH-Dx and PAHs for the LCS Dup was qualified with "Q-19" meaning a Blank Spike Duplicate (BSD) sample was analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis. RPD values for the BSD was within control limits.

4.0 Conclusion

In conclusion, the QA objectives have been met and the data are of sufficient quality for use in this project.

3/14/2024 Mr. Steve Misner Apex Companies, LLC 15618 SW 72nd Ave

Tigard OR 97224

Project Name: LKQ Salem

Project #: 23009822 Workorder #: 2403010

Dear Mr. Steve Misner

The following report includes the data for the above referenced project for sample(s) received on 3/1/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by Modified TO-17 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Monica Tran at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Monica Tran

Project Manager

Isnica Fran

WORK ORDER #: 2403010

Work Order Summary

CLIENT: Mr. Steve Misner BILL TO: Accounts Payable
Apex Companies, LLC
15618 SW 72nd Ave Apex Companies, LLC
15618 SW 72nd Ave

15618 SW 72nd Ave 15618 SW 72nd Av Tigard, OR 97224 Tigard, OR 97224

PHONE: 503-924-4704 P.O. # 23009822

FAX: 503-924-4707 PROJECT # 23009822 LKQ Salem

DATE RECEIVED: 03/01/2024 **CONTACT:** Monica Tran

DATE COMPLETED: 03/14/2024

FRACTION #	<u>NAME</u>	<u>TEST</u>
01A	SV-1	Modified TO-17
02A	SV-2	Modified TO-17
03A	SV-3	Modified TO-17
04A	SV-4	Modified TO-17
05A	Lab Blank	Modified TO-17
06A	CCV	Modified TO-17
07A	LCS	Modified TO-17
07AA	LCSD	Modified TO-17

	The	ide payer	
CERTIFIED BY:			DATE: $03/14/24$

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP – 209222, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP – T104704434-22-18, UT NELAP – CA009332022-14, VA NELAP - 12240, WA ELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-017 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE Modified EPA Method TO-17 Apex Companies, LLC Workorder# 2403010

Four TO-17 Tube (Tenax-TA) BC samples were received on March 01, 2024. The laboratory performed the analysis via EPA Method TO-17 using GC/MS in the full scan mode. TO-17 sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection.

Requirement	TO-17	ATL Modifications
Audit Accuracy	70-130%	Second source recovery limits for Fluoranthene and Pyrene = 60-140%.
Analytical Precision	=20% RPD</td <td><30% RPD for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene.</td>	<30% RPD for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene.
Verification of Safe Sampling Volume	Collect Distributed Volume Pairs at uncharacterized sites and/or utilize field test method to evaluate breakthrough by sampling tubes in series at different air volumes.	Field surrogates are spiked onto each tube prior to deployment in the field. Recoveries are used to monitor method performance from sample collection through analysis for each sample tube.

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was greater than 6°C. Coolant in the form of blue ice was present. The client was notified and analysis proceeded.

Analytical Notes

A sampling volume of 0.200 L was used to convert ng to ug/m3 for the associated Lab Blank.

Definition of Data Qualifying Flags

Nine qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in blank (subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - CN See case narrative

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED METHOD TO-17

Client Sample ID: SV-1

Lab ID#: 2403010-01A

No Detections Were Found.

Client Sample ID: SV-2

Lab ID#: 2403010-02A

No Detections Were Found.

Client Sample ID: SV-3

Lab ID#: 2403010-03A

No Detections Were Found.

Client Sample ID: SV-4

Lab ID#: 2403010-04A

No Detections Were Found.

Client Sample ID: SV-1 Lab ID#: 2403010-01A MODIFIED METHOD TO-17

File Name: 11030519 Date of Extraction: NADate of Collection: 2/28/24

Dil. Factor: 1.00 Date of Analysis: 3/5/24 10:50 PM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Diesel Range C10-C22)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

Container Type: TO-17 Tube (Tenax-TA) BC

Client Sample ID: SV-2 Lab ID#: 2403010-02A

MODIFIED METHOD 10-1/	

File Name: 11030520 Date of Extraction: NADate of Collection: 2/28/24
Dil. Factor: 1.00 Date of Analysis: 3/5/24 11:34 PM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Diesel Range C10-C22)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

Container Type: TO-17 Tube (Tenax-TA) BC

Client Sample ID: SV-3 Lab ID#: 2403010-03A

METHOD	TO-17
	<u>METHOD</u>

File Name: Dil. Factor:	11030521 1.00	Date of Extraction: NAD D	ate of Collection: 2/26 ate of Analysis: 3/6/24	
	Rpt. Li	imit Rpt. Limit	Amount	Amount

CompoundRpt. Limit
(ng)Rpt. Limit
(ug/m3)Amount
(ng)Amount
(ug/m3)TPH (Diesel Range C10-C22)10005000Not DetectedNot Detected

Air Sample Volume(L): 0.200

Container Type: TO-17 Tube (Tenax-TA) BC

Client Sample ID: SV-4 Lab ID#: 2403010-04A MODIFIED METHOD TO-17

File Name:	11030522	Date of Extraction: NADate of Collection: 2/28/24
Dil. Factor:	1.00	Date of Analysis: 3/6/24 01:01 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Diesel Range C10-C22)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

Container Type: TO-17 Tube (Tenax-TA) BC

Client Sample ID: Lab Blank Lab ID#: 2403010-05A MODIFIED METHOD TO-17

File Name: 11030510h Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/5/24 04:02 PM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Diesel Range C10-C22)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

Client Sample ID: CCV Lab ID#: 2403010-06A MODIFIED METHOD TO-17

123

File Name: 11030505 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/5/24 12:03 PM

Compound %Recovery

TPH (Diesel Range C10-C22)

Air Sample Volume(L): 1.00

Client Sample ID: LCS Lab ID#: 2403010-07A MODIFIED METHOD TO-17

File Name: 11030508 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/5/24 02:35 PM

Compound%RecoveryLimitsTPH (Diesel Range C10-C22)12160-140

Air Sample Volume(L): 1.00

Client Sample ID: LCSD Lab ID#: 2403010-07AA MODIFIED METHOD TO-17

File Name: 11030509 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 3/5/24 03:18 PM

		Method
Compound	%Recovery	Limits
TPH (Diesel Range C10-C22)	119	60-140

Air Sample Volume(L): 1.00

3/14/2024 Mr. Steve Misner Apex Companies, LLC 15618 SW 72nd Ave

Tigard OR 97224

Project Name: LKQ Salem

Project #: 23009822 Workorder #: 2403118

Dear Mr. Steve Misner

The following report includes the data for the above referenced project for sample(s) received on 3/1/2024 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Monica Tran at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Monica Tran

Project Manager

Isnica Fran

WORK ORDER #: 2403118

Work Order Summary

CLIENT: Mr. Steve Misner BILL TO: Accounts Payable

Apex Companies, LLC
15618 SW 72nd Ave
Tigard, OR 97224

Apex Companies, LLC
15618 SW 72nd Ave
Tigard, OR 97224

Tigard, OR 97224

PHONE: 503-924-4704 **P.O.** # 23009822

FAX: 503-924-4707 PROJECT # 23009822 LKQ Salem

DATE RECEIVED: 03/01/2024 **CONTACT:** Monica Tran

DATE COMPLETED: 03/14/2024

FRACTION #	<u>NAME</u>	<u>TEST</u>	RECEIPT <u>VAC./PRES.</u>	FINAL <u>PRESSURE</u>
01A	SV-1	TO-15	4.7 "Hg	9.8 psi
02A	SV-2	TO-15	4.7 "Hg	9.9 psi
03A	SV-3	TO-15	4.3 "Hg	10 psi
04A	SV-4	TO-15	6.7 "Hg	9.8 psi
05A	Lab Blank	TO-15	NA	NA
06A	CCV	TO-15	NA	NA
07A	LCS	TO-15	NA	NA
07AA	LCSD	TO-15	NA	NA

	the	idi]	Payer		
CERTIFIED BY:			0	DATE:	03/14/24

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP – 209222, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP – T104704434-22-18, UT NELAP – CA009332022-14, VA NELAP - 12240, WA ELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) CA300005-017 Eurofins Environment Testing Northern California, LLC certifies that the test results contained in this report meet all requirements of the 2016 TNI Standard.

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

LABORATORY NARRATIVE EPA Method TO-15 Apex Companies, LLC Workorder# 2403118

Four 1 Liter Summa Canister samples were received on March 01, 2024. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-1 Lab ID#: 2403118-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Acetone	9.9	47	24	110	
Hexane	0.99	1.4	3.5	4.8	
2-Butanone (Methyl Ethyl Ketone)	4.0	5.6	12	16	
TPH ref. to Gasoline (MW=100)	99	140	400	570	

Client Sample ID: SV-2 Lab ID#: 2403118-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	9.9	43	24	100
Hexane	0.99	1.6	3.5	5.8
2-Butanone (Methyl Ethyl Ketone)	4.0	6.2	12	18
TPH ref. to Gasoline (MW=100)	99	120	400	490

Client Sample ID: SV-3 Lab ID#: 2403118-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Ethanol	9.8	650 E	18	1200 E	
Acetone	9.8	42	23	100	
2-Propanol	3.9	9.5	9.6	23	
Tetrahydrofuran	0.98	1.4	2.9	4.3	
Toluene	2.0	2.3	7.4	8.6	

Client Sample ID: SV-4 Lab ID#: 2403118-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	11	11	20	21
Acetone	11	130	25	300
Hexane	1.1	4.8	3.8	17
2-Butanone (Methyl Ethyl Ketone)	4.3	6.3	13	18

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-4

Lab ID#: 2403118-04A

TPH ref. to Gasoline (MW=100) 110 180 440 740

Client Sample ID: SV-1 Lab ID#: 2403118-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031314 Date of Collection: 2/28/24 12:07:00 PM Dil. Factor: 1.98 Date of Analysis: 3/13/24 07:19 PM

		1.98 Date of Analysis: 3/13/24 07:19 F			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 12	0.99	Not Detected	4.9	Not Detected	
Freon 114	0.99	Not Detected	6.9	Not Detected	
Chloromethane	9.9	Not Detected	20	Not Detected	
Vinyl Chloride	0.99	Not Detected	2.5	Not Detected	
1,3-Butadiene	0.99	Not Detected	2.2	Not Detected	
Bromomethane	9.9	Not Detected	38	Not Detected	
Chloroethane	4.0	Not Detected	10	Not Detected	
Freon 11	0.99	Not Detected	5.6	Not Detected	
Ethanol	9.9	Not Detected	19	Not Detected	
Freon 113	0.99	Not Detected	7.6	Not Detected	
1,1-Dichloroethene	0.99	Not Detected	3.9	Not Detected	
Acetone	9.9	47	24	110	
2-Propanol	4.0	Not Detected	9.7	Not Detected	
Carbon Disulfide	4.0	Not Detected	12	Not Detected	
3-Chloropropene	4.0	Not Detected	12	Not Detected	
Methylene Chloride	9.9	Not Detected	34	Not Detected	
Methyl tert-butyl ether	4.0	Not Detected	14	Not Detected	
trans-1,2-Dichloroethene	0.99	Not Detected	3.9	Not Detected	
Hexane	0.99	1.4	3.5	4.8	
1,1-Dichloroethane	0.99	Not Detected	4.0	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	4.0	5.6	12	16	
cis-1,2-Dichloroethene	0.99	Not Detected	3.9	Not Detected	
Tetrahydrofuran	0.99	Not Detected	2.9	Not Detected	
Chloroform	0.99	Not Detected	4.8	Not Detected	
1,1,1-Trichloroethane	0.99	Not Detected	5.4	Not Detected	
 Cyclohexane	0.99	Not Detected	3.4	Not Detected	
Carbon Tetrachloride	0.99	Not Detected	6.2	Not Detected	
2,2,4-Trimethylpentane	0.99	Not Detected	4.6	Not Detected	
Benzene	0.99	Not Detected	3.2	Not Detected	
1,2-Dichloroethane	0.99	Not Detected	4.0	Not Detected	
Heptane	0.99	Not Detected	4.0	Not Detected	
Trichloroethene	0.99	Not Detected	5.3	Not Detected	
1,2-Dichloropropane	0.99	Not Detected	4.6	Not Detected	
1,4-Dioxane	4.0	Not Detected	14	Not Detected	
Bromodichloromethane	0.99	Not Detected	6.6	Not Detected	
cis-1,3-Dichloropropene	0.99	Not Detected	4.5	Not Detected	
4-Methyl-2-pentanone	0.99	Not Detected	4.0	Not Detected	
Toluene	2.0	Not Detected	7.5	Not Detected	
trans-1,3-Dichloropropene	0.99	Not Detected	4.5	Not Detected	
1,1,2-Trichloroethane	0.99	Not Detected	5.4	Not Detected	
Tetrachloroethene	0.99	Not Detected	6.7	Not Detected	
2-Hexanone	4.0	Not Detected	16	Not Detected	

Client Sample ID: SV-1 Lab ID#: 2403118-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031314 Date of Collection: 2/28/24 12:07:00 PM Dil. Factor: 1.98 Date of Analysis: 3/13/24 07:19 PM

			C. Fandary C.C. Critch	- 1 01110 1 111
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.99	Not Detected	8.4	Not Detected
1,2-Dibromoethane (EDB)	0.99	Not Detected	7.6	Not Detected
Chlorobenzene	0.99	Not Detected	4.6	Not Detected
Ethyl Benzene	0.99	Not Detected	4.3	Not Detected
m,p-Xylene	2.0	Not Detected	8.6	Not Detected
o-Xylene	0.99	Not Detected	4.3	Not Detected
Styrene	0.99	Not Detected	4.2	Not Detected
Bromoform	0.99	Not Detected	10	Not Detected
Cumene	0.99	Not Detected	4.9	Not Detected
1,1,2,2-Tetrachloroethane	0.99	Not Detected	6.8	Not Detected
Propylbenzene	0.99	Not Detected	4.9	Not Detected
4-Ethyltoluene	0.99	Not Detected	4.9	Not Detected
1,3,5-Trimethylbenzene	0.99	Not Detected	4.9	Not Detected
1,2,4-Trimethylbenzene	0.99	Not Detected	4.9	Not Detected
1,3-Dichlorobenzene	0.99	Not Detected	6.0	Not Detected
1,4-Dichlorobenzene	0.99	Not Detected	6.0	Not Detected
alpha-Chlorotoluene	0.99	Not Detected	5.1	Not Detected
1,2-Dichlorobenzene	0.99	Not Detected	6.0	Not Detected
1,2,4-Trichlorobenzene	4.0	Not Detected	29	Not Detected
Hexachlorobutadiene	4.0	Not Detected	42	Not Detected
TPH ref. to Gasoline (MW=100)	99	140	400	570

Container Type: 1 Liter Summa Canister

•		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	116	70-130	

Client Sample ID: SV-2 Lab ID#: 2403118-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031315 Date of Collection: 2/28/24 1:54:00 PM
Dil. Factor: 1.98 Date of Analysis: 3/13/24 07:51 PM

Dil. Factor:	1.98	8 Date of Analysis: 3/13/24 07:51 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.99	Not Detected	4.9	Not Detected
Freon 114	0.99	Not Detected	6.9	Not Detected
Chloromethane	9.9	Not Detected	20	Not Detected
Vinyl Chloride	0.99	Not Detected	2.5	Not Detected
1,3-Butadiene	0.99	Not Detected	2.2	Not Detected
Bromomethane	9.9	Not Detected	38	Not Detected
Chloroethane	4.0	Not Detected	10	Not Detected
Freon 11	0.99	Not Detected	5.6	Not Detected
Ethanol	9.9	Not Detected	19	Not Detected
Freon 113	0.99	Not Detected	7.6	Not Detected
1,1-Dichloroethene	0.99	Not Detected	3.9	Not Detected
Acetone	9.9	43	24	100
2-Propanol	4.0	Not Detected	9.7	Not Detected
Carbon Disulfide	4.0	Not Detected	12	Not Detected
3-Chloropropene	4.0	Not Detected	12	Not Detected
Methylene Chloride	9.9	Not Detected	34	Not Detected
Methyl tert-butyl ether	4.0	Not Detected	14	Not Detected
trans-1,2-Dichloroethene	0.99	Not Detected	3.9	Not Detected
Hexane	0.99	1.6	3.5	5.8
1,1-Dichloroethane	0.99	Not Detected	4.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.0	6.2	12	18
cis-1,2-Dichloroethene	0.99	Not Detected	3.9	Not Detected
Tetrahydrofuran	0.99	Not Detected	2.9	Not Detected
Chloroform	0.99	Not Detected	4.8	Not Detected
1,1,1-Trichloroethane	0.99	Not Detected	5.4	Not Detected
Cyclohexane	0.99	Not Detected	3.4	Not Detected
Carbon Tetrachloride	0.99	Not Detected	6.2	Not Detected
2,2,4-Trimethylpentane	0.99	Not Detected	4.6	Not Detected
Benzene	0.99	Not Detected	3.2	Not Detected
1,2-Dichloroethane	0.99	Not Detected	4.0	Not Detected
Heptane	0.99	Not Detected	4.0	Not Detected
Trichloroethene	0.99	Not Detected	5.3	Not Detected
1,2-Dichloropropane	0.99	Not Detected	4.6	Not Detected
1,4-Dioxane	4.0	Not Detected	14	Not Detected
Bromodichloromethane	0.99	Not Detected	6.6	Not Detected
cis-1,3-Dichloropropene	0.99	Not Detected	4.5	Not Detected
4-Methyl-2-pentanone	0.99	Not Detected	4.0	Not Detected
Toluene	2.0	Not Detected	7.5	Not Detected
trans-1,3-Dichloropropene	0.99	Not Detected	4.5	Not Detected
1,1,2-Trichloroethane	0.99	Not Detected	5.4	Not Detected
Tetrachloroethene	0.99	Not Detected	6.7	Not Detected
2-Hexanone	4.0	Not Detected	16	Not Detected

Client Sample ID: SV-2 Lab ID#: 2403118-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031315 Date of Collection: 2/28/24 1:54:00 PM
Dil. Factor: 1.98 Date of Analysis: 3/13/24 07:51 PM

			C. Fandary C.C. Critch	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.99	Not Detected	8.4	Not Detected
1,2-Dibromoethane (EDB)	0.99	Not Detected	7.6	Not Detected
Chlorobenzene	0.99	Not Detected	4.6	Not Detected
Ethyl Benzene	0.99	Not Detected	4.3	Not Detected
m,p-Xylene	2.0	Not Detected	8.6	Not Detected
o-Xylene	0.99	Not Detected	4.3	Not Detected
Styrene	0.99	Not Detected	4.2	Not Detected
Bromoform	0.99	Not Detected	10	Not Detected
Cumene	0.99	Not Detected	4.9	Not Detected
1,1,2,2-Tetrachloroethane	0.99	Not Detected	6.8	Not Detected
Propylbenzene	0.99	Not Detected	4.9	Not Detected
4-Ethyltoluene	0.99	Not Detected	4.9	Not Detected
1,3,5-Trimethylbenzene	0.99	Not Detected	4.9	Not Detected
1,2,4-Trimethylbenzene	0.99	Not Detected	4.9	Not Detected
1,3-Dichlorobenzene	0.99	Not Detected	6.0	Not Detected
1,4-Dichlorobenzene	0.99	Not Detected	6.0	Not Detected
alpha-Chlorotoluene	0.99	Not Detected	5.1	Not Detected
1,2-Dichlorobenzene	0.99	Not Detected	6.0	Not Detected
1,2,4-Trichlorobenzene	4.0	Not Detected	29	Not Detected
Hexachlorobutadiene	4.0	Not Detected	42	Not Detected
TPH ref. to Gasoline (MW=100)	99	120	400	490

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	119	70-130	

Client Sample ID: SV-3 Lab ID#: 2403118-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031316	Date of Collection: 2/28/24 4:18:00 PM
Dil. Factor:	1.96	Date of Analysis: 3/13/24 08:22 PM

Dil. Factor:	1.96	Date of Analysis: 3/13/24 08:22 PM		24 08:22 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.98	Not Detected	4.8	Not Detected
Freon 114	0.98	Not Detected	6.8	Not Detected
Chloromethane	9.8	Not Detected	20	Not Detected
Vinyl Chloride	0.98	Not Detected	2.5	Not Detected
1,3-Butadiene	0.98	Not Detected	2.2	Not Detected
Bromomethane	9.8	Not Detected	38	Not Detected
Chloroethane	3.9	Not Detected	10	Not Detected
Freon 11	0.98	Not Detected	5.5	Not Detected
Ethanol	9.8	650 E	18	1200 E
Freon 113	0.98	Not Detected	7.5	Not Detected
1,1-Dichloroethene	0.98	Not Detected	3.9	Not Detected
Acetone	9.8	42	23	100
2-Propanol	3.9	9.5	9.6	23
Carbon Disulfide	3.9	Not Detected	12	Not Detected
3-Chloropropene	3.9	Not Detected	12	Not Detected
Methylene Chloride	9.8	Not Detected	34	Not Detected
Methyl tert-butyl ether	3.9	Not Detected	14	Not Detected
trans-1,2-Dichloroethene	0.98	Not Detected	3.9	Not Detected
Hexane	0.98	Not Detected	3.4	Not Detected
1,1-Dichloroethane	0.98	Not Detected	4.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.9	Not Detected	12	Not Detected
cis-1,2-Dichloroethene	0.98	Not Detected	3.9	Not Detected
Tetrahydrofuran	0.98	1.4	2.9	4.3
Chloroform	0.98	Not Detected	4.8	Not Detected
1,1,1-Trichloroethane	0.98	Not Detected	5.3	Not Detected
Cyclohexane	0.98	Not Detected	3.4	Not Detected
Carbon Tetrachloride	0.98	Not Detected	6.2	Not Detected
2,2,4-Trimethylpentane	0.98	Not Detected	4.6	Not Detected
Benzene	0.98	Not Detected	3.1	Not Detected
1,2-Dichloroethane	0.98	Not Detected	4.0	Not Detected
Heptane	0.98	Not Detected	4.0	Not Detected
Trichloroethene	0.98	Not Detected	5.3	Not Detected
1,2-Dichloropropane	0.98	Not Detected	4.5	Not Detected
1,4-Dioxane	3.9	Not Detected	14	Not Detected
Bromodichloromethane	0.98	Not Detected	6.6	Not Detected
cis-1,3-Dichloropropene	0.98	Not Detected	4.4	Not Detected
4-Methyl-2-pentanone	0.98	Not Detected	4.0	Not Detected
Toluene	2.0	2.3	7.4	8.6
trans-1,3-Dichloropropene	0.98	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.98	Not Detected	5.3	Not Detected
Tetrachloroethene	0.98	Not Detected	6.6	Not Detected
2-Hexanone	3.9	Not Detected	16	Not Detected

Client Sample ID: SV-3 Lab ID#: 2403118-03A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p031316
 Date of Collection: 2/28/24 4:18:00 PM

 Dil. Factor:
 1.96
 Date of Analysis: 3/13/24 08:22 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.98	Not Detected	8.3	Not Detected
1,2-Dibromoethane (EDB)	0.98	Not Detected	7.5	Not Detected
Chlorobenzene	0.98	Not Detected	4.5	Not Detected
Ethyl Benzene	0.98	Not Detected	4.2	Not Detected
m,p-Xylene	2.0	Not Detected	8.5	Not Detected
o-Xylene	0.98	Not Detected	4.2	Not Detected
Styrene	0.98	Not Detected	4.2	Not Detected
Bromoform	0.98	Not Detected	10	Not Detected
Cumene	0.98	Not Detected	4.8	Not Detected
1,1,2,2-Tetrachloroethane	0.98	Not Detected	6.7	Not Detected
Propylbenzene	0.98	Not Detected	4.8	Not Detected
4-Ethyltoluene	0.98	Not Detected	4.8	Not Detected
1,3,5-Trimethylbenzene	0.98	Not Detected	4.8	Not Detected
1,2,4-Trimethylbenzene	0.98	Not Detected	4.8	Not Detected
1,3-Dichlorobenzene	0.98	Not Detected	5.9	Not Detected
1,4-Dichlorobenzene	0.98	Not Detected	5.9	Not Detected
alpha-Chlorotoluene	0.98	Not Detected	5.1	Not Detected
1,2-Dichlorobenzene	0.98	Not Detected	5.9	Not Detected
1,2,4-Trichlorobenzene	3.9	Not Detected	29	Not Detected
Hexachlorobutadiene	3.9	Not Detected	42	Not Detected
TPH ref. to Gasoline (MW=100)	98	Not Detected	400	Not Detected

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	111	70-130	

Client Sample ID: SV-4 Lab ID#: 2403118-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031317 Date of Collection: 2/28/24 3:20:00 PM
Dil. Factor: 2.14 Date of Analysis: 3/13/24 08:54 PM

Dil. Factor: 2.14 Date of Analysis: 3/13/24 08		24 08:54 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.3	Not Detected
Freon 114	1.1	Not Detected	7.5	Not Detected
Chloromethane	11	Not Detected	22	Not Detected
Vinyl Chloride	1.1	Not Detected	2.7	Not Detected
1,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	11	Not Detected	42	Not Detected
Chloroethane	4.3	Not Detected	11	Not Detected
Freon 11	1.1	Not Detected	6.0	Not Detected
Ethanol	11	11	20	21
Freon 113	1.1	Not Detected	8.2	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.2	Not Detected
Acetone	11	130	25	300
2-Propanol	4.3	Not Detected	10	Not Detected
Carbon Disulfide	4.3	Not Detected	13	Not Detected
3-Chloropropene	4.3	Not Detected	13	Not Detected
Methylene Chloride	11	Not Detected	37	Not Detected
Methyl tert-butyl ether	4.3	Not Detected	15	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.2	Not Detected
Hexane	1.1	4.8	3.8	17
1,1-Dichloroethane	1.1	Not Detected	4.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.3	6.3	13	18
cis-1,2-Dichloroethene	1.1	Not Detected	4.2	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.2	Not Detected
Chloroform	1.1	Not Detected	5.2	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	5.8	Not Detected
Cyclohexane	1.1	Not Detected	3.7	Not Detected
Carbon Tetrachloride	1.1	Not Detected	6.7	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.0	Not Detected
Benzene	1.1	Not Detected	3.4	Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.3	Not Detected
Heptane	1.1	Not Detected	4.4	Not Detected
Trichloroethene	1.1	Not Detected	5.8	Not Detected
1,2-Dichloropropane	1.1	Not Detected	4.9	Not Detected
1,4-Dioxane	4.3	Not Detected	15	Not Detected
Bromodichloromethane	1.1	Not Detected	7.2	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	4.8	Not Detected
4-Methyl-2-pentanone	1.1	Not Detected	4.4	Not Detected
Toluene	2.1	Not Detected	8.1	Not Detected
trans-1,3-Dichloropropene	1.1	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	5.8	Not Detected
Tetrachloroethene	1.1	Not Detected	7.2	Not Detected
2-Hexanone	4.3	Not Detected	18	Not Detected

Client Sample ID: SV-4 Lab ID#: 2403118-04A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p031317
 Date of Collection: 2/28/24 3:20:00 PM

 Dil. Factor:
 2.14
 Date of Analysis: 3/13/24 08:54 PM

			C. Fandary C.C. Critch	- 1 00.0 1 1 11.
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.1	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.2	Not Detected
Chlorobenzene	1.1	Not Detected	4.9	Not Detected
Ethyl Benzene	1.1	Not Detected	4.6	Not Detected
m,p-Xylene	2.1	Not Detected	9.3	Not Detected
o-Xylene	1.1	Not Detected	4.6	Not Detected
Styrene	1.1	Not Detected	4.6	Not Detected
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	Not Detected	5.2	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.3	Not Detected
Propylbenzene	1.1	Not Detected	5.3	Not Detected
4-Ethyltoluene	1.1	Not Detected	5.3	Not Detected
1,3,5-Trimethylbenzene	1.1	Not Detected	5.3	Not Detected
1,2,4-Trimethylbenzene	1.1	Not Detected	5.2	Not Detected
1,3-Dichlorobenzene	1.1	Not Detected	6.4	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.4	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.5	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.4	Not Detected
1,2,4-Trichlorobenzene	4.3	Not Detected	32	Not Detected
Hexachlorobutadiene	4.3	Not Detected	46	Not Detected
TPH ref. to Gasoline (MW=100)	110	180	440	740

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	113	70-130	

Client Sample ID: Lab Blank Lab ID#: 2403118-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031307	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/13/24 02:42 PM

Dil. Factor:	1.00	Date of Analysis: 3/13/24 02:42 PM		24 02:42 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	5.0	Not Detected	9.4	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	2.0	Not Detected	7.2	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	1.0	Not Detected	3.8	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 2403118-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p031307	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/13/24 02:42 PM

J 1 4010.1	1.00	Date of Analysis: 0/10/24 02:42 1 M		27 V2.72 I W
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	1.0	Not Detected	4.3	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
TPH ref. to Gasoline (MW=100)	50	Not Detected	200	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	92	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: CCV Lab ID#: 2403118-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031303 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/13/24 12:02 PM

Compound	%Recovery
Freon 12	91
Freon 114	96
Chloromethane	90
Vinyl Chloride	85
1,3-Butadiene	75
Bromomethane	95
Chloroethane	78
Freon 11	92
Ethanol	84
Freon 113	97
1,1-Dichloroethene	76
Acetone	84
2-Propanol	72
Carbon Disulfide	81
3-Chloropropene	71
Methylene Chloride	90
Methyl tert-butyl ether	73
trans-1,2-Dichloroethene	81
Hexane	79
1,1-Dichloroethane	88
2-Butanone (Methyl Ethyl Ketone)	80
cis-1,2-Dichloroethene	82
Tetrahydrofuran	85
Chloroform	82
1,1,1-Trichloroethane	85
Cyclohexane	75
Carbon Tetrachloride	94
2,2,4-Trimethylpentane	90
Benzene	98
1,2-Dichloroethane	102
Heptane	87
Trichloroethene	100
1,2-Dichloropropane	100
1,4-Dioxane	94
Bromodichloromethane	98
cis-1,3-Dichloropropene	90
4-Methyl-2-pentanone	90
Toluene	101
trans-1,3-Dichloropropene	83
1,1,2-Trichloroethane	90
Tetrachloroethene	109
2-Hexanone	79
	· ·

Client Sample ID: CCV Lab ID#: 2403118-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031303 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/13/24 12:02 PM

Compound	%Recovery	
Dibromochloromethane	102	
1,2-Dibromoethane (EDB)	94	
Chlorobenzene	96	
Ethyl Benzene	89	
m,p-Xylene	93	
o-Xylene	84	
Styrene	92	
Bromoform	110	
Cumene	85	
1,1,2,2-Tetrachloroethane	90	
Propylbenzene	96	
4-Ethyltoluene	99	
1,3,5-Trimethylbenzene	99	
1,2,4-Trimethylbenzene	90	
1,3-Dichlorobenzene	109	
1,4-Dichlorobenzene	106	
alpha-Chlorotoluene	86	
1,2-Dichlorobenzene	108	
1,2,4-Trichlorobenzene	101	
Hexachlorobutadiene	125	
TPH ref. to Gasoline (MW=100)	100	

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	106	70-130	
1,2-Dichloroethane-d4	91	70-130	
4-Bromofluorobenzene	123	70-130	

Client Sample ID: LCS Lab ID#: 2403118-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031304 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/13/24 12:32 PM

		Method
Compound	%Recovery	Limits
Freon 12	92	70-130
Freon 114	97	70-130
Chloromethane	90	70-130
Vinyl Chloride	86	70-130
1,3-Butadiene	79	70-130
Bromomethane	94	70-130
Chloroethane	79	70-130
Freon 11	92	70-130
Ethanol	102	70-130
Freon 113	95	70-130
1,1-Dichloroethene	75	
Acetone	80	70-130
2-Propanol	79	70-130
Carbon Disulfide	83	70-130
3-Chloropropene	74	70-130
Methylene Chloride	88	- - 70-130
Methyl tert-butyl ether	75	70-130
trans-1,2-Dichloroethene	80	70-130
Hexane	79	70-130
1,1-Dichloroethane	88	70-130
2-Butanone (Methyl Ethyl Ketone)	 81	70-130
cis-1,2-Dichloroethene	83	70-130
Tetrahydrofuran	93	70-130
Chloroform	81	70-130
1,1,1-Trichloroethane	85	70-130
Cyclohexane		70-130
Carbon Tetrachloride	94	70-130
2,2,4-Trimethylpentane	90	70-130
Benzene	97	70-130
1,2-Dichloroethane	101	70-130
Heptane	87	70-130
Trichloroethene	101	70-130
1,2-Dichloropropane	98	70-130
1,4-Dioxane	98	70-130
Bromodichloromethane	97	70-130
cis-1,3-Dichloropropene	90	70-130
4-Methyl-2-pentanone	92	70-130
Toluene	98	70-130
trans-1,3-Dichloropropene	84	70-130
1,1,2-Trichloroethane	89	70-130
Tetrachloroethene	109	70-130
2-Hexanone	86	70-130
4-1 ICAGI IUI IC	00	10-130

Client Sample ID: LCS Lab ID#: 2403118-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031304 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/13/24 12:32 PM

Compound	%Recovery	Method Limits
Dibromochloromethane	99	70-130
1,2-Dibromoethane (EDB)	92	70-130
Chlorobenzene	97	70-130
Ethyl Benzene	90	70-130
m.p-Xvlene	92	70-130
o-Xylene	87	70-130
Styrene	93	70-130
Bromoform	107	70-130
Cumene	86	70-130
1,1,2,2-Tetrachloroethane	90	70-130
Propylbenzene	98	70-130
4-Ethyltoluene	97	70-130
1,3,5-Trimethylbenzene	101	70-130
1,2,4-Trimethylbenzene	94	70-130
1,3-Dichlorobenzene	108	70-130
1,4-Dichlorobenzene	105	70-130
alpha-Chlorotoluene	85	70-130
1,2-Dichlorobenzene	107	70-130
1,2,4-Trichlorobenzene	104	70-130
Hexachlorobutadiene	126	70-130
TPH ref. to Gasoline (MW=100)	Not Spiked	

		wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	105	70-130	
1,2-Dichloroethane-d4	90	70-130	
4-Bromofluorobenzene	124	70-130	

Client Sample ID: LCSD Lab ID#: 2403118-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031305 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/13/24 01:02 PM

		Method
Compound	%Recovery	Limits
Freon 12	93	70-130
Freon 114	98	70-130
Chloromethane	91	70-130
Vinyl Chloride	87	70-130
1,3-Butadiene	78	70-130
Bromomethane	94	70-130
Chloroethane	80	70-130
Freon 11	93	70-130
Ethanol	104	70-130
Freon 113	95	70-130
1,1-Dichloroethene	75	70-130
Acetone	80	70-130
2-Propanol	80	70-130
Carbon Disulfide	83	70-130
3-Chloropropene	74	70-130
Methylene Chloride	87	- - 70-130
Methyl tert-butyl ether	78	70-130
trans-1,2-Dichloroethene	81	70-130
Hexane	81	70-130
1,1-Dichloroethane	88	70-130
2-Butanone (Methyl Ethyl Ketone)	83	70-130
cis-1,2-Dichloroethene	84	70-130
Tetrahydrofuran	94	70-130
Chloroform	81	70-130
1,1,1-Trichloroethane	85	70-130
Cyclohexane		70-130
Carbon Tetrachloride	94	70-130
2,2,4-Trimethylpentane	90	70-130
Benzene	94	70-130
1,2-Dichloroethane	98	70-130
Heptane		70-130
Trichloroethene	98	70-130
1,2-Dichloropropane	94	70-130
1,4-Dioxane	93	70-130
Bromodichloromethane	94	70-130
cis-1,3-Dichloropropene	89	70-130
4-Methyl-2-pentanone	89	70-130
Toluene	95	70-130
trans-1,3-Dichloropropene	84	70-130
1,1,2-Trichloroethane	89	70-130
Tetrachloroethene	109	70-130
2-Hexanone	85	70-130
2-1 ICAGI IUI IC	00	70-130

Client Sample ID: LCSD Lab ID#: 2403118-07AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031305 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 3/13/24 01:02 PM

		Method
Compound	%Recovery	Limits
Dibromochloromethane	98	70-130
1,2-Dibromoethane (EDB)	90	70-130
Chlorobenzene	96	70-130
Ethyl Benzene	89	70-130
m,p-Xylene	92	70-130
o-Xylene	87	70-130
Styrene	91	70-130
Bromoform	107	70-130
Cumene	85	70-130
1,1,2,2-Tetrachloroethane	87	70-130
Propylbenzene	96	70-130
4-Ethyltoluene	96	70-130
1,3,5-Trimethylbenzene	99	70-130
1,2,4-Trimethylbenzene	92	70-130
1,3-Dichlorobenzene	106	70-130
1,4-Dichlorobenzene	104	70-130
alpha-Chlorotoluene	85	70-130
1,2-Dichlorobenzene	106	70-130
1,2,4-Trichlorobenzene	109	70-130
Hexachlorobutadiene	128	70-130
TPH ref. to Gasoline (MW=100)	Not Spiked	

		Wethod
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	90	70-130
4-Bromofluorobenzene	122	70-130

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, March 20, 2024 Steve Misner Apex Companies, LLC 15618 SW 72nd Ave Tigard, OR 97224

RE: A4C0884 - LKQ Salem - 23009822

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4C0884, which was received by the laboratory on 3/1/2024 at 5:00:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler	Receipt	Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1 2.9 degC

Cooler #2 3.1 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DUP-1	A4C0884-01	Water	03/01/24 14:28	03/01/24 17:00
DW	A4C0884-02	Water	02/29/24 15:22	03/01/24 17:00
MW-1	A4C0884-03	Water	02/29/24 14:50	03/01/24 17:00
MW-2	A4C0884-04	Water	03/01/24 14:08	03/01/24 17:00
MW-3	A4C0884-05	Water	02/29/24 10:30	03/01/24 17:00
MW-4	A4C0884-06	Water	02/29/24 12:50	03/01/24 17:00
MW-5	A4C0884-07	Water	02/29/24 13:57	03/01/24 17:00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC

15618 SW 72nd Ave
Pragrad, OR 97224

Property Street Street Switch Switc

 Project Number:
 23009822
 Report ID:

 Project Manager:
 Steve Misner
 A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

LKQ Salem

Project:

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
DUP-1 (A4C0884-01)				Matrix: Wat	ter	Batch:	24C0330		
Diesel	0.134		0.0792	mg/L	1	03/12/24 03:12	NWTPH-Dx LL	F-11	
Oil	ND		0.158	mg/L	1	03/12/24 03:12	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Recove	ery: 102 %	Limits: 50-150 9	% 1	03/12/24 03:12	NWTPH-Dx LL		
DW (A4C0884-02)				Matrix: Wat	ter	Batch:	24C0330		
Diesel	ND		0.0762	mg/L	1	03/12/24 03:33	NWTPH-Dx LL		
Oil	ND		0.152	mg/L	1	03/12/24 03:33	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 9	% 1	03/12/24 03:33	NWTPH-Dx LL		
MW-1 (A4C0884-03)				Matrix: Wat	ter	Batch:	24C0330		
Diesel	2.47		0.0784	mg/L	1	03/12/24 03:53	NWTPH-Dx LL	F-13	
Oil	ND		0.157	mg/L	1	03/12/24 03:53	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Reco	very: 78 %	Limits: 50-150 9	% 1	03/12/24 03:53	NWTPH-Dx LL		
MW-2 (A4C0884-04RE2)			Matrix: Water			Batch:			
Diesel	ND		0.0800	mg/L	1	03/13/24 22:25	NWTPH-Dx LL		
Oil	ND		0.160	mg/L	1	03/13/24 22:25	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 9	% 1	03/13/24 22:25	NWTPH-Dx LL		
MW-3 (A4C0884-05)				Matrix: Wat	ter	Batch:	24C0330		
Diesel	ND		0.0792	mg/L	1	03/12/24 04:55	NWTPH-Dx LL		
Oil	ND		0.158	mg/L	1	03/12/24 04:55	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Reco	very: 76 %	Limits: 50-150 9	% 1	03/12/24 04:55	NWTPH-Dx LL		
MW-4 (A4C0884-06)				Matrix: Wat	ter	Batch:	24C0330		
Diesel	0.178		0.0833	mg/L	1	03/12/24 05:16	NWTPH-Dx LL	F-11	
Oil	ND		0.167	mg/L	1	03/12/24 05:16	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Recove	ery: 104 %	Limits: 50-150 9	% 1	03/12/24 05:16	NWTPH-Dx LL		
MW-5 (A4C0884-07)				Matrix: Wat	ter	Batch:	24C0330		
Diesel	0.186		0.0800	mg/L	1	03/12/24 05:36	NWTPH-Dx LL	F-11	
Oil	ND		0.160	mg/L	1	03/12/24 05:36	NWTPH-Dx LL		
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 9	% 1	03/12/24 05:36	NWTPH-Dx LL		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

24001			`	rough Naphth	- , ~ y			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DUP-1 (A4C0884-01)				Matrix: Wat	er	Batch	24C0069	
Gasoline Range Organics	ND		0.100	mg/L	1	03/04/24 14:49	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 100 %	Limits: 50-150 %		03/04/24 14:49	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-150 %	6 I	03/04/24 14:49	NWTPH-Gx (MS)	
DW (A4C0884-02)				Matrix: Wat	er	Batch	24C0069	
Gasoline Range Organics	ND		0.100	mg/L	1	03/04/24 15:10	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recon	very: 99 %	Limits: 50-150 %	6 I	03/04/24 15:10	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			103 %	50-150 %	6 1	03/04/24 15:10	NWTPH-Gx (MS)	
MW-1 (A4C0884-03)				Matrix: Wat	er	Batch	: 24C0069	
Gasoline Range Organics	2.71		0.500	mg/L	5	03/04/24 18:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 103 %	Limits: 50-150 %	6 I	03/04/24 18:44	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-150 %	6 1	03/04/24 18:44	NWTPH-Gx (MS)	
MW-2 (A4C0884-04)				Matrix: Wat	er	Batch: 24C0069		
Gasoline Range Organics	ND		0.100	mg/L	1	03/04/24 15:31	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 50-150 %	6 1	03/04/24 15:31	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	6 1	03/04/24 15:31	NWTPH-Gx (MS)	
MW-3 (A4C0884-05)				Matrix: Wat	ater Batch: 24C0069			
Gasoline Range Organics	ND		0.100	mg/L	1	03/04/24 15:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 50-150 %	6 I	03/04/24 15:53	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	6 1	03/04/24 15:53	NWTPH-Gx (MS)	
MW-4 (A4C0884-06)				Matrix: Wat	er	Batch	: 24C0069	
Gasoline Range Organics	ND		0.100	mg/L	1	03/04/24 16:14	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 50-150 %	6 1	03/04/24 16:14	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	6 I	03/04/24 16:14	NWTPH-Gx (MS)	
MW-5 (A4C0884-07)				Matrix: Water		Batch: 24C0069		
Gasoline Range Organics	ND		0.100	mg/L	1	03/04/24 16:36	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ery: 102 %	Limits: 50-150 %	6 1	03/04/24 16:36	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 I	03/04/24 16:36	NWTPH-Gx (MS)	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Select	ed volatile Org	anic Con	npounds by EPA	8260D			
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DUP-1 (A4C0884-01)				Matrix: Wate	r	Batch: 2	24C0069	
Benzene	ND		0.200	ug/L	1	03/04/24 14:49	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/04/24 14:49	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	03/04/24 14:49	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	03/04/24 14:49	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/04/24 14:49	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	03/04/24 14:49	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/04/24 14:49	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/04/24 14:49	EPA 8260D	
sopropylbenzene	ND		1.00	ug/L	1	03/04/24 14:49	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 14:49	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 14:49	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	109 %	Limits: 80-120 %	I	03/04/24 14:49	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	03/04/24 14:49	EPA 8260D	
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	03/04/24 14:49	EPA 8260D	
DW (A4C0884-02)				Matrix: Wate	r	Batch: 2	24C0069	
Benzene	ND		0.200	ug/L	1	03/04/24 15:10	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/04/24 15:10	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	03/04/24 15:10	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	03/04/24 15:10	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/04/24 15:10	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	03/04/24 15:10	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/04/24 15:10	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/04/24 15:10	EPA 8260D	
sopropylbenzene	ND		1.00	ug/L	1	03/04/24 15:10	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 15:10	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 15:10	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	109 %	Limits: 80-120 %	I	03/04/24 15:10	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	03/04/24 15:10	EPA 8260D	
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	03/04/24 15:10	EPA 8260D	
MW-1 (A4C0884-03)				Matrix: Wate	r	Batch: 2	24C0069	
Benzene	5.75		1.00	ug/L	5	03/04/24 18:44	EPA 8260D	
	6.25		5.00	ug/L	5	03/04/24 18:44	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Select	ted volatile Org	anic Con	npounds by EPA	4 826UD			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-1 (A4C0884-03)				Matrix: Wate	r	Batch:	24C0069	
Ethylbenzene	43.4		2.50	ug/L	5	03/04/24 18:44	EPA 8260D	
Xylenes, total	218		7.50	ug/L	5	03/04/24 18:44	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		5.00	ug/L	5	03/04/24 18:44	EPA 8260D	
Naphthalene	25.4		25.0	ug/L	5	03/04/24 18:44	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		2.50	ug/L	5	03/04/24 18:44	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		2.00	ug/L	5	03/04/24 18:44	EPA 8260D	
Isopropylbenzene	ND		5.00	ug/L	5	03/04/24 18:44	EPA 8260D	
1,2,4-Trimethylbenzene	214		5.00	ug/L	5	03/04/24 18:44	EPA 8260D	
1,3,5-Trimethylbenzene	19.6		5.00	ug/L	5	03/04/24 18:44	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	108 %	Limits: 80-120 %	I	03/04/24 18:44	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	03/04/24 18:44	EPA 8260D	
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	03/04/24 18:44	EPA 8260D	
MW-2 (A4C0884-04)			Matrix: Water Batch: 24C0069		24C0069			
Benzene	ND		0.200	ug/L	1	03/04/24 15:31	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/04/24 15:31	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	03/04/24 15:31	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	03/04/24 15:31	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/04/24 15:31	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	03/04/24 15:31	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/04/24 15:31	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/04/24 15:31	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	03/04/24 15:31	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 15:31	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 15:31	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 110 %	Limits: 80-120 %	1	03/04/24 15:31	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %		03/04/24 15:31	EPA 8260D	
4-Bromofluorobenzene (Surr)			92 %	80-120 %	1	03/04/24 15:31	EPA 8260D	
MW-3 (A4C0884-05)				Matrix: Wate	r	Batch: 24C0069		
Benzene	ND		0.200	ug/L	1	03/04/24 15:53	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/04/24 15:53	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	03/04/24 15:53	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	03/04/24 15:53	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Select	ou voiatile U	rganic Coll	pounds by EPA	~ 0200D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-3 (A4C0884-05)				Matrix: Wate	er	Batch:	24C0069	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/04/24 15:53	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	03/04/24 15:53	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/04/24 15:53	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/04/24 15:53	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	03/04/24 15:53	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 15:53	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 15:53	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	1	03/04/24 15:53	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	03/04/24 15:53	EPA 8260D	
4-Bromofluorobenzene (Surr)			91 %	80-120 %	I	03/04/24 15:53	EPA 8260D	
MW-4 (A4C0884-06)		Matrix: Water		Batch: 24C0069				
Benzene	ND		0.200	ug/L	1	03/04/24 16:14	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/04/24 16:14	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	03/04/24 16:14	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	03/04/24 16:14	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/04/24 16:14	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	03/04/24 16:14	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/04/24 16:14	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/04/24 16:14	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	03/04/24 16:14	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 16:14	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 16:14	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	I	03/04/24 16:14	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	03/04/24 16:14	EPA 8260D	
4-Bromofluorobenzene (Surr)			91 %	80-120 %	1	03/04/24 16:14	EPA 8260D	
MW-5 (A4C0884-07)				Matrix: Wate	er	Batch:	24C0069	
Benzene	ND		0.200	ug/L	1	03/04/24 16:36	EPA 8260D	
Toluene	ND		1.00	ug/L	1	03/04/24 16:36	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	03/04/24 16:36	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	03/04/24 16:36	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	03/04/24 16:36	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	03/04/24 16:36	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Selec	ted Volatile O	rganic Com	pounds by EP/	A 8260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-5 (A4C0884-07)				Matrix: Wate	ər	Batch:	24C0069	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	03/04/24 16:36	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	03/04/24 16:36	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	03/04/24 16:36	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 16:36	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	03/04/24 16:36	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	6 1	03/04/24 16:36	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	6 1	03/04/24 16:36	EPA 8260D	
4-Bromofluorobenzene (Surr)			91 %	80-120 %	6 I	03/04/24 16:36	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DUP-1 (A4C0884-01)	Result	Limit	Lillit	Matrix: Wate		•	24C0194	Notes
,	ND		0.0320			03/06/24 21:04	EPA 8270E LVI	
Acenaphthene Acenaphthylene	ND ND		0.0320	ug/L ug/L	1 1	03/06/24 21:04	EPA 8270E LVI	
Anthracene					_	03/06/24 21:04	EPA 8270E LVI	
Benz(a)anthracene	ND ND		0.0320 0.0160	ug/L	1 1	03/06/24 21:04	EPA 8270E LVI	
Benzo(a)pyrene	ND ND		0.0160	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Benzo(a)pyrene Benzo(b)fluoranthene				ug/L		03/06/24 21:04	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0160	ug/L	1		EPA 8270E LVI	
	ND		0.0160	ug/L	1	03/06/24 21:04		
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Chrysene	ND		0.0160	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Fluoranthene	ND		0.0320	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Fluorene	ND		0.0320	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0640	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0640	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Naphthalene	ND		0.0640	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Phenanthrene	ND		0.0640	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Pyrene	ND		0.0320	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Dibenzofuran	ND		0.0320	ug/L	1	03/06/24 21:04	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	-	Limits: 78-134 %		03/06/24 21:04	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			109 %	80-132 %	1	03/06/24 21:04	EPA 8270E LVI	
DW (A4C0884-02)				Matrix: Wate	r	Batch:	24C0194	
Acenaphthene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Acenaphthylene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Anthracene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Chrysene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DW (A4C0884-02)				Matrix: Wate	er	Batch:	24C0194	
Fluoranthene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Fluorene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
ndeno(1,2,3-cd)pyrene	ND		0.0158	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0632	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0632	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Naphthalene	ND		0.0632	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Phenanthrene	ND		0.0632	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Pyrene	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Dibenzofuran	ND		0.0316	ug/L	1	03/06/24 21:36	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 94 %	Limits: 78-134 %	1	03/06/24 21:36	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			106 %	80-132 %	1	03/06/24 21:36	EPA 8270E LVI	
MW-1 (A4C0884-03)				Matrix: Wate	r	Batch:	24C0194	DCNT
Acenaphthene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Acenaphthylene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Anthracene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Chrysene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Fluoranthene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Fluorene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
ndeno(1,2,3-cd)pyrene	ND		0.0954	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
1-Methylnaphthalene	4.69		0.382	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
2-Methylnaphthalene	7.56		0.382	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Naphthalene	24.6		0.382	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Phenanthrene	ND		0.382	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
Pyrene	ND		0.191	ug/L	5	03/06/24 22:09	EPA 8270E LVI	
				2				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-1 (A4C0884-03)	Result	Limit	Lillit	Matrix: Wate		•	24C0194	DCNT
,		n	ry: 115 %	Limits: 80-132 %		03/06/24 22:09	EPA 8270E LVI	S-05
Surrogate: Benzo(a)pyrene-d12 (Surr)		Kecove.	ry: 115%			03/06/24 22:09	EPA 82/0E LVI	3-03
MW-2 (A4C0884-04)				Matrix: Wate	er	Batch:	24C0194	
Acenaphthene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Acenaphthylene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Anthracene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Chrysene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Fluoranthene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Fluorene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0158	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0633	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0633	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Naphthalene	ND		0.0633	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Phenanthrene	ND		0.0633	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Pyrene	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Dibenzofuran	ND		0.0317	ug/L	1	03/06/24 22:40	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recov	ery: 94%	Limits: 78-134 %	1	03/06/24 22:40	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			109 %	80-132 %	1	03/06/24 22:40	EPA 8270E LVI	
MW-3 (A4C0884-05)				Matrix: Wate	er	Batch:	24C0194	
Acenaphthene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Acenaphthylene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Anthracene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-3 (A4C0884-05)				Matrix: Wate	er	Batch:	24C0194	
Chrysene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Fluoranthene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Fluorene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0640	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0640	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Naphthalene	ND		0.0640	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Phenanthrene	ND		0.0640	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Pyrene	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Dibenzofuran	ND		0.0320	ug/L	1	03/06/24 23:12	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recover	y: 95 %	Limits: 78-134 %	5 1	03/06/24 23:12	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			112 %	80-132 %	5 1	03/06/24 23:12	EPA 8270E LVI	
MW-4 (A4C0884-06)				Matrix: Wate	er	Batch:	24C0194	DCNT
Acenaphthene	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Acenaphthylene	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Anthracene	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Chrysene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Fluoranthene	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Fluorene	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0173	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0691	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0691	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Naphthalene	0.0713		0.0691	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Phenanthrene	ND		0.0691	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
					-			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-4 (A4C0884-06)				Matrix: Wate	er	Batch:	24C0194	DCNT
Dibenzofuran	ND		0.0346	ug/L	1	03/06/24 23:44	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 94 %	Limits: 78-134 %	1	03/06/24 23:44	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			106 %	80-132 %	1	03/06/24 23:44	EPA 8270E LVI	
MW-5 (A4C0884-07)				Matrix: Wate	er	Batch:	24C0194	DCNT
Acenaphthene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Acenaphthylene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Anthracene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Chrysene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Fluoranthene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Fluorene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0178	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0712	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0712	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Naphthalene	ND		0.0712	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Phenanthrene	ND		0.0712	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Pyrene	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Dibenzofuran	ND		0.0356	ug/L	1	03/07/24 00:16	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 93 %	Limits: 78-134 %	I	03/07/24 00:16	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			106 %	80-132 %	1	03/07/24 00:16	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

		Dissolved M	etals by EPA	6020B (ICP	MS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DUP-1 (A4C0884-01)				Matrix: W	ater			
Batch: 24C0582								
Arsenic	ND		1.00	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Barium	16.9		1.00	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Mercury	ND		0.0800	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	03/16/24 21:12	EPA 6020B (Diss)	
DW (A4C0884-02)				Matrix: W	ater			
Batch: 24C0582								
Arsenic	1.10		1.00	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Barium	1.94		1.00	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Mercury	ND		0.0800	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	03/16/24 21:25	EPA 6020B (Diss)	
MW-1 (A4C0884-03)				Matrix: W	ater			
Batch: 24C0582								
Arsenic	1.99		1.00	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Barium	16.2		1.00	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Mercury	ND		0.0800	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	03/16/24 21:37	EPA 6020B (Diss)	
MW-2 (A4C0884-04)				Matrix: W	ater			

Batch: 24C0582

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC Project: 15618 SW 72nd Ave Project Number: 23009822 Tigard, OR 97224 Project Manager: Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

LKQ Salem

	C1.	Datastic ::	Donostin -			Date		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW-2 (A4C0884-04)				Matrix: W	ater			
Arsenic	ND		1.00	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Barium	17.2		1.00	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Mercury	ND		0.0800	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	03/16/24 21:43	EPA 6020B (Diss)	
MW-3 (A4C0884-05)				Matrix: W	ater			
Batch: 24C0582								
Arsenic	ND		1.00	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Barium	11.1		1.00	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Mercury	ND		0.0800	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	03/16/24 21:50	EPA 6020B (Diss)	
MW-4 (A4C0884-06)				Matrix: W	ater			
Batch: 24C0582								
Arsenic	1.04		1.00	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
Barium	30.4		1.00	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
Mercury (ND		0.0800	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
ilver	ND		0.200	ug/L	1	03/16/24 22:09	EPA 6020B (Diss)	
IW-5 (A4C0884-07)				Matrix: W	ater			
Batch: 24C0582								
Arsenic	ND		1.00	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

ANALYTICAL SAMPLE RESULTS

		Dissolved M	etals by EPA	6020B (ICP	MS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-5 (A4C0884-07)				Matrix: W	ater			
Barium	8.35		1.00	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	
Cadmium	ND		0.200	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	
Chromium	ND		2.00	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	
Lead	ND		0.200	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	
Mercury	ND		0.0800	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	
Selenium	ND		2.00	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	
Silver	ND		0.200	ug/L	1	03/16/24 22:15	EPA 6020B (Diss)	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesei and/c	or Oil Hyd	rocarbon	s by NW1	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0330 - EPA 3510C (Fuels/Acid	Ext.)					Wa	ter				
Blank (24C0330-BLK1)			Prepared	1: 03/11/24 (06:02 Anal	yzed: 03/11/	/24 20:41					
NWTPH-Dx LL												
Diesel	ND		0.0800	mg/L	1							
Oil	ND		0.160	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 82 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (24C0330-BS1)			Prepared	d: 03/11/24 (06:02 Anal	yzed: 03/11/	/24 21:01					
NWTPH-Dx LL												
Diesel	0.328		0.0800	mg/L	1	0.500		66	36-132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 84 %	Limits: 50	-150 %	Dilt	ution: 1x					
LCS Dup (24C0330-BSD1)			Prepared	1: 03/11/24 (06:02 Anal	yzed: 03/11/	/24 21:22					Q-1
NWTPH-Dx LL												
Diesel	0.262		0.0800	mg/L	1	0.500		52	36-132%	23	30%	
~		D.	overy: 71 %	Limits: 50	-150%	Dil	ution: 1x					
Surr: o-Terphenyl (Surr)		Reco	overy: /1 %	Limits. 30	-150 /0	Diii	uion. 1x					
Surr: o-1erphenyl (Surr) Batch 24C0443 - EPA 3510C (Fuels/Acid		overy: /1 %	Limits. 30	-130 / 0	Ditt	wion. 1x Wa	ter				
	Fuels/Acid					lyzed: 03/13	Wa	ter				
Batch 24C0443 - EPA 3510C (Fuels/Acid			1: 03/13/24 (Wa	ter				
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1)	Fuels/Acid						Wa	ter				
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL		Ext.)	Preparec	1: 03/13/24 (06:27 Ana		Wa					
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel	ND	Ext.)	Preparec	1: 03/13/24 (mg/L	06:27 Anal	lyzed: 03/13.	Wa					
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil	ND	Ext.)	0.0800 0.160 0.0800 0.160	mg/L mg/L mg/L Limits: 50	06:27 Anal 1 1 1-150%	lyzed: 03/13.	Wa /24 21:24 ution: Ix					
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil Surr: o-Terphenyl (Surr)	ND	Ext.)	0.0800 0.160 0.0800 0.160	mg/L mg/L mg/L Limits: 50	06:27 Anal 1 1 1-150%	lyzed: 03/13	Wa /24 21:24 ution: Ix					
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil Surr: o-Terphenyl (Surr) LCS (24C0443-BS1)	ND	Ext.)	0.0800 0.160 0.0800 0.160	mg/L mg/L mg/L Limits: 50	06:27 Anal 1 1 1-150%	lyzed: 03/13	Wa /24 21:24 ution: Ix		36-132%			
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil Surr: o-Terphenyl (Surr) LCS (24C0443-BS1) NWTPH-Dx LL	ND ND	Ext.) Reco	0.0800 0.160 0.0800 Prepared	mg/L mg/L Limits: 50	06:27 Anal 1 1 1-150% 06:27 Anal	byzed: 03/13 Dilu byzed: 03/13 0.500	Wa /24 21:24 ution: Ix /24 21:44					
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil Surr: o-Terphenyl (Surr) LCS (24C0443-BS1) NWTPH-Dx LL Diesel	ND ND	Ext.) Reco	0.0800 0.160 0very: 91 % Prepared 0.0800 overy: 96 %	mg/L mg/L Limits: 50 1: 03/13/24 (mg/L Limits: 50	1 1 1 -150 % 06:27 Anal 1	byzed: 03/13 Dilu byzed: 03/13 0.500	Wa /24 21:24 ution: Ix /24 21:44 ution: Ix					Q-
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil Surr: o-Terphenyl (Surr) LCS (24C0443-BS1) NWTPH-Dx LL Diesel Surr: o-Terphenyl (Surr)	ND ND	Ext.) Reco	0.0800 0.160 0very: 91 % Prepared 0.0800 overy: 96 %	mg/L mg/L Limits: 50 1: 03/13/24 (mg/L Limits: 50	1 1 1 -150 % 06:27 Anal 1	byzed: 03/13 Dila yzed: 03/13 0.500	Wa /24 21:24 ution: Ix /24 21:44 ution: Ix					Q-
Batch 24C0443 - EPA 3510C (Blank (24C0443-BLK1) NWTPH-Dx LL Diesel Oil Surr: o-Terphenyl (Surr) LCS (24C0443-BS1) NWTPH-Dx LL Diesel Surr: o-Terphenyl (Surr) LCS Dup (24C0443-BSD1)	ND ND	Ext.) Reco	0.0800 0.160 0very: 91 % Prepared 0.0800 overy: 96 %	mg/L mg/L Limits: 50 1: 03/13/24 (mg/L Limits: 50	1 1 1 -150 % 06:27 Anal 1	byzed: 03/13 Dila yzed: 03/13 0.500	Wa /24 21:24 ution: Ix /24 21:44 ution: Ix					Q-1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ons (Benz	zene thro	ıgh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0069 - EPA 5030C							Wa	ter				
Blank (24C0069-BLK1)			Prepared	1: 03/04/24	09:00 Ana	yzed: 03/04	/24 11:07					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 102 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	50	0-150 %		"					
LCS (24C0069-BS2)			Prepared	d: 03/04/24	09:00 Anal	yzed: 03/04	/24 10:46					
NWTPH-Gx (MS)												
Gasoline Range Organics	0.481		0.100	mg/L	1	0.500		96	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 99 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					
Duplicate (24C0069-DUP1)			Prepared	d: 03/04/24	11:15 Anal	yzed: 03/04	/24 17:19					
QC Source Sample: Non-SDG (A4	IC0875-07)											
Gasoline Range Organics	6.58		0.250	mg/L	2.5		6.32			4	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 107 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					
Duplicate (24C0069-DUP2)			Prepared	1: 03/04/24	11:15 Anal	yzed: 03/04	/24 18:01					
QC Source Sample: Non-SDG (A4	C0879-01)											
Gasoline Range Organics	ND		1.00	mg/L	10		0.933			***	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 97 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0069 - EPA 5030C							Wa	ter				
Blank (24C0069-BLK1)			Prepared	: 03/04/24	09:00 Anal	yzed: 03/04	/24 11:07					
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	-120 %		"					
LCS (24C0069-BS1)			Prepared	: 03/04/24	09:00 Anal	yzed: 03/04	/24 10:04					
EPA 8260D Benzene	21.3		0.200	ug/L	1	20.0		107	80-120%			
Toluene	19.9		1.00	U	1	20.0		99	80-120%			
Ethylbenzene	20.8		0.500	ug/L		20.0		99 104	80-120% 80-120%			
•				ug/L	1 1							
Xylenes, total Mothyl tort butyl other (MTPE)	64.3		1.50 1.00	ug/L		60.0		107 91	80-120%			
Methyl tert-butyl ether (MTBE)	18.2			ug/L	1	20.0		91 88	80-120% 80-120%			
Naphthalene	17.6		5.00	ug/L	1	20.0						
1,2-Dibromoethane (EDB)	19.9		0.500	ug/L	1	20.0		99	80-120%			
1,2-Dichloroethane (EDC)	20.9		0.400	ug/L	1	20.0		104	80-120%			
Isopropylbenzene	22.0		1.00	ug/L	1	20.0		110	80-120%			
1,2,4-Trimethylbenzene	21.9		1.00	ug/L	1	20.0		110	80-120%			
1,3,5-Trimethylbenzene	21.7		1.00	ug/L	1	20.0		108	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	-	Limits: 80		Dilı	ıtion: 1x					
Toluene-d8 (Surr)			99 %		-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	-120 %		"					

Duplicate (24C0069-DUP1)

Prepared: 03/04/24 11:15 Analyzed: 03/04/24 17:19

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC

15618 SW 72nd Ave

Project Number: 23009822

Tigard, OR 97224

Project Manager: Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selec	ted Volatil	e Organi	c Compo	unds by E	PA 8260	D				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0069 - EPA 5030C							Wa	ter				
Duplicate (24C0069-DUP1)			Prepared	1: 03/04/24	11:15 Anal	yzed: 03/04/	24 17:19					
QC Source Sample: Non-SDG (A4C	C0875-07)											
Benzene	4.35		0.500	ug/L	2.5		3.85			12	30%	
Toluene	3.25		2.50	ug/L	2.5		3.02			7	30%	
Ethylbenzene	58.3		1.25	ug/L	2.5		53.6			8	30%	
Xylenes, total	70.7		3.75	ug/L	2.5		64.8			9	30%	
Methyl tert-butyl ether (MTBE)	ND		2.50	ug/L	2.5		ND				30%	
Naphthalene	123		12.5	ug/L	2.5		114			8	30%	
1,2-Dibromoethane (EDB)	ND		1.25	ug/L	2.5		ND				30%	
1,2-Dichloroethane (EDC)	ND		1.00	ug/L	2.5		ND				30%	
Isopropylbenzene	12.6		2.50	ug/L	2.5		11.1			12	30%	
1,2,4-Trimethylbenzene	115		2.50	ug/L	2.5		105			9	30%	
1,3,5-Trimethylbenzene	14.6		2.50	ug/L	2.5		12.9			12	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 109 %	Limits: 80	0-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
Duplicate (24C0069-DUP2)			Prepared	1: 03/04/24	11:15 Anal	yzed: 03/04/	24 18:01					
QC Source Sample: Non-SDG (A4C	C0879-01)											
Benzene	11.0		2.00	ug/L	10		10.0			10	30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Xylenes, total	ND		15.0	ug/L	10		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
Isopropylbenzene	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	0-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sele	cted Volati	e Organi	ic Compo	unds by E	PA 8260)D				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0069 - EPA 5030C							Wa	ter				
Matrix Spike (24C0069-MS1)			Prepared	1: 03/04/24	11:15 Ana	lyzed: 03/04/	/24 13:23					
QC Source Sample: Non-SDG (A4C	C0875-01)											
EPA 8260D												
Benzene	21.0		0.200	ug/L	1	20.0	ND	105	79-120%			
Toluene	20.6		1.00	ug/L	1	20.0	ND	103	80-121%			
Ethylbenzene	21.6		0.500	ug/L	1	20.0	ND	108	79-121%			
Xylenes, total	67.5		1.50	ug/L	1	60.0	ND	113	79-121%			
Methyl tert-butyl ether (MTBE)	18.4		1.00	ug/L	1	20.0	ND	92	71-124%			
Naphthalene	21.3		5.00	ug/L	1	20.0	ND	107	61-128%			
1,2-Dibromoethane (EDB)	21.0		0.500	ug/L	1	20.0	ND	105	77-121%			
1,2-Dichloroethane (EDC)	19.6		0.400	ug/L	1	20.0	ND	98	73-128%			
Isopropylbenzene	24.6		1.00	ug/L	1	20.0	ND	123	72-131%			
1,2,4-Trimethylbenzene	23.2		1.00	ug/L	1	20.0	ND	116	76-124%			
1,3,5-Trimethylbenzene	23.0		1.00	ug/L	1	20.0	ND	115	75-124%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	ydrocarbon	s (PAHs)	by EPA 8	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0194 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
Blank (24C0194-BLK1)			Prepared	: 03/06/24	12:03 Anal	yzed: 03/06	/24 18:55					
EPA 8270E LVI												
Acenaphthene	ND		0.0320	ug/L	1							
Acenaphthylene	ND		0.0320	ug/L	1							
Anthracene	ND		0.0320	ug/L	1							
Benz(a)anthracene	ND		0.0160	ug/L	1							
Benzo(a)pyrene	ND		0.0160	ug/L	1							
Benzo(b)fluoranthene	ND		0.0160	ug/L	1							
Benzo(k)fluoranthene	ND		0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1							
Chrysene	ND		0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1							
Fluoranthene	ND		0.0320	ug/L	1							
Fluorene	ND		0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1							
1-Methylnaphthalene	ND		0.0640	ug/L	1							
2-Methylnaphthalene	ND		0.0640	ug/L	1							
Naphthalene	ND		0.0640	ug/L	1							
Phenanthrene	ND		0.0640	ug/L	1							
Pyrene	ND		0.0320	ug/L	1							
Carbazole	ND		0.0320	ug/L	1							
Dibenzofuran	ND		0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Rece	overy: 94 %	Limits: 78	3-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			101 %	80)-132 %		"					
LCS (24C0194-BS1)			Prepared	: 03/06/24	12:03 Anal	yzed: 03/06	/24 19:27					
EPA 8270E LVI												
Acenaphthene	1.65		0.0320	ug/L	1	1.60		103	80-120%			
Acenaphthylene	1.56		0.0320	ug/L	1	1.60		98	80-124%			
Anthracene	1.57		0.0320	ug/L	1	1.60		98	80-123%			
Benz(a)anthracene	1.70		0.0160	ug/L	1	1.60		106	80-122%			
Benzo(a)pyrene	1.79		0.0160	ug/L	1	1.60		112	80-129%			
Benzo(b)fluoranthene	1.66		0.0160	ug/L	1	1.60		104	80-124%			
Benzo(k)fluoranthene	1.65		0.0160	ug/L	1	1.60		103	80-125%			
Benzo(g,h,i)perylene	1.60		0.0320	ug/L	1	1.60		100	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Apex Companies, LLC
 Project:
 LKQ Salem

 15618 SW 72nd Ave
 Project Number:
 23009822
 Report ID:

 Tigard, OR 97224
 Project Manager:
 Steve Misner
 A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0194 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (24C0194-BS1)			Prepared	: 03/06/24	12:03 Anal	yzed: 03/06/	/24 19:27					
Chrysene	1.49		0.0160	ug/L	1	1.60		93	80-120%			
Dibenz(a,h)anthracene	1.54		0.0160	ug/L	1	1.60		96	80-120%			
Fluoranthene	1.59		0.0320	ug/L	1	1.60		99	80-126%			
Fluorene	1.84		0.0320	ug/L	1	1.60		115	77-127%			
Indeno(1,2,3-cd)pyrene	1.67		0.0160	ug/L	1	1.60		104	80-121%			
1-Methylnaphthalene	1.71		0.0640	ug/L	1	1.60		107	53-148%			
2-Methylnaphthalene	1.86		0.0640	ug/L	1	1.60		116	48-150%			
Naphthalene	1.62		0.0640	ug/L	1	1.60		101	78-120%			
Phenanthrene	1.58		0.0640	ug/L	1	1.60		99	80-120%			
Pyrene	1.59		0.0320	ug/L	1	1.60		100	80-125%			
Carbazole	1.65		0.0320	ug/L	1	1.60		103	65-141%			
Dibenzofuran	1.62		0.0320	ug/L	1	1.60		101	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Rec	overy: 94 %	Limits: 78	3-134 %	Dilı	tion: 1x					
Benzo(a)pyrene-d12 (Surr)			106 %	80	-132 %		"					
LCS Dup (24C0194-BSD1) EPA 8270E LVI			Prepared	: 03/06/24	12:03 Anal	yzed: 03/06/	/24 20:00					Q-
Acenaphthene	1.64		0.0320	ug/L	1	1.60		102	80-120%	0.7	30%	
Acenaphthylene	1.57		0.0320	ug/L	1	1.60		98	80-124%	0.7	30%	
Anthracene	1.55		0.0320	ug/L	1	1.60		97	80-123%	1	30%	
Benz(a)anthracene	1.68		0.0160	ug/L	1	1.60		105	80-122%	2	30%	
Benzo(a)pyrene	1.76		0.0160	ug/L	1	1.60		110	80-129%	1	30%	
Benzo(b)fluoranthene	1.65		0.0160	ug/L	1	1.60		103	80-124%	0.3	30%	
Benzo(k)fluoranthene	1.63		0.0160	ug/L	1	1.60		102	80-125%	0.9	30%	
Benzo(g,h,i)perylene	1.58		0.0320	ug/L	1	1.60		98	80-120%	2	30%	
Chrysene	1.50		0.0160	ug/L	1	1.60		94	80-120%	0.9	30%	
Dibenz(a,h)anthracene	1.53		0.0160	ug/L	1	1.60		95	80-120%	1	30%	
Fluoranthene	1.56		0.0320	ug/L	1	1.60		98	80-126%	2	30%	
Fluorene	1.85		0.0320	ug/L	1	1.60		116	77-127%	0.8	30%	
Fluorene	1.63		0.0160	ug/L	1	1.60		102	80-121%	2	30%	
Indeno(1,2,3-cd)pyrene	1.05			/T	1	1.60		108	53-148%	1	30%	
	1.72		0.0640	ug/L	1	1.00			22 1 1070		3070	
Indeno(1,2,3-cd)pyrene			0.0640 0.0640	ug/L ug/L	1	1.60		115	48-150%	0.7	30%	
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	1.72											

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC RPD Limits RPD Analyte Result Limit Units Dilution Result % REC Limit Notes Limit Amount Batch 24C0194 - EPA 3511 (Bottle Extraction) Water LCS Dup (24C0194-BSD1) Prepared: 03/06/24 12:03 Analyzed: 03/06/24 20:00 Q-19 97 Pyrene 1.56 0.0320 ug/L 1.60 80-125% 2 30% Carbazole 1.62 0.0320 1.60 101 65-141% 2 30% ug/L 1 Dibenzofuran 0.0320 ug/L 1.60 30% 1.61 1 101 76-121% 0.3 Surr: Acenaphthylene-d8 (Surr) Recovery: 94 % 78-134 % Dilution: 1x Limits: Benzo(a)pyrene-d12 (Surr) 106 % 80-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 24C0582 - Matrix Match	ed Direct	Inject					Wa	ter				
Blank (24C0582-BLK1)			Prepared	: 03/16/24	10:03 Anal	yzed: 03/16	/24 20:59					
EPA 6020B (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Selenium	ND		2.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
LCS (24C0582-BS1)			Prepared	: 03/16/24	10:03 Anal	yzed: 03/16	/24 21:06					
EPA 6020B (Diss)												
Arsenic	55.3		1.00	ug/L	1	55.6		100	80-120%			
Barium	55.8		1.00	ug/L	1	55.6		101	80-120%			
Cadmium	57.2		0.200	ug/L	1	55.6		103	80-120%			
Chromium	53.6		2.00	ug/L	1	55.6		96	80-120%			
Lead	56.4		0.200	ug/L	1	55.6		101	80-120%			
Mercury	1.07		0.0800	ug/L	1	1.11		96	80-120%			
Selenium	27.7		2.00	ug/L	1	27.8		100	80-120%			
Silver	27.5		0.200	ug/L	1	27.8		99	80-120%			
Duplicate (24C0582-DUP1)			Prepared	: 03/16/24	10:03 Anal	yzed: 03/16	/24 21:18					
QC Source Sample: DUP-1 (A4C	0884-01)											
Arsenic	ND		1.00	ug/L	1		ND				20%	
Barium	17.1		1.00	ug/L	1		16.9			1	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		ND				20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Selenium	ND		2.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	020B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24C0582 - Matrix Matche	d Direct	Inject					Wa	iter				
Matrix Spike (24C0582-MS1)			Prepared:	: 03/16/24	10:03 Ana	lyzed: 03/16	/24 21:31					
QC Source Sample: DW (A4C0884	-02)											
EPA 6020B (Diss)												
Arsenic	56.4		1.00	ug/L	1	55.6	1.10	100	75-125%			
Barium	58.8		1.00	ug/L	1	55.6	1.94	102	75-125%			
Cadmium	57.0		0.200	ug/L	1	55.6	ND	103	75-125%			
Chromium	54.2		2.00	ug/L	1	55.6	ND	97	75-125%			
Lead	55.7		0.200	ug/L	1	55.6	ND	100	75-125%			
Mercury	1.08		0.0800	ug/L	1	1.11	ND	97	75-125%			
Selenium	27.3		2.00	ug/L	1	27.8	ND	98	75-125%			
Silver	27.7		0.200	ug/L	1	27.8	ND	100	75-125%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Tigard, OR 97224Project Manager:Steve Misner

Report ID: A4C0884 - 03 20 24 1152

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24C0330							
A4C0884-01	Water	NWTPH-Dx LL	03/01/24 14:28	03/11/24 06:05	1010mL/2mL	1000mL/2mL	0.99
A4C0884-02	Water	NWTPH-Dx LL	02/29/24 15:22	03/11/24 06:05	1050mL/2mL	1000mL/2mL	0.95
A4C0884-03	Water	NWTPH-Dx LL	02/29/24 14:50	03/11/24 06:05	1020mL/2mL	1000mL/2mL	0.98
A4C0884-05	Water	NWTPH-Dx LL	02/29/24 10:30	03/11/24 06:05	1010mL/2mL	1000mL/2mL	0.99
A4C0884-06	Water	NWTPH-Dx LL	02/29/24 12:50	03/11/24 06:05	960mL/2mL	1000mL/2mL	1.04
A4C0884-07	Water	NWTPH-Dx LL	02/29/24 13:57	03/11/24 06:05	1000mL/2mL	1000mL/2mL	1.00
Batch: 24C0443							
A4C0884-04RE2	Water	NWTPH-Dx LL	03/01/24 14:08	03/13/24 06:27	1000mL/2mL	1000mL/2mL	1.00

	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24C0069							
A4C0884-01	Water	NWTPH-Gx (MS)	03/01/24 14:28	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-02	Water	NWTPH-Gx (MS)	02/29/24 15:22	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-03	Water	NWTPH-Gx (MS)	02/29/24 14:50	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-04	Water	NWTPH-Gx (MS)	03/01/24 14:08	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-05	Water	NWTPH-Gx (MS)	02/29/24 10:30	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-06	Water	NWTPH-Gx (MS)	02/29/24 12:50	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-07	Water	NWTPH-Gx (MS)	02/29/24 13:57	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00

		Selected Vo	latile Organic Compo	unds by EPA 8260D)		
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24C0069							
A4C0884-01	Water	EPA 8260D	03/01/24 14:28	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-02	Water	EPA 8260D	02/29/24 15:22	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-03	Water	EPA 8260D	02/29/24 14:50	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-04	Water	EPA 8260D	03/01/24 14:08	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-05	Water	EPA 8260D	02/29/24 10:30	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-06	Water	EPA 8260D	02/29/24 12:50	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00
A4C0884-07	Water	EPA 8260D	02/29/24 13:57	03/04/24 11:15	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC

15618 SW 72nd Ave

Project Number: 23009822

Tigard, OR 97224

Project Manager: Steve Misner

Report ID: A4C0884 - 03 20 24 1152

SAMPLE PREPARATION INFORMATION

	Pol	yaromatic Hydrocarb	ons (PAHs) by EPA	8270E (Large Volur	ne Injection)		
Prep: EPA 3511 (Bo	ttle Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24C0194							
A4C0884-01	Water	EPA 8270E LVI	03/01/24 14:28	03/06/24 12:03	125.09mL/5mL	125mL/5mL	1.00
A4C0884-02	Water	EPA 8270E LVI	02/29/24 15:22	03/06/24 12:03	126.65mL/5mL	125mL/5mL	0.99
A4C0884-03	Water	EPA 8270E LVI	02/29/24 14:50	03/06/24 12:03	104.79mL/5mL	125mL/5mL	1.19
A4C0884-04	Water	EPA 8270E LVI	03/01/24 14:08	03/06/24 12:03	126.34mL/5mL	125mL/5mL	0.99
A4C0884-05	Water	EPA 8270E LVI	02/29/24 10:30	03/06/24 12:03	125.06mL/5mL	125mL/5mL	1.00
A4C0884-06	Water	EPA 8270E LVI	02/29/24 12:50	03/06/24 12:03	115.71mL/5mL	125mL/5mL	1.08
A4C0884-07	Water	EPA 8270E LVI	02/29/24 13:57	03/06/24 12:03	112.37mL/5mL	125mL/5mL	1.11

		2.000	ed Metals by EPA 6	0202 (101 1110)			
Prep: Matrix Match	<u>ed Direct Inject</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24C0582							
A4C0884-01	Water	EPA 6020B (Diss)	03/01/24 14:28	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00
A4C0884-02	Water	EPA 6020B (Diss)	02/29/24 15:22	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00
A4C0884-03	Water	EPA 6020B (Diss)	02/29/24 14:50	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00
A4C0884-04	Water	EPA 6020B (Diss)	03/01/24 14:08	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00
A4C0884-05	Water	EPA 6020B (Diss)	02/29/24 10:30	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00
A4C0884-06	Water	EPA 6020B (Diss)	02/29/24 12:50	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00
A4C0884-07	Water	EPA 6020B (Diss)	02/29/24 13:57	03/16/24 10:03	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC
Project: LKQ Salem

15618 SW 72nd Ave
Project Number: 23009822

Tigard, OR 97224
Project Manager: Steve Misner
A4

Report ID: A4C0884 - 03 20 24 1152

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

DCNT Sample decanted due to the presence of sediment. Sample bottle not rinsed with solvent.

F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dunnel la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLCProject:LKQ Salem15618 SW 72nd AveProject Number:23009822Report ID:Tigard, OR 97224Project Manager:Steve MisnerA4C0884 - 03 20 24 1152

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

many la finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC

15618 SW 72nd Ave

Project Number: 23009822

Tigard, OR 97224

Project Manager: Steve Misner

Report ID: A4C0884 - 03 20 24 1152

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

many la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 Apex Companies, LLC
 Project:
 LKQ Salem

 15618 SW 72nd Ave
 Project Number:
 23009822
 Report ID:

 Tigard, OR 97224
 Project Manager:
 Steve Misner
 A4C0884 - 03 20 24 1152

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Jumel la frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Apex Companies, LLC
15618 SW 72nd Ave
Tigard, OR 97224

Project: <u>LKQ Salem</u> Project Number: 23009822

Report ID:

Project Manager: Steve Misner A4C0884 - 03 20 24 1152

																		>	るでのつつのこと	×.	25		
Company: Apex Companies		Project	Mgr. S	Project Mgr. S. Mis ner	20.00				Pajor	Project Name: Forwer	17,	Jr.wa		본	1	LKa-Salem		Project #.	23000822	360	225		
Address: 15618 SW72nd Ave., Tigard	1190		76 9	,02 97224		hone:	203	348	396	E OY	mail:	25	9	Misn	er 6	Phone: 603.348.3906 Email: Steve. Misner Gapexcos.com Pro#	00	PO #					
Sampled by: D. Kolpucki	`	`					roces:							- 4	(ALY	ANALYSIS REQUEST	1				101		
Site Location:							<u> </u>				<u> </u>	16		. 2.		K² 6P²	crb						
State OR County Marion	(4505			TAINERS				DW AOC?	0 AOC8	Cs Full List		i-Vols Full Li		는(8) elase	(£1) slatsl	15, Bs, Be, C 10, Cu, Fe, I Mn, Mo, Ni, 11, V, Zn 11, V, Zn 11, V, Zn						əle	
) etaq	LIME	MATRIX	# OE CO	HATWN	HATWN	TH 0978		laH 0328		AIS 0228	8087 bCl	8081 Pes			Sa, Cr., C Ig, Mg,	TCLP M					lold Sam	
DUP-)	3/1	1128	73.5	∞	r	\Diamond	L	X		\uparrow	×	-	┿	×	L ,	I	_					T	+
DW	2/29 1522 GW	522	My	∞	(×	X			×	-		X								_	
MW-1	2/29	2/29 1450 GW	E	∞	<u> </u>	Q		X			V	-		\geq									
. 7	3/1	1408 GW	36	∞	<u> </u>	Ź	V	\geq			X	-	L	X									
MW-3	2/29		SE SE		<u> </u>		<u> </u>	X			×	-	ļ	×								-	
MW-4	2/29	2/29 1250	GW	v		\bigcirc	V	X			×			X									-
MW-5	2/29	7/29 1357	PMP EMP	∞		(X)		X						$ \times $									-
							_					-	-				_				+		-
						+	-			+	+	+		_			_						
Standard Turn Around Time (TAT) = 10 Business Days	Around Ti	me (TAT)= 10 B	usiness 1		\dashv	_			100	PECL	SPECIAL INSTRUCTIONS:		NOIT			╝.		\exists]	1	-	\dashv
	1 Day		2 Day		3 Day	ya.			=:	T	S	3 my	'és	Ť	7	samples for dissolved RC	0	RCKA metals	A M	eta	νi		
TAT Requested (circle)	5 Day	9	Standard		Other:	ļ ij				······································		_	were	g.	ĭ	t pla	Ī	۶ پ					
SAMPLES ARE HELD FOR 30 DAYS	ARE HEL	D FOR 3	0 DAYS							Т													
ignatur: Dond Med graft	Date: 3/1/24	1/24	RECEIVED Signature:	RECEIVED BY: Signature:	.)	`*	Date (Mosto Marci		# 35	RELINQ Signature:	RELINQUISHED BY Signature:	ED 83	2		Date:		RECEIVED BY: Signature:	BY:		Date:		1
Printed Name: A Packi	78 T	9	Philipped Name	Myss. Why	공	3	Ţ	五	12	Pu	Printed Name	Name:				Time:		Printed Name	<u>u</u>		Time:		
Apex Companies			Company:	.id	200	×					Company:	156						Company:					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Companies, LLC 15618 SW 72nd Ave Tigard, OR 97224 Project: LKQ Salem
Project Number: 23009822
Project Manager: Steve Misner

Report ID: A4C0884 - 03 20 24 1152

Client: APEX COMPANIES Element WO#: A4 CD 8849 Project/Project #: FORMER LAG - SGRM 230504822 Delivery Info: Date/time received: 4 1 4 4 6 1 700 By: Delivered by: Apex Client XESS FedEx UPS Radio Morgan SDS Evergreen Other From USDA Regulated Origin? Yes No X Cooler Inspection Date/time inspected: 7 1 4 6 700 By: Delivered by: Apex Client XESS FedEx UPS Radio Morgan SDS Evergreen Other From USDA Regulated Origin? Yes No X Cooler Inspection Date/time inspected: 7 1 2 9 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
Project/Project #: FORMER LAG - SOLEM 2300GR22 Delivery Info: Date/time received: 41 1/4 @ 1700 By: Delivered by: Apex_Client_XESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other_From USDA Regulated Origin? YesNoX Cooler Inspection Date/time inspected: 71 1/2 4 @ 1700 By: Delivered by: Apex_Client_XESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other_From USDA Regulated Origin? YesNoX Cooler Inspection Date/time inspected: 71 1/2 4 @ 1700 By: Delivered by: Apex_Delivered by:
Date/time received: 4 1 4 6 7 6 By: Delivered by: Apex Client YESS FedEx UPS Radio Morgan SDS Evergreen Other From USDA Regulated Origin? Yes No X Cooler Inspection Date/time inspected: 3 7 4 6 7 70 By: Delivered by: Apex Client YESS FedEx UPS Radio Morgan SDS Evergreen Other From USDA Regulated Origin? Yes No X Cooler Inspection Date/time inspected: 3 7 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Delivered by: Apex Client YESS FedEx UPS Radio Morgan SDS Evergreen Other From USDA Regulated Origin? Yes No X Cooler Inspection Date/time inspected: 7/1/2 @ 700 By: 600 By
Delivered by: Apex Client YESS FedEx UPS Radio Morgan SDS Evergreen Other From USDA Regulated Origin? Yes No X Cooler Inspection Date/time inspected: 7/1/2 @ 700 By: 600 By
Cooler Inspection Date/time inspected: 7/1/2 @ 7/1/2 By: DW Chain of Custody included? Yes X No Signed/dated by client? Yes X No Unsure (email RegSoils) Contains USDA Reg. Soils? Yes No X Unsure (email RegSoils) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler # Temperature (°C) 2 9 3 1
Chain of Custody included? Signed/dated by client? Yes No Unsure (email RegSoils) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler # Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: No Comments:
Chain of Custody included? Signed/dated by client? Yes No Unsure (email RegSoils) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler # Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: No Comments:
Signed/dated by client? Yes No Unsure (email RegSoils) Contains USDA Reg. Soils? Yes No Unsure (email RegSoils) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler # Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why: Creen dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: No Comments:
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #6 Cooler #6 Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: Yes/No All samples intact? Yes No Comments:
Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: All samples intact? Yes No Comments:
Bottle labels/COCs agree? Yes \(\sum \) No Comments:
COC/container discrepancies form initiated? Yes No
Containers/volumes received appropriate for analysis? Yes No Comments:
Do VOA vials have visible headspace? Yes No NA NA Comments Sed 3/3 MW-3 AXX for FOX 50 HIM Water samples: pH checked: Yes No NA pH appropriate? Yes No NA pH ID: AZ3II Comments:

Apex Laboratories