

STORM WATER SOURCE CONTROL EVALUATION WITH SOURCE CONTROL MEASURES PERFORMANCE MONITORING

Lampros Steel

9040 North Burgard Way Portland, Oregon 97203

Agency Information NPDES 1200-Z Permit DEQ File No. 125660 EPA Permit # ORR127248 ECSI File No. 2441

Prepared for:

Johnson-Lampros Warehouse LLC

9040 North Burgard Way Portland, Oregon 97203

Issued on:

April 5, 2024

Project No. 1355-19001-02

Storm Water Source Control Evaluation with Source Control Measures Performance Monitoring

Report for:

Lampros Steel

9040 North Burgard Way Portland, Oregon 97203

Has been prepared for the sole benefit and use of our Client:

Johnson-Lampros Warehouse LLC

9040 North Burgard Way Portland, Oregon 97203

and its assignees

Issued April 5, 2024 by:

Victoria Bennett

Victoria Bennett

Principal Environmental Scientist

CERTIFIED
OREGON
LYTHIN DELAVAN GREEN
E2332
CONTREPRING GEON

EXP. 2/1/2025

Lynn D. Green, C.E.G. *Principal Engineering Geologist*

ENW i April 5, 2024

Storm Water Source Control Evaluation with Source Control Measures Performance Monitoring

Report for:

Lampros Steel

9040 North Burgard Way Portland, Oregon 97203

Has been prepared for the sole benefit and use of our Client:

Johnson-Lampros Warehouse LLC

9040 North Burgard Way Portland, Oregon 97203

and its assignees

Issued April 5, 2024 by:

Victoria Bennett

Principal Environmental Scientist

Lynn D. Green, C.E.G. *Principal Engineering Geologist*

ENW i April 5, 2024

Table of Contents

1.0	Intro	Introduction			
	1.1	Purpose			
	1.2	Source Control Objectives			
	1.3	Regulatory Framework			
	1.4	Report Organization			
2.0	Site Background				
	2.1	Site Description	2		
	2.2	Description of Storm Water Conveyance System			
	2.3	Site Ownership and Operating History			
	2.4	Regulatory Histo	4		
	2.5	Previous Investig	4		
		2.5.1 Previous	Source Control Evaluation	4	
		2.5.2 NPDES 1	200-Z Permit Sampling	5	
		2.5.3 Subsurfa	ace Investigations	6	
	2.6	Implementation	6		
		2.6.1 Under P	revious Ownership	6	
		2.6.2 Under C	urrent Ownership	7	
		2.6.3 Addition	al Source Control Measures – 2021	8	
3.0	Potential Sources and Contaminants of Interest			9	
	3.1	Evaluation of Potential Contaminant Migration Pathways			
	3.2	Potential Sources			
	3.3	Contaminants of Interest			
4.0	Ongo	ng Storm Water N	lanagement Measures	11	
5.0	Data	Data Collection and Interpretation			
	5.1	Storm Water Sampling		12	
		5.1.1 Conveya	nce Line Cleaning	12	
		5.1.2 Sampling	g Objectives and Framework	12	
		5.1.3 Docume	ntation	13	
	5.2	Data Summary		14	
	5.3	Data Interpretat	14		
		5.3.1 Method	Detection Level and QA/QC Issues	14	
		5.3.2 SLV Exce	edances	15	
		5.3.3 Discussion	on	17	
6.0	Sourc	e Control Measure	95	17	

7.0	Source Control Evaluation		
	7.1	Data Evaluation	18
	7.2	Other Lines of Evidence	19
8.0	Findi	ngs and Conclusions	20
9.0	Limit	ations	23

List of Tables, Figures and Attachments

Tables (in text)

- 7-1 Storm Event Data
- 7-2 TEQ Values

Tables (after text)

- 1 Summary of Analytical Data, Storm Water
- 2 Summary of Analytical Data for Dioxins and Furans, Storm Water

Figures (after text)

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Storm Water System
- 4 Storm Water Conveyance Map (Distal)

Appendices (after text)

- A Precipitation Hydrographs
- B Laboratory Analytical Results
- C Comparison of Detected Storm Water Sample Analytical Results to Typical Industrial Sites

Acronyms and Abbreviations

bgs below ground surface

BMPs best management practices

Client Johnson-Lampros Warehouse LLC (JLW)

COI constituent of interest

COPCs constituents of potential concern

ECSI Environmental Cleanup Site Information

ENW EVREN Northwest, Inc.

EPA US Environmental Protection Agency

JSCS Joint Source Control Strategy
LUST Leaking Underground Storage Tank

µg/L micrograms per liter
mg/L milligrams per liter
NFA no further action

NPDES National Pollutant Discharge Elimination System ODEQ Oregon Department of Environmental Quality

PAHs polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyl

Report Storm Water Source Control Measures Performance Monitoring Report

SCE Source Control Evaluation
SCMs source control measures
SLV screening level value
TEF Toxicity Equivalency Factor

TSS total suspended solids
VOC volatile organic constituent

Work Plan ENW's May 2021 Work Plan for Storm Water Source Control Measure and Performance

Monitoring

1.0 Introduction

At the request of Johnson-Lampros Warehouse LLC (JLW; Client), EVREN Northwest, Inc. (ENW) has prepared this **Storm Water Source Control Evaluation with Source Control Measures Performance Monitoring** (Report) for the Lampros Steel facility located at 9040 North Burgard Way, Portland, Oregon (subject site; see Figures 1 and 2).

1.1 Purpose

This Report presents the results of a 2023 storm water source control evaluation (SCE) for the subject site. This SCE was performed in response to a request by Oregon Department of Environmental Quality (ODEQ) to identify, evaluate, and control sources of contamination that may reach the Willamette River in a manner consistent with ODEQ's Guidance for Evaluating the Stormwater Pathway at Upland Sites.¹

As described in Section 2, previous SCEs were conducted by others, resulting in the implementation of source control measures (SCMs). Following complete implementation of the SCMs, ENW conducted performance monitoring according to the protocol methods described in their ODEQ-approved Work Plan.² This Report provides a basis for determining source control effectiveness through the results of performance monitoring.

1.2 Source Control Objectives

The objective of this storm water SCE is to demonstrate that existing and potential sources of contamination at the site have been addressed and no additional characterization or source control measures are needed at the site.

1.3 Regulatory Framework

In May 2011, Lampros Steel entered into a Voluntary Agreement with the ODEQ to conduct a SCE of the storm water pathway at its property.³ In May 2021, ENW submitted a Work Plan² for SCMs and performance monitoring which ODEQ approved.

This Report follows ODEQ's *Guidance for Evaluating the Stormwater Pathway at Upland Sites*, dated January 2009 (updated October 2010).

1.4 Report Organization

This Report is organized to be generally consistent with ODEQ's *Template for a Stormwater Source Control Evaluation Report*. ⁴ Specifically, this report includes: an introduction, a discussion of the site background, implementation of source control measures, an examination of potential sources and contaminants of

¹ ODEQ, January 2009. Guidance for Evaluating the Stormwater Pathway at Upland Sites (updated October 2010).

² ENW, May 27, 2021. Work Plan for Storm Water Source Control Measures and Performance Monitoring, Lampros Steel, 9040 North Burgard Way, Portland, Oregon 97203.

³ ODEQ, March 10, 2011. Letter agreement for a source control evaluation of the storm water pathway at Lampros Steel (ECSI #2441).

⁴ https://www.oregon.gov/deq/FilterDocs/cu-stormwaterSitesAppC.pdf

interest, an evaluation of discharge pathways, presentation of ongoing storm-water management measures, the results of the source control evaluation, and findings and conclusions.

2.0 Site Background

2.1 Site Description

The subject site is a 25.2-acre parcel of industrial property located in an industrial area of North Portland, Oregon. The site lies 2,800 feet east of the Willamette River and approximately 2.7 miles upstream (south) of its confluence with the Columbia River. The site is bordered to the north by N Burgard Way, to the south by N Sever Road, to the west by industrial properties, and to the east by N Time Oil Road and N Lombard Street. The City of Portland has zoned the subject property IH – Heavy Industrial. All adjacent properties are similarly zoned IH – Heavy Industrial. The subject site is shown relative to surrounding physical features on Figure 1. The subject site layout and adjacent properties are shown on Figure 2. The storm water system is shown on Figure 3.

Lampros Steel provides specialty structural steel warehousing from approximately 13.5-acres of the approximately 25-acre property (Figure 3). No steel manufacturing takes place at the site, only loading/unloading, and storage. Manufactured steel products are transported to and from the site using either semi-trailers or rail (two rail spurs are present on the southwest portion of the site). Onsite loading and unloading of manufactured steel are completed by hydraulic forklift. Other supplemental industrial activities include some value-added processing (steel sawing and cambering services), and equipment maintenance and fueling (described below). A covered fuel station, designed to minimize exposure to storm water, is present in the central eastern area of the site.

Exterior areas are mostly used for storage of structural steel products. Shippers Transport Express leases a 6-acre portion of the subject site for storing trailers and conducts some routine trailer maintenance, specifically: minor brakes repair, replacing wheel/tire assemblies with preassembled wheel/new tire assemblies, electrical service, air pressure testing, lockdown and landing gear service (see Figure 3)

The subject site is located within the US Geological Survey Linnton, Oregon 7.5-minute quadrangle, at an approximate elevation of 31 feet above mean sea level (see Figure 1). The subject property is generally level and the surrounding area slopes gently to the northwest and northeast. The site lies slightly lower than industrial properties to the north, south and west, and significantly lower than roadways to the east.

Ground water on site is expected to be less than 10 feet below ground surface according to previous environmental investigations on site and was observed to be at approximately eight (8) feet depth during most shallow soil investigation.⁵

2.2 Description of Storm Water Conveyance System

Please refer to Figure 3 – Storm System. The current storm water conveyance system was installed as part of the SCMs being evaluated in this report. For details regarding installation see Section 2.6.

The subject site is one large drainage basin that is greater than 90 percent impervious. A small pervious area of land is present along the eastern property boundary where storm water infiltrates the ground

_

⁵ ENW, November 4, 2020. *Shallow Soil Investigation*. Lampros Steel Property.

surfaces or flows to paved areas and is directed into catch basins. In two areas, barriers have been installed to prevent surface flow run-on from offsite sources at two locations:

- An asphalt berm located along N. Burgard way on the northeastern property boundary.
- A concrete retention wall along the western property boundary where an electrical substation is present.

Storm water collection is accomplished via 29 catch basins, two trench drains and roof drains located on the south side of the building. Lynch-style catch basins provide pre-treatment by trapping debris and sediment.

All water entering the storm water collection system is conveyed to a storm water management vault at the southwestern property margin for treatment prior to discharge offsite. Treatment uses PerkFilterTM cartridges. The PerkFilter is a media-filled cartridge filtration device designed to capture and retain sediment, gross solids, metals, nutrients, hydrocarbons, and trash and debris. Below is a general schematic of the storm water quality vault.

Discharge from the storm water management vault is conveyed to a manhole directly adjacent to the vault (storm water sampling location) and then to a second manhole where it joins offsite storm water⁶ immediately prior to leaving the site and entering the City of Portland Bureau of Environmental Service (BES) storm system. In the BES storm sewer water is conveyed a short distance to discharge to Outfall WR-123 into the Willamette River at the International Slip (IT Slip), which is approximately 600 feet west of the subject site (see Figure 4).

The storm water system on site, including primary source control measures and best management practices, are described in detail in the *Storm Water Pollution Control Plan*⁷ prepared by ENW.

_

⁶ Storm water from off-site is conveyed underground in a pre-existing storm system across the subject site at the southern boundary and is routed to the discharge point on the southwestern property margin. It is important to note that off-site storm water does not comingle with onsite storm water until after the monitoring point.

⁷ ENW, May 2022. Storm Water Pollution Control Plan, Johnson-Lampros Warehouse, 9040 North Burgard Way, Portland, Oregon.

2.3 Site Ownership and Operating History

The subject site was vacant marshland until the late 1940's, when it was filled and developed with a structure in the southeast corner of the site. Based on information reported by others, the site had been undeveloped until the mid-1940s, when a small building was constructed at the south end of the property and used as storage for World War II military operations at the nearby Port of Portland Terminal. After World War II, the site was used as storage space by several industrial tenants and as part of a larger industrial park. By the early 1960s, the previously existing structure on site had been removed. The building currently on site was constructed in the early 1980s and has consistently been used as a warehouse, with a crane and outdoor open-air storage, up through 2010.

Currently, Lampros Steel provides specialty structural steel warehousing. No steel manufacturing takes place at the site, only loading/unloading, and storage. Manufactured steel products are transported to and from the site using either semi-trailers or rail (two rail spurs are present on the southwest portion of the site). Onsite loading and unloading of manufactured steel is completed by hydraulic forklift. Other supplemental industrial activities include some value-added processing (steel sawing and cambering services), and equipment maintenance and fueling (described below).

2.4 Regulatory History

2010. The site is listed on ODEQ's Leaking Underground Storage Tank (LUST) database (LUST File No. 26-10-0019). ODEQ has issued a No Further Action (NFA) for the petroleum release discovered in 2010. It should be noted that although this LUST listing is associated with the address 12005 N Burgard Way, it relates to a former fuel island on the subject site that the offsite property at 12005 N Burgard Way operated.

2011. Lampros Steel entered into a Voluntary Agreement with ODEQ in May 2011 to conduct a SCE of the storm water pathway at its property. ODEQ has assigned the subject site Environmental Cleanup Site Information (ECSI) Site #2441.

2.5 Previous Investigations

2.5.1 Previous Source Control Evaluation

Since entering into the 2011 Voluntary Agreement, Lampros Steel:10

- Completed several investigations of contaminants of interest (COIs) in storm water runoff and storm drain solids on the Lampros property.
- Implemented a series of responsive storm water best management practices (BMPs).

ENW 4 April 5, 2024

⁸ Adapt Engineering, Inc., September 20, 2010. *Phase I Environmental Site Assessment: Lampros Steel – 9040 North Burgard Way*

⁹ ODEQ, March 10, 2011. Letter agreement for a source control evaluation of the storm water pathway at Lampros Steel (ECSI #2441).

¹⁰ Integral Consulting Inc., August 9, 2019. *Draft Stormwater Source Control Evaluation,* Lampros Steel, 9040 N Burgard Way, Portland, Oregon. Prepared for Lampros Properties Portland, Oregon.

- Submitted a SCE letter report prepared by SLR International Corporation to ODEQ in September 2015.¹¹ ODEQ's January and March 2017 response letters required that Lampros Properties prepare and submit a work plan identifying additional storm water SCE and source control measures (SCMs) to meet the objectives of the Voluntary Agreement.
- Submitted a storm water source control work plan prepared by Integral Consulting Inc. to ODEQ in May 2017.¹²
- Submitted a Draft SCE report¹⁰ prepared by Integral Consulting to ODEQ in August 2019 that summarized source control work completed in accordance with the work plan. According to Integral Consulting:

Storm water and catch basin solids¹³ analytical data collected in accordance with the work plan, in addition to data collected prior to 2017, sufficiently characterize storm water-related COIs for the property for identifying and estimating potential SCM(s).

Submitted a storm water source control work plan prepared by ENW to ODEQ in May 2021.²

Sampling activities conducted for the previous SCE process occurred between 2012 and 2018 and included both catch basin sediment sampling and storm water sampling. Results of this work are described in the August 2019 *Draft Stormwater Source Control Evaluation* report prepared by Integral Consulting.¹⁰ Based on these results, total suspended solids (TSS), polynuclear aromatic hydrocarbons (PAHs), nickel, and chromium were retained as constituents of concern in storm water at the subject site.

2.5.2 NPDES 1200-Z Permit Sampling

Storm water sampling activities have also been conducted in accordance with the site's National Pollutant Discharge Elimination System (NPDES) 1200-Z permit. Under JLW's ownership, storm water sampling results have been submitted to ODEQ from storm water sampling year 2018-2019 up through the third quarter of the 2022-2023 sampling year. The subject site recently received a waiver from ODEQ that allows them to stop sampling storm water as part of their NPDES 1200-Z permit until the 2025-2026 storm water sampling year. Discharge monitoring reports have included analytical results and documentation of any deviations from permit requirements. Storm water sample collection is required by permit to represent 'first flush' samples.

_

SLR International Corporation, September 8, 2015. Source Control Evaluation Report Lampros Properties, 9040 N Burgard Way, Portland, Oregon. Prepared for Lampros Properties, Portland, Oregon by SLR International Corporation, West Linn, Oregon.

¹² Integral Consulting Inc., May 18, 2017. *Stormwater Source Control Work Plan*, Lampros Steel, 9040 N Burgard Way, Portland, Oregon. Prepared for Lampros Properties Portland, Oregon.

¹³ Due to the manner in which sediment was assessed (sampling directly from catch basins), this prior assessment likely over-estimates contributions of sediment in storm-water discharge since only suspended sediment would be discharged.

2.5.3 Subsurface Investigations

The complete subsurface investigation history of the site can be referenced in the following documents:

- Phase I Environmental Site Assessment, prepared by Adapt Engineering for Lampros Steel, September 20, 2010.
- *Soil Matrix Closure Report* (LUST File No. 26-10-0019), prepared by Construction and Environmental Services for Schnitzer Investment Corporation, January 2010.
- *Phase II Environmental Site Assessment*, prepared by Cascadia Associated, Inc. for Lampros Steel, April 25, 2019.
- *Shallow Soil Investigation*, prepared by ENW for Johnson-Lampros Warehouse, LLC in November 2020.

ODEQ issued a No Further Action (NFA) for the petroleum release discovered in 2010.

In 2019, Cascadia advanced 10 soil borings across a broad portion of the site including one boring at the former and current fueling facilities. Soil and ground water samples were collected and analyzed for storm water COIs.

The findings indicated that constituent concentrations in soil are protective of human health at the site. Several chemicals in ground water exceeded risk-based concentrations for *Ingestion & Inhalation from Tap Water*; however, this exposure pathway is likely incomplete at the site.

An evaluation of risk to the Willamette River indicated no risk via hazardous substances migrating in ground water due to low concentrations detected and distance to the International Slip. Soil impacts were determined to pose a limited risk to the Willamette River if storm water is exposed to soil that contains hazardous substances since exposure of contaminants in buried soil or by migrations of contaminated soil could cause chemical concentrations to exceed NPDES 1200-Z storm water permit benchmarks.

Shallow composite samples from 0 to 3 feet below ground surface (bgs) and 3 to 8 feet bgs were collected in areas proximate to the subject building and analyzed for total petroleum hydrocarbons and select total metals as part of the 2020 Shallow Soil Assessment performed by ENW. The levels of analyzed constituents in 10 samples did not exceed conservative human health risk-based concentrations under the most-stringent land use scenario (i.e., residential). Therefore, detected constituent concentrations in soil do not pose a significant or unacceptable human health risk and do not warrant management during any future excavation activities.

2.6 Implementation of Source Control Measures

2.6.1 Under Previous Ownership

Source control measures and BMPs implemented prior to JLW's ownership are described by Integral Consulting in 1) their August 2019 *Draft Stormwater Source Control Evaluation* report, 2) their NPDES 1200-Z Tier I corrective action reports and include:

- Storm water catch basin and conveyance line cleaning.
- Installation of berms and a concrete barrier to prevent run-on from adjacent properties.

- Catch basin retrofits, including the installation of Clean Way filters in the northeast and northwest drainage basins (catch basins CB-1, CB-6, CB-7, CB-9, CB-11, and CB-13 on Figure 3).
- Asphalt cleaning and asphalt patching in areas of heavily degraded asphalt.
- Implementation of BMPs (see referenced document for the complete list).
- Surface sweeping to reduce sediments.
- Filtration booms/bags place around catch basins.

2.6.2 Under Current Ownership

ENW is aware of sustained efforts to address storm water quality implemented by the current property owner (JLW) beginning in Fall 2019 through the NPDES 1200-Z requirements.

- In late 2019, the site's *Storm Water Pollution Control Plan* was completely revised and written to address City of Portland BES comments. This included:
 - A thorough review and update of BMPs being used at the site and implementation of BMPs designed to address all requirements of the NPDES 1200-Z permit.
 - A program of employee education and consulting support for monthly site inspections designed to look for potential storm water impacts.
 - Dividing the site into four different sub-basins allowing for more focused source control solutions and performance monitoring.
 - Preventative maintenance schedules and procedures.
 - Site-specific monthly and annual site inspection forms, as well as storm system maintenance documentation forms.
 - Requiring scrap steel bins and recycling/waste dumpsters to be covered and located away from catch basins.
 - o Prohibiting vehicle cleaning, maintenance, and repair activities.
 - Monthly sweeping to remove sediment and debris that might otherwise be transported to the storm water system including vacuuming of paved surfaces in and near trucktravelled areas.
 - Tracking routine cleaning of storm water catch basins and inserts to prevent buildup of silt, leaves, and other debris.
 - o Involved all exterior personnel to immediately identify, contain, report, and remove accidental spills.
 - Required annual training of employees in BMPs along with training upon any new hire.
- In November 2019 installation of Krystar filter inserts in all catch basins in the southern drainage basin (see Figure 3). In December 2019 installation of a Krystar catch basin insert in CB-6.
- In November 2019, contracted with a new pavement sweeping company.
- In December 2019, increased catch basin cleaning frequency to at least every two months.

- In March 2020, catch basins CB-27 and CB-30 were replaced (upgraded).
- In April 2020, a camera survey was conducted to evaluation the condition (and scaling) of storm water conveyance pipes.
- In Summer 2020, areas where storm water flow-on from adjoining properties were mitigated with additional curb, berms or similar.
- In Summer 2020, opened conversations with adjacent property owners regarding re-routing storm flow from their properties, as applicable.
- Ongoing monthly sweeping and monthly cleaning of catch basins on site.
- Engineering design of a phased NPDES 1200-Z Tier II Corrective Action Response (described in next section).

2.6.3 Additional Source Control Measures – 2021

Additional SCMs, consistent with the NPDES 1200-Z Tier II Corrective Action Plan for the subject site, were implemented on site in a phased approach in 2021. These SCMs included replacement of all storm water catch basins and conveyance lines at the site and treatment of storm water by a properly sized (engineered) Oldcastle PerkFilterTM storm water treatment vault. Figure 3 shows the current storm water conveyance system on site following implementation of additional source control measures. This phased approach was carried out as follows:

- Phase 1 (Winter/Spring 2021). New catch basins and conveyance lines were installed in the northwest drainage basin. A PerkFilter[™] treatment system (sized for discharge from both Phase 1 and Phase 2 construction) was installed near the existing discharge point.
- **Phase 2** (Summer 2021).
 - New catch basins, trench drains, and conveyance lines were installed in the balance of exterior areas (north, east, and south) of the subject property and all storm water discharge from the site (including roof drains) was connected to the PerkFilter™ treatment vault.
 - Storm water lines that have historically introduced offsite contributions from properties to the north were disconnected and rerouted under a separate permit.

The prior storm system components that Lampros Steel discharged into was abandoned by Pinnacle Engineering as follows:

- Existing pipe that was encountered and cut was plugged with concrete/slurry mix and abandoned in place.
- Existing storm manholes were abandoned in place by plugging all inlets/outlets with a concrete/slurry mix, removal of the manhole cone and lid, backfilled with 1-inch aggregate rock and finished to the surface with pavement.
- Storm water from off-site is conveyed underground in the pre-existing storm system across the subject site at the southern boundary. The new storm water system installed in 2021 connects to this line at the southwestern property margin, after the monitoring location.

STORM WATER SOURCE CONTROL EVALUATION WITH SOURCE CONTROL MEASURES PERFORMANCE MONITORING Lampros Steel, Portland, Oregon

Since completion of the 2021 source control measure implementation, offsite sources have been controlled (through elimination) and onsite sources are controlled by treatment via the PerkFilterTM treatment vault prior to discharge.

3.0 Potential Sources and Contaminants of Interest

3.1 Evaluation of Potential Contaminant Migration Pathways

Storm Water. The primary pathway identified for contaminants to migrate to the Willamette River is through the storm water conveyance system (Discharge Point 001 on Figures). Any surface erosion or hazardous material spills have the potential to leave the site via the storm water conveyance system.

Both the SCE process and NPDES 1200-Z sampling have identified TSS as exceeding applicable screening levels, and therefore requiring source control. Integral Consulting noted that the additional COIs they identified were only elevated in samples with elevated TSS.¹²

Ground Water. ODEQ's *Guidance for Evaluating the Stormwater Pathway at Upland Sites*¹ requires evaluation of the potential migration of impacted ground water to the Willamette River. In April 2019, Cascadia Associates, LLC, conducted a *Phase II Environmental Site Assessment*.¹⁴

They reported:

- In general, a brown medium sand present at depths of 2 to 8 feet bgs inferred to be imported dredged material.
- Beneath this a gray silt with sand was encountered and inferred to be native material.
- Ground water was encountered at approximate depths of 5 to 8 feet bgs.
- The IT Slip of the Willamette River is 600 feet to the west.
- No source area was identified for contaminants that were detected in soil and ground water at
 the site. Rather, very low concentrations of constituents were distributed across the site at
 depths ranging between 1 and 10 feet bgs, suggesting that the imported fill may be the source.
- Certain PAHs and dissolved metals were detected in ground water at concentrations above Portland Harbor Cleanup Levels. Cascadia noted:
 - The ground water samples were collected from temporary borings and not from properly installed and developed monitoring wells. This can result in a higher level of entrained solids in the ground water sample and results are likely biased high.
 - The PAHs in site ground water are unlikely to migrate to the Willamette River at significant concentrations because: (1) PAH concentrations are relatively low at the site, and (2) concentrations are expected to further attenuate between the site and the Willamette River.
 - With the exception of manganese, dissolved metals that exceeded ground water cleanup levels (chromium, lead and zinc) were detected in only a single sample collected from the southeast corner of the site and weren't detected at downgradient locations from this

point. The data indicates that the site is not a significant source of chromium, lead or zinc to the Willamette River.

 Manganese is ubiquitous in ground water at the site (and at other sites in the Portland Harbor region) indicating that the concentrations of manganese in site ground water is naturally occurring.

Potential pathways for impacted ground water to reach the Willamette River include:

- **Included.** Ground water infiltration of the storm water conveyance system. While this is a potential pathway, it is unlikely that this will occur due to the installation of the new, watertight storm water conveyance system. In the unlikely case that ground water infiltration did occur, the ground water would be treated at the storm water treatment vault prior to discharge.
- Excluded. Ground water migration. Cascadia's evaluation¹⁴ shows that ground water migrating to the Willamette River from the subject site is unlikely to be a significant source of contamination. This is further supported with data collected on the adjacent Schnitzer Steel property, where they concluded "During shoreline groundwater monitoring detailed in Groundwater Investigation Report and Work Plan Addendum¹⁵, groundwater contamination was not observed downgradient of Lampros Steel".
- **Excluded.** Ground water migration through utility corridors. The imported dredge fill where shallow ground water is present is noted to be brown sand, a relatively permeable soil. While migration through utility corridors is possible, it is unlikely that this would be a preferential route given the permeable nature of surrounding soils. Additionally, as noted above, Cascadia's evaluation¹³ concluded that ground water migration is unlikely to be a signification source of contamination to the Willamette River and data collected on the adjacent down-gradient property¹⁵ did not suggest ground-water contaminated downgradient of the subject property.

3.2 Potential Sources

Probable and potential sources of storm water contamination onsite include:

- Solids/particulates associated with steel storage.
- Degraded asphalt.
- Equipment and vehicle movement and parking in exterior areas of the site.

Off-site sources that may contribute to storm water contamination on site include:

- Overland flow of storm water and sediment from adjacent properties.
- Track-on from vehicles entering the property from limited-maintenance private roadways.
- Inundation of the storm water system by turbid Willamette River water during high river stages.
- Particulate matter in dust form settling on the property from nearby roadways and industrial operations.

Adjacent properties are industrial in use and include storage yards to the north, east and west, industrial offices and storage yard to the south, and an electric substation to the northeast. Storm water discharging

¹⁴ Cascadia Associated, Inc., April 25, 2019. *Phase II Environmental Site Assessment*.

¹⁵ Floyd|Snider, September 2023, Groundwater Investigation Report and Work Plan Addendum. Prepared for Schnitzer Steel Industries, Inc.

at Outfall WR-123 into the Willamette River represents comingled storm water from several industrial and commercial properties in the area.

3.3 Contaminants of Interest

Contaminants of interest (COIs) in storm water discharging from the subject site were previously identified and approved by ODEQ.¹⁶ The following COIs in storm water were detected above screening levels during previous SCEs:

- TSS
- PAHs, specifically: acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene and pyrene.
- Total polychlorinated biphenyls (PCBs), as congeners.
- Total metals, specifically: aluminum, arsenic, cadmium, chromium, copper, lead, manganese, silver and zinc.
- Phthalates, specifically bis(2-ethylhexyl)phthalate

Additionally, ODEQ requested the following be included in this evaluation:

• 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) equivalents, per ODEQ, using toxicity equivalents for the following Dioxins and Furans: 2,3,7,8-TCDD/TCDF (tetrachlorodibenzofuran), 1,2,3,7,8-PeCDD/PeCDF, 1,2,3,4,7,8-HxCDD/HxCDF, 1,2,3,6,7,8-HxCDD/HxCDF, 1,2,3,7,8,9-HxCDD/HxCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDD/HpCDF, 1,2,3,4,7,8,9-HpCDF (where Pe = penta, Hx = hexa and Hp = hepta).

4.0 Ongoing Storm Water Management Measures

The following best management practices (BMPs) are employed to minimize pollutant contact with storm water runoff. These practices are outlined in the facility's *Storm Water Pollution Control Plan.*⁷

- Recycling/waste dumpsters are covered and located away from catch basins.
- Vehicle cleaning, maintenance, and repair activities are prohibited.
- Routine inspection of parking areas to collect refuse and identify excessive oil and grease accumulation.
- Monthly sweeping to remove sediment and debris that might otherwise be transported to the storm water system.
- Routine cleaning of storm water features to prevent buildup of silt, leaves, and other debris.
- Routine inspections to identify, contain, report, and remove accidental spills.
- Ongoing maintenance of the storm water collection, conveyance and treatment system following
 City of Portland recommended BMPs for catch basins and trench drains as well as manufacturer

¹⁶ COIs in Integral's Draft SCE included those approved by ODEQ in *a Stormwater Sampling and Analysis Plan* initially prepared in September 2017 and revised in February 2018, at ODEQ's request.

recommendations for the PerkFilter[™] treatment system. Sediment accumulation within the storm water collection features, if any, is removed and disposed of following these BMPs.

• Annual training of employees in BMPs.

5.0 Data Collection and Interpretation

5.1 Storm Water Sampling

5.1.1 Conveyance Line Cleaning

As conveyance lines were installed new as part of the recent SCMs implemented on site, cleaning of the lines was not performed prior to sampling.

5.1.2 Sampling Objectives and Framework

Storm water samples were collected and analyzed following the methodology described in the Work Plan.

Number of Samples Collected. A total of four storm water sampling events were conducted.

Target Storm Event Criteria. Two storm water confirmation samples were collected to represent a first-flush condition and the other two storm water confirmation samples were collected to represent a longer rain event. In accordance with ODEQ guidance, Error! Bookmark not defined. specific conditions necessary to support first-flush sampling include the following:

- Antecedent dry period of at least 24 hours preceding the sample event (as defined by <0.1 inch
 precipitation over the previous 24 hours).
- Minimum predicted rainfall volume of 0.2 inch per storm event.
- Expected duration of storm event of at least three hours.
- Samples collected within the first 30 minutes of observed storm water flow.

One of the first-flush samples (Sampling Event #1) met the above criteria. As allowed by the Work Plan, the second sample considered representative of first-flush sampling (Sampling Event #4) was collected in general accordance with the current NPDES 1200-Z general permit. The sample timing according to the NPDES 1200-Z permit is described below.

Sample the discharge during the first 12 hours of the discharge event, which is a measurable storm event resulting in an actual discharge from a site. If it is not practicable to collect the sample within this period, collect the sample as soon as practicable. Sample collection is not required outside of regular business hours or during unsafe conditions. Regular business hours will be from 8 a.m. to 5 p.m. on weekdays.

Rationale for Selecting Sampling Location. A manhole immediately downstream of the storm water treatment vault was designated as the sampling point (ML001) as this flow represents treated storm water discharge entering the City of Portland storm sewer system.

Rationale for Sample Analysis. The COIs identified in Section 3.3 were selected for analysis. The results of sampling were intended to evaluate the performance of the SCMs in addition to being used for the SCE.

Sample Collection Methodology. Storm water sampling methods were completed consistent with the Work Plan. Grab samples were collected from ML001 using a peristaltic pump and disposable polyethylene tubing lowered into the central portion of the flow stream. Samples were transferred directly into laboratory-supplied containers. The sampler wore disposable nitrile gloves during sampling activities. The sample containers were placed in a cooler with ice and transported to an analytical laboratory under standard chain-of-custody procedures.

5.1.3 Documentation

Sampling Events. Storm water sampling events related to the SCE process were completed on November 22, 2022, December 9, 2022, January 13, 2023, and March 23, 2023. All samples were collected at ML001 when storm water was flowing.

Hydrographs. Precipitation Hydrographs are presented in Appendix A for each of the sampling events.

Presumed Representativeness of the Sampling Results and Additional Information. According to rainfall data gathered from City of Portland's Hydra Network, the four storm events lasted between 6 and 46 hours in duration and produced between 0.16 inches and 1.25 inches of total measurable precipitation. Storm data for each event, including time of onset, duration, total precipitation, and sample times are summarized below in Table 5-1.

Total Precip Beginning of Storm Event 1 Duration Sample Storm Event No. Notes/Observations (hrs) (in) Date Time Date Time #1 11/22/2022 8:15 5.45 0.27 11/22/2022 8:40 Storm water discharging upon arrival #2 12/8/2022 19:00 1.25 12/9/2022 9:30 Storm water discharging upon arrival 46 0.29 #3 1/13/2023 1:00 25 1/13/2023 12:15 Storm water discharging upon arrival #4 3/23/2023 7:00 6 0.16 3/23/2023 11:10 Storm water discharging upon arrival Notes: ¹ Based on data from Shipyard Rain Gauge, 8900 N Sever Road, Portland, OR

Table 5-1. Storm Event Data

A brief summary of the nature of each of the sampling storm events regarding storm event criteria is presented below.

- Storm event #1 (November 22, 2022). The storm event began with steady precipitation around 8:00 am on November 22, 2022, and lasted approximately 6 hours, with a short break in rainfall around 10 to 11 am. A total of 0.27 inches of rain was produced during the storm event. The sample was collected at 8:40 am.
- Storm Event #2 (December 9, 2022). Storm event #2 consisted of several rain events separated by dry periods lasting 1 to 4 hours. The sample was collected at 9:30 am on December 9, 2022, following the third rain event. Storm event #2 lasted approximately 46 hours and produced approximately 1.25 inches of rain. Storm water was flowing upon arrival to the site.
- Storm Event #3 (January 13, 2023). The storm event began with steady precipitation at 1:00 am on January 13, 2023, and lasted 25 hours, with three short breaks in rainfall on the afternoon and night of January 13 ranging from 1 to three hours. A total of 0.29 inches of rain was produced during the storm event. The sample was collected at 12:15 pm. Storm water was flowing upon arrival to the site.

• Storm Event #4 (March 23, 2023). Storm event #4 began at 7 am with a small break in rainfall around 8 to 9 am. The sample was collected at 11:10 am on March 23, 2023, during particularly heavy rainfall. Storm event #4 lasted approximately 6 hours and produced approximately 0.16 inches of rain.

In general, storm and sampling criteria were met during the sampling events, except for Storm Event #4, which saw slightly less rainfall than the required 0.2 inches per storm event. Sampling events #1 and #4 were preceded by a full 24-hour dry period. Based on sample time, Samples #1 and #4 are considered to represent first flush conditions and samples #2 and #3 represent stabilized storm water flow conditions.

During each sampling event, the paved areas of the project site were generally free of debris. Storage, parking, and traveled areas appeared generally clean and in order. Rainfall was present during the sampling activities and storm-water conveyances were observed to have active flow. Before sample collection, the antecedent dry period (less than 0.1 inch of rain in the 24 hours preceding the sampling storm) was met during sampling events #1 and #4.

Deviations from Work Plan. There was one deviation from the Work Plan regarding sampling methodology. The Work Plan called for using a peristaltic pump and disposable polyethylene tubing lowered into the central portion of the flow stream. Instead, samples were collected by using a decontaminated sampling "scoop" lowered into the central portion of the flow stream.

It is our opinion that the analytical data are appropriate for the intended purpose. Data quality exceptions are noted in Appendix B. These limited exceptions do not interfere with the evaluation of source control because consistent and replicated data are available with respect to the COIs.

5.2 Data Summary

Table 1, behind the text, summarizes the analytical results of the four storm water sampling events. All samples were collected at sample location ML001, shown on Figure 3. Laboratory analytical reports are presented as Appendix B. The analytical results for storm-water samples were compared to the Joint Source Control Strategy (JSCS) Portland Harbor Sites screening table located in ODEQ's *Guidance for Evaluating Stormwater Pathway at Upland Sites*.

5.3 Data Interpretation

5.3.1 Method Detection Level and QA/QC Issues

The following constituents had method detection levels exceeding JSCS SLVs:

- Bis(2-ethylhexyl)phthalate, during Sample Event #2: the MLD was 3.2 micrograms per Liter (μ g/L), exceeding the SLV of 2.2 μ g/L. Note this constituent was not detected in the other three samples at or above the MDL of 1.6 μ g/L which is below the SLV.
- PAHs, during Sample Event #2:
 - Benzo(a)anthracene's MDL of 0.2 μg/L only slightly exceeded the SLV of 0.018 μg/L.
 - \circ Benzo(b)fluoranthene's MDL of 0.0.048 μg/L exceeded the SLV of 0.018 μg/L. Note that this constituent was not detected at or above the MDL of 0.01 in Sample Events #1 and #4, and was detected at an estimated concentration of 0.026 μg/L.
 - \circ Benzo(k)fluoranthene's MDL of 0.2 μg/L slightly only exceeded the SLV of 0.018 μg/L.
 - O Dibenz(a,h)anthracene's MDL of 0.2 μg/L slightly only exceeded the SLV of 0.018 μg/L.

Metals:

- \circ Copper's MDL of 5 μg/L exceeded its SLV of 3.6 μg/L during Sample Event #1. During the other three sampling events copper was detected at concentrations ranging from 2.28 to 8.5 μg/L.
- \circ Silver's MDLs of 0.2 µg/L exceeded the SLV of 0.12 µg/L during all four sampling events.

5.3.2 SLV Exceedances

The following constituents had detections exceeding their JSCS SLVs:

- PAHs (all exceedances were order of magnitude <1):
 - \circ Benzo(a)pyrene was detected at up to 0.04 μg/L, exceeding its JSCS SLV during sampling events #2 and #3.
 - \circ Benzo(b)fluoranthene was detected at up to 0.071 μ g/L, exceeding its JSCS SLV during sampling event #3.
 - \circ Benzo(k)fluoranthene was detected at up to 0.026 μ g/L, exceeding its JSCS SLV during sampling event #3.
 - \circ Chrysene was detected at up to 0.058 μ g/L, exceeding its JSCS SLV during sampling events #2 and #3.
 - o Indeno(1,2,3-cd)pyrene was detected at up to 0.025 μ g/L, exceeding its JSCS SLV during sampling events #2 and #3.
 - \circ Pyrene was detected at up to 0.22 µg/L, exceeding its JSCS SLV during sampling events #1 and #4.
- PCBs as congeners were detected at up to $1.1 \times 10^{-2} \, \mu g/L$, exceeding its JSCS SLV during all four sampling events.

Metals:

- \circ Total **aluminum** was detected at up to 780 µg/L, exceeding its JSCS SLV range in samples taken during storm events #2 and #3. The average concentration of total aluminum in storm water discharge exceeded its default background concentration in surface water, suggesting concentrations of total aluminum may be enriched in storm water discharge.
- O Total **arsenic** was detected at up to 32.0 μg/L, exceeding its JSCS SLV in all four sampling events. Total arsenic was highest in samples taken during storm events #1 and #4, where a 24-hour antecedent dry period was present prior to sampling. The average concentration of total arsenic in storm water discharge exceeded its default background concentration in surface water, suggesting concentrations of total arsenic may be enriched in storm water discharge.
- O Total **copper** was detected at up to 14.7 μg/L, exceeding its JSCS SLV during sampling events #2 and #3. The average concentration of total copper in storm water discharge was just below its default background concentration in surface water, suggesting concentrations of total copper are not enriched in storm water discharge.
- Total **lead** was detected at up to 5.62 μ g/L, exceeding its JSCS SLV during sampling events #2 and #3. The average concentration of total lead in storm water discharge was below its default background concentration in surface water, suggesting concentrations of total lead are not enriched in storm water discharge.

- \circ Total **manganese** was detected at up to 646 µg/L, exceeding its JSCS SLV during all sampling events. No background concentration in surface water has been established for total manganese.
- \circ Total **zinc** was detected at up to 90.7 µg/L, exceeding its JSCS SLV during sampling events #2 and #3. The average concentration of total zinc in storm water discharge exceeded its default background concentration in surface water, suggesting concentrations of total zinc may be enriched in storm water discharge.
- 2,3,7,8-TCDD (dioxin), as toxic equivalents, was detected at up to 0.649 picograms per liter, exceeding its JSCS SLV during all four sampling events (see Table 2).

Additional information on protocol used to evaluate dioxins. According to ODEQ's Human Health Risk Assessment Guidance (October 2010), toxicity equivalency factors (TEFs) can be used to evaluate toxic effects of polychlorinated dibenzo-p-dioxins (CDDs), polychlorinated dibenzofurans (CDFs), and co-planar (dioxin-like) PCBs congeners relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). Concentrations of congeners are multiplied by their TEFs to estimate the toxicity of these congeners relative to 2,3,7,8-TCDD; the resulting concentrations may be summed into a total of 2,3,7,8-TCDD toxicity equivalence (TEQ) concentration. The TEQ equation is present below for n compounds with congeners represented by compound i=1:

$$TEQ = \sum_{i=1}^{n} (C_i * TEF_i)$$

Where: TEQ = Toxicity Equivalence

Ci = concentration of the ith individual compound

TEFi = ith compound's TEF

TEF values are provided in the following table:

Table 7-2. TEQ Values

Compound	TEF			
Polychlorinated dibenzo-p-dioxins (PCDDs)				
2,3,7,8-TCDD	1			
1,2,3,7,8-PeCDD	1			
1,2,3,4,7,8-HxCDD	0.1			
1,2,3,6,7,8-HxCDD	0.1			
1,2,3,7,8,9-HxCDD	0.1			
1,2,3,4,6,7,8-HpCDD	0.01			
OCDD	0.0003			
Polychlorinated dibenzofurans (PCDFs)				
2,3,7,8-TCDF	0.1			
1,2,3,7,8-PeCDF	0.03			
2,3,4,7,8-PeCDF	0.3			
1,2,3,4,7,8-HxCDF	0.1			
1,2,3,6,7,8-HxCDF	0.1			
1,2,3,7,8,9-HxCDF	0.1			
2,3,4,6,7,8-HxCDF	0.1			
1,2,3,4,6,7,8-HpCDF	0.01			
1,2,3,4,7,8,9-HpCDF	0.01			
OCDF	0.0003			

Source: van den Berg et al. (2006); WHO's website on dioxin TEFs, available at http://www.who.int/pcs/assessment/tef_update/en/

5.3.3 Discussion

The following data patterns are suggested by the performance monitoring results:

• There was a clear difference between representative 'first flush samples' (Event #1 and Event #4) and the other two samples. Where detected, most (but not all) metal COIs were present at higher concentrations during Event #2 and Event #3. These two events also had the highest TSS concentrations, suggesting a correlation. Interestingly, the two exceptions to this correlation were arsenic and manganese, which reported higher concentrations with the lower TSS concentrations of (Event #1 and Event #4).

The samples were taken after installation of the new storm water system components, including the storm water treatment vaults. The samples are presumed to be representative of storm water leaving the facility after treatment.

6.0 Source Control Measures

No additional source control measures were implemented during the course of performance monitoring for this evaluation.

7.0 Source Control Evaluation

The following sections summarize the evidence used to support our opinion that the storm-water source control at the project site is adequate and that the site does not represent a significant current or future source of contaminant to the Willamette River. Data evaluation and other lines of evidence are discussed below.

7.1 Data Evaluation

Evaluation of Current Storm Water Data with DEQ's Tool for Evaluating Storm Water. ENW first compared the analytical data from the 2022 and 2023 storm-water sampling activities to the charts presented in Appendix E of ODEQ's Upland Guidance document¹ to evaluate if the concentrations of contaminants were representative of typical industrial storm water. Of the 13 constituents with charts, eight of the constituents (arsenic, chromium, copper, lead, zinc, TSS, total PCBs, and total PAHs) were detected in two or more of the four storm water monitoring events and were retained as constituents of potential concern (COPCs) in storm water discharge. Five constituents (cadmium, mercury, nickel, silver, and bis[2-ethylhexyl]phthalate) were not retained as COPCs, since they were either not detected, not considered a COI, or the detected concentrations did not exceed screening criteria.

The typical industrial storm water charts provided by ODEQ identify "a predictable concentration range even when good stormwater management practices are being implemented." The concentrations are charted in a curve, which includes a flat portion and a steep portion. The transition area is called the "knee" of the curve. Concentrations within the flat area of the curve are considered typical of industrial sites, while concentrations higher than the knee may represent elevated concentrations.

The comparison of project site storm water sample analytical results to other industrial sites using the ODEQ tool is presented in Appendix C. Results indicate:

- Seven of the eight constituents evaluated had detected concentrations within the low range of the lower/flatter portions of the curves suggesting that storm water is not being unusually impacted by contaminants at the site and is therefore representative of "typical" industrial storm water.
- Arsenic showed a different pattern. The samples representative of first-flush (Events #1 and #4)
 were above the knee of the typical curve, however samples from Events #2 and #3 had detected
 concentrations within the low range of the lower/flatter portions of the curve.

Manganese, aluminum, and 2,3,7,8-TCDD (dioxin) equivalents were the only constituents above JSCS SLVs, for which an ODEQ curve "knee" range has not been established.

Effect of Implementing SCMs. After implementation of SCMs, most constituents have shown an average decrease in concentration when compared to the average concentration of the 2018, pre-SCM sampling events, as shown in Table 1. No average percent difference was able to be calculated for aluminum, silver, and dioxins, as these constituents were not sampled for as part of the 2018 SCE. The few exceptions to this are briefly discussed below:

 Arsenic: Although average arsenic concentration during post-SCM implementation sampling events was on average higher than the average concentration of arsenic during pre-SCM implementation sampling, total arsenic was at least an order of magnitude below permit benchmark for industrial activity and iron ore subsector storm water permitting in Oregon.

- Manganese: Although average manganese concentration during post-SCM implementation sampling events was on average higher than the average concentration of manganese during pre-SCM implementation sampling, total manganese only exceeds its JSCS SLV by an order of magnitude up to 1. It is important to note that ODEQ has not established curve "knee" range for manganese.
- Anthracene: Anthracene was not detected above laboratory MRLs during sampling events after SCM implementation. Therefore, although average concentrations of anthracene were shown to be higher after SCM implementation when compared to the 2018 pre-SCM implementation SCE sampling, because all post-SCM implementation samples were below laboratory detection limits and below the SLV for Portland Harbor, this is not a cause for concern.
- Fluorene: Fluorene was not detected above its SLV for Portland Harbor during sampling events after SCM implementation. Therefore, although average concentrations of fluorene were shown to be higher after SCM implementation when compared to the 2018 pre-SCM implementation SCE sampling, this is not a cause for concern.
- Naphthalene: Naphthalene was not detected above laboratory MRLs during sampling events
 after SCM implementation. Therefore, although average concentrations of naphthalene were
 shown to be higher after SCM implementation when compared to the 2018 pre-SCM
 implementation SCE sampling, because all post-SCM implementation samples were below
 laboratory detection limits and below the SLV for Portland Harbor, this is not a cause for concern.
- TSS: Average concentrations of TSS were shown to be higher after SCM implementation, when compared to the 2018 pre-SCM implementation SCE sampling. However, levels of TSS in samples collected after SCM implementation remain below the ODEQ Rank Order curve "knee" range.

Additional Discussion. Constituents detected above the SLVs during the source control sampling can sometimes be associated with particulate deposition, which may be an intermittent source to subject site storm water. Additionally, arsenic and manganese were noted to be at elevated levels during sampling that were taken as a "first flush" after at least a 24-hour antecedent dry period. This suggests that a buildup of these metals on the pavement could be a contributing. Similarly, aluminum was above its JSCS SLV in samples taken during storm events #2 and #3, during which TSS was also at its highest levels.

7.2 Other Lines of Evidence

The 2017 EPA Portland Harbor Record of Decision and subsequent sediment sampling indicate that select dioxins/furans congeners are risk drivers of sediment remediation in some areas of the Willamette River. These congeners are identified as 1,2,3,7,8-PeCDD, 2.,3,4,7,8-PeCDF, 2,3,7,8-TCDF, 1,2,3,4,7,8-HxCDF, and 2,3,7,8-TCDD.¹⁷ As shown in Table 2, while a few dioxins/furans congeners have been detected above laboratory method reporting limits in storm water from the subject site, none of the detected congeners include the identified congeners that drive risk (i.e., 1,2,3,7,8-PeCDD, 2.,3,4,7,8-PeCDF, 2,3,7,8-TCDF,

_

¹⁷ ODEQ, Staff Report: Conditional Source Control Decision City of Portland Outfalls Project in Portland Harbor, 2021.

STORM WATER SOURCE CONTROL EVALUATION WITH SOURCE CONTROL MEASURES PERFORMANCE MONITORING Lampros Steel, Portland, Oregon

1,2,3,4,7,8-HxCDF, or 2,3,7,8-TCDD). Therefore, it can be reasonably assumed that storm water from the subject site is not a source of identified dioxins/furans congeners driving risk in the river sediment.

Additionally, the following lines of evidence suggest that contaminants in storm water will be continued to be controlled into the future:

- The subject property is completely covered with impermeable surfaces except for the eastern edge where no industrial activities have taken place.
- All storm water from the site is directed to the storm water treatment vault prior to discharge.
- The storm system and treatment vault are maintained according to manufacturer or City of Portland guidance to prevent the buildup or discharge of COIs in storm water.
- Ongoing implementation of the BMPs described by the SWPCP should continue to effectively control the site's current, typical commercial storm water contaminant sources.
- Any changes to site operations with the potential to impact storm water would be conducted according to ODEQ's NPDES program. At a minimum, changes would require updating the SWPCP thereby ensuring appropriate storm water source control measures are in place.

8.0 Findings and Conclusions

Arsenic concentrations in first-flush samples, while above the ODEQ curve "knee" range for concentrations typical of industrial storm water discharge, was at least an order of magnitude below the 0.34 mg/L (340 μ g/L) permit benchmark for industrial activity and iron ore subsector storm water permitting in Oregon. Given the higher concentrations were noted in first-flush samples, it can be concluded that additional sweeping would help to mitigate elevated levels of arsenic.

Lampros Steel has implemented source control measures and conducted performance monitoring activities at the project site located at 9040 North Burgard Way in Portland, Oregon. These activities were performed in accordance with an ODEQ work plan, ODEQ's *Guidance for Evaluating the Stormwater Pathway at Upland Sites*, dated January 2009 (updated October 2010). The results of these activities indicate the following:

1. Existing and potential facility-related contaminant sources have been identified and characterized.

Potential sources have been fully characterized by investigations performed pursuant to ODEQ-approved work plans. Data evaluation has shown that facility-related COIs (identified in Section 3.3) in storm water are likely sourced from general site operations, and not one specific location or activity.

As presented in Section 7.1, sampling results were compared to the charts presented in Appendix E of ODEQ's Upland Guidance document¹ to evaluate if the concentrations of contaminants were representative of typical industrial storm water. The guidance document indicates:

Industrial stormwater is likely to contain a somewhat predictable list of contaminants within a predictable concentration range even when good stormwater management practices are being implemented.

This is based on the premise that many kinds of industrial materials and activities have the potential to result in minor releases of contaminants, such as petroleum products in drips of oils, greases and fuels used for vehicles and machinery, phthalates off-gassing from paints and PVC piping, and zinc from galvanized building materials. Off-site sources, including highway traffic, operations at neighboring sites and atmospheric deposition, can also contribute to the contaminant load in stormwater runoff from a site.

When COIs detected at concentrations exceeding their JSCS SLV were compared to the charts:

- For constituents with charts, only arsenic, in the two samples representative of 'first flush' conditions, was detected at concentrations exceeding what are considered typical of industrial storm water. However, these arsenic concentrations were also noted to be at least an order of magnitude below what the permit benchmark for industrial activity and iron ore subsector storm water permitting in Oregon. The other two performance monitoring samples had arsenic detections two orders of magnitude lower, suggesting the source of elevated levels of arsenic in storm water is likely general site use with related build up accumulated on paved surfaces between rain events.
- Aluminum, manganese and 2,3,7,8-TCDD (dioxin) equivalents do not yet have charts of typical industrial storm water values established.
 - Detections of aluminum and manganese were not substantially elevated above the JSCS SLV (manganese was up to one order of magnitude and aluminum was less than one order of magnitude) and therefore don't suggest a point source onsite. Interestingly, aluminum was elevated in the two samples with higher TSS, while manganese was elevated in the other two samples representative of 'first flush'.
 - Dioxin detections exceeded the JSCS SLV from one to three orders of magnitude. EPA's Inventory of Dioxin Sources and Environmental Releases¹⁸ lists six primary categories of sources of dioxins: combustion sources, metals smelting, refining and process sources, chemical manufacturing sources, natural sources, and environmental reservoirs. None of the industrial sources described are conducted at the Lampros Steel site, and in particular no metal smelting is conducted onsite. Therefore, the dioxins detected in site storm water are likely from local or regional

1

¹⁸ https://www.epa.gov/dioxin/inventory-dioxin-sources-and-environmental-releases

deposition sources (e.g. vehicle engine combustion exhaust, residential wood combustion, regional wildfires, etc.). Additionally, none of the dioxins/furans congeners detected in storm water from the subject site include the congeners ODEQ has identified as risk drivers in the Willamette River sediment, suggesting the subject site is not a source of these dioxins/furans that are driving sediment risk.

2. Potential storm-water contaminant sources are being controlled to the extent feasible:

General Industrial Site Use is the facility-related source identified above as contributing COIs to storm water. With the implementation of the most recent SCMs, this source is being effectively controlled by:

- BMPs as described in the site's SWPCP, including Good Housekeeping Measures.
- Routine inspection and maintenance of the storm water collection and treatment system.
- Treatment of all storm water before it leaves the site by the PerkFilterTM treatment vault.

These SCMs limit contaminant load in storm water, as demonstrated by performance monitoring sampling (see Section 7.1 for discussion).

Performance sampling showed that the following COIs continue to exceed their JSCS SLVs in spite of the implemented SCMs:

- PAHs. All exceedances were less than one order of magnitude and total PAHs were typical of industrial storm water concentrations based on the comparison to ODEQ's Upland Guidance charts.
 - o Benzo(a)pyrene
 - Benzo(b)fluoranthene
 - o Benzo(k)fluoranthene
 - Chrysene
 - o Indeno(1,2,3-cd)pyrene
 - Pyrene
- PCBs as congeners. Exceedances ranged from 2 to 4 orders of magnitude; however, they were
 also at the low end of typical industrial storm water concentrations based on the comparison
 to ODEQ's Upland Guidance charts.
- Metals:
 - Total aluminum (order of magnitude <1)
 - o Total arsenic (order of magnitude ranged from 1 to 3)
 - Total copper (order of magnitude up to 1)
 - Total lead (one order of magnitude)
 - Total manganese (order of magnitude up to 1)
 - Total zinc (order of magnitude <1)
- 2,3,7,8-TCDD (dioxin) equivalents (order of magnitude ranged from 1 to 3)

The above constituents have been identified as deriving from either *General Industrial Site Use* or local or regional deposition sources (especially dioxin). The existing SCMs have been identified as appropriate for the site and effective. Installation of the storm water treatment vault has effectively reduced average concentrations of most COIs.

STORM WATER SOURCE CONTROL EVALUATION WITH SOURCE CONTROL MEASURES PERFORMANCE MONITORING Lampros Steel, Portland, Oregon

While additional SCMs (e.g., increased frequencies of site sweeping, and cleaning/removal of sediment from catch basins and the storm water treatment vault) could potentially further reduce concentrations of COIs in site storm water, they would likely bring only minimal further reductions, as compared to the reductions realized through the newly implemented SCMs.

3. If pre- and post-SCM data was collected, post-SCM data supports the conclusion that the SCM is effective.

Most of the post-SCM data is, on average, lower when compared to corresponding data collected in 2018, prior to SCM implementation. For constituents that have, on average, increased in concentration following SCM implementation, most remain below laboratory detection limits and/or their respective SLVs/ODEQ curve "knee" range. For the two constituents that exceed their SLV, one (manganese) does not have an established rank order curve and only exceeds its JSCS SLV by an order of magnitude up to 1. The other (arsenic), is at least an order of magnitude below permit benchmark for industrial activity and iron ore subsector storm water permitting in Oregon.

4. Adequate measures are in place to ensure source control and good stormwater management measures occur in the future.

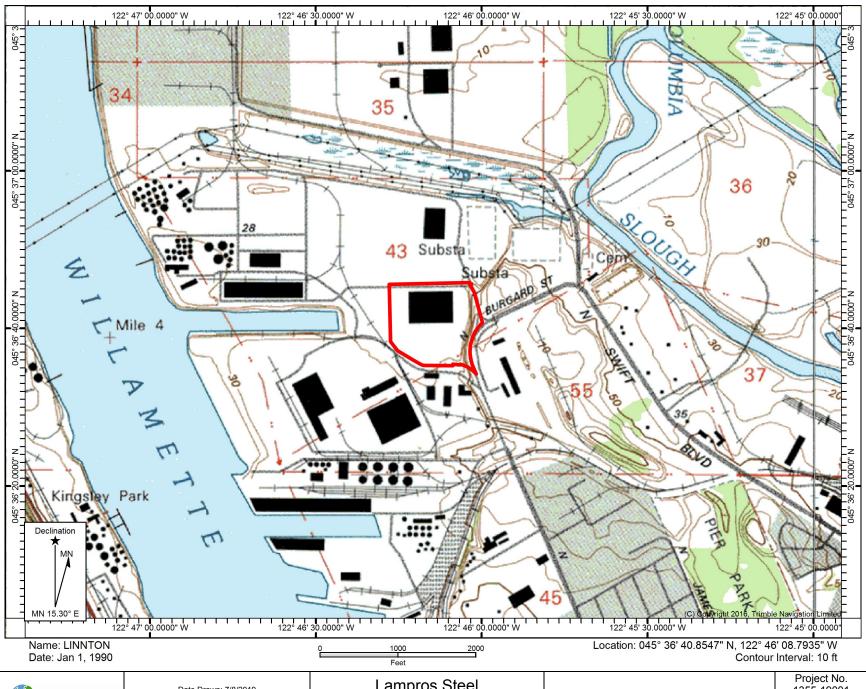
The subject site currently operates under a storm water discharge permit, which requires ongoing monitoring to ensure the system meets permit benchmarks.

- Contaminants in stormwater that continue to exceed SLVs in spite of SCMs and stormwater management measures are not likely to result in sediment contamination in the receiving waterbody or contribute to unacceptable risk.
 - Constituents that continue to exceed SLVs have been shown to do so at minimal levels (e.g., 2x or 3x the SLV) and/or below applicable stormwater permit benchmarks.
 - TSS concentrations are typical of industrial sites, based on ODEQ rank curve and no SLV has been established for TSS. This suggests TSS, which can be an indicator of other pollutant loads, is appropriately managed at the subject site.

9.0 Limitations

The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the work does not extend to the presence of the following conditions:


- 1. Naturally occurring toxic or hazardous substances in the subsurface soils, geology and water,
- 2. Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- 3. Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,
- 4. Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.

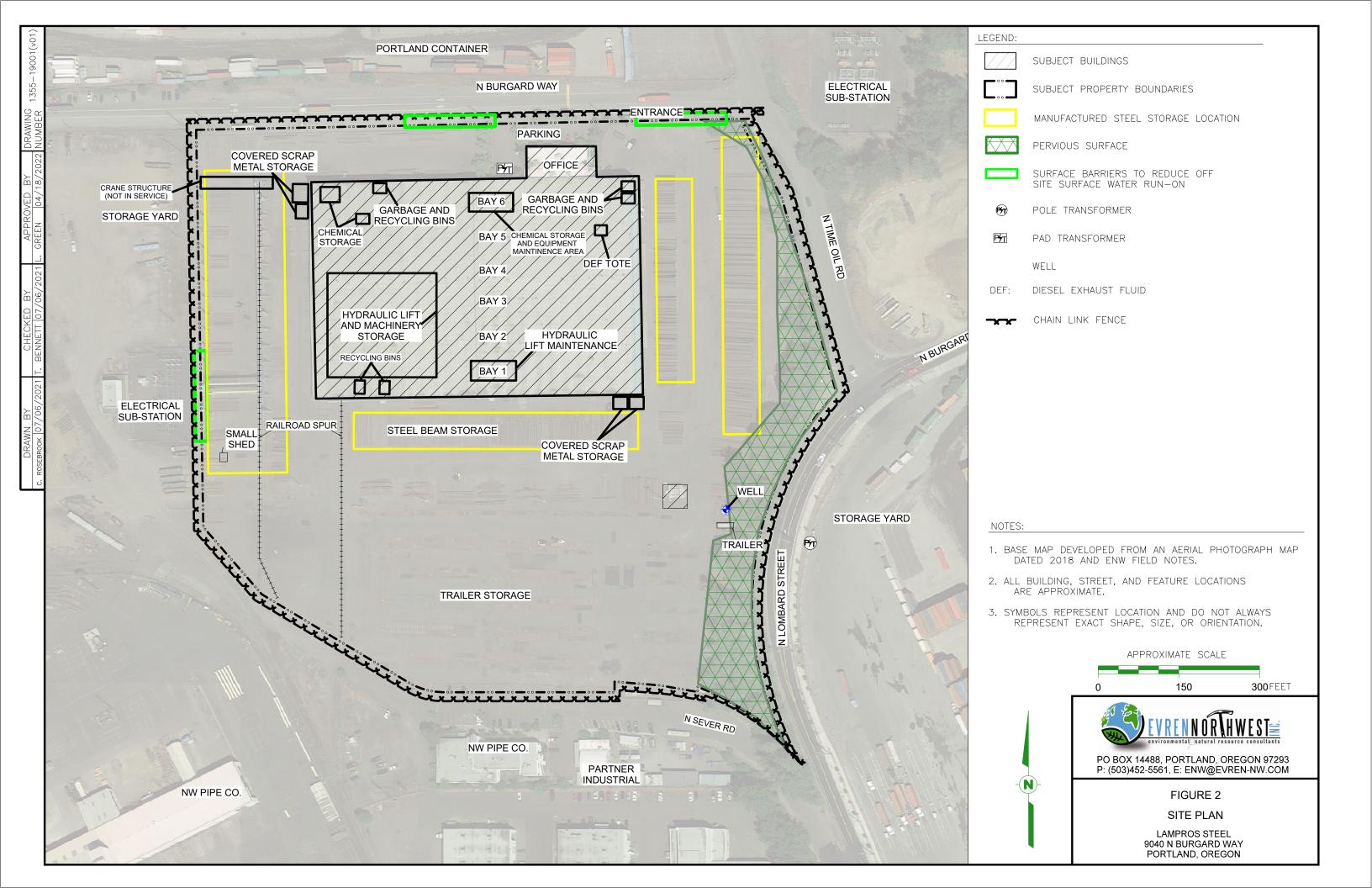
STORM WATER SOURCE CONTROL EVALUATION WITH SOURCE CONTROL MEASURES PERFORMANCE MONITORING Lampros Steel, Portland, Oregon

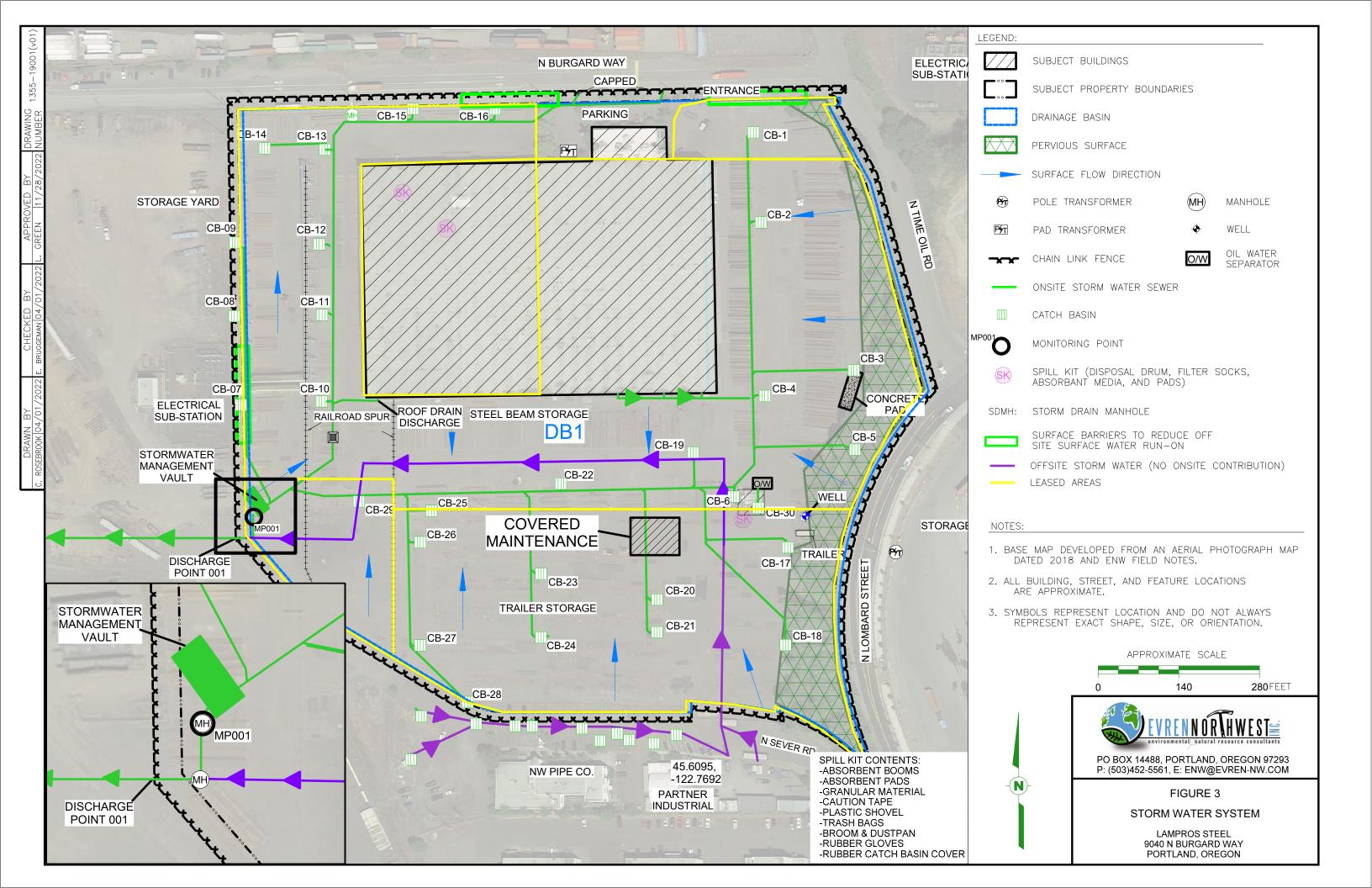
There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW has endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

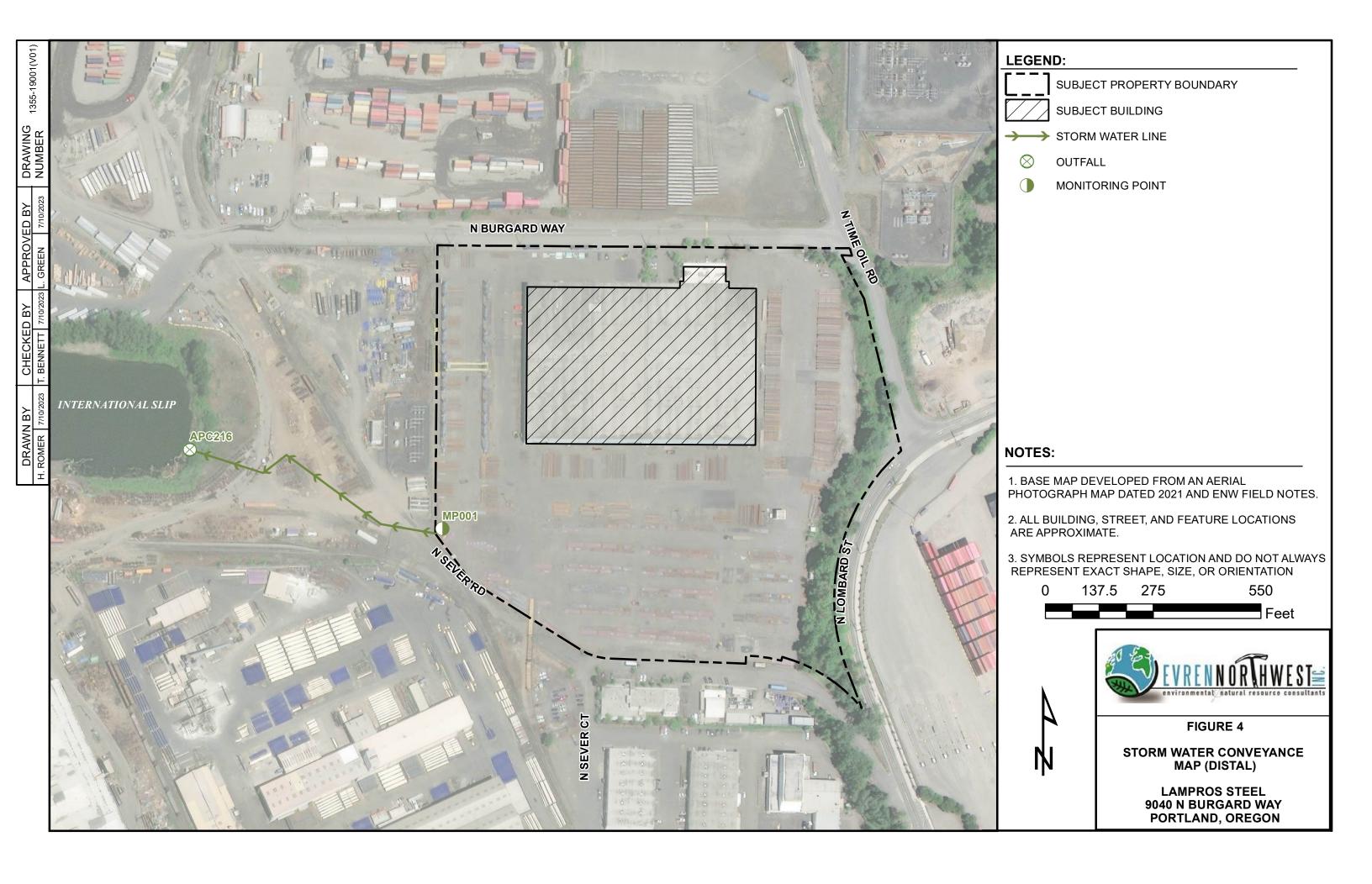
We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

∮evrennor\hwest≡


Date Drawn: 7/8/2019 CAD File Name: 1355-19001-fig1sv_map(v01) Drawn By: JOB Approved By: LDG


Lampros Steel 9040 N Burgard Way Portland, Oregon


Site Vicinity Map

1355-19001

Figure No.

	Sample ID	ML001-SW- 221122	ML001-SW- 221209	ML001-SW- 230113	ML001-SW- 230323		
С	11/22/22	12/9/22	1/13/23	3/23/23	Maximum Storm		
Depth Sa	ampled (feet)					Water	
	Sampled By	ENW	ENW	ENW	ENW	Concentration	
	Location		ML001				
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)		
Metals			-		•	•	
Aluminum		53.6	519	780	16.6	780	
Arsenic	c, nv	32.0	0.330	0.814	14.0	32.0	
Cadmium	nc, nv	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	
Chromium (total)		<1 (ND)	2.08	3.42	<1 (ND)	3.42	
Copper	nc, nv	<5 (ND)	8.5	14.7	2.28	14.7	
Lead	NA, nv	<0.2 (ND)	3.36	5.62	<0.2 (ND)	5.62	
Manganese	nc, nv	646	72.1	116	535	646	
Silver	nc, nv	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	
Zinc		<5 (ND)	67.4	90.7	3.37	90.7	
Semivolatile Organic Constituents							
Bis(2-ethylhexyl)phthalate	c, nv	<1.6 (ND)	<3.2 (ND)	<1.6 (ND)	<1.6 (ND)	<3.2 (ND)	
Polychlorinated biphenyls (Total PCBs)	C, V	1.44E-03	1.09E-02	9.62E-03	7.01E-04	1.09E-02	
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	nc, v	<0.01 (ND)	<0.02 (ND)	<0.01 (ND)	<0.01 (ND)	<0.02 (ND)	
Anthracene	nc, v	<0.01 (ND)	<0.02 (ND)	<0.1 (ND)	<0.01 (ND)	<0.1 (ND)	
Benzo[a]anthracene	#N/A	<0.01 (ND)	<0.02 (ND)	<0.017 (ND)	<0.01 (ND)	<0.02 (ND)	
Benzo[a]pyrene (BaP equivalents)	c, nv	<0.01 (ND)	0.025	0.04 J	<0.01 (ND)	0.04 J	
Benzo[b]fluoranthene	c, nv	<0.01 (ND)	<0.048 (ND)	0.071 J	<0.01 (ND)	0.071 J	
Benzo(g,h,i)perylene		<0.02 (ND)	<0.04 (ND)	0.038 J	<0.01 (ND)	0.038 J	
Benzo[k]fluoranthene	c, nv	<0.01 (ND)	<0.02 (ND)	0.026 J	<0.01 (ND)	0.026 J	
Chrysene	c, nv	<0.01 (ND)	0.042	0.058	<0.01 (ND)	0.058	
Dibenz[a,h]anthracene	c, nv	<0.01 (ND)	<0.02 (ND)	<0.01 (ND) J	<0.01 (ND)	<0.02 (ND)	
Fluoranthene	nc, nv	0.033	0.043	0.076	0.029	0.076	
Fluorene	nc, v	0.017	<0.02 (ND)	<0.1 (ND)	0.015	0.017	
Indeno[1,2,3-cd]pyrene	c, nv	<0.01 (ND)	0.022	0.025 J	<0.01 (ND)	0.025 J	
Naphthalene		<0.1 (ND)	<0.2 (ND)	<0.1 (ND)	<0.1 (ND)	<0.2 (ND)	
Phenanthrene		0.072	0.045	<0.1 (ND)	0.057	0.057	
Pyrene	nc, v	0.22	0.078	0.14	0.21	0.22	
Total PAHs		0.342	0.255	0.474 J	0.311	0.474 J	
2,3,7,8-TCDD (dioxin) equivalents	C, V	1.0E-09	4.8E-09	6.3E-07	8.9E-09	6.3E-07	
Conventionals	•					•	
Total Suspended Solids		15000	26000	93000	7600	93000	

Tota Notes:

ug/L = micrograms per Liter or parts per billion (ppb).
<# (ND) = not detected at or above the laboratory method

reporting limit shown.

NE = not established.

¹ Lowest Risk-Based Concentration for ground water (screening level assumes residential use, from ODEQ RBCs

dated May 2018).

— = not analyzed or not applicable.

c = carcinogenic

nc = noncarcinogenic v = volatile

nv = nonvolatile

¹ Lowest Risk-Based Concentration for ground water (screening level).

(Y) indicates analyte not detected, but detection limit is above screening concentration.

N/A - not applicable

J = indicates the internal standard associated with the analyte is out of control limits; the reported concentration is an estimate.

S Date Depth Samp Sa	Average percent difference between pre-SCM (2018) and post-SCM sampling results	SLV for Portland Harbor	ODEQ SG Appendix E Curve "Knee" Range	Background Concentrations (metals)	Exceeds Background Concentrations (metals)? TRUE OR Y FALSE OR N	COPC (exceeds SLV for Portland Harbor)? TRUE OR Y FALSE OR N	COC (exceeds ODEQ SG Appendix E Curve "Knee" Range)? TRUE OR Y FALSE OR N	
Constituent of Interest	Note	ı	lg/L (ppb)					
Metals	11010	Ρ	.g/ = (PP=)					
Aluminum		N/A	50-200		2	Y	Y	
Arsenic	c, nv	149424.2%	0.045	2-4	2	<u>Y</u>	Y	Y
Cadmium	nc, nv	-3249.8%	0.38	0.5-1.5	1	N	N	N
Chromium (total)		-7259.7%	100	7-15			N	N
Copper	nc, nv	-5904.8%	3.6	40-150	9	Y	Y	N
Lead	NA, nv	-6662.8%	0.54	30-100	13.3	N	Y	N
Manganese	nc, nv	16237.3%	50		NE		Υ	
Silver	nc, nv	N/A	0.12	0.1-0.25	1	N	(Y)	N
Zinc		-7281.2%	33	350-1000	1	Y	Y	N
Semivolatile Organic Constituents							L	
Bis(2-ethylhexyl)phthalate	c, nv	-8652.6%	2.2	2-6	NE		(Y)	N
Polychlorinated biphenyls (Total PCBs)	C, V	-9517.1%	0.0000064	0.2-0.6	NE		Y	N
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	nc, v	-4801.1%	0.2		NE		N	
Anthracene	nc, v	3416.7%	0.2		NE		N	
Benzo[a]anthracene	#N/A	-9312.5%	0.018		NE	100 AM	N	00.000, 400.000, 400.400, 400.
Benzo[a]pyrene (BaP equivalents)	c, nv	-8243.7%	0.018		NE		Y	
Benzo[b]fluoranthene	c, nv	-7896.7%	0.018		NE		Y	
Benzo(g,h,i)perylene		-7560.9%	0.2		NE		N	
Benzo[k]fluoranthene	c, nv	-6544.7%	0.018		NE	100 AM	Y	
Chrysene	c, nv	-8919.7%	0.018		NE		Y	
Dibenz[a,h]anthracene	c, nv	-8013.1%	0.018		NE		(Y)	
Fluoranthene	nc, nv	-6536.0%	0.2		NE		N	
Fluorene	nc, v	8400.0%	0.2		NE		N	
Indeno[1,2,3-cd]pyrene	c, nv	-7401.9%	0.018		NE		Y	
Naphthalene	***************************************	41679.6%	0.2		NE		N	
Phenanthrene		-2877.6%	0.2		NE		N	
Pyrene	nc, v	-3630.2%	0.2		NE		Y	
Total PAHs		-1574.6%		1-3	NE			N
2,3,7,8-TCDD (dioxin) equivalents	C, V	N/A	5.00E-10		NE		Y	
Conventionals								
Total Suspended Solids		3041724.1%		50,000-100,000	NE			N

Notes:

ug/L = micrograms per Liter or parts per billion (ppb).
<# (ND) = not detected at or above the laboratory method

reporting limit shown.

NE = not established.

1 Lowest Risk-Based Concentration for ground water (screening level assumes residential use, from ODEQ RBCs dated May 2018).

— = not analyzed or not applicable.

c = carcinogenic

nc = noncarcinogenic

v = volatile nv = nonvolatile

N/A - not applicable

J = indicates the internal standard associated with the analyte is out of control limits; the reported concentration is an estimate.

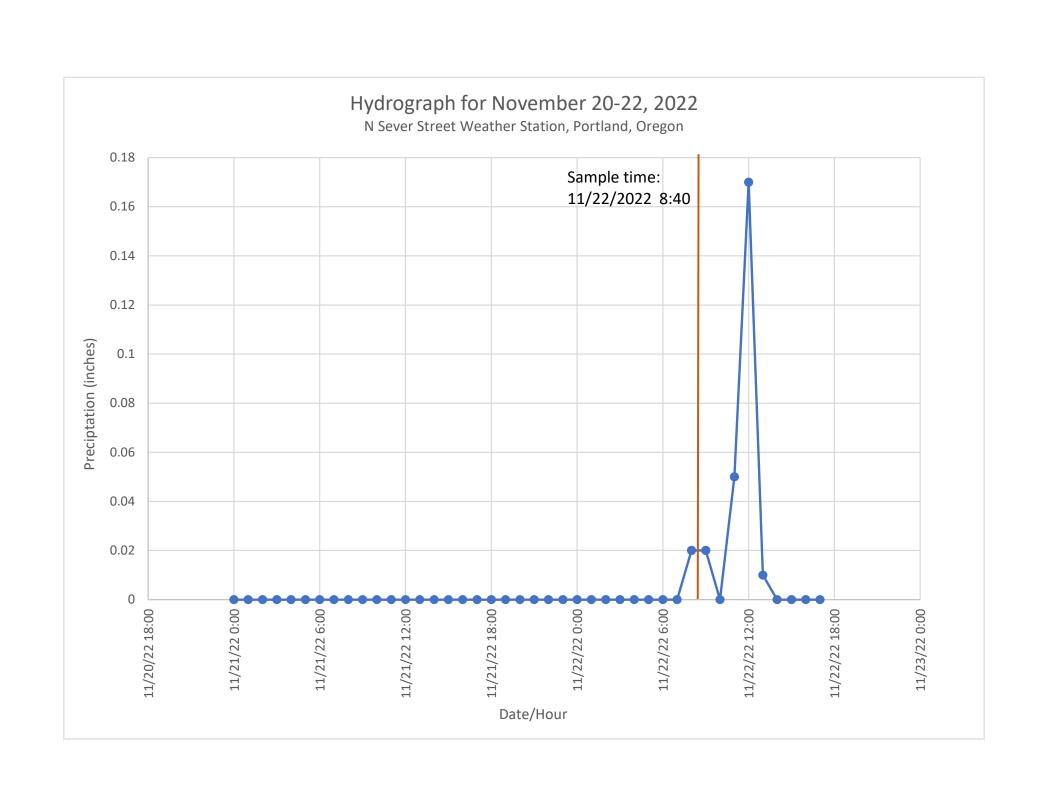
¹ Lowest Risk-Based Concentration for ground water (screening level).

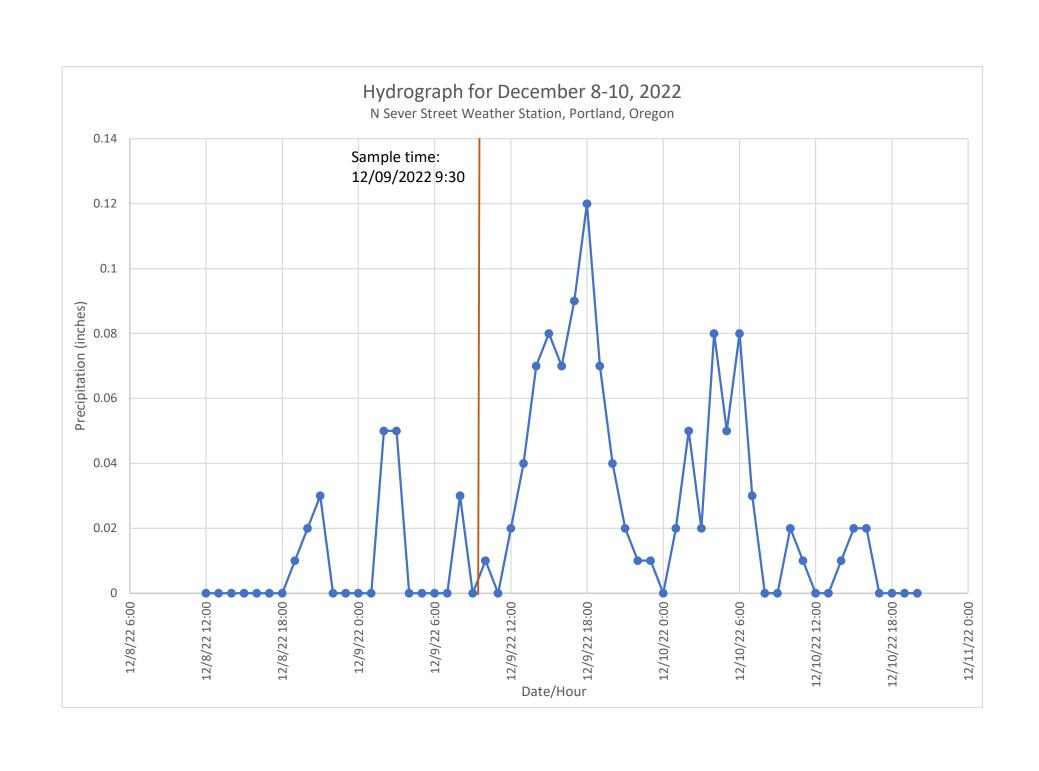
⁽Y) indicates analyte not detected, but detection limit is above screening concentration.

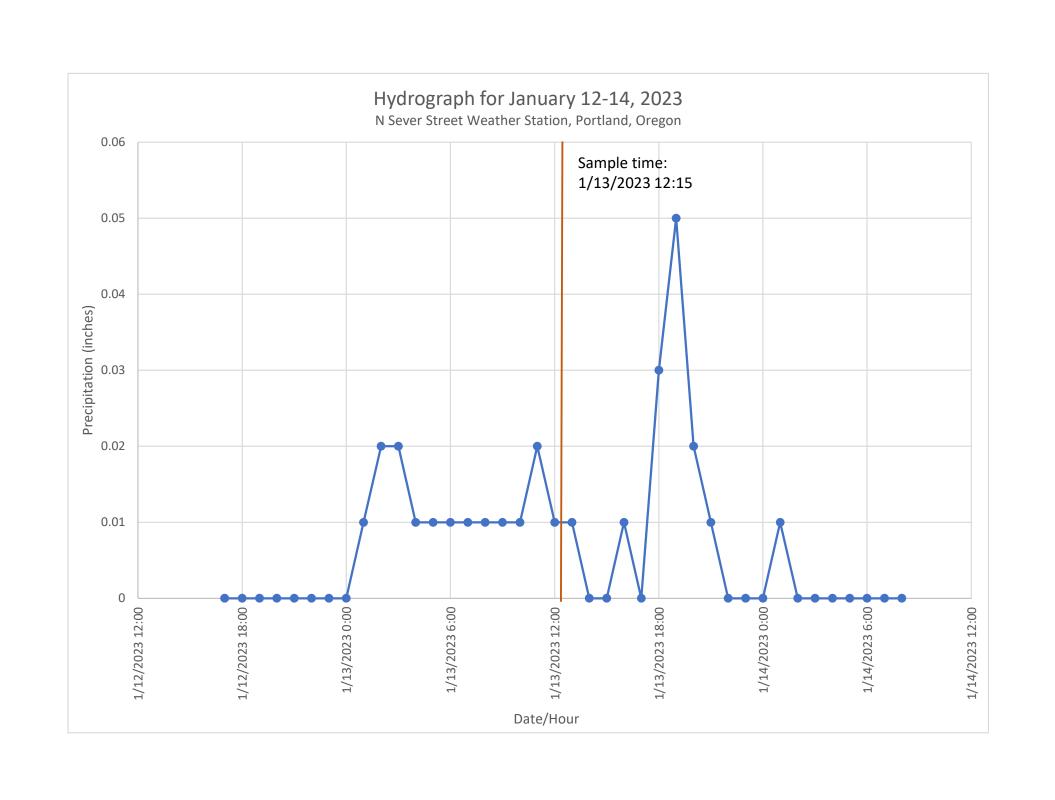
Table 2 - Summary of Analytical Data for Dioxins and Furans, Storm Water

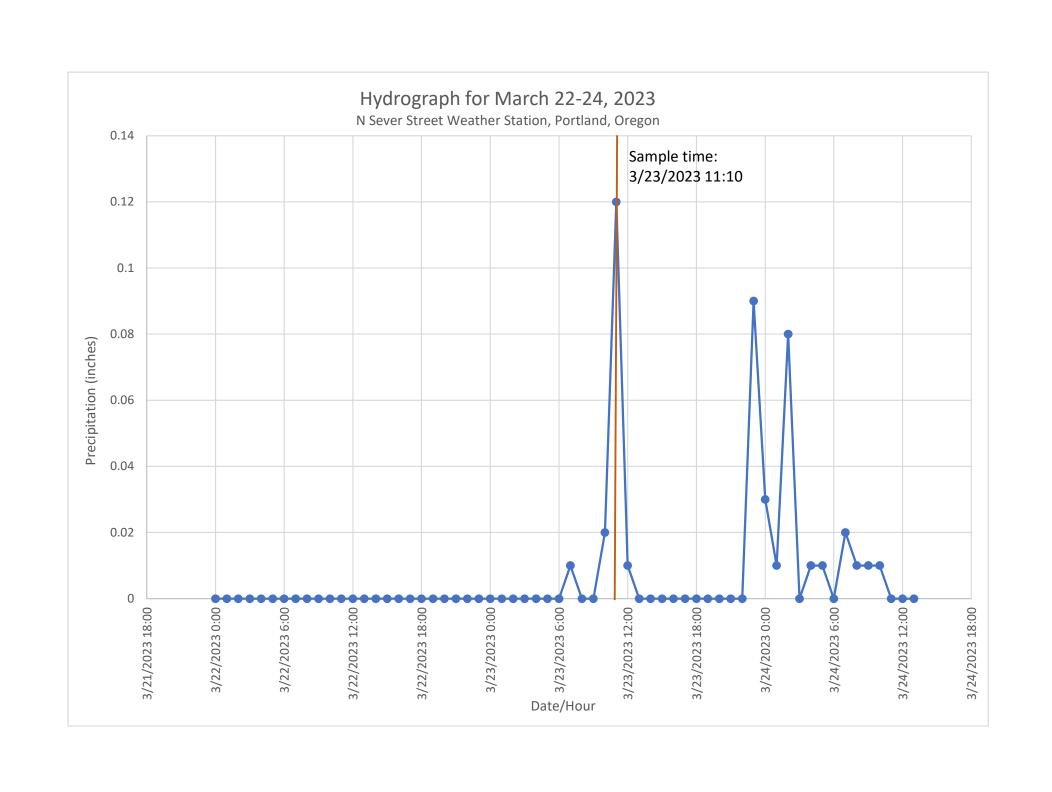
Sample ID	ML001-S'	W-221122	ML001-S	W-221209	ML001-S	W-230113	ML001-S	W-230323	
Date Sampled	11/22/22	<u> </u>	12/9/22	1	1/13/23	I	3/23/23	l	1
Depth Sampled (feet)		TEQ		TEQ		TEQ		TEQ	Toxicity
Sampled By	ENW		ENW		ENW		ENW		Equivalence
Location		ML001 (southwest of fueling area)							Quotient (TEQ)
Constituent of Interest	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	
Dioxins/Furans									
2,3,7,8-TCDD eq		0.110		0.583		0.649		0.0816	1
2,3,7,8-TCDD	<1.31 (ND)	<1.31 (ND)	<0.79 (ND)	<0.79 (ND)	<1.62 (ND)	<1.62 (ND)	<1.18 (ND)	<1.18 (ND)	1
1,2,3,7,8-PeCDD	<3.41 (ND)	<3.41 (ND)	<1.53 (ND)	<1.53 (ND)	<1.4 (ND)	<1.4 (ND)	<1.54 (ND)	<1.54 (ND)	1
1,2,3,4,7,8-HxCDD	<3.1 (ND)	<0.31 (ND)	<2.52 (ND)	<0.252 (ND)	<1.97 (ND)	<0.197 (ND)	<2.18 (ND)	<0.218 (ND)	0.1
1,2,3,6,7,8-HxCDD	<3.2 (ND)	<0.32 (ND)	<2.25 (ND)	<0.225 (ND)	<2.23 (ND)	<0.223 (ND)	<2.46 (ND)	<0.246 (ND)	0.1
1,2,3,7,8,9-HxCDD	<2.94 (ND)	<0.294 (ND)	<2.33 (ND)	<0.233 (ND)	<2.27 (ND)	<0.227 (ND)	<2.58 (ND)	<0.258 (ND)	0.1
1,2,3,4,6,7,8-HpCDD	10.4 J	0.104 J	35.9	0.359	44.2	0.442	7.98 EMPC	0.0798 EMPC	0.01
OCDD	19.00 J	0.0057 J	316	0.0948	398	0.1194	5.84 J	0.001752 J	0.0003
2,3,7,8-TCDF	<1.33 (ND)	<0.133 (ND)	<0.875 (ND)	<0.0875 (ND)	<0.381 (ND)	<0.0381 (ND)	<0.589 (ND)	<0.0589 (ND)	0.1
1,2,3,7,8-PeCDF	<2.4 (ND)	<0.072 (ND)	<1.46 (ND)	<0.0438 (ND)	<1.08 (ND)	<0.0324 (ND)	<1.07 (ND)	<0.0321 (ND)	0.03
2,3,4,7,8-PeCDF	<2.74 (ND)	<0.822 (ND)	<1.53 (ND)	<0.459 (ND)	<1.06 (ND)	<0.318 (ND)	<0.975 (ND)	<0.2925 (ND)	0.3
1,2,3,4,7,8-HxCDF	<2.56 (ND)	<0.256 (ND)	<1.76 (ND)	<0.176 (ND)	<0.978 (ND)	<0.0978 (ND)	<0.983 (ND)	<0.0983 (ND)	0.1
1,2,3,6,7,8-HxCDF	<2.7 (ND)	<0.27 (ND)	<1.87 (ND)	<0.187 (ND)	<1.06 (ND)	<0.106 (ND)	<0.944 (ND)	<0.0944 (ND)	0.1
2,3,4,6,7,8-HxCDF	<2.74 (ND)	<0.274 (ND)	<1.89 (ND)	<0.189 (ND)	<1.34 (ND)	<0.134 (ND)	<1.09 (ND)	<0.109 (ND)	0.1
1,2,3,7,8,9-HxCDF	<3.77 (ND)	<0.377 (ND)	<2.69 (ND)	<0.269 (ND)	<1.58 (ND)	<0.158 (ND)	<1.48 (ND)	<0.148 (ND)	0.1
1,2,3,4,6,7,8-HpCDF	<2.83 (ND)	<0.0283 (ND)	11.8 J	0.118 J	7.98 EMPC	0.0798 EMPC	<1.15 (ND)	<0.0115 (ND)	0.01
1,2,3,4,7,8,9-HpCDF	<5.15 (ND)	<0.0515 (ND)	<2.24 (ND)	<0.0224 (ND)	<4.12 (ND)	<0.0412 (ND)	<1.76 (ND)	<0.0176 (ND)	0.01
OCDF	<8.43 (ND)	<0.002529 (ND)	36.7 J	0.011 J	26.5	0.00795	<4.88 (ND)	<0.001464 (ND)	0.0003

Notes:


ng/L = nanograms per Liter or parts per quadrillion (ppq).


<# (ND) = not detected at or above the
laboratory detection or estimated detection limit
shown.</pre>


with the analyte is out of control limits; the reported concentration is an estimate EMPC = estimated maximum possible concentration


yellow highlighted cells indicate congener of concern in river according to ODEQ

Appendix A Precipitation Hydrographs

Appendix B Laboratory Analytical Results

Analytical Laboratory Data Validation Check Sheet

Project Name: Lampros Steel-9040 N Burgard Way-Portland Project Nu	mber: <u>1355-1900</u>)1-02	
Date of Review: 3/14/2023 Lab. Name: Enthalpy Analytical Lab I	Batch ID #: 23011	.82	
Chain of Custody			
1.) Are all requested analyses reported?	⊠yes	□no	
2.) Were the requested methods used?	⊠yes	□no	
3.) Trip blank submitted?	□yes	⊠no	
4.) Field blank submitted?	□yes	⊠no	
Timing			
5.) Samples extracted within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
6.) Analysis performed within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
Quality Assurance/Quality Control			
7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs)	⊠yes	□no	
8.) Are all reported values above either MRL or MDL?	⊠yes	□no	
9.) Are all values between the MDL & PQL tagged as trace?	□yes	□no	⊠NA
10a.) Are reporting limits raised for other reason besides high analyte conc.?	□yes	⊠no	·.·
10b.) If so, are they footnoted?	□yes	□no	⊠NA
11.) Lab method blank completed?	· ·	□no	△ IVA
	⊠yes		
12.) Lab, Field, or Trip Blank(s) report detections? If yes, indicate blank type, chemical(s) and concentration(s):	□yes	⊠no	
13.) For inorganics and metals, is there one method blank for each analyte?	□yes	□no	\boxtimes NA
If not, are all discrepancies footnoted?	□yes	□no	_
14.) For VOCs, is there one method blank for each day of analysis?	□yes	□no	\boxtimes NA
If not, are all discrepancies footnoted?	□yes	□no	
15.) For SVOC's, is there one method blank for each extraction batch?	⊠yes	□no	□NA
If not, are all discrepancies footnoted?	□yes	□no	
Accuracy			
16.) Is there a surrogate spike recovery for all VOC & SVOC samples?	⊠yes	□no	\square NA
Do all surrogate spike recoveries meet accepted criteria?	□yes	⊠no	
If not, are all discrepancies footnoted?	⊠yes	□no	\Box NA
The surrogate spike recovery for 13C-2,3,7,8-TCDD was outside laboratory accept	otance limits. (H)		
17.) Is there a spike recovery for all Laboratory Control Samples?	⊠yes	□no	\Box NA
Do all LCS/LCSD spike recoveries meet accepted criteria?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
18.) Are all LCS/LCSD RPDs within acceptable limits?	□yes	□no	\boxtimes NA
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
<u>Precision</u>			
19.) Are all matrix spike/matrix spike duplicate recoveries within			
acceptable limits?	□yes	□no	$\boxtimes NA$
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
20.) Are all matrix spike/matrix spike duplicate RPDs within			
acceptable limits?	□yes	□no	$\boxtimes NA$
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
21.) Do all RPD calculations for Field Duplicates meet accepted criteria?	□yes	□no	$\boxtimes NA$

Initial Review By: LP	Final Review By:						
Matrix spike/matrix spike duplicate recoveries were not required by either method, so they were not performe							
Several analytes were detected below	the limit of quantitation. (J)						
The Cleanup Recovery Standard for 3	7C1-2,3,7,8-TCDD was outside laboratory acceptance limits. (H)						
Comments:							

Analytical Laboratory Data Validation Check Sheet

Project Name: Lampros Steel- 9040 N Burgard Way, Portland

Project Number: 1355-19001-03

Date of Review: 6/13/23 Lab. Name: EDH Lab Batch ID #: 2303225

<u>Chain of Custody</u>			
1.) Are all requested analyses reported?	\boxtimes yes	□no	
2.) Were the requested methods used?	\boxtimes yes	□no	
3.) Trip blank submitted?	□yes	⊠no	
4.) Field blank submitted?	□yes	⊠no	
Timing			
5.) Samples extracted within holding times?	\boxtimes yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
6.) Analysis performed within holding times?	\boxtimes yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
Quality Assurance/Quality Control			
7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs)	\boxtimes yes	□no	
8.) Are all reported values above either MRL or MDL?	\boxtimes yes	□no	
9.) Are all values between the MDL & PQL tagged as trace?	□yes	□no	\boxtimes NA
10a.) Are reporting limits raised for other reasons besides high analyte conc.?	□yes	⊠no	
10b.) If so, are they footnoted?	□yes	□no	\boxtimes NA
11.) Lab method blank completed?	\boxtimes yes	□no	
12.) Lab, Field, or Trip Blank(s) report detections?	\boxtimes yes	\square no	
If yes, indicate blank type, chemical(s) and concentration(s):			
Method Blank:			
PCB 1 detection reported (no flag)	4 ava bal		Donoutina
PCB 1 detection reported (no flag) The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J)	4 are bel	ow the	Reporting
The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J)			
The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte?	□yes	□no	Reporting ⊠NA
The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted?	□yes □yes	□no □no	⊠NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? 	□yes □yes □yes	□no □no □no	
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? <pre>If not, are all discrepancies footnoted?</pre> 14.) For VOCs, is there one method blank for each day of analysis? <pre>If not, are all discrepancies footnoted?</pre> 	□yes □yes □yes □yes	□no □no □no	⊠NA ⊠NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? 	□yes □yes □yes □yes □yes	□no □no □no □no □no	⊠NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? <pre>If not, are all discrepancies footnoted?</pre> 14.) For VOCs, is there one method blank for each day of analysis? <pre>If not, are all discrepancies footnoted?</pre> 	□yes □yes □yes □yes	□no □no □no	⊠NA ⊠NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy	□yes □yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no	⊠NA ⊠NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? 	□yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no	⊠NA ⊠NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? 	□yes □yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no □no	⊠NA ⊠NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? 	□yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no	⊠NA ⊠NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? 	□yes □yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no □no	⊠NA ⊠NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 	□yes □yes □yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no □no	⊠NA ⊠NA □NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 	□yes □yes □yes □yes □yes □yes □yes □yes	□no	⊠NA ⊠NA □NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? PCB 1 was also detected in the method blank (B) 	□yes □yes □yes □yes □yes □yes □yes □yes	□no	⊠NA ⊠NA □NA □NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 	□yes □yes □yes □yes □yes □yes □yes □yes	□no	⊠NA ⊠NA □NA □NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? PCB 1 was also detected in the method blank (B) 	□yes □yes □yes □yes □yes □yes □yes □yes	□no	⊠NA ⊠NA □NA □NA □NA
 The amount detected for PCBs 20, 21, 28, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 16 Limit/LOQ (J) 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? PCB 1 was also detected in the method blank (B) PCB 126 recovery and/or RPD was outside laboratory acceptance limits (H) 	□yes □yes □yes □yes □yes □yes □yes □yes	□no	⊠NA ⊠NA □NA □NA □NA □NA

Precision								
19.) Are all matrix spike/matrix spike duplicate recoveries within								
acceptable limits?	\square yes	□no	\boxtimes NA					
If not, are all discrepancies footnoted?	□yes	□no	⊠NA					
20.) Are all matrix spike/matrix spike duplicate RPDs within								
acceptable limits?	\square yes	\square no	\boxtimes NA					
If not, are all discrepancies footnoted?	□yes	□no	⊠NA					
21.) Do all RPD calculations for Field Duplicates meet accepted criteria?	\square yes	□no	⊠NA					
Comments:								
The amounts detected for OCDD and PCBs 41, 43, 47, 49, 56, 60, 64, 66, 71, 72, 76, 82, 85, 108, 112, 116, 134, 136 138, 141, 143, 163, 164, 195, 196 & 203 are below the Reporting Limit/LOQ (J) PCBs 20, 21, 31, 33, 43, 44, 49, 90, 101, 138, 153, 163, 164 were also detected in the method blank (B)								
Initial Review By: AR Final Review By:	Initial Review By: AR Final Review By:							

Analytical Laboratory Data Validation Check Sheet

Project Name: Lampros Steel- 9040 N Burgard Way, Portland

Project Number: 1355-19001-03

Date of Review: 6/13/23 Lab. Name: F&BI Lab Batch ID #: 303396

Chain of Custody			
1.) Are all requested analyses reported?	⊠yes	□no	
2.) Were the requested methods used?	⊠yes	□no	
3.) Trip blank submitted?	□yes	⊠no	
4.) Field blank submitted?	□yes	⊠no	
Timing			
5.) Samples extracted within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
6.) Analysis performed within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
Quality Assurance/Quality Control			
7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs)	⊠yes	□no	
8.) Are all reported values above either MRL or MDL?	⊠yes	□no	
9.) Are all values between the MDL & PQL tagged as trace?	□yes	□no	\boxtimes NA
10a.) Are reporting limits raised for other reason besides high analyte conc.?	□yes	⊠no	
10b.) If so, are they footnoted?	□yes	□no	\boxtimes NA
11.) Lab method blank completed?	⊠yes	□no	
12.) Lab, Field, or Trip Blank(s) report detections?	□yes	⊠no	
If yes, indicate blank type, chemical(s) and concentration(s):			
13.) For inorganics and metals, is there one method blank for each analyte?	⊠yes	□no	□NA
If not, are all discrepancies footnoted?	□yes	□no	
14.) For VOCs, is there one method blank for each day of analysis?	\square yes	□no	\boxtimes NA
If not, are all discrepancies footnoted?	□yes	□no	
15.) For SVOC's, is there one method blank for each extraction batch?	\boxtimes yes	□no	\square NA
If not, are all discrepancies footnoted?	\square yes	□no	
<u>Accuracy</u>			
16.) Is there a surrogate spike recovery for all VOC & SVOC samples?	\boxtimes yes	□no	\square NA
Do all surrogate spike recoveries meet accepted criteria?	\boxtimes yes	\square no	
If not, are all discrepancies footnoted?	\square yes	□no	\boxtimes NA
17.) Is there a spike recovery for all Laboratory Control Samples?	⊠yes	□no	□NA
Do all LCS/LCSD spike recoveries meet accepted criteria?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
18.) Are all LCS/LCSD RPDs within acceptable limits?	⊠yes	□no	\square NA
If not, are all discrepancies footnoted?	⊠yes	□no	\square NA
TSS was not detected in one or more of the duplicate analyses. Therefore, calculation	of the R	PD is no	t applicable
(nm).			
<u>Precision</u>			
19.) Are all matrix spike/matrix spike duplicate recoveries within			
acceptable limits?	\boxtimes yes	□no	□NA
If not, are all discrepancies footnoted?	\boxtimes yes	□no	\square NA

Arsenic, Copper, Manganese & Zinc were spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful (b).							
20.) Are all matrix spike/matrix spike duplicate RPDs within							
acceptable limits?		\boxtimes yes	\square no	\square NA			
If not, are all discrepancies footnoted?		⊠yes	□no	\square NA			
Arsenic, Copper, Manganese & Zinc were spiked at a level that we Matrix spike recoveries may not be meaningful (b).	Arsenic, Copper, Manganese & Zinc were spiked at a level that was less than five times that present in the sample.						
21.) Do all RPD calculations for Field Duplicates meet accepted crit	teria?	□yes	□no	⊠NA			
Comments: N/A							
Initial Review By: AR	Final Review By:						

Summary: DATA VALID?

☐ YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Lampros Steel- 9040 N Burgard Way, Portland

Project Number: 1355-19001-03

Date of Review: 6/13/23 Lab. Name: Fremont Lab Batch ID #: 2303580

Chain of Custody 1.) Are all requested analyses reported? 2.) Were the requested methods used? 3.) Trip blank submitted? 4.) Field blank submitted?	⊠yes ⊠yes □yes □yes	□no □no ⊠no ⊠no	
Timing 5.) Samples extracted within holding times? If not, are all discrepancies footnoted? 6.) Analysis performed within holding times? If not, are all discrepancies footnoted?	⊠yes □yes ⊠yes □yes	□no □no □no	⊠NA ⊠NA
Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) 8.) Are all reported values above either MRL or MDL? 9.) Are all values between the MDL & PQL tagged as trace? 10a.) Are reporting limits raised for other reasons besides high analyte conc.? 10b.) If so, are they footnoted? 11.) Lab method blank completed? 12.) Lab, Field, or Trip Blank(s) report detections? If yes, indicate blank type, chemical(s) and concentration(s):	⊠yes ⊠yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no □no	⊠ NA ⊠ NA
 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? 	⊠yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no	□ NA ⊠ NA ⊠ NA
Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted?	□yes □yes □yes	□no □no □no	⊠NA
17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 18.) Are all LCS/LCSD RPDs within acceptable limits? If not, are all discrepancies footnoted?	⊠yes ⊠yes □yes ⊠yes □yes	□no □no □no □no □no	□NA □NA □NA
Precision 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? If not, are all discrepancies footnoted?	⊠yes □yes	□no □no	□na ⊠na
20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits?	⊠yes	□no	□NA

Initial Review By: AR Final Review By:					
Comments: N/A					
21.) Do all RPD calculations for Field Duplicates meet accepted criter	ia?	□yes	□no	⊠NA	
If not, are all discrepancies footnoted?		□yes	□no	⊠NA	

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 26, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included is the amended report from the testing of material submitted on November 23, 2022 from the 1355-19001-02, F&BI 211352 project. Per your request, task number has been updated to -02.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0124R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 24, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the additional results from the testing of material submitted on November 23, 2022 from the 1355-19001-02, F&BI 211352 project. There is 1 page included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0124R.DOC

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 23, 2022 by Friedman & Bruya, Inc. from the Evren Northwest 1355-19001-02, F&BI 211352 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Evren Northwest</u> 211352 -01 <u>M1001-SW-221122</u>

Sample M1001-SW-221122 was sent to Frontier Analytical for dioxin and furan and PCB congener analyses. The report is enclosed.

Test Report

January 12, 2023

Frontier Analytical Laboratory Project: 14849

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **14849**. This corresponds to your project number **211352** and purchase order number **D-85**. One aqueous sample was received on 12/28/2022 in good condition. This sample was extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. In addition, this sample was extracted and analyzed by EPA Method 1668 for all 209 polychlorinated biphenyls (PCBs). The Toxic Equivalency (TEQ) for your sample has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs).

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The enclosed results and electronic data deliverable (EDD) are specifically for the sample referenced in this report only. These results meet all NELAP requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**, our State of California ELAP certificate number is **2934** and our State of Washington certificate number is **C844**. This report along with the associated EDD has been emailed to you. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **14849**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Laboratory Director

FTR Project No.: 14849 Page 000001 of 000016

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>14849</u>

Received on: <u>12/28/2022</u> Project Due: <u>01/20/2023</u> Storage: <u>R-4</u>

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
14849-001-SA	0	211352	M1001-SW-221122	EPA 1613 D/F	Aqueous	11/22/2022	08:40 am	11/22/2023
14849-001-SA	0	211352	M1001-SW-221122	EPA 1668 PCB	Aqueous	11/22/2022	08:40 am	11/22/2023

FTR Project No.: 14849

Page 000002 of 000016

EPA Method 1613 PCDD/F

FAL ID: 14849-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X6329

Date Extracted: 01-06-2023 Date Received: NA Amount: 1.00 L ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/L Acquired: 01-11-2023 2005 WHO TEQ: 0.0

				2005					
Compound	Conc	DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND	0.866		-	0.640				
1,2,3,7,8-PeCDD	ND	1.36		-	0.783				
1,2,3,4,7,8-HxCDD	ND	1.90		-	1.30				
1,2,3,6,7,8-HxCDD	ND	1.99		-	1.39		ND	0.866	
1,2,3,7,8,9-HxCDD	ND	1.80		-	1.28		ND	1.36	
1,2,3,4,6,7,8-HpCDD	ND	2.19		-	1.17		ND	1.99	
OCDD	ND	2.95		-	2.00	Total HpCDD	ND	2.19	
2,3,7,8-TCDF	ND	0.965		-	0.624				
1,2,3,7,8-PeCDF	ND	1.46		-	0.751				
2,3,4,7,8-PeCDF	ND	1.47		-	0.793				
1,2,3,4,7,8-HxCDF	ND	0.961		-	0.781				
1,2,3,6,7,8-HxCDF	ND ND	0.992 1.08		-	0.803 0.827				
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND	1.50		-	0.627		ND	0.965	
1,2,3,4,6,7,8-HpCDF	ND ND	1.52		-	0.373		ND	1.47	
1,2,3,4,7,8,9-HpCDF	ND	2.23		-	0.773		ND	1.50	
OCDF	ND	3.25		-	1.71		ND	2.23	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HyCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF	% Rec 78.1 67.1 81.9 76.2 68.8 78.9 73.8 75.6 77.7 80.2 77.0 74.8 76.7 69.3 67.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		B A C D D D D D D D D D D D D D D D D D D	Isotopic Labeled Sta signal to noise ratio i Analyte is present in Chemical Interference Presence of Dipheny Analyte concentratio Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance Matrix interferences	s >10:1 Method Blace I Ethers In is below on second In is below on oncentration I at Detection	ank calibration ra calibration ra lary column calibration ra on ion Limit Leve	nge inge nge
Cleanup Surrogate					*	Result taken from dil	ution or rei	njection	
37Cl-2,3,7,8-TCDD	84.0	35.0 - 197							

Analyst: 1/12/2023

Reviewed By: 0°

Date: 1/12/2023

FTR Project No.: 14849 Page 000003 of 000016

EPA Method 1613 PCDD/F

FAL ID: 14849-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X6329 Date Extracted: 01-06-2023 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: ng/ml Acquired: 01-11-2023 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	8.52 44.6 45.8 47.9 44.4 46.7 98.0	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	8.42 45.0 45.4 45.3 46.2 46.5 46.1 48.5 46.7 92.8	7.50 - 15.8 40.0 - 67.0 34.0 - 80.0 36.0 - 67.0 42.0 - 65.0 35.0 - 78.0 41.0 - 61.0 39.0 - 69.0 63.0 - 170	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	83.8 75.6 79.1 79.4 70.7 69.4	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	87.6 78.6 81.8 73.9 75.0 73.7 71.3 69.2 65.6 68.9	22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	92.4	31.0 - 191	

Α	Isotopic Labeled Standard outside QC range but
А	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Analyst: 1/12/2023

Reviewed By: 0

Date: 1/12/2023

EPA Method 1613 PCDD/F

FAL ID: 14849-001-SA Client ID: M1001-SW-221122 Matrix: Aqueous Batch No: X6329

Date Extracted: 01-06-2023 Date Received: 12-28-2022 Amount: 0.949 L

ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/L

Acquired: 01-11-2023 2005 WHO TEQ: 0.110

				2005					
Compound	Cond	DL.	Qual	WHO Tox	MDL	Compound	Conc	DL (Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NE NE NE NE 10.4	3.41 3.10 3.20 2.91	J	- - - - - 0.104 0.00570	0.640 0.783 1.30 1.39 1.28 1.17 2.00	Total TCDD Total PeCDD Total HxCDD	5.26 12.3 15.8 18.6	- - - -	1 1
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	NE NE NE NE NE NE NE	2.40 2.74 2.56 2.70 2.74 3.77 2.83 5.16		- - - - - - - -	0.624 0.751 0.793 0.781 0.803 0.827 0.973 0.773 0.978 1.71	Total TCDF Total PeCDF Total HxCDF	16.7 ND ND ND	2.74 3.77 5.16	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-0CDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	74.0 67.8 81.3 84.9 72.7 56.3 77.5 75.9 73.1	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178			B C D DNQ E	Isotopic Labeled Star signal to noise ratio is Analyte is present in I Chemical Interference Presence of Diphenyl Analyte concentration Analyte confirmation	s >10:1 Method Bla e I Ethers I is below on is above on seconda	ank calibration rang calibration rang ary column	ge nge
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	76.7 78.0 74.9 66.3 71.5 57.1 48.9	26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157			M ND NP P S	Analyte concentration Maximum possible or Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance of Matrix interferences Result taken from dilu	oncentration at Detection Whatman criteria not r	n on Limit Level 0.7um GF/F fi met	1
37Cl-2,3,7,8-TCDD	93.7	35.0 - 197						-	

1/12/2023 Date:

Reviewed By: Date: 1/12/2023

FTR Project No.: 14849 Page 000005 of 000016

FAL ID: 14849-00 Client ID: Method Matrix: Aqueous		Date Extra Date Rece Amount: 1		-2023	ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L		Acquired: 01-0 Total Conc: 0.		
Batch No: X6325							Page 1 of 3		
Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-1	ND	3.61			PCB-51	ND	5.82		
PCB-2	ND	5.62			PCB-52	ND	5.78	С	69
PCB-3	ND	7.07			PCB-53	ND	6.11		
PCB-4	ND	7.71			PCB-54	ND	4.85		
PCB-5	ND	9.59			PCB-55	ND	4.27		
PCB-6	ND	9.58			PCB-56	ND	7.88	С	60
PCB-7	ND	9.75			PCB-57	ND	4.58		
PCB-8	ND	9.68			PCB-58	ND	4.68		
PCB-9	ND	9.53			PCB-59	-	-	C042	42
PCB-10	ND	9.09			PCB-60	-	-	C056	56
PCB-11	ND	11.1			PCB-61	ND	4.90	С	70
PCB-12	ND	10.7			PCB-62	ND	4.53		
PCB-13	ND	11.0			PCB-63	ND	4.41		
PCB-14	ND	9.60			PCB-64	-	-	C041	41/71/72
PCB-15	ND	15.3			PCB-65	ND	4.78		
PCB-16	ND	6.30			PCB-66	ND	4.24	С	76
PCB-17	ND	7.06			PCB-67	ND	4.51		
PCB-18	ND	7.73			PCB-68	ND	4.28		
PCB-19	ND	8.18			PCB-69	-	-	C052	52
PCB-20	ND	12.5	С	21/33	PCB-70	-	-	C061	61
PCB-21	-	-	C020	20/33	PCB-71	-	-	C041	41/64/72
PCB-22	ND	11.7			PCB-72	-	-	C041	41/64/71
PCB-23	ND	11.0			PCB-73	ND	4.30		
PCB-24	ND	5.27			PCB-74	ND	4.53		
PCB-25	ND	12.0			PCB-75	-	-	C048	48
PCB-26	ND	12.3			PCB-76	-	-	C066	66
PCB-27	ND	5.24			PCB-77	ND	9.55		
PCB-28	ND	9.80			PCB-78	ND	7.97		
PCB-29	ND	12.4			PCB-79	ND	7.58		
PCB-30	ND	5.10			PCB-80	ND	3.90		
PCB-31	ND	12.9			PCB-81	ND	6.93		
PCB-32	ND	6.27			PCB-82	ND	10.6	_	
PCB-33			C020	20/21	PCB-83	ND	7.99	C	112
PCB-34	ND	11.0			PCB-84	ND	9.46	C	92
PCB-35	ND	15.6			PCB-85	ND	7.19	С	116
PCB-36	ND	13.4			PCB-86	ND	9.55	_	447/405
PCB-37	ND	14.1			PCB-87	ND	7.01	С	117/125
PCB-38	ND	12.7			PCB-88	ND	7.30	С	91
PCB-39	ND	13.5			PCB-89	ND	9.28	С	101
PCB-40	ND	7.60	0	04/74/70	PCB-90	ND	8.09		101
PCB-41	ND	4.87	C	64/71/72	PCB-91	-	-	C088	88 84
PCB-42	ND	5.47	C	59 4 9	PCB-92		0.00	C084	04
PCB-43 PCB-44	ND ND	6.25	C	49	PCB-93	ND ND	8.20 8.44		
PCB-44 PCB-45	ND ND	7.21 6.85			PCB-94 PCB-95	ND ND	8.44 8.04		
PCB-45 PCB-46	ND ND	7.34			PCB-95 PCB-96	ND ND	5.90		
PCB-46 PCB-47	ND ND	7.3 4 6.09			PCB-96 PCB-97	ND ND	5.90 9.56		
PCB-47 PCB-48	ND ND	4.82	С	75	PCB-97 PCB-98	ND ND	7.98	С	102
PCB-40 PCB-49	ND	4.02	C043	75 43	PCB-90 PCB-99	ND ND	6.87	C	102
PCB-50	ND	6.09	0040	40	PCB-99	ND ND	7.01		
. 05 00	ND	0.00			1 00 100	IND	7.01		

FTR Project No.: 14849 Page 000006 of 000016

Batch No. X8325	CI	AL ID: 14849-0 lient ID: Metho atrix: Aqueous	d Blank	Date Extra Date Rece Amount: 1		-2023	ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L		Acquired: 01-0	5-2023	
PCB-101 C090 90 PCB-151 ND 8.70 PCB-102 C098 98 PCB-152 ND 5.04 PCB-103 ND 7.11 PCB-104 ND 5.81 PCB-105 ND 6.46 PCB-105 ND 6.46 PCB-106 ND 6.66 C 118 PCB-156 ND 6.36 PCB-107 ND 6.66 C 118 PCB-108 C107 107 PCB-158 ND 5.91 PCB-108 ND 6.47 PCB-109 ND 6.43 PCB-110 ND 6.67 PCB-158 ND 5.91 PCB-111 ND 6.43 C 115 PCB-111 ND 6.43 C 115 PCB-112 C083 83 PCB-162 C123 132 PCB-113 ND 7.51 PCB-116 ND 6.23 PCB-117 ND 6.23 PCB-118 ND 6.21 PCB-118 ND 6.23 PCB-118 ND 6.23 PCB-119 ND 6.23 PCB-119 ND 6.24 PCB-117 ND 6.25 PCB-117 ND 6.26 PCB-117 ND 6.26 PCB-117 ND 6.27 PCB-118 ND 7.51 PCB-119 ND 6.27 PCB-128 ND 6.27 PCB-133 ND 7.31 PCB-134 ND 6.37 PCB-134 ND 6.37 PCB-135 ND 6.37 PCB-137 ND 6.38 PCB-131 ND 6.37 PCB-138 ND 6.48 PCB-138 ND 6.49 PCB-148 ND 6.68 PCB-127 ND 6.68 PCB-128 ND 7.75 PCB-128 ND 6.69 PCB-128 ND 7.75 PCB-128 ND 7.75 PCB-128 ND 7.75 PCB-128 ND 6.68 PCB-128 ND 7.77 PCB-138 ND 7.75 PCB-138 ND 7.77 PCB-138 ND 7.75 PCB-138 ND 7.77 PCB-138 ND 7.76 PCB-128 ND 7.77 PCB-138 ND 7.77 PCB-138 ND 7.77 PCB-138 ND 7.77 PCB-138 ND 7.77 PCB-128 ND 7.77 PCB-128 ND 7.77 PCB-128 ND 7.78 PCB-129 ND 6.68 PCB-127 ND 6.68 PCB-128 ND 7.77 PCB-138 ND 7.75 PCB-148 ND 7.755 PCB	Ba	atch No: X632	5						Page 2 of 3		
PCB-102 -	C	Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-103	P	CB-101	-	-	C090	90	PCB-151	ND	8.70		
PCB-104 ND 5.81	P	CB-102	-	-	C098	98	PCB-152	ND	5.04		
PCB-105	P	CB-103	ND	7.11			PCB-153	ND	6.47		
PCB-106	P	CB-104	ND	5.81			PCB-154	ND	5.62		
PCB-107	P	CB-105	ND	6.46			PCB-155	ND	4.70		
PCB-108	P	CB-106	ND	6.62	С	118	PCB-156	ND	6.36		
PCB-109	P	CB-107	ND	6.06		108	PCB-157	ND	6.92		
PCB-110	P	CB-108	-	-	C107	107	PCB-158	ND	5.91	С	160
PCB-111								ND	6.03		
PCB-112	P	CB-110						-	-		
PCB-113	P	CB-111	ND	6.43	С	115	PCB-161	-	-	C132	132
PCB-114 ND 6.23 PCB-164 - - C138 138/163 PCB-115 - - C085 85 PCB-166 ND 6.24 PCB-117 - - C087 87/125 PCB-168 ND 6.52 PCB-118 - - C 106 PCB-169 ND 6.10 PCB-120 ND 6.04 PCB-170 ND 7.87 PCB-120 PCB-121 ND 6.08 PCB-171 ND 6.80 PCB-171 ND 6.80 PCB-122 ND 6.16 PCB-173 ND 7.51 PCB-122 ND 6.67 PCB-174 ND 6.80 PCB-174 ND 6.69 PCB-124 ND 5.78 PCB-173 ND 7.51 PCB-124 ND 5.78 PCB-173 ND 7.71 PCB-124 ND 6.69 PCB-173 ND 7.71 ND 4.88 PCB-124 ND 6.69 PCB-125<	P	CB-112	-	-	C083	83		-	-	C128	
PCB-115	P	CB-113	ND	7.51			PCB-163	-	-	C138	138/164
PCB-116	P	CB-114	ND	6.23			PCB-164	-	-	C138	138/163
PCB-117 PCB-118 - - C 087 87/125 PCB-168 ND 6.10 6.52 PCB-119 PCB-119 ND 6.17 - C 106 PCB-168 ND 6.10 6.10 PCB-120 ND 6.04 PCB-170 ND 7.87 7.87 PCB-121 ND 6.08 PCB-171 ND 6.80 PCB-122 ND 6.16 PCB-172 ND 7.51 PCB-123 ND 5.78 PCB-173 ND 7.71 PCB-124 ND 3.03 PCB-174 ND 6.69 PCB-125 - C087 87/117 PCB-175 ND 6.69 PCB-126 ND 9.73 PCB-175 ND 6.67 PCB-126 ND 7.20 PCB-127 ND 7.20 PCB-128 ND 7.17 C 162 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 4.77 PCB-130 ND 4.77 PCB-131 ND 4.77 PCB-131 ND 4.77 PCB-131 ND 6.68 PCB-138 ND 6.68 PCB-131 ND 6.68 PCB-131 ND 6.68 PCB-131 ND 5.97 C			-							C146	146
PCB-118	P	CB-116	-	-							
PCB-119			-	-							
PCB-120					С	106					
PCB-121 ND 6.08 PCB-171 ND 6.80 PCB-122 ND 6.16 PCB-172 ND 7.51 PCB-123 ND 5.78 PCB-173 ND 7.71 PCB-124 ND 3.03 PCB-175 ND 6.69 PCB-125 - - C087 87/117 PCB-175 ND 6.69 PCB-126 ND 9.73 PCB-176 ND 4.88 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 7.20 PCB-129 ND 9.51 PCB-178 ND 4.77 PCB-180 ND 4.77 PCB-180 ND 6.85 PCB-129 ND 6.85 PCB-130 ND 6.81 PCB-131 ND 6.82 PCB-131 ND 6.82 PCB-131 ND 6.84 PCB-131 ND 6.84 PCB-133 ND 5.96 PCB-133 ND 5.96 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
PCB-122											
PCB-123 ND 5.78 PCB-173 ND 7.71 PCB-124 ND 3.03 PCB-174 ND 6.69 PCB-125 - - C087 87/117 PCB-175 ND 6.67 PCB-126 ND 9.73 PCB-176 ND 4.88 PCB-127 ND 6.49 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 6.85 PCB-129 ND 9.51 PCB-179 ND 4.77 PCB-130 ND 8.15 PCB-180 ND 6.85 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-182 ND 5.96 PCB-183 ND 4.56 PCB-133 ND											
PCB-124 ND 3.03 PCB-175 ND 6.69 PCB-125 - - C087 87/117 PCB-175 ND 6.67 PCB-126 ND 9.73 PCB-176 ND 4.88 PCB-127 ND 6.49 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 6.85 PCB-129 ND 9.51 PCB-179 ND 4.77 PCB-130 ND 6.85 PCB-130 ND 8.15 PCB-180 ND 6.97 PCB-131 ND 6.68 PCB-181 ND 5.97 C 187 PCB-181 ND											
PCB-125 - - C087 87/117 PCB-175 ND 6.67 PCB-126 ND 9.73 PCB-176 ND 4.88 PCB-127 ND 6.49 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 6.85 PCB-129 ND 9.51 PCB-179 ND 4.77 PCB-130 ND 8.15 PCB-180 ND 6.85 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-131 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-182 ND 5.96 PCB-183 ND 4.56 PCB-134 ND 9.36 C 143 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
PCB-126 ND 9.73 PCB-176 ND 4.88 PCB-127 ND 6.49 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 6.85 PCB-129 ND 9.51 PCB-180 ND 4.77 PCB-130 ND 8.15 PCB-180 ND 6.97 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-131 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-183 ND 5.96 PCB-134 ND 9.36 C 143 PCB-184 ND 4.86 PCB-135 ND 8.78 PCB-185 ND 4.86 PCB-136			ND								
PCB-127 ND 6.49 PCB-177 ND 7.20 PCB-128 ND 7.17 C 162 PCB-178 ND 6.85 PCB-129 ND 9.51 PCB-179 ND 4.77 PCB-130 ND 8.15 PCB-180 ND 6.97 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-132 ND 7.36 C 161 PCB-182 ND 5.96 C 187 PCB-133 - - C131 131 PCB-183 ND 5.96 PCB-184 ND 4.56 PCB-134 ND 5.96 PCB-185 ND 6.64 PCB-135 ND 6.64 PCB-185 ND 6.64 PCB-185 ND 6.64 PCB-185 ND 4.86 PCB-185 ND 4.86 PCB			<u>-</u>		C087	87/117					
PCB-128 ND 7.17 C 162 PCB-178 ND 6.85 PCB-129 ND 9.51 PCB-179 ND 4.77 PCB-130 ND 8.15 PCB-180 ND 6.97 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-134 ND 9.36 C 143 PCB-183 ND 5.96 PCB-134 ND 9.36 C 143 PCB-184 ND 4.56 PCB-135 ND 8.78 PCB-185 ND 6.64 PCB-136 ND 5.05 PCB-186 ND 4.86 PCB-137 ND 9.11 PCB-188 ND 5.83 PCB-138											
PCB-129 ND 9.51 PCB-130 ND 4.77 PCB-130 ND 8.15 PCB-180 ND 6.97 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-183 ND 5.96 C 187 PCB-134 ND 9.36 C 143 PCB-183 ND 4.56 A PCB-135 ND 4.56 A A PCB-185 ND 6.64 A A PCB-186 ND 4.56 A A PCB-186 ND 4.86 A A PCB-186 ND 4.86 A A A A B PCB-186 ND 5.83 A B PCB-188 ND 5.83 A B PCB-188 ND 5.83 A					_						
PCB-130 ND 8.15 PCB-180 ND 6.97 PCB-131 ND 9.35 C 133 PCB-181 ND 6.68 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-183 ND 5.96 ND 5.96 187 PCB-183 ND 4.56 PCB-184 ND 4.56 PCB-185 ND 4.56 ND 4.56 PCB-185 ND 6.64 PCB-186 ND 4.56 ND 4.86 PCB-186 ND 4.86 ND 4.86 ND 4.86 PCB-185 ND 4.86 ND 4.80 ND 4.80 ND 4.80 ND 4.80 ND 4.80 ND 4.80 ND 4.80<					C	162					
PCB-131 ND 9.35 C 133 PCB-182 ND 6.68 PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-183 ND 5.96 PCB-134 ND 9.36 C 143 PCB-183 ND 4.56 PCB-135 ND 8.78 PCB-185 ND 6.64 ND 4.56 PCB-136 ND 5.05 PCB-186 ND 4.86 ND 4.80 ND 4.80 ND 4.80 ND 4.80 ND 4.80 ND 4.80 N											
PCB-132 ND 7.36 C 161 PCB-182 ND 5.97 C 187 PCB-133 - - C131 131 PCB-183 ND 5.96 ND 5.96 PCB-184 ND 5.96 ND 4.56 PCB-185 ND 4.56 ND 4.56 PCB-185 ND 6.64 ND 4.86 PCB-185 ND 6.64 ND 4.86 PCB-187 - - C182 182 PCB-136 ND 4.86 ND 4.86 PCB-187 - - C182 182 PCB-188 ND 5.83 ND 4.86 PCB-188 ND 5.83 ND 4.86 PCB-189 ND 5.83 ND 5.83 PCB-189 ND 5.83 ND 5.83 PCB-189 ND 5.83 PCB-189 ND 5.48 ND 5.48 PCB-189 ND 5.48 PCB-189 ND 5.22 PCB-189 ND 5.39 PCB-1					0	400					
PCB-133 - - C131 131 PCB-183 ND 5.96 PCB-134 ND 9.36 C 143 PCB-184 ND 4.56 PCB-135 ND 8.78 PCB-185 ND 6.64 PCB-136 ND 5.05 PCB-186 ND 4.86 PCB-137 ND 9.11 PCB-187 - - C182 182 PCB-138 ND 6.61 C 163/164 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-188 ND 4.90 PCB-140 ND 7.55 PCB-199 ND 5.48 PCB-141 ND 8.15 PCB-190 ND 5.22 PCB-142 ND 9.05 PCB-191 ND 5.00 PCB-143 - - C134 134										0	407
PCB-134 ND 9.36 C 143 PCB-185 ND 4.56 PCB-135 ND 8.78 PCB-185 ND 6.64 PCB-136 ND 5.05 PCB-186 ND 4.86 PCB-137 ND 9.11 PCB-187 - C182 182 PCB-138 ND 6.61 C 163/164 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-188 ND 4.90 PCB-139 ND 7.65 C 149 PCB-188 ND 4.90 PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 <td></td> <td></td> <td>ND</td> <td>7.30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td>107</td>			ND	7.30						C	107
PCB-135 ND 8.78 PCB-185 ND 6.64 PCB-136 ND 5.05 PCB-186 ND 4.86 PCB-137 ND 9.11 PCB-187 - - C182 182 PCB-138 ND 6.61 C 163/164 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-189 ND 4.90 PCB-140 ND 7.55 C 149 PCB-189 ND 4.90 PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 <t< td=""><td></td><td></td><td>ND -</td><td>0.26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			ND -	0.26							
PCB-136 ND 5.05 PCB-186 ND 4.86 PCB-137 ND 9.11 PCB-187 - - C182 182 PCB-138 ND 6.61 C 163/164 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-189 ND 4.90 PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND <td></td> <td></td> <td></td> <td></td> <td>C</td> <td>143</td> <td></td> <td></td> <td></td> <td></td> <td></td>					C	143					
PCB-137 ND 9.11 PCB-187 - - C 182 182 PCB-138 ND 6.61 C 163/164 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-189 ND 4.90 PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-142 ND 9.05 PCB-192 ND 5.00 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-195 ND 3.97 PCB-145 ND 6.78 C 165 PCB-195 ND 3.97 PCB-146 ND 6.76 C 165 PCB-196 ND 6.28 C 203											
PCB-138 ND 6.61 C 163/164 PCB-188 ND 5.83 PCB-139 ND 7.65 C 149 PCB-189 ND 4.90 PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-144 ND 5.04 PCB-195 ND 3.97 PCB-145 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-198 ND 7.55 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-199 ND 6.20									4.00	C192	100
PCB-139 ND 7.65 C 149 PCB-189 ND 4.90 PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-196 ND 7.55 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20					C	162/164			F 92	C102	102
PCB-140 ND 7.55 PCB-190 ND 5.48 PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20											
PCB-141 ND 8.15 PCB-191 ND 5.22 PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-198 ND 7.55 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-199 ND 6.20					C	149					
PCB-142 ND 9.05 PCB-192 ND 5.39 PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-198 ND 7.55 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20											
PCB-143 - - C134 134 PCB-193 ND 5.00 PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20											
PCB-144 ND 8.13 PCB-194 ND 3.58 PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-198 ND 7.55 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20			IND	5.05	C134	134					
PCB-145 ND 5.04 PCB-195 ND 3.97 PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20			ND	8 13	0104	134					
PCB-146 ND 6.78 C 165 PCB-196 ND 6.28 C 203 PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20											
PCB-147 ND 7.65 PCB-197 ND 4.60 PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 - - C139 139 PCB-199 ND 6.20					C	165				C.	203
PCB-148 ND 6.82 PCB-198 ND 7.55 PCB-149 C139 139 PCB-199 ND 6.20					9	100				J	200
PCB-149 C139 139 PCB-199 ND 6.20											
			-		C139	139					
			ND	4.79							

FTR Project No.: 14849 Page 000007 of 000016

EPA Method 1668 PCBs

FAL ID: 14849-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X6325

Date Extracted: 01-04-2023 Date Received: NA Amount: 1.000 L

ICal: DAILY209FAL4-1-5-23 GC Column: DB1MS Units: pg/L

Acquired: 01-05-2023

Page 3 of 3

Batch No:	X6325				
	Compound	Conc	DL	Qual	Coeluters
PCB-201 PCB-202 PCB-203 PCB-204 PCB-205 PCB-206 PCB-207 PCB-208 PCB-209		ND ND ND ND ND ND ND ND	4.65 5.18 - 4.82 2.95 5.79 3.99 3.66 4.81	C196	196
Intern	al Standards	% Rec	QC Limits	Qual	
13C-PCB- 13C-PCB-	3 4 15 19 37 54 77 81 104 105 114 118 123 155 156 157 167 169 188 189 202 205 206 208	85.7 73.8 93.6 71.6 81.4 78.3 92.0 88.4 85.0 77.1 93.5 91.7 95.1 84.9 92.5 93.9 92.5 93.9 98.5 79.7 98.2 81.8 82.5 75.1 73.0 73.8	5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 10.0 - 145	Ovel	
Cleanu	p Surrogates	% Rec	QC Limits	Qual	
13C-PCB- 13C-PCB- 13C-PCB-	111	90.7 80.5 80.3	5.00 - 145 10.0 - 145 10.0 - 145		

В	Analyte is present in Method Blank	
С	Coelution	
D	Presence of Diphenyl Ethers	
DNQ	Analyte concentration is below calibration range	
Ε	Analyte concentration is above calibration range	
F	Analyte confirmation on secondary column	
J	Analyte concentration is below calibration range	
M	Maximum possible concentration	

Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1

ND Analyte Not Detected at Detection Limit Level

NP Not Provided

P Pre-filtered through a Whatman 0.7um GF/F filter

Sample acceptance criteria not met

X Matrix interferences

Result taken from dilution or reinjection

1/6/2023 Date:

Reviewed By: 1/6/2023 Date:_

EPA Method 1668 **PCBs**

FAL ID: 14849-001-OP Client ID: OPR Matrix: Aqueous Batch No: X6325	R	Date Extracted: 0 Date Received: N Amount: 1.000 L		ICal: DAILY209FAL4-1-5 GC Column: DB1MS Units: ng/ml	-23 Acc	quired: 01-05-202	23
Compound	% Recovery	QC Limits	Qual	Internal Standards	% Recovery	QC Limits	Qual
PCB-1 PCB-3 PCB-4 PCB-15 PCB-19 PCB-37 PCB-54 PCB-77 PCB-81 PCB-105 PCB-114 PCB-118 PCB-123 PCB-123 PCB-155 PCB-155 PCB-156 PCB-157 PCB-169 PCB-169 PCB-188 PCB-189 PCB-202 PCB-202 PCB-205 PCB-206 PCB-206	111 107 116 94.4 110 110 106 116 104 109 101 104 106 110 102 104 102 108 112 102	60.0 - 135 60.0 - 135		13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-15 13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-105 13C-PCB-118 13C-PCB-118 13C-PCB-123 13C-PCB-155 13C-PCB-156 13C-PCB-156 13C-PCB-157 13C-PCB-167 13C-PCB-167 13C-PCB-169 13C-PCB-188 13C-PCB-188 13C-PCB-189 13C-PCB-189 13C-PCB-202 13C-PCB-205 13C-PCB-206 13C-PCB-206	79.7 73.7 83.8 72.6 77.0 80.2 84.6 83.2 82.0 71.7 86.7 85.8 85.5 82.2 87.6 76.6 83.6 88.5 86.4 93.3 74.6 90.1 77.3 79.0 73.4 74.5	15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 40.0 - 145	
PCB-209	98.2	60.0 - 135		13C-PCB-209	74.6	40.0 - 145	
				Cleanup Surrogate	% Recovery	QC limits	Qual
				13C-PCB-28	83.4	15.0 - 145	
				13C-PCB-111 13C-PCB-178	77.9 76.6	40.0 - 145 40.0 - 145	
				100 1 00 110	70.0	13.0 170	

Date: 1/6/2023

Date: 1/6/2023

FAL ID: 14849-00 Client ID: M1001 Matrix: Aqueous			cted: 01-04 ived: 12-28 .979 L		ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L		Acquired: 01-0 Total Conc: 14		
Batch No: X6325							Page 1 of 3		
Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-1	ND	5.49			PCB-51	15.8	-	J	
PCB-2	ND	7.87			PCB-52	62.8	-	С	69
PCB-3	ND	9.22			PCB-53	ND	10.0		
PCB-4	63.4	-			PCB-54	ND	7.94		
PCB-5	22.1	-			PCB-55	ND	6.99		
PCB-6	ND	8.33			PCB-56	ND	14.2	С	60
PCB-7	ND	8.48			PCB-57	ND	7.50		
PCB-8	44.1	_			PCB-58	ND	7.66		
PCB-9	ND	8.29			PCB-59	-	-	C042	42
PCB-10	ND	7.90			PCB-60	-	-	C056	56
PCB-11	309	-			PCB-61	50.2	-	С	70
PCB-12	ND	9.28			PCB-62	ND	7.42		
PCB-13	ND	9.57			PCB-63	ND	7.21		
PCB-14	ND	8.34			PCB-64	-	-	C041	41/71/72
PCB-15	ND	11.4			PCB-65	ND	7.82		
PCB-16	13.5	-	J		PCB-66	25.3	-	С	76
PCB-17	26.5	_	_		PCB-67	ND	7.38	_	
PCB-18	75.0	_			PCB-68	ND	7.00		
PCB-19	15.8	_	J		PCB-69	-	-	C052	52
PCB-20	42.2	_	Č	21/33	PCB-70	_	_	C061	61
PCB-21		_	C020	20/33	PCB-71	_	_	C041	41/64/72
PCB-22	28.1	_	0020	_0,00	PCB-72	_	_	C041	41/64/71
PCB-23	ND	4.42			PCB-73	ND	7.04	0011	1170 177 1
PCB-24	ND	4.27			PCB-74	20.6	-		
PCB-25	ND	4.79			PCB-75		_	C048	48
PCB-26	9.50	-	J		PCB-76	_	_	C066	66
PCB-27	ND	4.24	_		PCB-77	ND	8.25		
PCB-28	45.9				PCB-78	ND	7.07		
PCB-29	ND	4.95			PCB-79	ND	6.72		
PCB-30	ND	4.14			PCB-80	ND	6.37		
PCB-31	43.2	-			PCB-81	ND	6.36		
PCB-32	26.2	_			PCB-82	ND	9.65		
PCB-33		_	C020	20/21	PCB-83	ND	7.25	С	112
PCB-34	ND	5.97	0020		PCB-84	22.3		č	92
PCB-35	ND	6.24			PCB-85	ND	6.53	Č	116
PCB-36	ND	5.37			PCB-86	ND	8.67		
PCB-37	15.6	-	J		PCB-87	20.9	-	С	117/125
PCB-38	ND	5.08			PCB-88	ND	6.29	C	91
PCB-39	ND	5.41			PCB-89	ND	8.43		
PCB-40	ND	12.4			PCB-90	51.8	-	С	101
PCB-41	29.2	_	С	64/71/72	PCB-91	_	_	C088	88
PCB-42	ND	8.95	C	59	PCB-92	-	-	C084	84
PCB-43	26.8	-	C	49	PCB-93	ND	7.06		
PCB-44	46.3	_			PCB-94	ND	7.27		
PCB-45	ND	11.2			PCB-95	40.6			
PCB-46	ND	12.0			PCB-96	ND	5.08		
PCB-47	32.5				PCB-97	21.6			
PCB-48	ND	7.89	С	75	PCB-98	ND	6.87	С	102
PCB-49	-	-	C043	43	PCB-99	21.3		-	
PCB-50	ND	9.96			PCB-100	ND	6.03		

FTR Project No.: 14849 Page 000010 of 000016

FAL ID: 14849-00 Client ID: M1001- Matrix: Aqueous			acted: 01-04 eived: 12-28 0.979 L		ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L		Acquired: 01-	05-2023	
Batch No: X6325							Page 2 of 3		
Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-101	-	-	C090	90	PCB-151	ND	8.97		
PCB-102	-	-	C098	98	PCB-152	ND	5.15		
PCB-103	ND	6.12			PCB-153	20.7	-		
PCB-104	ND	5.00			PCB-154	ND	5.75		
PCB-105	18.9	-	J		PCB-155	ND	4.80		
PCB-106	46.1	-	С	118	PCB-156	ND	6.52		
PCB-107	ND	8.14	С	108	PCB-157	ND	7.02		
PCB-108	-	-	C107	107	PCB-158	ND	6.09	С	160
PCB-109	ND	5.83			PCB-159	ND	6.22		
PCB-110	45.3	-			PCB-160	-	-	C158	158
PCB-111	ND	5.84	С	115	PCB-161	-	-	C132	132
PCB-112	_	_	C083	83	PCB-162	-	-	C128	128
PCB-113	ND	6.82			PCB-163	-	-	C138,J	138/164
PCB-114	ND	8.23			PCB-164	-	-	C138,J	138/163
PCB-115	_	-	C111	111	PCB-165	-	-	C146	146
PCB-116	-	_	C085	85	PCB-166	ND	6.43		
PCB-117	_	_	C087	87/125	PCB-167	ND	6.75		
PCB-118	_	_	C	106	PCB-168	ND	6.30		
PCB-119	ND	5.61	_		PCB-169	ND	8.28		
PCB-120	ND	5.48			PCB-170	ND	7.57		
PCB-121	ND	5.23			PCB-171	ND	6.79		
PCB-122	ND	8.27			PCB-172	ND	7.50		
PCB-123	ND	8.57			PCB-173	ND	7.70		
PCB-124	ND	8.53			PCB-174	ND	6.68		
PCB-125	-	-	C087	87/117	PCB-175	ND	6.66		
PCB-126	ND	12.0	000.	• • • • • • • • • • • • • • • • • • • •	PCB-176	ND	4.87		
PCB-127	ND	8.71			PCB-177	ND	7.19		
PCB-128	ND	7.39	С	162	PCB-178	ND	6.84		
PCB-129	ND	9.81	· ·		PCB-179	ND	4.76		
PCB-130	ND	8.41			PCB-180	ND	6.96		
PCB-131	ND	9.64	С	133	PCB-181	ND	6.67		
PCB-132	ND	7.60	Č	161	PCB-182	ND	5.96	С	187
PCB-133	_	_	C131	131	PCB-183	ND	5.95		
PCB-134	ND	9.65	С	143	PCB-184	ND	4.55		
PCB-135	ND	9.06			PCB-185	ND	6.63		
PCB-136	ND	5.16			PCB-186	ND	4.85		
PCB-137	ND	9.39			PCB-187	-	-	C182	182
PCB-138	18.0	-	C,J	163/164	PCB-188	ND	5.81		
PCB-139	18.1	_	Ć,J	149	PCB-189	ND	4.86		
PCB-140	ND	7.79	-,-		PCB-190	ND	5.48		
PCB-141	ND	8.41			PCB-191	ND	5.22		
PCB-142	ND	9.34			PCB-192	ND	5.38		
PCB-143	-	-	C134	134	PCB-193	ND	4.99		
PCB-144	ND	8.39			PCB-194	ND	3.76		
PCB-145	ND	5.15			PCB-195	ND	4.17		
PCB-146	ND	6.99	С	165	PCB-196	ND	7.62	С	203
PCB-147	ND	7.89	_		PCB-197	ND	5.58	-	-
PCB-148	ND	6.97			PCB-198	ND	9.17		
PCB-149			C139,J	139	PCB-199	ND	7.53		
PCB-150	ND	4.90	, -		PCB-200	ND	5.81		

FTR Project No.: 14849 Page 000011 of 000016

EPA Method 1668 PCBs

FAL ID: 14849-001-SA Client ID: M1001-SW-221122 Matrix: Aqueous Batch No: X6325 Date Extracted: 01-04-2023 Date Received: 12-28-2022 Amount: 0.979 L ICal: DAILY209FAL4-1-5-23 GC Column: DB1MS Units: pg/L Acquired: 01-05-2023

Page 3 of 3

Batch No:	X6325				
	Compound	Conc	DL	Qual	Coeluters
PCB-201 PCB-202 PCB-203 PCB-204 PCB-205 PCB-206 PCB-207 PCB-208 PCB-209		ND ND ND ND ND ND ND ND	5.64 6.29 - 5.85 3.09 5.37 3.54 3.11 4.53	C196	196
Intern	al Standards	% Rec	QC Limits	Qual	
13C-PCB- 13C-PCB-	3 4 15 19 37 554 -77 81 104 105 -114 -118 -123 -126 -155 -156 -157 -167 -169 -188 -189 -202 -205 -206 -208	79.5 73.3 87.0 70.3 73.7 82.8 80.2 76.7 76.9 71.0 84.3 83.6 83.8 75.3 84.5 76.8 81.7 84.7 79.9 86.1 74.4 83.6 78.1 75.3 68.9 68.7 68.9	5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 10.0 - 145	Qual	
13C-PCB- 13C-PCB- 13C-PCB-	-28 -111	85.2 75.5 74.7	5.00 - 145 10.0 - 145 10.0 - 145	Qual	

	signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Coelution
D	Presence of Dinhenyl Ethers

Isotopic Labeled Standard outside QC range but

DNQ Analyte concentration is below calibration range

E Analyte concentration is above calibration rangeF Analyte confirmation on secondary column

J Analyte concentration is below calibration range

M Maximum possible concentration

ND Analyte Not Detected at Detection Limit Level

NP Not Provided

P Pre-filtered through a Whatman 0.7um GF/F filter

S Sample acceptance criteria not met

X Matrix interferences

* Result taken from dilution or reinjection

Analyst: 1/6/2023

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To N	/lichael	Erdahl			SU	BCONT	RACT	ER F	Front	ie/					T	URN	AROUND T	fIME
<u>-</u>		ın and Bruya	, Inc.		PRO	OJECT :	NAME	Z/NO.				PO#		\neg \P	×Stand RUSI	H		
Address3	012 16	th Ave W				21	1352	<u>-</u>			D.	89	5				s authorized	
City, State, ZIP_S Phone #_ (206) 285			edmanandbruy	va.com	RE	MARKS Ple	ease E	mail F				484	0(Dispo Retur	ose aft rn sar	PLE DISPOS ter 30 days nples ith instruction	
				1			1			ANA	LYSES	REC	QUES	TED	т т			
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	crix	# of jars	Dioxins/Furans	ЕРН	VPH	PCB Congenors	E191 ¥3/⊄						No	tes
M1001-SW-ZZ1122		1/22/12.	७४५०	Wate	? _	2_				×	×						* see al	ached
										į								
												ę					1	
Friedman & Bruya 3012 16th Avenue V		Relinguished	SIGNATURE	1	Ĵ	Mich	J ael Er	PRINT dahl	' NAN	Æ		Fr	Co iedma	OMPA on & E			DATE 12/27/12	TIME lou
Seattle, WA 98119-	2029	Received by:		$\stackrel{\leftarrow}{\bigcirc}$		la	th	7	ι φ,	ρ		E	ron	tre	<u> </u>		12/28/22	1030
Ph. (206) 285-8282		Relinquished	-\ ()-\\			1	~											

Michael Erdahl

From: "Lynn Green" <lynng@evren-nw.com>
Date: Tuesday, December 27, 2022 10:13 AM

To: "Michael Erdahl" <merdahl@friedmanandbruya.com>

Cc: "Tori Bennett" <torib@evren-nw.com>; "Evan Bruggeman" <evanb@evren-nw.com>

Subject: RE: 1355-19001-02

We need the following Dioxins and Furans:

2,3,7,8-TCDD/TCDF,

- 1,2,3,7,8-PeCDD/PeCDF,
- 1,2,3,4,7,8-HxCDD/HxCDF,
- 1,2,3,6,7,8-HxCDD/HxCDF,
- 1,2,3,7,8,9-HxCDD/HxCDF,
- 2,3,4,6,7,8-HxCDF,
- 1,2,3,4,6,7,8-HpCDD/HpCDF, and
- 1,2,3,4,7,8,9-HpCDF

You previously reported MRLS between 0.000000304 - 0.000000732 ug/L for these constituents. Which method was that?

Lynn D. Green, Ph. D. P.G./R.G./L.G./C.E.G./L.E.G. Principal Engineering Geologist / Hydrologist EVREN Northwest, Inc Environmental and Natural Resource Consulting ><)))) ふめ ><)))) かめ ><))) かっぱい)

From: Michael Erdahl <merdahl@friedmanandbruya.com>

Sent: Tuesday, December 27, 2022 10:10 AM To: Lynn Green < lynng@evren-nw.com>

Cc: Tori Bennett <torib@evren-nw.com>; Evan Bruggeman <evanb@evren-nw.com>

Subject: Re: 1355-19001-02

The list was provided with this one.

- 1) Do you only want 2,3,7,8-TCDD eq only for both of these samples?
- 2) Which method--EPA 1613 or 8290?

Michael Erdahl Senior Project Manager Friedman and Bruya (206) 285-8282 x 247 (206) 446-5926 (cell)

This message is private or privileged. If you are not the person or party for whom this message is intended, we apologize for the mistake and please forward us a note that this message was received in

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 14849

Client:	Friedman & Bruya, Inc.
Client Project ID:	211352
Date Received:	12/28/2022
Time Received:	10:30 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	1
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Fed-Ex				
Tracking Number:	813795597453				
Shipping Container Received Intact	Yes				
Custody seals(s) present?	No				
Custody seals(s) intact?	No				
Sample Arrival Temperature (C)	0				
Cooling Method	Blue Ice/Ice				
Chain Of Custody Present?	Yes				
Return Shipping Container To Client	Yes				
Test aqueous sample for residual Chlorine	Yes				
Sodium Thiosulfate Added	No				
Adequate Sample Volume	Yes				
Appropriate Sample Container	Yes				
pH Range of Aqueous Sample	Between 4 and 9				
Anomalies or additional comments:					

5172 Hillsdale Circle * El Dorado Hills, CA 95762 * Tel (916) 934-0900 * Fax (916) 934-0999 * www.frontieranalytical.com FTR Project No.: 14849 Page 000015 of 000016

Address 40 SE 24th Ave Company EVREN-NW

Phone 503-452-5561 City, State, ZIP Porlland, Oregon 97214

Email lynng@evren-nw.com

SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) 11/23/22 MI/C3

1355-19001-9302 Pe 14

PROJECT NAME

REMARKS

X* ATTACHO FORM FOR

MALYTES & MRL'S

Project Specific RLs - Yes / No

INVOICE TO

PO# Standard Turnaround RUSH

TURNAROUND TIME Page # () 1

Rush charges authorized by:

Other Archive Samples SAMPLE DISPOSAL Dispose after 30 days

r	Ph. (206) 285-8282 Recei		Friedman & Bruya, Inc. Relin								11 John - 27 - 1001.	Sample ID	
Must	Received by:	Received by:	SIGNATURE Relinquished by			÷					01A-H 16-24-EL	Lab ID Date Sampled	
		R									8;4C	Time Sampled	
AN		M	5								Water	Sample Type	
ANH PHAN		MAKM	PRINT NAME								8	# of Jars	
HA		my	MAM		+	-	-		 		+-	NWTPH-Dx NWTPH-Gx	
Z		1	E)									BTEX EPA 8021	
						\dashv	-	-	 	 	ļ	VOCs EPA 8260	A
						-		_	·	 	*	PAHs EPA 8270	NALY
7		7	<u>, </u>	-							×	PCBs EPA 8082	SES
F8B	70 *	12	COMPANY								×	SELECT TO TALK	ANALYSES REQUESTED
			ANY								×	PAH'S &	ESTE
	100 PM			-	_					 	$ \times $	PAHS & Philade Iss	ď
=	3.						_	-			X	svacs *	
11/23/22 10:08	3. 2 - U	2	DATE TIME									Notes	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 26, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included is the amended report from the testing of material submitted on November 23, 2022 from the 1355-19001-02, F&BI 211352 project. Per your request, the task number has been changed to -02.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1207R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 7, 2022

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on November 23, 2022 from the 1355-19001-02, F&BI 211352 project. There are 11 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1207R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 23, 2022 by Friedman & Bruya, Inc. from the Evren Northwest 1355-19001-02, F&BI 211352 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Evren Northwest</u> 211352 -01 <u>M1001-SW-221122</u>

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: M1001-SW-221122 Client: Evren Northwest

Date Received: 11/23/22 Project: 1355-19001-02, F&BI 211352

11/29/22 Lab ID: Date Extracted: 211352-01Date Analyzed: 12/01/22 Data File: 211352-01.294 Matrix: Water Instrument: ICPMS2 Units: SPug/L (ppb) Operator:

<5

 $\begin{array}{ccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$

Zinc

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: M1001-SW-221122 Client: Evren Northwest

Date Received: 11/23/22 Project: 1355-19001-02, F&BI 211352

 Date Extracted:
 11/29/22
 Lab ID:
 211352-01 x10

 Date Analyzed:
 12/01/22
 Data File:
 211352-01 x10.133

Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Concentration

Analyte: ug/L (ppb)

Manganese 646

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1355-19001-02, F&BI 211352

11/28/22 Lab ID: Date Extracted: I2-843 mbDate Analyzed: 11/29/22 Data File: I2-843 mb.117 ICPMS2 Matrix: Water Instrument: Units: ug/L (ppb) SPOperator:

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Cadmium	< 0.2
Chromium	<1
Copper	<5
Lead	< 0.2
Manganese	<1
Silver	< 0.2
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	M1001-SW-221122	Client:	Evren Northwest

Date Received: 11/23/22Project: 1355-19001-02, F&BI 211352 Lab ID: Date Extracted: 11/28/22 $211352\text{-}01\ 1/0.5$ Date Analyzed: 11/29/22 Data File: 112913.DMatrix: Water Instrument: GCMS9 Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	64	15	144
2-Fluorobiphenyl	72	25	128
2,4,6-Tribromophenol	83	10	142
Terphenyl-d14	113	41	138

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.1
2-Methylnaphthalene	< 0.1
1-Methylnaphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	0.017
Phenanthrene	0.072
Anthracene	< 0.01
Fluoranthene	0.033
Pyrene	0.22
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.02
Dibenz(a,h)anthracene	< 0.01
Bis(2-ethylhexyl) phthalate	<1.6

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
Date Received:	Not Applicable	Project:	1355-19001-02 F&BI

 Date Received:
 Not Applicable
 Project:
 1355-19001-02, F&BI 211352

 Date Extracted:
 11/28/22
 Lab ID:
 02-2878 mb 1/0.5

Date Analyzed: 11/29/22 Data File: 112908.D

Matrix: Water Instrument: GCMS9

Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	88	15	144
2-Fluorobiphenyl	85	25	128
2,4,6-Tribromophenol	74	10	142
Terphenyl-d14	115	41	138

$\begin{array}{c} \text{Concentration}\\ \text{Ug/L (ppb)} \\ \text{Naphthalene} & <0.1\\ 2\text{-Methylnaphthalene} & <0.1\\ 1\text{-Methylnaphthalene} & <0.1\\ \end{array}$

Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.02 Dibenz(a,h)anthracene < 0.01 Bis(2-ethylhexyl) phthalate <1.6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/07/22 Date Received: 11/23/22

Project: 1355-19001-02, F&BI 211352

Date Extracted: 11/23/22 Date Analyzed: 11/29/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	Total Suspended Solids
M1001-SW-221122 211352-01	15
Method Blank 02-2871 mb	<5

ENVIRONMENTAL CHEMISTS

Date of Report: 12/07/22 Date Received: 11/23/22

Project: 1355-19001-02, F&BI 211352

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 211362-02 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	91	91	70-130	0
Cadmium	ug/L (ppb)	5	<1	100	98	70-130	2
Chromium	ug/L (ppb)	20	<1	95	95	70-130	0
Copper	ug/L (ppb)	20	15.0	95	95	70-130	0
Lead	ug/L (ppb)	10	1.94	94	95	70-130	1
Manganese	ug/L (ppb)	20	6.87	94	94	70-130	0
Silver	ug/L (ppb)	5	<1	94	93	70-130	1
Zinc	ug/L (ppb)	50	109	91	95	70-130	4

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	93	85-115
Cadmium	ug/L (ppb)	5	98	85-115
Chromium	ug/L (ppb)	20	95	85-115
Copper	ug/L (ppb)	20	100	85-115
Lead	ug/L (ppb)	10	100	85-115
Manganese	ug/L (ppb)	20	94	85-115
Silver	ug/L (ppb)	5	99	85-115
Zinc	ug/L (ppb)	50	97	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 12/07/22 Date Received: 11/23/22

Project: 1355-19001-02, F&BI 211352

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/0.5

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	77	75	50-104	3
2-Methylnaphthalene	ug/L (ppb)	5	77	78	54-109	1
1-Methylnaphthalene	ug/L (ppb)	5	76	77	55-108	1
Acenaphthylene	ug/L (ppb)	5	91	94	60-114	3
Acenaphthene	ug/L (ppb)	5	88	91	57-110	3
Fluorene	ug/L (ppb)	5	92	95	61-115	3
Phenanthrene	ug/L (ppb)	5	92	93	63-113	1
Anthracene	ug/L (ppb)	5	93	95	65-117	2
Fluoranthene	ug/L (ppb)	5	102	102	68-121	0
Pyrene	ug/L (ppb)	5	105	112	66-125	6
Benz(a)anthracene	ug/L (ppb)	5	106	110	70-130	4
Chrysene	ug/L (ppb)	5	101	104	67-119	3
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	5	86	94	57-124	9
Benzo(a)pyrene	ug/L (ppb)	5	101	103	68-126	2
Benzo(b)fluoranthene	ug/L (ppb)	5	110	112	62-130	2
Benzo(k)fluoranthene	ug/L (ppb)	5	104	108	67-125	4
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	92	96	63-131	4
Dibenz(a,h)anthracene	ug/L (ppb)	5	98	99	62-133	1
Benzo(g.h.i)pervlene	ug/L (ppb)	5	92	92	57-133	0

ENVIRONMENTAL CHEMISTS

Date of Report: 12/07/22 Date Received: 11/23/22

Project: 1355-19001-02, F&BI 211352

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
TSS	mg/L (ppm)	50	80	90	35-146	11

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- ${\bf J}$ The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Address 40 SE 24th Ave Company EVREN-NW

Phone 503-452-5561 City, State, ZIP Porlland, Oregon 97214

Email lynng@evren-nw.com

SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) 11/23/22 MI/C3

1355-19001-9302 Pe 14

PROJECT NAME

REMARKS

X* ATTACHO FORM FOR

MALYTES & MRL'S

Project Specific RLs - Yes / No

INVOICE TO

PO# Standard Turnaround RUSH

TURNAROUND TIME Page # () 1

Rush charges authorized by:

Other Archive Samples SAMPLE DISPOSAL Dispose after 30 days

r	Ph. (206) 285-8282 Recei		Friedman & Bruya, Inc. Relin								11 John - 27 - 1001.	Sample ID	
Must	Received by:	Received by:	SIGNATURE Relinquished by			÷					01A-H 16-24-EL	Lab ID Date Sampled	
		R									8;4C	Time Sampled	
AN		M	5								Water	Sample Type	
ANH PHAN		MAKM	PRINT NAME								8	# of Jars	
HA		my	MAM		+	-	-		 		+-	NWTPH-Dx NWTPH-Gx	
Z		1	E)									BTEX EPA 8021	
						\dashv	-	-	 	 	ļ	VOCs EPA 8260	A
						-		_	·	 	*	PAHs EPA 8270	NALY
7		7	<u>, </u>	-							×	PCBs EPA 8082	SES
F8B	70 *	12	COMPANY								×	SELECT TO TALK	ANALYSES REQUESTED
			ANY								×	PAH'S &	ESTE
	100 PM			-	_					 	$ \times $	PAHS & Philade Iss	ď
=	3.						_	-			X	svacs *	
11/23/22 10:08	3. 2 - U	2	DATE TIME									Notes	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 24, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on December 10, 2022 from the 1355-19001-03, F&BI 212185 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0124R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 10, 2022 by Friedman & Bruya, Inc. from the Evren Northwest 1355-19001-03, F&BI 212185 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Evren Northwest</u> 212185 -01 <u>M1001-SW-221209</u>

Sample M1001-SW-221209 was sent to Frontier Analytical for dioxin and furan and PCB congener analyses. The report is enclosed.

The 8270E calibration standard failed the acceptance criteria for several analytes. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: M1001-SW-221209 Client:	Evren Northwest
------------------------------------	-----------------

Date Received: 12/10/23 Project: 1355-19001-03, F&BI 212185

Lab ID: Date Extracted: 12/12/22212185-01Date Analyzed: 12/16/22 Data File: 212185-01.170 Matrix: Water Instrument: ICPMS2Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	0.330
Cadmium	< 0.2
Chromium	2.08
Copper	8.50
Lead	3.36
Manganese	72.1
Silver	< 0.2
Zinc	67.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1355-19001-03, F&BI 212185

Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Cadmium	< 0.2
Chromium	<1
Copper	<5
Lead	< 0.2
Manganese	<1
Silver	< 0.2
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	M1001-SW-221209	Client:	Evren Northwest
-------------------	-----------------	---------	-----------------

Date Received: 12/10/22 Project: 1355-19001-03, F&BI 212185

Date Extracted:12/13/22Lab ID:212185-01Date Analyzed:12/15/22Data File:121511.DMatrix:WaterInstrument:GCMS9Units:ug/L (ppb)Operator:VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	17	10	60
Phenol-d6	12	10	49
Nitrobenzene-d5	37	15	144
2-Fluorobiphenyl	35	25	128
2,4,6-Tribromophenol	47	10	142
Terphenyl-d14	51	41	138

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Phenol	<2	2,6-Dinitrotoluene	<1
Bis(2-chloroethyl) ether	< 0.2	3-Nitroaniline	<20
2-Chlorophenol	<2	Acenaphthene	< 0.02
1,3-Dichlorobenzene	< 0.2	2,4-Dinitrophenol	<6
1,4-Dichlorobenzene	< 0.2	Dibenzofuran	< 0.2
1,2-Dichlorobenzene	< 0.2	2,4-Dinitrotoluene	<1
Benzyl alcohol	<2	4-Nitrophenol	<6
2,2'-Oxybis(1-chloropropane)	< 0.2	Diethyl phthalate	<2
2-Methylphenol	<2	Fluorene	< 0.02
Hexachloroethane	< 0.2	4-Chlorophenyl phenyl ether	< 0.2
N-Nitroso-di-n-propylamine	< 0.2	N-Nitrosodiphenylamine	< 0.2
3-Methylphenol + 4-Methylphe	nol <4	4-Nitroaniline	<20
Nitrobenzene	< 0.2	4,6-Dinitro-2-methylphenol	<6
Isophorone	< 0.2	4-Bromophenyl phenyl ether	< 0.2
2-Nitrophenol	<2	Hexachlorobenzene	< 0.2
2,4-Dimethylphenol	<2	Pentachlorophenol	<1
Benzoic acid	<10	Phenanthrene	0.045
Bis(2-chloroethoxy)methane	< 0.2	Anthracene	< 0.02
2,4-Dichlorophenol	<2	Carbazole	< 0.2
1,2,4-Trichlorobenzene	< 0.2	Di-n-butyl phthalate	<2 ca
Naphthalene	< 0.2	Fluoranthene	0.043
Hexachlorobutadiene	< 0.2	Pyrene	0.078
4-Chloroaniline	<20	Benzyl butyl phthalate	<2
4-Chloro-3-methylphenol	<2	Benz(a)anthracene	< 0.02
2-Methylnaphthalene	< 0.2	Chrysene	0.042
1-Methylnaphthalene	< 0.2	Bis(2-ethylhexyl) phthalate	<3.2
Hexachlorocyclopentadiene	< 0.6	Di-n-octyl phthalate	<2
2,4,6-Trichlorophenol	<2	Benzo(a)pyrene	0.025
2,4,5-Trichlorophenol	<2	Benzo(b)fluoranthene	0.048
2-Chloronaphthalene	< 0.2	Benzo(k)fluoranthene	< 0.02
2-Nitroaniline	<1	Indeno(1,2,3-cd)pyrene	0.022
Dimethyl phthalate	<2	Dibenz(a,h)anthracene	< 0.02
Acenaphthylene	< 0.02	Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
-------------------	--------------	---------	-----------------

Date Received: Not Applicable Project: 1355-19001-03, F&BI 212185

12/13/22 Lab ID: Date Extracted: 02-2950 mb 1/0.5Date Analyzed: 12/13/22 Data File: 121308.DMatrix: Water Instrument: GCMS12Units: ug/L (ppb) Operator: JCM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
2-Fluorophenol	34	10	60
Phenol-d6	24	10	49
Nitrobenzene-d5	76	15	144
2-Fluorobiphenyl	71	25	128
2,4,6-Tribromophenol	74	10	142
Terphenyl-d14	88	41	138

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Compounds.	ug/Li (ppb)	Compounds.	ug/L (ppb)
Phenol	<1	2,6-Dinitrotoluene	< 0.5
Bis(2-chloroethyl) ether	< 0.1	3-Nitroaniline	<10
2-Chlorophenol	<1	Acenaphthene	< 0.01
1,3-Dichlorobenzene	< 0.1	2,4-Dinitrophenol	<3 ca
1,4-Dichlorobenzene	< 0.1	Dibenzofuran	< 0.1
1,2-Dichlorobenzene	< 0.1	2,4-Dinitrotoluene	< 0.5
Benzyl alcohol	<1	4-Nitrophenol	<3
2,2'-Oxybis(1-chloropropane)	< 0.1	Diethyl phthalate	<1
2-Methylphenol	<1	Fluorene	< 0.01
Hexachloroethane	< 0.1	4-Chlorophenyl phenyl ether	< 0.1
N-Nitroso-di-n-propylamine	< 0.1	N-Nitrosodiphenylamine	< 0.1
3-Methylphenol + 4-Methylphen	nol <2	4-Nitroaniline	<10
Nitrobenzene	< 0.1	4,6-Dinitro-2-methylphenol	<3
Isophorone	< 0.1	4-Bromophenyl phenyl ether	< 0.1
2-Nitrophenol	<1	Hexachlorobenzene	< 0.1
2,4-Dimethylphenol	<1	Pentachlorophenol	< 0.5
Benzoic acid	<5	Phenanthrene	< 0.01
Bis(2-chloroethoxy)methane	< 0.1	Anthracene	< 0.01
2,4-Dichlorophenol	<1	Carbazole	< 0.1
1,2,4-Trichlorobenzene	< 0.1	Di-n-butyl phthalate	<1
Naphthalene	< 0.1	Fluoranthene	< 0.01
Hexachlorobutadiene	< 0.1	Pyrene	< 0.01
4-Chloroaniline	<10	Benzyl butyl phthalate	<1
4-Chloro-3-methylphenol	<1	Benz(a)anthracene	< 0.01
2-Methylnaphthalene	< 0.1	Chrysene	< 0.01
1-Methylnaphthalene	< 0.1	Bis(2-ethylhexyl) phthalate	<1.6
Hexachlorocyclopentadiene	<0.3 ca	Di-n-octyl phthalate	<1
2,4,6-Trichlorophenol	<1	Benzo(a)pyrene	< 0.01
2,4,5-Trichlorophenol	<1	Benzo(b)fluoranthene	< 0.01
2-Chloronaphthalene	< 0.1	Benzo(k)fluoranthene	< 0.01
2-Nitroaniline	< 0.5	Indeno(1,2,3-cd)pyrene	< 0.01
Dimethyl phthalate	<1	Dibenz(a,h)anthracene	< 0.01
Acenaphthylene	< 0.01	Benzo(g,h,i)perylene	< 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 12/10/22

Project: 1355-19001-03, F&BI 212185

Date Extracted: 12/13/22 Date Analyzed: 12/16/22

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	Total Suspended <u>Solids</u>
M1001-SW-221209	26
Method Blank 02-2955 mb	<5

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 12/10/22

Project: 1355-19001-03, F&BI 212185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 212165-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	<1	92	91	70-130	1
Cadmium	ug/L (ppb)	5	<1	98	98	70-130	0
Chromium	ug/L (ppb)	20	<1	93	98	70-130	5
Copper	ug/L (ppb)	20	<5	95	98	70-130	3
Lead	ug/L (ppb)	10	<1	93	93	70-130	0
Manganese	ug/L (ppb)	20	14.3	86	94	70-130	9
Silver	ug/L (ppb)	5	<1	93	92	70-130	1
Zinc	ug/L (ppb)	50	19.8	95	99	70-130	4

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	93	85-115
Cadmium	ug/L (ppb)	5	97	85-115
Chromium	ug/L (ppb)	20	96	85-115
Copper	ug/L (ppb)	20	101	85-115
Lead	ug/L (ppb)	10	100	85-115
Manganese	ug/L (ppb)	20	93	85-115
Silver	ug/L (ppb)	5	96	85-115
Zinc	ug/L (ppb)	50	98	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 12/10/22

Project: 1355-19001-03, F&BI 212185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/0.5

Eastratory code. Eastratory c	ontroi eamp	10.0	Percent	Percent		
	Reporting	Spike	Recovery		Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Phenol	ug/L (ppb)	5	28	25	10-86	11
Bis(2-chloroethyl) ether	ug/L (ppb)	5	75	65	60-108	14
2-Chlorophenol	ug/L (ppb)	5	72	62	10-97	15
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	68 69	57 57	48-96 48-96	18 19
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	71	58	52-96	20
Benzyl alcohol	ug/L (ppb)	25	62	56	10-76	10
2,2'-Oxybis(1-chloropropane)	ug/L (ppb)	5	77	67	59-101	14
2-Methylphenol	ug/L (ppb)	5	64	57	10-80	12
Hexachloroethane	ug/L (ppb)	5	70	57	47-97	20
N-Nitroso-di-n-propylamine 3-Methylphenol + 4-Methylphenol	ug/L (ppb) ug/L (ppb)	5 5	85 60	$74 \\ 54$	71-106 10-66	14 11
Nitrobenzene	ug/L (ppb) ug/L (ppb)	5 5	80	71	60-90	12
Isophorone	ug/L (ppb)	5	81	73	71-110	10
2-Nitrophenol	ug/L (ppb)	5	88	81	27-120	8
2,4-Dimethylphenol	ug/L (ppb)	5	61	56	10-106	9
Benzoic acid	ug/L (ppb)	40	12	11	10-102	9
Bis(2-chloroethoxy)methane	ug/L (ppb)	5	79	70	55-117	12
2,4-Dichlorophenol 1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	5 5	78 71	72 60	23-116 56-98	8 17
Naphthalene	ug/L (ppb)	5	75	64	62-97	16
Hexachlorobutadiene	ug/L (ppb)	5	70	58	48-100	19
4-Chloroaniline	ug/L (ppb)	25	65	61	28-121	6
4-Chloro-3-methylphenol	ug/L (ppb)	5	81	75	18-113	8
2-Methylnaphthalene	ug/L (ppb)	5	78	69	64-101	12
1-Methylnaphthalene Hexachlorocyclopentadiene	ug/L (ppb)	5 5	78 57	68 55	64-93 49-113	$\begin{array}{c} 14 \\ 4 \end{array}$
2.4.6-Trichlorophenol	ug/L (ppb) ug/L (ppb)	5 5	57 75	55 72	16-131	4
2,4,5-Trichlorophenol	ug/L (ppb)	5	79	78	26-129	1
2-Chloronaphthalene	ug/L (ppb)	5	75	69	67-102	8
2-Nitroaniline	ug/L (ppb)	25	82	80	31-168	2
Dimethyl phthalate	ug/L (ppb)	5	85	80	70-130	6
Acenaphthylene	ug/L (ppb)	5	81	74	70-130	9
2,6-Dinitrotoluene 3-Nitroaniline	ug/L (ppb) ug/L (ppb)	$\frac{5}{25}$	90 76	86 75	70-130 33-128	5 1
Acenaphthene	ug/L (ppb)	5	79	73 74	70-130	7
2,4-Dinitrophenol	ug/L (ppb)	10	80	81	10-137	1
Dibenzofuran	ug/L (ppb)	5	81	76	67-114	6
2,4-Dinitrotoluene	ug/L (ppb)	5	95	90	53-132	5
4-Nitrophenol	ug/L (ppb)	10	35	33 82	10-89	6
Diethyl phthalate Fluorene	ug/L (ppb) ug/L (ppb)	5 5	88 82	82 78	60-128 70-130	7 5
4-Chlorophenyl phenyl ether	ug/L (ppb)	5	77	75	70-130	3
N-Nitrosodiphenylamine	ug/L (ppb)	5	79	76	70-130	4
4-Nitroaniline	ug/L (ppb)	25	70	71	32-124	1
4,6-Dinitro-2-methylphenol	ug/L (ppb)	5	87	94	10-146	8
4-Bromophenyl phenyl ether	ug/L (ppb)	5	77	75	70-130	3
Hexachlorobenzene Pentachlorophenol	ug/L (ppb) ug/L (ppb)	5 5	78 69	75 72	61-112 10-144	4
Phenanthrene	ug/L (ppb)	5	81	79	70-130	2
Anthracene	ug/L (ppb)	5	84	80	70-130	5
Carbazole	ug/L (ppb)	5	85	84	70-130	1
Di-n-butyl phthalate	ug/L (ppb)	5	87	87	28-147	0
Fluoranthene	ug/L (ppb)	5	85	84	70-130	1_
Pyrene Benzyl butyl phthalate	ug/L (ppb) ug/L (ppb)	5 5	87 96	81 92	70-130 34-142	7 4
Benz(a)anthracene	ug/L (ppb)	5	85	81	70-130	5
Chrysene	ug/L (ppb)	5	85	81	70-130	5
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	5	89	89	44-140	0
Di-n-octyl phthalate	ug/L (ppb)	5	93	92	33-147	1
Benzo(a)pyrene	ug/L (ppb)	5	87	84	70-130	4
Benzo(b)fluoranthene	ug/L (ppb)	5	84	79	70-130	6
Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene	ug/L (ppb) ug/L (ppb)	5 5	84 92	81 99	70-130 70-130	4 7
Dibenz(a,h)anthracene	ug/L (ppb)	5	88	98	70-130	11
Benzo(g,h,i)perylene	ug/L (ppb)	5	86	98	70-130	13

ENVIRONMENTAL CHEMISTS

Date of Report: 01/24/23 Date Received: 12/10/22

Project: 1355-19001-03, F&BI 212185

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
TSS	mg/L (ppm)	20	88	84	35-146	5

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Phone 503-452-5561 Address 40 SE 24th Ave City, State, ZIP Porland, Oregon 97214 Company EVREN-NW MIDON-6W-721209 Report To Lynn Green Friedman & Bruya, Inc. 3012 I 6th Avenue West Seattle, WA 98119-2029 212185 Sample ID Email lynng@evren-nw.com Relinquished by: / Relinquished by: Received by: 014-6/12-09-22 Lab ID SIGNATURE Date Sampled SAMPLE CHAIN OF CUSTODY Sampled 04:36 SAMPLERS (signature) Time Froject Specific RLs - Yes / No PROJECT NAME REMARKS ASLE Attached 1355-1900-03 Sample Type WOKE! まり # of Jars TMINUS PRINT NAME NWTPH-Dx NWTPH-Gx BTEX EPA 8021 (S) INVOICE TO P0# Samples received at 690 TSS & Selict Metals COMPANY 12/10/22 NY/ PAHS & Rush charges authorized by: Phthal at 250 Standard Aurnaround RUSH

Archive Samples Dispose after 30 days

SUCCS AS

Notes

A) MO(A)

SAMPLE DISPOSAL

TURNAROUND TIME

Ph. (206) 285-8282

Received by:

17-09-22

50.7 TIME

DATE

Test Report

January 12, 2023

Frontier Analytical Laboratory Project: 14850

Mr. Michael Erdahl Friedman and Bruya, Inc. 3012 16th Ave. W Seattle, WA 98119

Dear Mr. Erdahl,

The following results are associated with Frontier Analytical Laboratory project **14850**. This corresponds to your project number **212185** and purchase order number **D-85**. One aqueous sample was received on 12/28/2022 in good condition. This sample was extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. In addition, this sample was extracted and analyzed by EPA Method 1668 for all 209 polychlorinated biphenyls (PCBs). The Toxic Equivalency (TEQ) for your sample has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs).

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The enclosed results and electronic data deliverable (EDD) are specifically for the sample referenced in this report only. These results meet all NELAP requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**, our State of California ELAP certificate number is **2934** and our State of Washington certificate number is **C844**. This report along with the associated EDD has been emailed to you. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **14850**, please feel free to contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Laboratory Director

FTR Project No.: 14850 Page 000001 of 000016

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>14850</u>

Received on: 12/28/2022 Project Due: 01/20/2023 Storage: R-4

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
14850-001-SA	0	212185	M1001-SW-221209	EPA 1613 D/F	Aqueous	12/09/2022	09:30 am	12/11/2023
14850-001-SA	0	212185	M1001-SW-221209	EPA 1668 PCB	Aqueous	12/09/2022	09:30 am	12/11/2023

Page 000002 of 000016 FTR Project No.: 14850

EPA Method 1613 PCDD/F

FAL ID: 14850-001-MB Client ID: Method Blank Matrix: Aqueous Batch No: X6329

Date Extracted: 01-06-2023 Date Received: NA Amount: 1.00 L ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/L Acquired: 01-11-2023 2005 WHO TEQ: 0.0

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	ND ND ND	0.866 1.36 1.90		- - -	0.640 0.783 1.30	T TODD	ND	0.000	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND	1.99 1.80 2.19 2.95		- - -	1.39 1.28 1.17 2.00	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.866 1.36 1.99 2.19	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND ND ND	0.965 1.46 1.47 0.961 0.992 1.08 1.50		- - - - - -	0.624 0.751 0.793 0.781 0.803 0.827 0.973	Total TCDF	ND	0.965	
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	ND ND ND	1.52 2.23 3.25		- - -	0.773 0.978 1.71	Total PeCDF Total HxCDF Total HpCDF	ND ND ND	1.47 1.50 2.23	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	78.1 67.1 81.9 81.9 76.2 68.8	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157			B A	sotopic Labeled Star signal to noise ratio in Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration	s >10:1 Method Bla e I Ethers	ank	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,3,4,7,8,9-HpCDF	78.9 73.8 75.6 77.7 80.2 77.0 74.8 76.7 69.3 67.7	24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157			E A F A M N ND A NP N	Analyte concentration Analyte confirmation Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance	n is above on second n is below oncentration d at Detection	calibration ra lary column calibration ra on ion Limit Leve on 0.7um GF/F	inge nge
Cleanup Surrogate					X I	Matrix interferences Result taken from dil			
37Cl-2,3,7,8-TCDD	84.0	35.0 - 197							

Analyst: 1/12/2023

FTR Project No.: 14850 Page 000003 of 000016

EPA Method 1613 PCDD/F

FAL ID: 14850-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X6329 Date Extracted: 01-06-2023 Date Received: NA Amount: 1.000 L ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: ng/ml Acquired: 01-11-2023 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	8.52 44.6 45.8 47.9 44.4 46.7 98.0	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	8.42 45.0 45.4 45.3 46.2 46.5 46.1 48.5 92.8	7.50 - 15.8 40.0 - 67.0 34.0 - 80.0 36.0 - 67.0 42.0 - 65.0 35.0 - 78.0 39.0 - 65.0 41.0 - 61.0 39.0 - 69.0 63.0 - 170	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	83.8 75.6 79.1 79.4 70.7 69.4	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	87.6 78.6 81.8 73.9 75.0 73.7 71.3 69.2 65.6 68.9	22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	92.4	31.0 - 191	

Α	Isotopic Labeled Standard outside QC range but
А	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Analyst: 1/12/2023

Reviewed By:

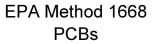
Date: 1/12/2023

EPA Method 1613 PCDD/F

FAL ID: 14850-001-SA Client ID: M1001-SW-221209 Matrix: Aqueous Batch No: X6329 Date Extracted: 01-06-2023 Date Received: 12-28-2022 Amount: 0.973 L ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/L Acquired: 01-11-2023 2005 WHO TEQ: 0.583

	•			2005					
Compound	Conc	; DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	ND	0.790		-	0.640				
1,2,3,7,8-PeCDD	ND			-	0.783				
1,2,3,4,7,8-HxCDD	ND			-	1.30				
1,2,3,6,7,8-HxCDD	ND			-	1.39		ND	0.790	
1,2,3,7,8,9-HxCDD	ND			- 0.050	1.28		ND	1.53	
1,2,3,4,6,7,8-HpCDD OCDD	35.9			0.359 0.0948	1.17 2.00		10.3 76.8	-	J
OCDD	316	-		0.0946	2.00	токаї продд	70.0	-	
2,3,7,8-TCDF	ND			-	0.624				
1,2,3,7,8-PeCDF	ND			-	0.751				
2,3,4,7,8-PeCDF	ND			-	0.793				
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND			-	0.781 0.803				
2,3,4,6,7,8-HxCDF	ND ND			-	0.803				
1,2,3,7,8,9-HxCDF	ND			_	0.973		4.44	_	J
1,2,3,4,6,7,8-HpCDF	11.8		J	0.118	0.773		5.23	_	D,J,M
1,2,3,4,7,8,9-HpCDF	ND	2.24		-	0.978	Total HxCDF	14.2	-	D,J,M
OCDF	36.7	-	J	0.0110	1.71	Total HpCDF	27.7	-	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	90.1	25.0 - 164				Isotopic Labeled Sta		de QC rang	e but
13C-1,2,3,7,8-PeCDD	78.7	25.0 - 181				signal to noise ratio i			
13C-1,2,3,4,7,8-HxCDD	91.4	32.0 - 141			B	Analyte is present in	Method Bla	ank	
13C-1,2,3,6,7,8-HxCDD	95.5	28.0 - 130			C	Chemical Interference	æ		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	84.0 78.3	23.0 - 140 17.0 - 157			D	Presence of Dipheny	l Ethers		
130-0000	70.5	17.0 - 157			DNQ	Analyte concentratio	n is below o	calibration ra	ange
13C-2,3,7,8-TCDF	89.4	24.0 - 169			E	Analyte concentratio	n is above	calibration r	ange
13C-1,2,3,7,8-PeCDF	84.4	24.0 - 185			F	Analyte confirmation	on second	ary column	
13C-2,3,4,7,8-PeCDF	83.5	21.0 - 178				Analyte concentratio		•	anne
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	85.8 89.7	26.0 - 152 26.0 - 123				•			ango
13C-2,3,4,6,7,8-HxCDF	85.2	28.0 - 123				Maximum possible c			
13C-1,2,3,7,8,9-HxCDF	79.6	29.0 - 147				Analyte Not Detected	d at Detecti	on Limit Lev	/el
13C-1,2,3,4,6,7,8-HpCDF	81.3	28.0 - 143			NP	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF	73.2	26.0 - 138			P	Pre-filtered through a	a Whatman	0.7um GF/I	F filter
13C-OCDF	73.6	17.0 - 157			s	Sample acceptance	criteria not	met	
					I	Matrix interferences			
Cleanup Surrogate					*	Result taken from dil	ution or rein	njection	
37CI-2,3,7,8-TCDD	96.8	35.0 - 197							

Analyst: 1/12/2023


FTR Project No.: 14850 Page 000005 of 000016

FAL ID: 14850-001-MB Client ID: Method Blank Matrix: Aqueous		Date Extra Date Rece Amount: 1.		-2023	ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L	Acquired: 01-05-2023 Total Conc: 0.0				
	Batch No: X6325							Page 1 of 3		
	Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
	PCB-1	ND	3.61			PCB-51	ND	5.82		
	PCB-2	ND	5.62			PCB-52	ND	5.78	С	69
	PCB-3	ND	7.07			PCB-53	ND	6.11		
	PCB-4	ND	7.71			PCB-54	ND	4.85		
	PCB-5	ND	9.59			PCB-55	ND	4.27		
	PCB-6	ND	9.58			PCB-56	ND	7.88	С	60
	PCB-7	ND	9.75			PCB-57	ND	4.58		
	PCB-8	ND	9.68			PCB-58	ND	4.68		
	PCB-9	ND	9.53			PCB-59	-	-	C042	42
	PCB-10	ND	9.09			PCB-60	-	-	C056	56
	PCB-11	ND	11.1			PCB-61	ND	4.90	С	70
	PCB-12	ND	10.7			PCB-62	ND	4.53		
	PCB-13	ND	11.0			PCB-63	ND	4.41		
	PCB-14	ND	9.60			PCB-64	-	- -	C041	41/71/72
	PCB-15	ND	15.3			PCB-65	ND	4.78	_	
	PCB-16	ND	6.30			PCB-66	ND	4.24	С	76
	PCB-17	ND	7.06			PCB-67	ND	4.51		
	PCB-18	ND	7.73			PCB-68	ND	4.28		
	PCB-19	ND	8.18	_	0.4.00	PCB-69	-	-	C052	52
	PCB-20	ND	12.5	С	21/33	PCB-70	-	-	C061	61
	PCB-21	ND	-	C020	20/33	PCB-71	-	-	C041	41/64/72
	PCB-22	ND	11.7			PCB-72	- ND	4.20	C041	41/64/71
	PCB-23	ND ND	11.0			PCB-73	ND ND	4.30		
	PCB-24 PCB-25	ND ND	5.27 12.0			PCB-74 PCB-75		4.53	C048	48
	PCB-25 PCB-26	ND ND	12.0			PCB-75 PCB-76	-	-	C048	48 66
	PCB-26 PCB-27	ND ND	5.24			PCB-76 PCB-77	ND	9.55	C000	00
	PCB-27 PCB-28	ND ND	9.80			PCB-77 PCB-78	ND ND	9.55 7.97		
	PCB-29	ND ND	12.4			PCB-76	ND ND	7.58 7.58		
	PCB-30	ND	5.10			PCB-80	ND	3.90		
	PCB-31	ND	12.9			PCB-81	ND	6.93		
	PCB-32	ND	6.27			PCB-82	ND	10.6		
	PCB-33	IND	0.27	C020	20/21	PCB-83	ND	7.99	С	112
	PCB-34	ND	11.0	0020	20/21	PCB-84	ND	9.46	Č	92
	PCB-35	ND	15.6			PCB-85	ND	7.19	č	116
	PCB-36	ND	13.4			PCB-86	ND	9.55	Ü	110
	PCB-37	ND	14.1			PCB-87	ND	7.01	С	117/125
	PCB-38	ND	12.7			PCB-88	ND	7.30	Č	91
	PCB-39	ND	13.5			PCB-89	ND	9.28	· ·	٠.
	PCB-40	ND	7.60			PCB-90	ND	8.09	С	101
	PCB-41	ND	4.87	С	64/71/72	PCB-91	-	-	C088	88
	PCB-42	ND	5.47	C	59	PCB-92	-	-	C084	84
	PCB-43	ND	6.25	С	49	PCB-93	ND	8.20		
	PCB-44	ND	7.21			PCB-94	ND	8.44		
	PCB-45	ND	6.85			PCB-95	ND	8.04		
	PCB-46	ND	7.34			PCB-96	ND	5.90		
	PCB-47	ND	6.09			PCB-97	ND	9.56		
	PCB-48	ND	4.82	С	75	PCB-98	ND	7.98	С	102
	PCB-49	-	-	C043	43	PCB-99	ND	6.87		
	PCB-50	ND	6.09			PCB-100	ND	7.01		

FTR Project No.: 14850 Page 000006 of 000016

FAL ID: 14850-001-MB Client ID: Method Blank Matrix: Aqueous		Date Extra Date Rece Amount: 1		1-2023	ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L	Acquired: 01-05-2023			
Batch No: X6325							Page 2 of 3		
Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-101	-	-	C090	90	PCB-151	ND	8.70		
PCB-102	-	-	C098	98	PCB-152	ND	5.04		
PCB-103	ND	7.11			PCB-153	ND	6.47		
PCB-104	ND	5.81			PCB-154	ND	5.62		
PCB-105	ND	6.46			PCB-155	ND	4.70		
PCB-106	ND	6.62	С	118	PCB-156	ND	6.36		
PCB-107	ND	6.06	С	108	PCB-157	ND	6.92		
PCB-108	-	-	C107	107	PCB-158	ND	5.91	С	160
PCB-109	ND	6.43			PCB-159	ND	6.03		
PCB-110	ND	6.07			PCB-160	-	-	C158	158
PCB-111	ND	6.43	С	115	PCB-161	-	-	C132	132
PCB-112	-	-	C083	83	PCB-162	-	-	C128	128
PCB-113	ND	7.51			PCB-163	-	-	C138	138/164
PCB-114	ND	6.23			PCB-164	-	-	C138	138/163
PCB-115	-	-	C111	111	PCB-165	-	-	C146	146
PCB-116	-	-	C085	85	PCB-166	ND	6.24		
PCB-117	-	-	C087	87/125	PCB-167	ND	6.52		
PCB-118	-	-	С	106	PCB-168	ND	6.10		
PCB-119	ND	6.17			PCB-169	ND	7.87		
PCB-120	ND	6.04			PCB-170	ND	7.58		
PCB-121	ND	6.08			PCB-171	ND	6.80		
PCB-122	ND	6.16			PCB-172	ND	7.51		
PCB-123	ND	5.78			PCB-173	ND	7.71		
PCB-124	ND	3.03			PCB-174	ND	6.69		
PCB-125	-	-	C087	87/117	PCB-175	ND	6.67		
PCB-126	ND	9.73			PCB-176	ND	4.88		
PCB-127	ND	6.49			PCB-177	ND	7.20		
PCB-128	ND	7.17	С	162	PCB-178	ND	6.85		
PCB-129	ND	9.51			PCB-179	ND	4.77		
PCB-130	ND	8.15			PCB-180	ND	6.97		
PCB-131	ND	9.35	С	133	PCB-181	ND	6.68		
PCB-132	ND	7.36	С	161	PCB-182	ND	5.97	С	187
PCB-133	-	-	C131	131	PCB-183	ND	5.96		
PCB-134	ND	9.36	С	143	PCB-184	ND	4.56		
PCB-135	ND	8.78			PCB-185	ND	6.64		
PCB-136	ND	5.05			PCB-186	ND	4.86		
PCB-137	ND	9.11			PCB-187	-	-	C182	182
PCB-138	ND	6.61	С	163/164	PCB-188	ND	5.83		
PCB-139	ND	7.65	С	149	PCB-189	ND	4.90		
PCB-140	ND	7.55			PCB-190	ND	5.48		
PCB-141	ND	8.15			PCB-191	ND	5.22		
PCB-142	ND	9.05			PCB-192	ND	5.39		
PCB-143	-	-	C134	134	PCB-193	ND	5.00		
PCB-144	ND	8.13			PCB-194	ND	3.58		
PCB-145	ND	5.04			PCB-195	ND	3.97		
PCB-146	ND	6.78	С	165	PCB-196	ND	6.28	С	203
PCB-147	ND	7.65			PCB-197	ND	4.60		
PCB-148	ND	6.82			PCB-198	ND	7.55		
PCB-149	-	-	C139	139	PCB-199	ND	6.20		
PCB-150	ND	4.79			PCB-200	ND	4.78		

FTR Project No.: 14850 Page 000007 of 000016

EPA Method 1668 **PCBs**

FAL ID: 14850-001-MB Client ID: Method Blank Matrix: Aqueous

Date Extracted: 01-04-2023 Date Received: NA Amount: 1.000 L

ICal: DAILY209FAL4-1-5-23 GC Column: DB1MS Units: pg/L

Acquired: 01-05-2023

Page 3 of 3

Batch No: X6325				
Compour	nd Conc	DL	Qual	Coeluters
PCB-201 PCB-202 PCB-203 PCB-204 PCB-205 PCB-206 PCB-207 PCB-208 PCB-209	ND ND ND ND ND ND ND ND	4.65 5.18 - 4.82 2.95 5.79 3.99 3.66 4.81	C196	196
Internal Standard	ds % Rec	QC Limits	Qual	
13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-4 13C-PCB-15 13C-PCB-19 13C-PCB-37 13C-PCB-54 13C-PCB-77 13C-PCB-104 13C-PCB-105 13C-PCB-105 13C-PCB-118 13C-PCB-126 13C-PCB-155 13C-PCB-156 13C-PCB-157 13C-PCB-156 13C-PCB-156 13C-PCB-157 13C-PCB-169 13C-PCB-188 13C-PCB-188 13C-PCB-189 13C-PCB-202 13C-PCB-205 13C-PCB-206 13C-PCB-206 13C-PCB-208	85.7 73.8 93.6 71.6 81.4 78.3 92.0 88.4 85.0 77.1 93.5 91.7 95.0 84.4 95.1 84.9 92.5 93.9 89.7 98.5 79.7 98.5 79.7 98.2 81.8 82.5 75.1 73.0 73.8	5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 10.0 - 145		
Cleanup Surrogate	es % Rec	QC Limits	Qual	
13C-PCB-28 13C-PCB-111 13C-PCB-178	90.7 80.5 80.3	5.00 - 145 10.0 - 145 10.0 - 145		

	Isotopic Labeled Standard outside QC range but
٦	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Coelution
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- Sample acceptance criteria not met
- X Matrix interferences
- Result taken from dilution or reinjection

1/6/2023 Date:

Reviewed By: 1/6/2023 Date:_

EPA Method 1668 **PCBs**

FAL ID: 14850-001-OPR Client ID: OPR Matrix: Aqueous Batch No: X6325		Date Extracted: 01-04-2023 Date Received: NA Amount: 1.000 L		ICal: DAILY209FAL4-1-5-2 GC Column: DB1MS Units: ng/ml	3 Acquired: 01-05-2023		
Compound	% Recovery	QC Limits	Qual	Internal Standards	% Recovery	QC Limits	Qual
PCB-1 PCB-3 PCB-4 PCB-15 PCB-19 PCB-37 PCB-54 PCB-77 PCB-81 PCB-105 PCB-114 PCB-118 PCB-123 PCB-126 PCB-155 PCB-156 PCB-157 PCB-167 PCB-169 PCB-188 PCB-189 PCB-202 PCB-205 PCB-206 PCB-206	111 107 116 94.4 110 110 106 116 104 109 101 104 106 110 102 104 102 108 112 102	60.0 - 135 60.0 - 135		13C-PCB-1 13C-PCB-3 13C-PCB-4 13C-PCB-15 13C-PCB-19 13C-PCB-19 13C-PCB-37 13C-PCB-77 13C-PCB-81 13C-PCB-104 13C-PCB-104 13C-PCB-114 13C-PCB-118 13C-PCB-118 13C-PCB-123 13C-PCB-155 13C-PCB-155 13C-PCB-167 13C-PCB-167 13C-PCB-188 13C-PCB-188 13C-PCB-188 13C-PCB-189 13C-PCB-189 13C-PCB-202 13C-PCB-205 13C-PCB-206 13C-PCB-206	79.7 73.7 83.8 72.6 77.0 80.2 84.6 83.2 82.0 71.7 86.7 85.8 85.5 82.2 87.6 76.6 83.6 88.5 86.4 93.3 74.6 90.1 77.3 79.0 73.4 74.5	15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 15.0 - 145 40.0 - 145	
PCB-209	98.2	60.0 - 135		13C-PCB-209	74.6	40.0 - 145	
				Cleanup Surrogate	% Recovery	QC limits	Qual
				13C-PCB-28	83.4	15.0 - 145	
				13C-PCB-111	77.9	40.0 - 145	
				13C-PCB-178	76.6	40.0 - 145	

Date: 1/6/2023

Date: 1/6/2023

FAL ID: 14850-00 Client ID: M1001- Matrix: Aqueous			cted: 01-04 ived: 12-28 .979 L		ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L		Acquired: 01-0 Total Conc: 10		
Batch No: X6325							Page 1 of 3		
Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-1	ND	7.59			PCB-51	15.7	-	J	
PCB-2	ND	6.71			PCB-52	311	-	С	69
PCB-3	ND	8.19			PCB-53	37.7	-		
PCB-4	60.7	-			PCB-54	ND	6.89		
PCB-5	ND	12.0			PCB-55	ND	6.07		
PCB-6	29.3	-			PCB-56	187	-	С	60
PCB-7	ND	12.2			PCB-57	ND	6.51		
PCB-8	142	_			PCB-58	ND	6.64		
PCB-9	ND	11.9			PCB-59	_	-	C042	42
PCB-10	ND	11.3			PCB-60	_	_	C056	56
PCB-11	773	-			PCB-61	303	-	С	70
PCB-12	ND	13.3			PCB-62	ND	6.44		
PCB-13	ND	13.7			PCB-63	ND	6.26		
PCB-14	ND	12.0			PCB-64	-	-	C041	41/71/72
PCB-15	104	-			PCB-65	ND	6.79		
PCB-16	69.7	_			PCB-66	235	-	С	76
PCB-17	87.0	_			PCB-67	ND	6.41	_	
PCB-18	202	_			PCB-68	ND	6.07		
PCB-19	23.2	_			PCB-69	-	-	C052	52
PCB-20	262	_	С	21/33	PCB-70	_	_	C061	61
PCB-21		_	C020	20/33	PCB-71	_	_	C041	41/64/72
PCB-22	157	_	0020	_0.00	PCB-72	_	_	C041	41/64/71
PCB-23	ND	9.88			PCB-73	ND	6.11	0011	1170 177 1
PCB-24	ND	6.05			PCB-74	116	-		
PCB-25	31.5	-			PCB-75	-	_	C048	48
PCB-26	48.2	_			PCB-76	_	_	C066	66
PCB-27	ND	6.00			PCB-77	41.9	_		
PCB-28	327	-			PCB-78	ND	9.81		
PCB-29	ND	11.1			PCB-79	ND	9.33		
PCB-30	ND	5.85			PCB-80	ND	5.53		
PCB-31	430	-			PCB-81	ND	8.52		
PCB-32	75.2	_			PCB-82	68.5	-		
PCB-33		_	C020	20/21	PCB-83	ND	12.8	С	112
PCB-34	ND	9.88	0020		PCB-84	137	-	Č	92
PCB-35	ND	13.9			PCB-85	65.6	_	Č	116
PCB-36	ND	12.0			PCB-86	ND	15.3		
PCB-37	130	-			PCB-87	144	-	С	117/125
PCB-38	ND	11.4			PCB-88	47.8	_	C	91
PCB-39	ND	12.1			PCB-89	ND	14.9		
PCB-40	69.7	-			PCB-90	350	-	С	101
PCB-41	256	_	С	64/71/72	PCB-91	-	_	C088	88
PCB-42	107	-	Č	59	PCB-92	_	_	C084	84
PCB-43	187	_	Č	49	PCB-93	3.49	_		
PCB-44	280	-			PCB-94	ND	9.78		
PCB-45	45.7	-			PCB-95	279	-		
PCB-46	26.1	-			PCB-96	ND	6.84		
PCB-47	94.9	-			PCB-97	128	-		
PCB-48	66.3	_	С	75	PCB-98	ND	9.25	С	102
PCB-49	-	-	C043	43	PCB-99	125		-	
PCB-50	ND	8.64		,	PCB-100	ND	8.12		

FTR Project No.: 14850 Page 000010 of 000016

FAL ID: 14850-00 Client ID: M1001- Matrix: Aqueous			acted: 01-04 eived: 12-28 .979 L		ICal: DAILY209FAL4 GC Column: DB1MS Units: pg/L		Acquired: 01-0	05-2023	
Batch No: X6325							Page 2 of 3		
Compound	Conc	DL	Qual	Coeluters	Compound	Conc	DL	Qual	Coeluters
PCB-101	-	-	C090	90	PCB-151	69.0	-		
PCB-102	-	-	C098	98	PCB-152	ND	5.89		
PCB-103	ND	8.24			PCB-153	296	-		
PCB-104	ND	6.73			PCB-154	ND	6.58		
PCB-105	166	-			PCB-155	ND	5.49		
PCB-106	374	-	С	118	PCB-156	56.9	-		
PCB-107	27.5	-	С	108	PCB-157	18.9	-	J	
PCB-108	-	-	C107	107	PCB-158	68.7	-	С	160
PCB-109	ND	10.3			PCB-159	ND	5.10		
PCB-110	404	-			PCB-160	-	-	C158	158
PCB-111	ND	10.3	С	115	PCB-161	-	-	C132	132
PCB-112	_	-	C083	83	PCB-162	-	-	C128	128
PCB-113	ND	12.1			PCB-163	-	-	C138	138/164
PCB-114	ND	5.17			PCB-164	-	-	C138	138/163
PCB-115	-	-	C111	111	PCB-165	_	_	C146	146
PCB-116	_	_	C085	85	PCB-166	ND	5.27	00	
PCB-117	_	_	C087	87/125	PCB-167	21.9	-		
PCB-118	_	_	C	106	PCB-168	ND	5.16		
PCB-119	ND	9.91	J	100	PCB-169	ND	6.27		
PCB-120	ND	9.69			PCB-170	105	J.21		
PCB-121	ND	7.05			PCB-171	34.5	_		
PCB-122	ND	5.18			PCB-172	26.5	_		
PCB-123	ND	4.97			PCB-173	ND	8.85		
PCB-124	8.11	4.57	J		PCB-174	95.9	0.00		
PCB-125	0.11	_	C087	87/117	PCB-175	130	_		
PCB-126	ND	7.54	0007	077117	PCB-176	12.8	_	J	
PCB-127	ND	5.46			PCB-177	56.7		3	
PCB-128	79.8	3.40	С	162	PCB-178	19.1		J	
PCB-129	34.9	-	C	102	PCB-179	37.5		J	
PCB-130	35.2				PCB-180	261			
PCB-131	ND	7.90	С	133	PCB-181	ND	7.67		
PCB-132	119	7.50	Č	161	PCB-182	117	7.07	С	187
PCB-133	113	_	C131	131	PCB-183	65.0	-	C	107
PCB-133	24.6	-	C	143	PCB-184	ND	5.23		
PCB-134 PCB-135	42.9	-	C	143	PCB-185	ND ND	7.62		
PCB-136	47.2	_			PCB-186	ND	5.57		
PCB-130 PCB-137	32.2	-			PCB-187	IND -	5.57	C182	182
PCB-137 PCB-138	428	-	С	163/164	PCB-188	ND	6.32	C102	102
PCB-130 PCB-139	426 277	-	C	149	PCB-189	ND ND	6.00		
PCB-139 PCB-140	ND	6.38	C	149	PCB-169 PCB-190	26.4	0.00		
	91.2	0.30					6.00		
PCB-141		7.65			PCB-191	ND			
PCB-142	ND	7.65	C134	104	PCB-192	ND	6.18		
PCB-143	22.4	-	C134	134	PCB-193	20.1	-	J	
PCB-144	22. 4 ND	- - 00			PCB-194	49.1 25.9	-		
PCB-145		5.89	0	105	PCB-195		-	0	202
PCB-146	49.4	C 40	С	165	PCB-196	88.5	7.70	С	203
PCB-147	ND	6.46			PCB-197	ND	7.76		
PCB-148	ND	7.98	0400	400	PCB-198	82.6	-		
PCB-149	ND.	- -	C139	139	PCB-199	67.8	0.07		
PCB-150	ND	5.60			PCB-200	ND	8.07		

FTR Project No.: 14850 Page 000011 of 000016

EPA Method 1668 PCBs

FAL ID: 14850-001-SA Client ID: M1001-SW-221209 Matrix: Aqueous Batch No: X6325

Date Extracted: 01-04-2023 Date Received: 12-28-2022 Amount: 0.979 L

ICal: DAILY209FAL4-1-5-23 GC Column: DB1MS Units: pg/L

Acquired: 01-05-2023

Page 3 of 3

Conc	DL	Qual	Coeluters
ND ND - ND ND	7.84 8.75 - 8.13 4.58	C196	196
38.0 ND 10.3 13.7	4.95 - -	J	
% Rec	QC Limits	Qual	
78.1 68.2 89.2 69.9 77.4 78.5 81.0 86.5 85.2 71.0 88.0 86.0 85.3 84.3 90.6 74.2 80.4 86.6 83.8 90.8 70.6 72.0 76.9 74.2 74.9 75.8	5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 5.00 - 145 10.0 - 145	Qual	
		Qual	
83.1 75.8	10.0 - 145 10.0 - 145 10.0 - 145		
	ND ND 38.0 ND 10.3 13.7 % Rec 78.1 68.2 89.2 69.9 77.4 78.5 81.0 86.5 85.2 71.0 88.0 86.0 85.3 84.3 90.6 74.2 80.4 86.6 83.8 90.8 70.6 85.7 72.0 76.9 74.2 74.9 75.8 % Rec 91.8 83.1	ND 7.84 ND 8.75 ND 8.13 ND 4.58 38.0 - ND 4.95 10.3 - 13.7 - % Rec QC Limits 78.1 5.00 - 145 68.2 5.00 - 145 89.2 5.00 - 145 77.4 5.00 - 145 77.4 5.00 - 145 78.5 5.00 - 145 86.5 10.0 - 145 86.5 10.0 - 145 86.5 10.0 - 145 86.5 10.0 - 145 87.0 10.0 - 145 88.0 10.0 - 145 88.0 10.0 - 145 88.0 10.0 - 145 88.0 10.0 - 145 88.1 10.0 - 145 88.3 10.0 - 145 88.3 10.0 - 145 88.3 10.0 - 145 89.6 10.0 - 145 74.2 10.0 - 145 80.4 10.0 - 145 80.6 10.0 - 145 80.6 10.0 - 145 70.6 10.0 - 145 83.8 10.0 - 145 90.8 10.0 - 145 70.6 10.0 - 145 70.9 10.0 - 145	ND 7.84 ND 8.75

В	Analyte is present in Method Blank
С	Coelution
D	Presence of Diphenyl Ethers
DNQ	Analyte concentration is below calibration range
Ε	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range

Isotopic Labeled Standard outside QC range but

- M Maximum possible concentration ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter Sample acceptance criteria not met
- X Matrix interferences

signal to noise ratio is >10:1

Result taken from dilution or reinjection

Analyst: 1/6/2023 Date:

Reviewed By: 1/6/2023 Date:_

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To N	Michae	l Erdahl				CONT			Fro	ntien					Page #ofTURNAROUND TIME			
CompanyF	riedma	an and Bruya	ı, Inc.		PRC	JECT	NAME	Z/NO.				PO#		\neg \land	≺Stan RUS	dard H	TAT	
Address3	012 16	th Ave W				7	212	185			D-	85					es authorized	l by:
City, State, ZIP_S Phone #_ (206) 285			edmanandbruy	a.com	REM	IARKS Ple	ease E	mail F	Results	8	ાપ	85 0	<u>ک</u> د		Disp Retu	ose a: .rn sa	PLE DISPO fter 30 days mples vith instruct	
										ANAI	LYSES	REG	QUES	TED				
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix	# of jars	Dioxins/Furans	ЕРН	VPH	PCB Conseners	D/F* 1613						No	otes
M1001-5W-221209		12/9/12	७१३०	vete		Z				×	×						* sec af	achue(
		,															_	
			- 														-	
					. +													
								:										
			· · · · · · · · · · · · · · · · · · ·															
F. L	7		CICNIAMIDE			T							~					
Friedman & Bruya, 3012 16th Avenue W		Relinquished 1	SIGNATURE		\mathcal{I}	PRINT NAME Michael Erdahl			Fri		OMPA n & B			DATE 12/77/16	TIME			
Seattle, WA 98119-2	2029	Received by:	1	00	·····	ļ				DP								1011
Ph. (206) 285-8282	-	Relinquished b		<u> </u>		Kc	H	<u>~></u>	<u> </u>			TY	10nt	ver!			12/22/22	1030
Fax (206) 283-5044		Received by:								***								

FTR Project No.: 14850

Michael Erdahl

From:

"Lynn Green" < lynng@evren-nw.com> Tuesday, December 27, 2022 10:13 AM

Date: To:

"Michael Erdahl" <merdahl@friedmanandbruya.com>

Cc:

"Tori Bennett" <torib@evren-nw.com>; "Evan Bruggeman" <evanb@evren-nw.com>

Subject:

RE: 1355-19001-02

We need the following Dioxins and Furans:

- 2,3,7,8-TCDD/TCDF,
- 1,2,3,7,8-PeCDD/PeCDF,
- 1,2,3,4,7,8-HxCDD/HxCDF.
- 1,2,3,6,7,8-HxCDD/HxCDF,
- 1,2,3,7,8,9-HxCDD/HxCDF.
- 2,3,4,6,7,8-HxCDF,
- 1,2,3,4,6,7,8-HpCDD/HpCDF, and
- 1,2,3,4,7,8,9-HpCDF

You previously reported MRLS between 0.000000304 - 0.000000732 ug/L for these constituents. Which method was that?

Lynn D. Green, Ph. D. P.G./R.G./L.G./C.E.G./L.E.G. Principal Engineering Geologist / Hydrologist EVREN Northwest, Inc Environmental and Natural Resource Consulting ><))))°> & ><))))°> & ><))))°>

From: Michael Erdahl < merdahl@friedmanandbruya.com >

Sent: Tuesday, December 27, 2022 10:10 AM To: Lynn Green < lynng@evren-nw.com>

Cc: Tori Bennett <torib@evren-nw.com>; Evan Bruggeman <evanb@evren-nw.com>

Subject: Re: 1355-19001-02

The list was provided with this one.

- 1) Do you only want 2,3,7,8-TCDD eq only for both of these samples?
- 2) Which method--EPA 1613 or 8290?

Michael Erdahl Senior Project Manager Friedman and Bruya (206) 285-8282 x 247 (206) 446-5926 (cell)

This message is private or privileged. If you are not the person or party for whom this message is intended, we apologize for the mistake and please forward us a note that this message was received in

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 14850

Client:	Friedman & Bruya, Inc.
Client Project ID:	212185
Date Received:	12/28/2022
Time Received:	10:30 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	1
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Fed-Ex
Tracking Number:	813795597453
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Blue Ice/Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	Yes
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	Between 4 and 9
Anomalies or additional comments:	•

FTR Project No.: 14850 Page 000015 of 000016

FTR Project No.: 14850 Page 000016 of 000016

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 212185

Work Order Number: 2212239

December 16, 2022

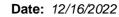
Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 12/12/2022 for the analyses presented in the following report.

Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 212185 **Work Order:** 2212239

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2212239-001 M1001-SW-221209 12/09/2022 9:30 AM 12/12/2022 11:17 AM

Case Narrative

WO#: **2212239**Date: **12/16/2022**

CLIENT: Friedman & Bruya

Project: 212185

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **221223**9

Date Reported: 12/16/2022

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

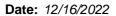
Analytical Report

Work Order: **2212239**Date Reported: **12/16/2022**

Client: Friedman & Bruya Collection Date: 12/9/2022 9:30:00 AM

Project: 212185

Lab ID: 2212239-001 **Matrix**: Water


Client Sample ID: M1001-SW-221209

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Total Metals by EPA Method 200.8
 Batch ID: 38834
 Analyst: EH

 Aluminum
 519
 50.0
 μg/L
 1
 12/14/2022 1:59:26 PM

Original

Work Order: 2212239

CLIENT: Friedman & Bruya

Project: 212185

QC SUMMARY REPORT

Total Metals by EPA Method 200.8

Project: 212185						
Sample ID: MB-38834	SampType: MBLK			Units: µg/L	Prep Date: 12/14/2022	RunNo: 80478
Client ID: MBLKW	Batch ID: 38834				Analysis Date: 12/14/2022	SeqNo: 1663793
Analyte	Result	RL	SPK value	SPK Ref Val	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	50.0				
Sample ID: LCS-38834	SampType: LCS			Units: µg/L	Prep Date: 12/14/2022	RunNo: 80478
Client ID: LCSW	Batch ID: 38834				Analysis Date: 12/14/2022	SeqNo: 1663794
Analyte	Result	RL	SPK value	SPK Ref Val	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	913	50.0	1,000	0	91.3 85 115	
Sample ID: 2212268-001ADUP	SampType: DUP			Units: µg/L	Prep Date: 12/14/2022	RunNo: 80478
Client ID: BATCH	Batch ID: 38834				Analysis Date: 12/14/2022	SeqNo: 1663796
Analyte	Result	RL	SPK value	SPK Ref Val	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	ND	50.0			0	30
Sample ID: 2212268-001AMS	SampType: MS			Units: µg/L	Prep Date: 12/14/2022	RunNo: 80478
Client ID: BATCH	Batch ID: 38834				Analysis Date: 12/14/2022	SeqNo: 1663797
Analyte	Result	RL	SPK value	SPK Ref Val	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	964	50.0	1,000	26.29	93.7 70 130	
Sample ID: 2212271-001AMS	SampType: MS			Units: µg/L	Prep Date: 12/14/2022	RunNo: 80478
Client ID: BATCH	Batch ID: 38834				Analysis Date: 12/14/2022	SeqNo: 1663805
Analyte	Result	RL	SPK value	SPK Ref Val	REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Aluminum	1,140	50.0	1,000	185.7	95.4 70 130	

Original Page 6 of 8

Sample Log-In Check List

Client Name: FB	Work Order Numb	er: 2212239	
Logged by: Clare Griggs	Date Received:	12/12/202	2 11:17:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗸	No \square	Not Present
2. How was the sample delivered?	<u>FedEx</u>		
<u>Log In</u>			
3. Coolers are present?	Yes 🗹	No \square	NA \square
4. Shipping container/cooler in good condition?	Yes ✓	No \square	
Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No \square	Not Present ✓
6. Was an attempt made to cool the samples?	Yes 🗸	No 🗆	NA \square
7. Were all items received at a temperature of >2°C to 6°C *	Yes 🗹	No 🗆	NA \square
8. Sample(s) in proper container(s)?	Yes 🗸	No \square	
9. Sufficient sample volume for indicated test(s)?	Yes 🗸	No \square	
10. Are samples properly preserved?	Yes 🗸	No \square	
11. Was preservative added to bottles?	Yes 🗹	No \square	NA 🗆
12. Is there headspace in the VOA vials?	Yes	No 🗌	HNO3 NA ✓
13. Did all samples containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14. Does paperwork match bottle labels?	Yes 🗸	No \square	
15. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16. Is it clear what analyses were requested?	Yes 🗸	No 🗌	
17. Were all holding times able to be met?	Yes 🗸	No \square	
Special Handling (if applicable)			
18. Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗸
Person Notified: Date	:		
By Whom: Via:		one Fax	In Person
Regarding:			
Client Instructions:			
19. Additional remarks:			
Item Information			
Item # Temp °C			

1.4

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To Michael Erdahl

Company___ Friedman and Bruya, Inc.

Address___ 3012 16th Ave W

City, State, ZIP_Seattle, WA 98119

REI

Phone #__(206) 285-8282_merdahl@friedmanandbruya.com

	RI		PI	SI
Please Email Results	REMARKS	212185	PROJECT NAME/NO.	SUBCONTRACTER Family
		7.58	PO#	

11.11211211.11	FA)	Clarx O'Connor	Clar	Received by: Received by:	Received by:	282	Ph. (206) 285-8282 Fax (206) 283-5044
12/12/12	Friedman & Bruya	Michael Erdahl	Michae	No X	Kelingrashed by:	tue West	South Will all ages
DATE	COMPANY	PRINT NAME		SIGNATURE		иуа, Іпс.	Friedman & Bruya, Inc.
				`			
+							
+							
+							
+							
						+	
		*	-	0930 weter	12/2/22	1205	N1001-5W-221205
		Dioxins/Furans EPH VPH Total Alminum 200.8	xix # of jars	Time Sampled Matrix	Date Sampled) Lab	Sample ID
	LINEN REGUENTED	CHCITTANTA					

Page 8 of 8

*Standard TAT RUSH_

Rush charges authorized by:

SAMPLE DISPOSAL

Dispose after 30 days Return samples Will call with instructions

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 13, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on January 17, 2023 from the 1355-19001-02, F&BI 301237 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0313R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 17, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1355-19001-02, F&BI 301237 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Evren Northwest</u> 301237 -01 <u>M1001-SW-230113</u>

The sample was sent to Enthalpy Anlaytical for dioxin and furan and PCB congener analyses. In addition, the sample was sent to Fremont Analytical for total aluminum analysis. The reports are enclosed.

An 8270E internal standard failed the acceptance criteria for sample M1001-SW-230113. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Chemit 1D. Witton SW 200110 Chemit. Evicin Not this west	Client ID:	M1001-SW-230113	Client:	Evren Northwest
--	------------	-----------------	---------	-----------------

Date Received: 01/17/23 Project: 1355-19001-02, F&BI 301237

Lab ID: Date Extracted: 301237-01 01/17/23 Date Analyzed: 01/17/23 Data File: 301237-01.135 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Cadmium	< 0.2
Chromium	3.42
Copper	14.7
Lead	5.62
Manganese	116
Silver	< 0.2
Zinc	90.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: M1001-SW-230113 Client: Evren Northwest

Date Received: 01/17/23 Project: 1355-19001-02, F&BI 301237

Lab ID: 01/17/23 301237-01 Date Extracted: Date Analyzed: 01/18/23 Data File: 301237-01.063 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) SPOperator:

Concentration

Analyte: ug/L (ppb)

Arsenic 0.814

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Cheff ID: Method Diank Cheff. Evren Northwest	Client ID:	Method Blank	Client:	Evren Northwest
---	------------	--------------	---------	-----------------

Date Received: Not Applicable Project: 1355-19001-02, F&BI 301237

01/18/23 Lab ID: Date Extracted: $I3\text{-}33~\mathrm{mb2}$ Date Analyzed: 01/18/23 Data File: I3-33 mb2.057 Matrix: Water Instrument: ICPMS2 Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Cadmium	< 0.2
Chromium	<1
Copper	<5
Lead	< 0.2
Manganese	<1
Silver	< 0.2
Zinc	<5

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: M1001	-SW-230113 Client	Evren Northwest
-------------------------	-------------------	-----------------

Date Received: 01/17/23Project: 1355-19001-02, F&BI 301237 Lab ID: 301237-01 1/0.5 Date Extracted: 01/17/23 Date Analyzed: 01/19/23 Data File: 011922.DMatrix: Instrument: GCMS12 Water Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	50	11	173
2-Fluorobiphenyl	57	44	108
2,4,6-Tribromophenol	74	10	140
Terphenyl-d14	94	50	150

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.1
Acenaphthene	< 0.01
Fluoranthene	0.076
Pyrene	0.14
Benz(a)anthracene	0.017
Chrysene	0.058
Benzo(a)pyrene	$0.040~\mathrm{J}$
Benzo(b)fluoranthene	$0.071~\mathrm{J}$
Benzo(k)fluoranthene	$0.026~\mathrm{J}$
Indeno(1,2,3-cd)pyrene	$0.025~\mathrm{J}$
Dibenz(a,h)anthracene	<0.01 J
Benzo(g,h,i)perylene	$0.038\mathrm{J}$
Dibenz(a,h)anthracene	<0.01 J
Bis(2-ethylhexyl) phthalate	<1.6

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	M1001-SW-230113	Client:	Evren Northwest

Date Received: 01/17/23Project: 1355-19001-02, F&BI 301237 Lab ID: Date Extracted: 301237-01 1/5 01/17/23 Date Analyzed: 01/17/23 Data File: $011722.\mathrm{D}$ Matrix: Water Instrument: GCMS12 Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	46 d	16	137
2-Fluorobiphenyl	55 d	46	122
2,4,6-Tribromophenol	91 d	17	154
Terphenyl-d14	77 d	31	167

Compounds:	ug/L (ppb)
Fluorene	< 0.1
Phenanthrene	< 0.1
Anthracene	< 0.1
Benzo(a)pyrene	< 0.1
Benzo(b)fluoranthene	< 0.1
Benzo(k)fluoranthene	< 0.1
Indeno(1,2,3-cd)pyrene	< 0.1
Dibenz(a,h)anthracene	< 0.1
Benzo(g,h,i)perylene	< 0.2
Dibenz(a,h)anthracene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
Date Received:	Not Applicable	Project:	1355-19001-02, F&BI 301237
Date Extracted:	01/17/23	Lab ID:	03-161 mb3 1/0.5

Date Analyzed: 01/17/23 Data File: $011714.\mathrm{D}$

Matrix:	Water		Instrument:	GCMS12	
Units:	ug/L (ppb)		Operator:	VM	
Surrogates: Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophe Terphenyl-d14 Compounds:	nol	% Recovery: 89 94 85 103 ug/L (ppb)	Lower Limit: 11 44 10 50		Upper Limit: 173 108 140 150
Naphthalene		< 0.1			
Acenaphthene		< 0.01			
Fluorene		< 0.04			
Phenanthrene		< 0.04			
Anthracene		< 0.04			
Fluoranthene		< 0.01			
Pyrene		< 0.01			
Benz(a)anthracene)	< 0.01			
Chrysene		< 0.01			
Benzo(a)pyrene		< 0.01			
Benzo(b)fluoranthe	ene	< 0.01			
Benzo(k)fluoranthe	ene	< 0.01			
Indeno(1,2,3-cd)py	rene	< 0.01			
Dibenz(a,h)anthra	cene	< 0.01			
Benzo(g,h,i)peryler	ne	< 0.02			
Dibenz(a,h)anthra	cene	< 0.01			
Bis(2-ethylhexyl) p	hthalate	<1.6			

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/23 Date Received: 01/17/23

Project: 1355-19001-02, F&BI 301237

Date Extracted: 01/23/23 Date Analyzed: 01/25/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	Total Suspended <u>Solids</u>
M1001-SW-230113 301237-01	93
Method Blank 03-203 mb	<5

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/23 Date Received: 01/17/23

Project: 1355-19001-02, F&BI 301237

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 301203-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	7.31	79	81	70-130	2
Cadmium	ug/L (ppb)	5	<1	98	97	70-130	1
Chromium	ug/L (ppb)	20	<1	87	92	70-130	6
Copper	ug/L (ppb)	20	<5	76	71	70-130	7
Lead	ug/L (ppb)	10	<1	88	87	70-130	1
Manganese	ug/L (ppb)	20	957	64 b	0 b	70-130	200 b
Silver	ug/L (ppb)	5	<1	92	92	70-130	0
Zinc	ug/L (ppb)	50	<5	77	75	70-130	3

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	94	85-115
Cadmium	ug/L (ppb)	5	103	85-115
Chromium	ug/L (ppb)	20	102	85-115
Copper	ug/L (ppb)	20	106	85-115
Lead	ug/L (ppb)	10	101	85-115
Manganese	ug/L (ppb)	20	97	85-115
Silver	ug/L (ppb)	5	100	85-115
Zinc	ug/L (ppb)	50	104	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/23 Date Received: 01/17/23

Project: 1355-19001-02, F&BI 301237

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	ug/L (ppb)	5	73	76	62-97	4
Acenaphthene	ug/L (ppb)	5	82	83	70-130	1
Fluorene	ug/L (ppb)	5	88	90	70-130	2
Phenanthrene	ug/L (ppb)	5	94	96	70-130	2
Anthracene	ug/L (ppb)	5	93	95	70-130	2
Fluoranthene	ug/L (ppb)	5	99	101	70-130	2
Pyrene	ug/L (ppb)	5	96	95	70-130	1
Benz(a)anthracene	ug/L (ppb)	5	99	97	70-130	2
Chrysene	ug/L (ppb)	5	97	95	70-130	2
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	5	95	98	44-140	3
Benzo(a)pyrene	ug/L (ppb)	5	101	101	70-130	0
Benzo(b)fluoranthene	ug/L (ppb)	5	101	102	70-130	1
Benzo(k)fluoranthene	ug/L (ppb)	5	97	99	70-130	2
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	114	109	70-130	4
Dibenz(a,h)anthracene	ug/L (ppb)	5	105	104	70-130	1
Benzo(g,h,i)perylene	ug/L (ppb)	5	100	99	70-130	1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/13/23 Date Received: 01/17/23

Project: 1355-19001-02, F&BI 301237

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
TSS	mg/L (ppm)	20	86	94	35-146	9

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

		T-	Friedman & Bruya, Inc. 1										M1001-5W-230112	Sample ID		Phone 5c3-452-556 Em		Address PO 14488	Company FUGO NU	Report To Lynn Green	3012,37
Received by:	Relinquished by:	Received by:	Relinquished by /	KS.									01 A-H	Lab ID	-	Email Lynne & Evium-No.com				· · · · · · · · · · · · · · · · · · ·	
		hour		SIGNATURE									1-13-23	Date Sampled		7-ND.CCW	97214				
			Z										12:15	Time Sampled		Project s	REMAR	1355	PROJEC	SAMPL	SAMPLE CHAIN OF CUSTODY
		+											Water	Sample Type		Project specific RLs? - Yes / No	REMARKS & See Attacked from Tor Sample details	1355-14001-0202	PROJECT NAME	SAMPLERS (signature)	CHAIN
		ANHPHAN	Bailer 1	PRINT NAME									8	# of Jars		s? - Y	AHOO	8		ture)	OF
		PHP	L'A	T N/										NWTPH-Dx		es /	Led to	02		11	cus
		N	fawi	E E	<u> </u>	ļ	-	-	ļ		ļ	ļ		NWTPH-Gx		No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			$l_{\mathcal{N}}$	TO
			2/1/		ļ	-	-			 				BTEX EPA 8021				pw EB		7	DY
							 				-	-	<u> </u>	NWTPH-HCID	B		Ę	12 8	ļ	λ	
								-					8	VOCs EPA 8260 2,3,3,87630 D/F PAHs EPA 8270	ANALYSES		INVOICE TO	न्य श्यास्कृ	P0#		
Sa			M										\bigcirc	PCBs EPA 8082			E TO	4	**		2
mpl		F8B	ENW	MOC									X	T55 *	UQH					green leed to	t1/
Samples received		4		COMPANY									\times	Select total medals	REQUESTED						123
ceiv				Y									X	PAHS &	B	Default:		Rush	Standa RUSH	•	
													X	Philhalots of		1	SAM hive	char	ndar SH_	Page #_ TURN	C3/J1
at _	1	0//1	1-1	DA									X	Suoc's A		ispos	SAMPLE DI Archive samples	ges au	d turn	VARO	<u>ر</u> م
2° +		05:01 88/E1/	73-73 17:00	DATE TIME		levels mg	JSCSCORING	(x) perathold		Nr As 21	Cd C, Ca Pl	motals: Al As		Notes		Dispose after 30 days	SAMPLE DISPOSAL hive samples	Rush charges authorized by:	Standard turnaround	TURNAROUND TIME	2

March 09, 2023

Enthalpy Analytical - El Dorado Hills Work Order No. 2301182

Mr. Michael Erdahl Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119

Dear Mr. Erdahl,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on January 18, 2023 under your Project Name '301237'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Enthalpy Analytical - EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical - EDH.

Enthalpy Analytical - EDH 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.enthalpy.com

Work Order 2301182

Enthalpy Analytical - EDH Work Order No. 2301182 Case Narrative

Sample Condition on Receipt:

One aqueous sample was received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B

This sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are flagged with an "H" qualifier.

EPA Method 1668C

The sample was extracted and analyzed for 209 PCB congeners by EPA Method 1668C using a ZB-1 GC column.

Holding Times

The method holding time criteria were met for this sample.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Work Order 2301182 2 of 27

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2301182 3 of 27

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	ϵ
Qualifiers	22
Certifications	23
Sample Receipt	24

Work Order 2301182 4 of 27

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2301182-01	M1001-SW-230113	13-Jan-23 12:15	18-Jan-23 08:47	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Work Order 2301182 5 of 27

ANALYTICAL RESULTS

Work Order 2301182 6 of 27

06-Feb-23

Sample ID: Method Blank EPA Method 1613B

Client Data

Laboratory Data

Sample Size:

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Lab Sample: B23B040-BLK1

QC Batch: B23B040

1.00 L

Column: ZB-DIOXIN

Date Extracted:

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers Analyzed	Dilution
2,3,7,8-TCDD	ND	1.81	1.78		08-Feb-23 13:02	1
1,2,3,7,8-PeCDD	ND	1.04	5.63		08-Feb-23 13:02	1
1,2,3,4,7,8-HxCDD	ND	1.17	4.18		08-Feb-23 13:02	1
1,2,3,6,7,8-HxCDD	ND	1.28	3.51		08-Feb-23 13:02	1
1,2,3,7,8,9-HxCDD	ND	1.25	4.46		08-Feb-23 13:02	1
1,2,3,4,6,7,8-HpCDD	ND	1.26	4.84		08-Feb-23 13:02	1
OCDD	ND	3.02	16.4		08-Feb-23 13:02	1
2,3,7,8-TCDF	ND	0.233	1.78		08-Feb-23 13:02	1
1,2,3,7,8-PeCDF	ND	0.674	5.01		08-Feb-23 13:02	1
2,3,4,7,8-PeCDF	ND	0.726	4.99		08-Feb-23 13:02	1
1,2,3,4,7,8-HxCDF	ND	0.554	6.87		08-Feb-23 13:02	1
1,2,3,6,7,8-HxCDF	ND	0.572	6.31		08-Feb-23 13:02	1
2,3,4,6,7,8-HxCDF	ND	0.649	5.80		08-Feb-23 13:02	1
1,2,3,7,8,9-HxCDF	ND	0.902	5.33		08-Feb-23 13:02	1
1,2,3,4,6,7,8-HpCDF	ND	0.519	5.96		08-Feb-23 13:02	1
1,2,3,4,7,8,9-HpCDF	ND	0.734	5.34		08-Feb-23 13:02	1
OCDF	ND	1.62	11.3		08-Feb-23 13:02	1
Toxic Equivalent						

CCDI	1,2	11.02			00 1 40 20 10.0	
Toxic Equivalent						
TEQMinWHO2005Dioxin	0.00					
Totals						
Total TCDD	ND	1.81				
Total PeCDD	ND	1.04				
Total HxCDD	ND	1.28				
Total HpCDD	ND	1.26				
Total TCDF	ND	0.233				
Total PeCDF	ND	0.726				
Total HxCDF	ND	0.902				
Total HpCDF	ND	0.734				
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution

		0.70=				
Total HpCDF	ND	0.734				
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	20.0	25 - 164	Н	08-Feb-23 13:02	1
13C-1,2,3,7,8-PeCDD	IS	81.2	25 - 181		08-Feb-23 13:02	1
13C-1,2,3,4,7,8-HxCDD	IS	101	32 - 141		08-Feb-23 13:02	1
13C-1,2,3,6,7,8-HxCDD	IS	96.1	28 - 130		08-Feb-23 13:02	1
13C-1,2,3,7,8,9-HxCDD	IS	97.2	32 - 141		08-Feb-23 13:02	1
13C-1,2,3,4,6,7,8-HpCDD	IS	93.7	23 - 140		08-Feb-23 13:02	1
13C-OCDD	IS	65.2	17 - 157		08-Feb-23 13:02	1
13C-2,3,7,8-TCDF	IS	91.8	24 - 169		08-Feb-23 13:02	1
13C-1,2,3,7,8-PeCDF	IS	92.7	24 - 185		08-Feb-23 13:02	1
13C-2,3,4,7,8-PeCDF	IS	82.3	21 - 178		08-Feb-23 13:02	1
13C-1,2,3,4,7,8-HxCDF	IS	103	26 - 152		08-Feb-23 13:02	1
13C-1,2,3,6,7,8-HxCDF	IS	99.2	26 - 123		08-Feb-23 13:02	1
13C-2,3,4,6,7,8-HxCDF	IS	95.2	28 - 136		08-Feb-23 13:02	1
13C-1,2,3,7,8,9-HxCDF	IS	94.6	29 - 147		08-Feb-23 13:02	1
13C-1,2,3,4,6,7,8-HpCDF	IS	90.5	28 - 143		08-Feb-23 13:02	1
13C-1,2,3,4,7,8,9-HpCDF	IS	81.9	26 - 138		08-Feb-23 13:02	1
13C-OCDF	IS	75.1	17 - 157		08-Feb-23 13:02	1
37C1-2,3,7,8-TCDD	CRS	15.9	35 - 197	Н	08-Feb-23 13:02	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Work Order 2301182 7 of 27

Sample ID: OPR EPA Method 1613B

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B040-BS1

QC Batch: B23B040 Date Extracted: 06-Feb-23 08:03 Sample Size: 1.00 L Column: ZB-DIOXIN

Analyte	Amt Found (pg/L)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	175	200	87.5	67-158		08-Feb-23 11:32	1
1,2,3,7,8-PeCDD	982	1000	98.2	70-142		08-Feb-23 11:32	1
1,2,3,4,7,8-HxCDD	903	1000	90.3	70-164		08-Feb-23 11:32	1
1,2,3,6,7,8-HxCDD	990	1000	99.0	76-134		08-Feb-23 11:32	1
1,2,3,7,8,9-HxCDD	994	1000	99.4	64-162		08-Feb-23 11:32	1
1,2,3,4,6,7,8-HpCDD	865	1000	86.5	70-140		08-Feb-23 11:32	
OCDD	2110	2000	105	78-144		08-Feb-23 11:32	
2,3,7,8-TCDF	162	200	81.1	75-158		08-Feb-23 11:32	
1,2,3,7,8-PeCDF	992	1000	99.2	80-134		08-Feb-23 11:32	1
2,3,4,7,8-PeCDF	1040	1000	104	68-160		08-Feb-23 11:32	
1,2,3,4,7,8-HxCDF	1020	1000	102	72-134		08-Feb-23 11:32	
1,2,3,6,7,8-HxCDF	1020	1000	102	84-130		08-Feb-23 11:32	
2,3,4,6,7,8-HxCDF	970	1000	97.0	70-156		08-Feb-23 11:32	
1,2,3,7,8,9-HxCDF	909	1000	90.9	78-130		08-Feb-23 11:32	
1,2,3,4,6,7,8-HpCDF	985	1000	98.5	82-122		08-Feb-23 11:32	1
1,2,3,4,7,8,9-HpCDF	1040	1000	104	78-138		08-Feb-23 11:32	
OCDF	1950	2000	97.4	63-170		08-Feb-23 11:32	1
Labeled Standards	Туре		% Recovery	Limits	Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS		26.8	20-175		08-Feb-23 11:32	
13C-1,2,3,7,8-PeCDD	IS		92.5	21-227		08-Feb-23 11:32	
13C-1,2,3,4,7,8-HxCDD	IS		106	21-193		08-Feb-23 11:32	1
13C-1,2,3,6,7,8-HxCDD	IS		100	25-163		08-Feb-23 11:32	1
13C-1,2,3,7,8,9-HxCDD	IS		104	21-193		08-Feb-23 11:32	1
13C-1,2,3,4,6,7,8-HpCDD	IS		104	26-166		08-Feb-23 11:32	1
13C-OCDD	IS		76.5	13-199		08-Feb-23 11:32	1
13C-2,3,7,8-TCDF	IS		96.8	22-152		08-Feb-23 11:32	1
13C-1,2,3,7,8-PeCDF	IS		96.2	21-192		08-Feb-23 11:32	1
13C-2,3,4,7,8-PeCDF	IS		97.5	13-328		08-Feb-23 11:32	1
13C-1,2,3,4,7,8-HxCDF	IS		98.1	19-202		08-Feb-23 11:32	
13C-1,2,3,6,7,8-HxCDF	IS		96.7	21-159		08-Feb-23 11:32	
13C-2,3,4,6,7,8-HxCDF	IS		96.7	22-176		08-Feb-23 11:32	
13C-1,2,3,7,8,9-HxCDF	IS		99.9	17-205		08-Feb-23 11:32	
13C-1,2,3,4,6,7,8-HpCDF	IS		98.2	21-158		08-Feb-23 11:32	
	IS		87.0	20-186		08-Feb-23 11:32	1
13C-1,2,3,4,7,8,9-HpCDF							
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF 37Cl-2,3,7,8-TCDD	IS		87.6	13-199		08-Feb-23 11:32 08-Feb-23 11:32	

Work Order 2301182 8 of 27

Sample ID: M1001-SW-230113 **EPA Method 1613B**

Client Data

Laboratory Data

Name:

Friedman & Bruya, Inc.

2301182-01 Lab Sample: B23B040 OC Batch:

Date Received: Date Extracted:

18-Jan-23 08:47 06-Feb-23

Project: 301237			,	Batch:	B23B040	Date Extracted:	06-Feb-23	
Matrix: Aqueous			Sam	ple Size:	0.975 L	Column:	ZB-DIOXIN	
Date Collected: 13-Jan-23 1	2:15							
Analyte	Conc. (pg/L)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.62	1.83				08-Feb-23 13:47	1
1,2,3,7,8-PeCDD	ND	1.40	5.78				08-Feb-23 13:47	1
1,2,3,4,7,8-HxCDD	ND	1.97	4.29				08-Feb-23 13:47	1
1,2,3,6,7,8-HxCDD	ND	2.23	3.60				08-Feb-23 13:47	1
1,2,3,7,8,9-HxCDD	ND	2.27	4.58				08-Feb-23 13:47	
1,2,3,4,6,7,8-HpCDD	44.2		4.96				08-Feb-23 13:47	1
OCDD	398		16.8				08-Feb-23 13:47	1
2,3,7,8-TCDF	ND	0.381	1.83				08-Feb-23 13:47	
1,2,3,7,8-PeCDF	ND	1.08	5.14				08-Feb-23 13:47	1
2,3,4,7,8-PeCDF	ND	1.06	5.12				08-Feb-23 13:47	1
1,2,3,4,7,8-HxCDF	ND	0.978	7.05				08-Feb-23 13:47	1
1,2,3,6,7,8-HxCDF	ND	1.06	6.47				08-Feb-23 13:47	1
2,3,4,6,7,8-HxCDF	ND	1.34	5.95				08-Feb-23 13:47	1
1,2,3,7,8,9-HxCDF	ND	1.58	5.47				08-Feb-23 13:47	1
1,2,3,4,6,7,8-HpCDF	ND		6.11	7.98			08-Feb-23 13:47	1
1,2,3,4,7,8,9-HpCDF	ND	4.12	5.48				08-Feb-23 13:47	1
OCDF	26.5		11.6			J	08-Feb-23 13:47	1
Toxic Equivalent								
TEQMinWHO2005Dioxin	0.569							
Totals								
Total TCDD	ND	1.62						
Total PeCDD	ND	1.40						
Total HxCDD	5.67			11.9		J		
Total HpCDD	116							
Total TCDF	ND	0.381						
Total PeCDF	1.04					J		
Total HxCDF	4.84			9.19		J		
Total HpCDF	14.9			22.8		J		
Labeled Standards	Type	%]	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		39.6		25 - 164		08-Feb-23 13:47	1
13C-1,2,3,7,8-PeCDD	IS		87.1		25 - 181		08-Feb-23 13:47	1
13C-1,2,3,4,7,8-HxCDD	IS		103		32 - 141		08-Feb-23 13:47	1
13C-1,2,3,6,7,8-HxCDD	IS		96.6		28 - 130		08-Feb-23 13:47	1
13C-1,2,3,7,8,9-HxCDD	IS		97.8		32 - 141		08-Feb-23 13:47	
13C-1,2,3,4,6,7,8-HpCDD	IS		96.7		23 - 140		08-Feb-23 13:47	1
13C-OCDD	IS		67.1		17 - 157		08-Feb-23 13:47	
13C-2,3,7,8-TCDF	IS		92.0		24 - 169		08-Feb-23 13:47	1
13C-1,2,3,7,8-PeCDF	IS		89.8		24 - 185		08-Feb-23 13:47	
13C-2,3,4,7,8-PeCDF	IS		85.5		21 - 178		08-Feb-23 13:47	
13C-1,2,3,4,7,8-HxCDF	IS		99.1		26 - 152		08-Feb-23 13:47	
13C-1,2,3,6,7,8-HxCDF	IS		97.5		26 - 123		08-Feb-23 13:47	
13C-2,3,4,6,7,8-HxCDF	IS		93.0		28 - 136		08-Feb-23 13:47	
13C-1,2,3,7,8,9-HxCDF	IS		92.6		29 - 147		08-Feb-23 13:47	
13C-1,2,3,4,6,7,8-HpCDF	IS		89.5		28 - 143		08-Feb-23 13:47	
13C-1,2,3,4,7,8,9-HpCDF	IS		79.0		26 - 138		08-Feb-23 13:47	
13C-OCDF	IS		76.0		17 - 157		08-Feb-23 13:47	
37Cl-2,3,7,8-TCDD	CRS		38.2		35 - 197		08-Feb-23 13:47	
EDI Sample specifs estimated dates			20.2		33 - 171		00-100-23 13.47	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

9 of 27 Work Order 2301182

Client Data

Name: Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B082-BLK1

QC Batch: B23B082 Date Extracted: 08-Feb-23

Sample Size: 1.00 L Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers Analyzed l	Dilution
PCB-1	ND	1.42	5.60		11-Feb-23 15:36	1
PCB-2	ND	1.76	3.08		11-Feb-23 15:36	1
PCB-3	ND	1.79	7.64		11-Feb-23 15:36	1
PCB-4/10	ND	14.3	3.15		11-Feb-23 15:36	1
PCB-5/8	ND	11.4	2.61		11-Feb-23 15:36	1
PCB-6	ND	11.2	3.48		11-Feb-23 15:36	1
PCB-7/9	ND	11.9	7.27		11-Feb-23 15:36	1
PCB-11	ND	10.3	19.5		11-Feb-23 15:36	1
PCB-12/13	ND	11.3	1.73		11-Feb-23 15:36	1
PCB-14	ND	11.2	1.88		11-Feb-23 15:36	1
PCB-15	ND	11.3	1.73		11-Feb-23 15:36	1
PCB-16/32	ND	1.16	3.70		11-Feb-23 15:36	1
PCB-17	ND	1.42	2.60		11-Feb-23 15:36	1
PCB-18	ND	1.33	5.95		11-Feb-23 15:36	1
PCB-19	ND	1.48	2.27		11-Feb-23 15:36	1
PCB-20/21/33	ND	1.79	3.75		11-Feb-23 15:36	1
PCB-22	ND	1.73	1.80		11-Feb-23 15:36	1
PCB-23	ND	1.83	2.04		11-Feb-23 15:36	1
PCB-24/27	ND	1.02	4.01		11-Feb-23 15:36	1
PCB-25	ND	1.79	1.87		11-Feb-23 15:36	1
PCB-26	ND	1.79	1.09		11-Feb-23 15:36	1
PCB-28	ND	1.61	4.17		11-Feb-23 15:36	1
PCB-29	ND ND	1.90	1.85		11-Feb-23 15:36	1
PCB-30	ND ND	0.934	2.16		11-Feb-23 15:36	1
PCB-31	ND ND	1.59	3.12		11-Feb-23 15:36 11-Feb-23 15:36	
	ND ND					1
PCB-34		1.86	1.41		11-Feb-23 15:36	1
PCB-35	ND	2.67	1.57		11-Feb-23 15:36	1
PCB-36	ND	2.62	1.49		11-Feb-23 15:36	1
PCB-37	ND	2.72	1.04		11-Feb-23 15:36	1
PCB-38	ND	2.66	0.696		11-Feb-23 15:36	1
PCB-39	ND	2.79	0.789		11-Feb-23 15:36	1
PCB-40	ND	2.09	2.95		11-Feb-23 15:36	1
PCB-41/64/71/72	ND	1.07	3.44		11-Feb-23 15:36	1
PCB-42/59	ND	1.23	1.78		11-Feb-23 15:36	1
PCB-43/49	ND	1.25	3.38		11-Feb-23 15:36	1
PCB-44	ND	1.58	8.62		11-Feb-23 15:36	1
PCB-45	ND	1.44	0.638		11-Feb-23 15:36	1
PCB-46	ND	1.50	2.42		11-Feb-23 15:36	1
PCB-47	ND	1.39	13.4		11-Feb-23 15:36	1
PCB-48/75	ND	1.15	2.38		11-Feb-23 15:36	1
PCB-50	ND	1.20	1.97		11-Feb-23 15:36	1
PCB-51	ND	1.16	2.62		11-Feb-23 15:36	1
PCB-52/69	ND	1.07	3.68		11-Feb-23 15:36	1
PCB-53	ND	1.23	2.02		11-Feb-23 15:36	1
PCB-54	ND	0.989	1.34		11-Feb-23 15:36	1
PCB-55	ND	0.903	0.789		11-Feb-23 15:36	1
PCB-56/60	ND	1.02	2.63		11-Feb-23 15:36	1
PCB-57	ND	0.816	1.71		11-Feb-23 15:36	1
PCB-58	ND	0.812	1.97		11-Feb-23 15:36	1
PCB-61/70	ND	0.898	2.45		11-Feb-23 15:36	1
PCB-62	ND	1.15	2.28		11-Feb-23 15:36	1
PCB-63	ND	0.905	1.23		11-Feb-23 15:36	1

Work Order 2301182 10 of 27

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B082-BLK1

QC Batch: B23B082 Date Extracted: 08-Feb-23

Sample Size: 1.00 L Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers Analyz	ed	Dilution
PCB-65	ND	1.03	1.53		11-Feb-23	15:36	1
PCB-66/76	ND	0.820	2.66		11-Feb-23	15:36	1
PCB-67	ND	0.865	1.19		11-Feb-23	15:36	1
PCB-68	ND	1.01	3.06		11-Feb-23	15:36	1
PCB-73	ND	0.885	1.55		11-Feb-23	15:36	1
PCB-74	ND	0.808	1.22		11-Feb-23	15:36	1
PCB-77	ND	1.11	1.40		11-Feb-23	15:36	1
PCB-78	ND	1.08	1.35		11-Feb-23	15:36	1
PCB-79	ND	0.908	1.45		11-Feb-23	15:36	1
PCB-80	ND	0.892	2.16		11-Feb-23	15:36	1
PCB-81	ND	1.16	1.47		11-Feb-23	15:36	1
PCB-82	ND	1.33	2.66		11-Feb-23	15:36	1
PCB-83	ND	0.869	1.90		11-Feb-23	15:36	1
PCB-84/92	ND	1.49	3.46		11-Feb-23		1
PCB-85/116	ND	1.10	2.24		11-Feb-23		1
PCB-86	ND	1.28	2.63		11-Feb-23		1
PCB-87/117/125	ND	1.01	4.60		11-Feb-23		1
PCB-88/91	ND	1.55	2.85		11-Feb-23		1
PCB-89	ND	1.39	2.20		11-Feb-23		1
PCB-90/101	ND	1.36	4.36		11-Feb-23		1
PCB-93	ND	1.85	3.77		11-Feb-23		1
PCB-94	ND	1.70	2.55		11-Feb-23		1
PCB-95/98/102	ND	1.32	7.56		11-Feb-23		1
PCB-96	ND	1.15	2.24		11-Feb-23		1
PCB-97	ND	1.20	1.92		11-Feb-23		1
PCB-99	ND	1.24	1.95		11-Feb-23		1
PCB-100	ND	1.40	2.79		11-Feb-23		1
PCB-103	ND	1.46	2.47		11-Feb-23		1
PCB-104	ND	1.15	1.17		11-Feb-23		1
PCB-105	ND	1.19	1.61		11-Feb-23		1
PCB-106/118	ND	0.899	2.45		11-Feb-23		1
PCB-107/109	ND	0.768	3.15		11-Feb-23		1
PCB-108/112	ND	1.09	2.81		11-Feb-23		1
PCB-110	ND	0.903	2.50		11-Feb-23		1
PCB-111/115	ND	0.838	3.44		11-Feb-23		1
PCB-113	ND	0.978	2.68		11-Feb-23		1
PCB-114	ND	1.09	1.16		11-Feb-23		1
PCB-119	ND	0.885	2.02		11-Feb-23		1
PCB-120	ND	0.755	1.85		11-Feb-23		1
PCB-121	ND	0.963	2.16		11-Feb-23		1
PCB-122	ND	1.27	0.995		11-Feb-23		1
PCB-123	ND	0.850	2.85		11-Feb-23		1
PCB-124	ND	0.789	1.88		11-Feb-23		1
PCB-126	ND	1.35	1.19		11-Feb-23		1
PCB-127	ND	1.23	1.07		11-Feb-23		1
PCB-128/162	ND ND	0.694	1.38		11-Feb-23		
PCB-129/102	ND ND	0.094	2.03		11-Feb-23		1
PCB-129 PCB-130	ND ND	0.935	1.98		11-Feb-23 11-Feb-23		
PCB-131/133	ND ND	0.989	1.45		11-Feb-23		1
							1
PCB-132/161	ND ND	0.644	2.82		11-Feb-23		
PCB-134/143	ND	0.859	2.72		11-Feb-23		1
PCB-135	ND	0.810	3.63		11-Feb-23	15:36	1

Work Order 2301182 11 of 27

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B082-BLK1

QC Batch: B23B082 Date Extracted: 08-Feb-23

Sample Size: 1.00 L Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-136	ND	0.664	2.51		11	-Feb-23 15:36	1
PCB-137	ND	0.838	1.40		11	-Feb-23 15:36	1
PCB-138/163/164	ND	0.654	3.10		11	-Feb-23 15:36	1
PCB-139/149	ND	0.757	5.79		11	-Feb-23 15:36	1
PCB-140	ND	0.897	3.49		11	-Feb-23 15:36	1
PCB-141	ND	0.852	0.680		11	-Feb-23 15:36	1
PCB-142	ND	0.898	2.07		11	-Feb-23 15:36	1
PCB-144	ND	0.847	1.58		11	-Feb-23 15:36	1
PCB-145	ND	0.596	2.03		11	-Feb-23 15:36	1
PCB-146/165	ND	0.654	3.47		11	-Feb-23 15:36	1
PCB-147	ND	0.821	3.19		11	-Feb-23 15:36	1
PCB-148	ND	0.879	3.37		11	-Feb-23 15:36	1
PCB-150	ND	0.627	1.95		11	-Feb-23 15:36	1
PCB-151	ND	0.868	2.75		11	-Feb-23 15:36	1
PCB-152	ND	0.575	1.37		11	-Feb-23 15:36	1
PCB-153	ND	0.623	1.25			-Feb-23 15:36	
PCB-154	ND	0.812	3.39		11	-Feb-23 15:36	1
PCB-155	ND	0.687	1.54			-Feb-23 15:36	
PCB-156	ND	0.579	1.31			-Feb-23 15:36	1
PCB-157	ND	0.622	1.44			-Feb-23 15:36	
PCB-158/160	ND	0.663	2.59			-Feb-23 15:36	1
PCB-159	ND	0.529	1.02		11	-Feb-23 15:36	
PCB-166	ND	0.563	0.988			-Feb-23 15:36	1
PCB-167	ND	0.648	1.56			-Feb-23 15:36	
PCB-168	ND	0.596	2.33			-Feb-23 15:36	1
PCB-169	ND	0.791	1.27			-Feb-23 15:36	
PCB-170	ND	0.852	1.85			-Feb-23 15:36	1
PCB-171	ND	0.814	1.73			-Feb-23 15:36	
PCB-172	ND	0.789	1.45			-Feb-23 15:36	1
PCB-173	ND	0.929	2.14			-Feb-23 15:36	1
PCB-174	ND	0.828	1.79			-Feb-23 15:36	1
PCB-175	ND	0.795	1.75			-Feb-23 15:36	1
PCB-176	ND	0.609	0.624			-Feb-23 15:36	1
PCB-177	ND	0.869	1.43			-Feb-23 15:36	
PCB-178	ND	0.817	3.61			-Feb-23 15:36	1
PCB-179	ND	0.631	2.56			-Feb-23 15:36	
PCB-180	ND	0.762	2.46			-Feb-23 15:36	1
PCB-181	ND	0.746	1.39			-Feb-23 15:36	
PCB-182/187	ND	0.720	2.62			-Feb-23 15:36	
PCB-183	ND	0.745	1.12			-Feb-23 15:36	
PCB-184	ND	0.595	1.54			-Feb-23 15:36	
PCB-185	ND	0.801	0.887			-Feb-23 15:36	
PCB-186	ND	0.551	1.98			-Feb-23 15:36	
PCB-188	ND	0.590	1.77			-Feb-23 15:36	
PCB-189	ND	0.543	1.09			-Feb-23 15:36	
PCB-190	ND	0.652	1.78			-Feb-23 15:36	
PCB-191	ND	0.659	1.26			-Feb-23 15:36	
PCB-192	ND	0.614	1.69			-Feb-23 15:36	
PCB-193	ND	0.674	1.43			-Feb-23 15:36	
PCB-194	ND	0.382	1.30			-Feb-23 15:36	
PCB-195	ND	0.423	1.99			-Feb-23 15:36	
	1,12	0.123	2.//		- 11		-

Work Order 2301182 12 of 27

08-Feb-23

Sample ID: Method Blank EPA Method 1668C

Client Data

Name:

Laboratory Dat

Project: 301237 Matrix: Aqueous

Friedman & Bruya, Inc.

Laboratory Data

Lab Sample: B23B082-BLK1 QC Batch: B23B082

Sample Size: 1.00 L Column: ZB-1

Date Extracted:

EDL MDL **EMPC** Qualifiers Analyzed Dilution Analyte Conc. (pg/L) PCB-197 ND 0.294 2.02 11-Feb-23 15:36 0.407 2.25 PCB-198 ND 11-Feb-23 15:36 1 PCB-199 ND 0.401 4.08 11-Feb-23 15:36 PCB-200 ND 0.311 1.58 11-Feb-23 15:36 PCB-201 ND 0.313 1.67 11-Feb-23 15:36 PCB-202 ND 0.2852.49 11-Feb-23 15:36 ND PCB-204 0.2962.04 11-Feb-23 15:36 PCB-205 ND 0.319 1.21 11-Feb-23 15:36 ND PCB-206 0.07021.93 11-Feb-23 15:36 PCB-207 ND 1.50 0.056611-Feb-23 15:36 PCB-208 ND 1.89 0.0559 11-Feb-23 15:36 PCB-209 ND 0.0295 0.754 11-Feb-23 15:36 Totals Total monoCB ND 1.79 Total diCB ND 14.3 Total triCB ND 2.79 Total tetraCB ND 2.09 ND Total pentaCB 1.85 Total hexaCB ND 0.989 Total heptaCB ND 0.929 Total octaCB ND 0.423 Total nonaCB ND 0.0702 DecaCB ND 0.0295

T-4-1 DCD	ND	0.0273				
Total PCB Labeled Standards	ND Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-PCB-1	IS	46.1	5 - 145		-Feb-23 15:36	1
13C-PCB-3	IS	36.4	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-4	IS	50.7	5 - 145	11	-Feb-23 15:36	1
13C-PCB-11	IS	54.5	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-9	IS	52.9	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-19	IS	57.3	5 - 145	11	-Feb-23 15:36	1
13C-PCB-28	IS	76.7	5 - 145	11	-Feb-23 15:36	1
13C-PCB-32	IS	67.2	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-37	IS	63.5	5 - 145	11	-Feb-23 15:36	1
13C-PCB-47	IS	52.6	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-52	IS	57.6	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-54	IS	51.9	5 - 145	11	-Feb-23 15:36	1
13C-PCB-70	IS	63.4	5 - 145	11-	-Feb-23 15:36	1
13C-PCB-77	IS	62.0	10 - 145	11	-Feb-23 15:36	1
13C-PCB-80	IS	57.5	10 - 145	11	-Feb-23 15:36	1
13C-PCB-81	IS	62.2	10 - 145	11-	-Feb-23 15:36	1
13C-PCB-95	IS	54.8	10 - 145	11	-Feb-23 15:36	1
13C-PCB-97	IS	64.4	10 - 145	11	-Feb-23 15:36	1
13C-PCB-101	IS	57.6	10 - 145	11	-Feb-23 15:36	1
13C-PCB-104	IS	50.1	10 - 145	11	-Feb-23 15:36	1
13C-PCB-105	IS	74.1	10 - 145	11	-Feb-23 15:36	1
13C-PCB-114	IS	68.4	10 - 145	11	-Feb-23 15:36	1
13C-PCB-118	IS	70.2	10 - 145	11	-Feb-23 15:36	1
13C-PCB-123	IS	67.8	10 - 145	11	-Feb-23 15:36	1
13C-PCB-126	IS	65.1	10 - 145	11	-Feb-23 15:36	1
13C-PCB-127	IS	71.9	10 - 145	11	-Feb-23 15:36	1

Work Order 2301182 13 of 27

Client Data

Name: Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B082-BLK1

QC Batch: B23B082 Date Extracted: 08-Feb-23
Sample Size: 1.00 L Column: ZB-1

Labeled Standards Type Limits Qualifiers Analyzed Dilution % Recovery 13C-PCB-138 IS 67.4 10 - 145 11-Feb-23 15:36 IS 10 - 145 13C-PCB-141 66.6 11-Feb-23 15:36 13C-PCB-153 IS 67.9 10 - 145 11-Feb-23 15:36 IS 10 - 145 13C-PCB-155 46.9 11-Feb-23 15:36 1 IS 10 - 145 13C-PCB-156 74.1 11-Feb-23 15:36 13C-PCB-157 IS 77.9 10 - 145 11-Feb-23 15:36 1 IS 13C-PCB-159 74.6 10 - 145 11-Feb-23 15:36 1 13C-PCB-167 IS 72.5 10 - 145 11-Feb-23 15:36 1 10 - 145 13C-PCB-169 IS 69.4 11-Feb-23 15:36 13C-PCB-170 IS 75.4 10 - 145 11-Feb-23 15:36 13C-PCB-180 IS 70.8 10 - 145 11-Feb-23 15:36 13C-PCB-188 IS 60.6 10 - 145 11-Feb-23 15:36 1 13C-PCB-189 IS 79.5 10 - 145 11-Feb-23 15:36 IS 13C-PCB-194 67.2 10 - 145 11-Feb-23 15:36 13C-PCB-202 IS 10 - 145 73.8 11-Feb-23 15:36 IS 10 - 145 67.6 13C-PCB-206 11-Feb-23 15:36 1 IS 10 - 145 13C-PCB-208 68.1 11-Feb-23 15:36 13C-PCB-209 IS 82.7 10 - 145 11-Feb-23 15:36 1 **CRS** 13C-PCB-79 10 - 145 82.6 11-Feb-23 15:36 1 13C-PCB-178 **CRS** 100 10 - 145 11-Feb-23 15:36 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Work Order 2301182 14 of 27

Sample ID: OPR EPA Method 1668C

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B082-BS1

QC Batch: B23B082 Date Extracted: 08-Feb-23 13:25

Sample Size: 1.00 L Column: ZB-1

Analyte	Amt Found (pg/L)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
PCB-1	1040	1000	104	60-135		11-Feb-23 11:31	1
PCB-3	1180	1000	118	60-135		11-Feb-23 11:31	1
PCB-4/10	2250	2000	112	60-135		11-Feb-23 11:31	1
PCB-15	980	1000	98.0	60-135		11-Feb-23 11:31	1
PCB-19	816	1000	81.6	60-135		11-Feb-23 11:31	1
PCB-37	1150	1000	115	60-135		11-Feb-23 11:31	1
PCB-54	950	1000	95.0	60-135		11-Feb-23 11:31	1
PCB-77	927	1000	92.7	60-135		11-Feb-23 11:31	1
PCB-81	891	1000	89.1	60-135		11-Feb-23 11:31	1
PCB-104	906	1000	90.6	60-135		11-Feb-23 11:31	1
PCB-105	1030	1000	103	60-135		11-Feb-23 11:31	1
PCB-106/118	1790	2000	89.4	60-135		11-Feb-23 11:31	1
PCB-114	980	1000	98.0	60-135		11-Feb-23 11:31	1
PCB-123	1060	1000	106	60-135		11-Feb-23 11:31	1
PCB-126	1000	1000	100	60-135		11-Feb-23 11:31	1
PCB-155	966	1000	96.6	60-135		11-Feb-23 11:31	1
PCB-156	945	1000	94.5	60-135		11-Feb-23 11:31	
PCB-157	1010	1000	101	60-135		11-Feb-23 11:31	1
PCB-167	957	1000	95.7	60-135		11-Feb-23 11:31	
PCB-169	962	1000	96.2	60-135		11-Feb-23 11:31	
PCB-188	921	1000	92.1	60-135		11-Feb-23 11:31	
PCB-189	954	1000	95.4	60-135		11-Feb-23 11:31	
PCB-202	952	1000	95.2	60-135		11-Feb-23 11:31	
PCB-205	1240	1000	124	60-135		11-Feb-23 11:31	
PCB-206	960	1000	96.0	60-135		11-Feb-23 11:31	1
PCB-208	990	1000	99.0	60-135		11-Feb-23 11:31	
PCB-209	865	1000	86.5	60-135	0 1'0	11-Feb-23 11:31	
Labeled Standards	Туре		% Recovery	Limits	Qualifiers		Dilution
13C-PCB-1	IS		54.0	15-145		11-Feb-23 11:31	
13C-PCB-3	IS		47.6	15-145		11-Feb-23 11:31	
13C-PCB-4	IS		61.9	15-145		11-Feb-23 11:31	1
13C-PCB-11	IS		65.2	15-145		11-Feb-23 11:31	1
13C-PCB-9	IS		61.5	15-145		11-Feb-23 11:31	1
13C-PCB-19	IS		72.0	15-145		11-Feb-23 11:31	1
13C-PCB-28	IS		73.2	15-145		11-Feb-23 11:31	1
13C-PCB-32	IS		71.6	15-145		11-Feb-23 11:31	1
13C-PCB-37	IS		62.3	15-145		11-Feb-23 11:31	
13C-PCB-47	IS		58.9			11-Feb-23 11:31	
				15-145			
13C-PCB-52	IS		63.6	15-145		11-Feb-23 11:31	
13C-PCB-54	IS		60.6	15-145		11-Feb-23 11:31	
13C-PCB-70	IS		67.5	15-145		11-Feb-23 11:31	
			70.0	10 1 15		11-Feb-23 11:31	1
13C-PCB-77	IS		70.0	40-145		11-160-25 11.51	
13C-PCB-77 13C-PCB-80	IS IS		65.8	40-145		11-Feb-23 11:31	

Work Order 2301182 15 of 27

Sample ID: OPR EPA Method 1668C

Client Data

Name: Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Laboratory Data

Lab Sample: B23B082-BS1

QC Batch: B23B082 Date Extracted: 08-Feb-23 13:25

Sample Size: 1.00 L Column: ZB-1

Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-PCB-95	IS	63.3	40-145		11-Feb-23 11:31	1
13C-PCB-97	IS	69.1	40-145		11-Feb-23 11:31	1
13C-PCB-101	IS	64.3	40-145		11-Feb-23 11:31	1
13C-PCB-104	IS	54.8	40-145		11-Feb-23 11:31	1
13C-PCB-105	IS	79.4	40-145		11-Feb-23 11:31	1
13C-PCB-114	IS	75.4	40-145		11-Feb-23 11:31	1
13C-PCB-118	IS	77.0	40-145		11-Feb-23 11:31	1
13C-PCB-123	IS	67.8	40-145		11-Feb-23 11:31	1
13C-PCB-126	IS	69.3	40-145		11-Feb-23 11:31	1
13C-PCB-127	IS	76.4	40-145		11-Feb-23 11:31	1
13C-PCB-138	IS	77.3	40-145		11-Feb-23 11:31	1
13C-PCB-141	IS	73.4	40-145		11-Feb-23 11:31	1
13C-PCB-153	IS	73.0	40-145		11-Feb-23 11:31	1
13C-PCB-155	IS	53.3	40-145		11-Feb-23 11:31	1
13C-PCB-156	IS	77.5	40-145		11-Feb-23 11:31	1
13C-PCB-157	IS	80.6	40-145		11-Feb-23 11:31	1
13C-PCB-159	IS	79.5	40-145		11-Feb-23 11:31	1
13C-PCB-167	IS	77.3	40-145		11-Feb-23 11:31	1
13C-PCB-169	IS	72.3	40-145		11-Feb-23 11:31	1
13C-PCB-170	IS	82.5	40-145		11-Feb-23 11:31	1
13C-PCB-180	IS	80.0	40-145		11-Feb-23 11:31	1
13C-PCB-188	IS	70.1	40-145		11-Feb-23 11:31	1
13C-PCB-189	IS	78.0	40-145		11-Feb-23 11:31	1
13C-PCB-194	IS	69.1	40-145		11-Feb-23 11:31	1
13C-PCB-202	IS	81.0	40-145		11-Feb-23 11:31	1
13C-PCB-206	IS	73.9	40-145		11-Feb-23 11:31	1
13C-PCB-208	IS	73.3	40-145		11-Feb-23 11:31	1
13C-PCB-209	IS	95.8	40-145		11-Feb-23 11:31	1
13C-PCB-79	CRS	85.2	40-145		11-Feb-23 11:31	1
13C-PCB-178	CRS	97.0	40-145		11-Feb-23 11:31	1

Work Order 2301182 16 of 27

Sample ID: M1001-SW-230113 EPA Method 1668C

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Date Collected: 13-Jan-23 12:15 **Laboratory Data**

2301182-01 Lab Sample: B23B082 QC Batch: Sample Size:

Date Received: Date Extracted:

18-Jan-23 08:47 08-Feb-23

Column:

0.963 L ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-1	6.52		5.82			13-Feb-23 19:05	1
PCB-2	ND	0.735	3.20			13-Feb-23 19:05	1
PCB-3	4.68		7.94		J	13-Feb-23 19:05	1
PCB-4/10	59.9		3.27			13-Feb-23 19:05	1
PCB-5/8	169		2.71			13-Feb-23 19:05	1
PCB-6	ND	5.94	3.61			13-Feb-23 19:05	1
PCB-7/9	ND	6.30	7.55			13-Feb-23 19:05	1
PCB-11	136		20.3			13-Feb-23 19:05	1
PCB-12/13	ND	5.81	1.80			13-Feb-23 19:05	1
PCB-14	ND	5.78	1.95			13-Feb-23 19:05	1
PCB-15	84.6		1.80			13-Feb-23 19:05	1
PCB-16/32	137		3.84			13-Feb-23 19:05	1
PCB-17	85.2		2.70			13-Feb-23 19:05	1
PCB-18	187		6.18			13-Feb-23 19:05	1
PCB-19	19.5		2.36			13-Feb-23 19:05	1
PCB-20/21/33	223		3.89			13-Feb-23 19:05	1
PCB-22	126		1.87			13-Feb-23 19:05	1
PCB-23	ND	1.11	2.12			13-Feb-23 19:05	1
PCB-24/27	18.4	1111	4.16			13-Feb-23 19:05	1
PCB-25	27.4		1.94			13-Feb-23 19:05	1
PCB-26	45.9		1.13			13-Feb-23 19:05	1
PCB-28	303		4.33			13-Feb-23 19:05	1
PCB-29	ND		1.92	2.13		13-Feb-23 19:05	1
PCB-30	ND	0.605	2.24	2.13		13-Feb-23 19:05	1
PCB-31	220	0.005	3.24			13-Feb-23 19:05	1
PCB-34	ND	1.13	1.46			13-Feb-23 19:05	1
PCB-35	10.6	1.13	1.63			13-Feb-23 19:05	1
PCB-36	ND	1.19	1.55			13-Feb-23 19:05	1
PCB-37	138	1.17	1.08			13-Feb-23 19:05	1
PCB-38	ND	1.21	0.723			13-Feb-23 19:05	1
PCB-39	ND	1.27	0.723			13-Feb-23 19:05	1
PCB-40	62.1	1.2/	3.06			13-Feb-23 19:05	1
PCB-41/64/71/72	241		3.57			13-Feb-23 19:05	1
PCB-42/59	93.3		1.85			13-Feb-23 19:05	1
PCB-43/49	159		3.51			13-Feb-23 19:05	1
PCB-44	238		8.95			13-Feb-23 19:05	1
PCB-45	42.9		0.663			13-Feb-23 19:05	1
PCB-46	19.3		2.51			13-Feb-23 19:05	1
PCB-47	58.7		13.9			13-Feb-23 19:05	1
PCB-48/75	56.9		2.47				1
PCB-50		1.50	2.47			13-Feb-23 19:05	1
PCB-51	ND	1.30	2.03			13-Feb-23 19:05 13-Feb-23 19:05	1
	9.75						1
PCB-52/69	238		3.82			13-Feb-23 19:05	1
PCB-53	31.4	1 22	2.10			13-Feb-23 19:05	1
PCB-54	ND	1.23	1.39			13-Feb-23 19:05	1
PCB-55	ND	1.26	0.819			13-Feb-23 19:05	1
PCB-56/60	137	1 14	2.73			13-Feb-23 19:05	1
PCB-57	ND	1.14	1.78			13-Feb-23 19:05	1
PCB-58	ND	1.14	2.05			13-Feb-23 19:05	1
PCB-61/70	235	1.22	2.54			13-Feb-23 19:05	1
PCB-62	ND	1.33	2.37			13-Feb-23 19:05	1
PCB-63	7.44		1.28			13-Feb-23 19:05	1

17 of 27 Work Order 2301182

18-Jan-23 08:47

08-Feb-23

Sample ID: M1001-SW-230113 EPA Method 1668C

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237 Matrix: Aqueous Date Collected: 13-Jan-23 12:15 **Laboratory Data**

2301182-01 Lab Sample: B23B082 QC Batch:

Date Extracted:

Column:

Date Received:

Sample Size: 0.963 L ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-65	ND	1.19	1.59			13-Feb-23 19:05	1
PCB-66/76	164		2.76			13-Feb-23 19:05	1
PCB-67	7.84		1.24			13-Feb-23 19:05	1
PCB-68	ND	1.16	3.18			13-Feb-23 19:05	1
PCB-73	2.10		1.61		J	13-Feb-23 19:05	1
PCB-74	82.5		1.27			13-Feb-23 19:05	1
PCB-77	19.6		1.45			13-Feb-23 19:05	1
PCB-78	ND	1.69	1.40			13-Feb-23 19:05	1
PCB-79	4.13		1.51		J	13-Feb-23 19:05	1
PCB-80	ND	1.25	2.24			13-Feb-23 19:05	1
PCB-81	4.80		1.53		J	13-Feb-23 19:05	1
PCB-82	55.4		2.76			13-Feb-23 19:05	1
PCB-83	ND	1.14	1.97			13-Feb-23 19:05	1
PCB-84/92	159		3.59			13-Feb-23 19:05	1
PCB-85/116	60.9		2.33			13-Feb-23 19:05	1
PCB-86	ND	1.67	2.73			13-Feb-23 19:05	1
PCB-87/117/125	153		4.78			13-Feb-23 19:05	1
PCB-88/91	53.0		2.96			13-Feb-23 19:05	1
PCB-89	ND		2.29	4.66		13-Feb-23 19:05	1
PCB-90/101	363		4.53			13-Feb-23 19:05	1
PCB-93	ND	1.90	3.92			13-Feb-23 19:05	1
PCB-94	ND	1.75	2.65			13-Feb-23 19:05	1
PCB-95/98/102	275		7.85			13-Feb-23 19:05	1
PCB-96	ND		2.33	2.94		13-Feb-23 19:05	1
PCB-97	114		1.99			13-Feb-23 19:05	1
PCB-99	131		2.03			13-Feb-23 19:05	1
PCB-100	ND	1.28	2.90			13-Feb-23 19:05	1
PCB-103	ND	1.20	2.57	1.72		13-Feb-23 19:05	1
PCB-104	ND	1.05	1.22	11/2		13-Feb-23 19:05	1
PCB-105	193	1100	1.67			13-Feb-23 19:05	1
PCB-106/118	357		2.54			13-Feb-23 19:05	1
PCB-107/109	ND		3.27	19.6		13-Feb-23 19:05	
PCB-108/112	ND		2.92	15.9		13-Feb-23 19:05	1
PCB-110	497		2.60	13.7		13-Feb-23 19:05	1
PCB-111/115	10.8		3.57			13-Feb-23 19:05	1
PCB-113	ND		2.78	1.57		13-Feb-23 19:05	1
PCB-114	10.1		1.20	1.57		13-Feb-23 19:05	1
PCB-119	ND	1.16	2.10			13-Feb-23 19:05	1
PCB-120	ND	0.989	1.92			13-Feb-23 19:05	1
PCB-121	ND	0.990	2.24			13-Feb-23 19:05	
PCB-122	ND	2.13	1.03			13-Feb-23 19:05	
PCB-123	ND	2.13	2.96	6.42		13-Feb-23 19:05	
PCB-124	17.6		1.95	0.72		13-Feb-23 19:05	
PCB-126	ND		1.24	5.57		13-Feb-23 19:05	
PCB-127	ND ND	1.78	1.11	5.57		13-Feb-23 19:05	1
PCB-128/162	96.3	1.76	1.43			13-Feb-23 19:05	
PCB-129/102	30.1		2.11			13-Feb-23 19:05	1
PCB-129 PCB-130			2.11			13-Feb-23 19:05 13-Feb-23 19:05	
PCB-131/133	35.1						
	11.0		1.51			13-Feb-23 19:05	
PCB-132/161	142		2.93			13-Feb-23 19:05	
PCB-134/143	23.2		2.83			13-Feb-23 19:05	
PCB-135	43.8		3.77			13-Feb-23 19:05	1

18 of 27 Work Order 2301182

Sample ID: M1001-SW-230113 EPA Method 1668C

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237

Matrix: Aqueous

Date Collected: 13-Jan-23 12:15

Laboratory Data

Lab Sample: 2301182-01 QC Batch: B23B082

Sample Size: 0.963 L

Date Received:
Date Extracted:

18-Jan-23 08:47 08-Feb-23

Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers Analyzed	Dilution
PCB-136	47.2		2.61		13-Feb-23 19:05	5 1
PCB-137	24.4		1.45		13-Feb-23 19:05	5 1
PCB-138/163/164	511		3.22		13-Feb-23 19:05	5 1
PCB-139/149	305		6.01		13-Feb-23 19:05	5 1
PCB-140	ND	0.648	3.62		13-Feb-23 19:05	5 1
PCB-141	89.7		0.706		13-Feb-23 19:05	5 1
PCB-142	ND	3.07	2.15		13-Feb-23 19:05	5 1
PCB-144	16.9		1.64		13-Feb-23 19:05	5 1
PCB-145	ND	0.430	2.11		13-Feb-23 19:05	5 1
PCB-146/165	50.5		3.60		13-Feb-23 19:05	
PCB-147	7.08		3.31		13-Feb-23 19:05	5 1
PCB-148	ND	0.635	3.50		13-Feb-23 19:05	5 1
PCB-150	ND	0.453	2.03		13-Feb-23 19:05	
PCB-151	76.8		2.86		13-Feb-23 19:05	
PCB-152	ND	0.415	1.42		13-Feb-23 19:05	
PCB-153	351	01120	1.30		13-Feb-23 19:05	
PCB-154	ND		3.52	2.22	13-Feb-23 19:05	
PCB-155	ND	0.496	1.60	2.22	13-Feb-23 19:05	
PCB-156	55.1	0.150	1.36		13-Feb-23 19:05	
PCB-157	ND		1.50	8.37	13-Feb-23 19:05	
PCB-158/160	69.1		2.69	0.57	13-Feb-23 19:05	
PCB-159	ND	2.08	1.06		13-Feb-23 19:05	
PCB-166	ND	2.21	1.03		13-Feb-23 19:05	
PCB-167	23.5	2.21	1.62		13-Feb-23 19:05	
PCB-168	ND	2.04	2.42		13-Feb-23 19:05	
PCB-169	ND ND	3.05	1.32		13-Feb-23 19:05	
PCB-170	124	3.03	1.92		13-Feb-23 19:05	
PCB-170	ND		1.92	28.3		
	21.4			28.3	13-Feb-23 19:05	
PCB-172		1.05	1.51		13-Feb-23 19:05	
PCB-173	ND	1.95	2.22		13-Feb-23 19:05	
PCB-174	126		1.86	2.77	13-Feb-23 19:05	
PCB-175	ND		1.82	3.77	13-Feb-23 19:05	
PCB-176	ND		0.648	11.0	13-Feb-23 19:05	
PCB-177	ND		1.49	64.0	13-Feb-23 19:05	
PCB-178	20.3		3.75		13-Feb-23 19:05	
PCB-179	42.5		2.66		13-Feb-23 19:05	
PCB-180	283		2.56		13-Feb-23 19:05	
PCB-181	ND	1.57	1.44		13-Feb-23 19:05	
PCB-182/187	127		2.72		13-Feb-23 19:05	
PCB-183	62.8		1.16		13-Feb-23 19:05	
PCB-184	ND	1.02	1.60		13-Feb-23 19:05	
PCB-185	ND		0.921	12.2	13-Feb-23 19:05	
PCB-186	ND	0.943	2.06		13-Feb-23 19:05	
PCB-188	ND	1.01	1.84		13-Feb-23 19:05	5 1
PCB-189	4.62		1.13		J 13-Feb-23 19:05	
PCB-190	25.0		1.85		13-Feb-23 19:05	5 1
PCB-191	ND		1.31	5.81	13-Feb-23 19:05	5 1
PCB-192	ND	1.29	1.76		13-Feb-23 19:05	5 1
PCB-193	14.2		1.49		13-Feb-23 19:05	5 1
PCB-194	80.4		1.35		13-Feb-23 19:05	5 1
PCB-195	28.0		2.07		13-Feb-23 19:05	5 1
PCB-196/203	78.0		3.80		13-Feb-23 19:05	5 1

Work Order 2301182 19 of 27

Sample ID: M1001-SW-230113 EPA Method 1668C

Laboratory Data

Client Data

Name: Friedman & Bruya, Inc.

Lab Sample: 2301182-01 Date Received: 18-Jan-23 08:47

Project: 301237 QC Batch: B23B082 Date Extracted: 08-Feb-23

Matrix: Aqueous Sample Size: 0.963 L Column: ZB-1
Date Collected: 13-Jan-23 12:15

Date Collected: 13-Jan-2	3 12:15							
Analyte	Conc. (pg/L)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
PCB-197	ND		2.10	3.64			13-Feb-23 19:05	1
PCB-198	ND		2.34	2.71			13-Feb-23 19:05	1
PCB-199	79.9		4.24				13-Feb-23 19:05	1
PCB-200	10.4		1.64				13-Feb-23 19:05	1
PCB-201	9.79		1.73				13-Feb-23 19:05	1
PCB-202	15.4		2.59				13-Feb-23 19:05	1
PCB-204	ND	0.441	2.12				13-Feb-23 19:05	1
PCB-205	4.42		1.26			J	13-Feb-23 19:05	1
PCB-206	52.2		2.00				13-Feb-23 19:05	1
PCB-207	6.59		1.56				13-Feb-23 19:05	1
PCB-208	14.4		1.96				13-Feb-23 19:05	1
PCB-209	12.7		0.783				13-Feb-23 19:05	1
Totals								
Total monoCB	11.2							
Total diCB	450							
Total triCB	1540			1540				
Total tetraCB	1910							
Total pentaCB	2450			2510				
Total hexaCB	2010			2020				
Total heptaCB	851			976				
Total octaCB	306			313				
Total nonaCB	73.2							
DecaCB	12.7							
Total PCB	9620							
Labeled Standards	Туре	%]	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-PCR-1	IS		74.5		5 - 145		13-Feb-23 19:05	1

Total PCB	9620					
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-PCB-1	IS	74.5	5 - 145		13-Feb-23 19:05	1
13C-PCB-3	IS	64.8	5 - 145		13-Feb-23 19:05	1
13C-PCB-4	IS	69.1	5 - 145		13-Feb-23 19:05	1
13C-PCB-11	IS	74.2	5 - 145		13-Feb-23 19:05	1
13C-PCB-9	IS	72.0	5 - 145		13-Feb-23 19:05	1
13C-PCB-19	IS	95.3	5 - 145		13-Feb-23 19:05	1
13C-PCB-28	IS	92.7	5 - 145		13-Feb-23 19:05	1
13C-PCB-32	IS	98.5	5 - 145		13-Feb-23 19:05	1
13C-PCB-37	IS	78.9	5 - 145		13-Feb-23 19:05	1
13C-PCB-47	IS	81.0	5 - 145		13-Feb-23 19:05	1
13C-PCB-52	IS	81.0	5 - 145		13-Feb-23 19:05	1
13C-PCB-54	IS	78.1	5 - 145		13-Feb-23 19:05	1
13C-PCB-70	IS	79.1	5 - 145		13-Feb-23 19:05	1
13C-PCB-77	IS	67.5	10 - 145		13-Feb-23 19:05	1
13C-PCB-80	IS	76.0	10 - 145		13-Feb-23 19:05	1
13C-PCB-81	IS	68.9	10 - 145		13-Feb-23 19:05	1
13C-PCB-95	IS	74.9	10 - 145		13-Feb-23 19:05	1
13C-PCB-97	IS	73.9	10 - 145		13-Feb-23 19:05	1
13C-PCB-101	IS	74.5	10 - 145		13-Feb-23 19:05	1
13C-PCB-104	IS	82.6	10 - 145		13-Feb-23 19:05	1
13C-PCB-105	IS	69.6	10 - 145		13-Feb-23 19:05	1
13C-PCB-114	IS	67.5	10 - 145		13-Feb-23 19:05	1
13C-PCB-118	IS	71.0	10 - 145		13-Feb-23 19:05	1
13C-PCB-123	IS	70.5	10 - 145		13-Feb-23 19:05	1
13C-PCB-126	IS	55.3	10 - 145		13-Feb-23 19:05	1
13C-PCB-127	IS	69.7	10 - 145		13-Feb-23 19:05	1

Work Order 2301182 20 of 27

Sample ID: M1001-SW-230113 EPA Method 1668C

Client Data

Name:

Friedman & Bruya, Inc.

Project: 301237

Matrix: Aqueous

Date Collected: 13-Jan-23 12:15

Laboratory Data

 Lab Sample:
 2301182-01

 QC Batch:
 B23B082

 Sample Size:
 0.963 L

Date Received:
Date Extracted:

18-Jan-23 08:47 08-Feb-23

Column: ZB-1

Date Collected: 13-Jan-23	12:15			
Labeled Standards	Type	% Recovery	Limits	Qualifiers Analyzed Dilution
13C-PCB-138	IS	76.1	10 - 145	13-Feb-23 19:05 1
13C-PCB-141	IS	76.8	10 - 145	13-Feb-23 19:05 1
13C-PCB-153	IS	80.3	10 - 145	13-Feb-23 19:05 1
13C-PCB-155	IS	90.1	10 - 145	13-Feb-23 19:05 1
13C-PCB-156	IS	70.4	10 - 145	13-Feb-23 19:05 1
13C-PCB-157	IS	75.2	10 - 145	13-Feb-23 19:05 1
13C-PCB-159	IS	77.1	10 - 145	13-Feb-23 19:05 1
13C-PCB-167	IS	74.2	10 - 145	13-Feb-23 19:05 1
13C-PCB-169	IS	63.9	10 - 145	13-Feb-23 19:05 1
13C-PCB-170	IS	73.4	10 - 145	13-Feb-23 19:05 1
13C-PCB-180	IS	71.6	10 - 145	13-Feb-23 19:05 1
13C-PCB-188	IS	76.2	10 - 145	13-Feb-23 19:05 1
13C-PCB-189	IS	64.4	10 - 145	13-Feb-23 19:05 1
13C-PCB-194	IS	70.8	10 - 145	13-Feb-23 19:05 1
13C-PCB-202	IS	94.1	10 - 145	13-Feb-23 19:05 1
13C-PCB-206	IS	76.5	10 - 145	13-Feb-23 19:05 1
13C-PCB-208	IS	84.0	10 - 145	13-Feb-23 19:05 1
13C-PCB-209	IS	98.9	10 - 145	13-Feb-23 19:05 1
13C-PCB-79	CRS	87.5	10 - 145	13-Feb-23 19:05 1
13C-PCB-178	CRS	116	10 - 145	13-Feb-23 19:05 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Work Order 2301182 21 of 27

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2301182 22 of 27

Enthalpy Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2301182 23 of 27

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

2301182 2.5°C

Cand Day and Ma	λ (° - 1	SUBCONTRACTER Enthalog/Vista PROJECT NAME/NO. PO#									Page # of TURNAROUND TIME								
Send Report To	<u>wiicnae</u>	I Erdani			DRO	COT NO	α) α		STY	+	1	20#		,	Stand			INE	
Company I	riedma	an and Bruya	a, Inc.		rice	Joe C I	INAIVII	S/INO.			,	. 0 #			RUS	H			
Address3	<u>8012 16</u>	th Ave W				3012	_37	_			D-13	12		[]			s authorized		
City, State, ZIP_S	Seattle,	WA 98119	ř		REI	MARKS	}							SAMPLE DISPOSAL Dispose after 30 days					
Phone # <u>(206) 285</u>	5-8282	merdahl@fri	edmanandbruy	a.com		P10	ease E	mail F ———	Result	s 							mples with instructi	ions	
		ANALYSES REQUESTED												ED					
Sample ID	Lab ID	Date Sampled	Time Sampled	Mat	rix	# of jars	Dioxins/Furans	ЕРН	VPH	ACB Conservers	D/F						No	otes	
11001-5-230113		1/13/23	12:15	2 3 //												1- see	2		
																	affact	red	
				,													RLS		
																	E VI		
			-														+ 4 // ·	T	
	 																	-	
											-								
																	+		
Friedman & Bruya	Inc		SIGNATURE	<u></u>		 	L	PRINT	I NIA I	NE.			COM	ſDΛ	NV		DATE	TIME	
3012 16th Avenue V	Vest	Relinquished	Mich	ael Er	dahl		.		Fried					1					
Seattle, WA 98119-	2020	Received by	1/	1 3 11	1	Dec	0,	<i>√</i> ~				- 1 2 1 0.7		1/17	12 %				
		Kelia N	adoworth			Michael Erdahl Eerc Jour Friedman Kella Wads worth Entha					mali	a) py 01/10/83 08			0847				
Ph. (206) 285-8282 Relinquished by:											3								
Fax (206) 283-5044		Received by:																	

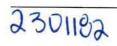


Table 1. Joint Source Control Screening Level Values

		Screening Levels						
#	Laboratory Method	EPA Portland						
Analyte	Detection Limits	Harbor ROD	JSCS SLV					
	(µg/L)	Cleanup Levels	(μg/L)					
		(µg/L)						
Total Metals								
Aluminum	50	NE .	87					
Arsenic	0.2	0.018	0.014					
Cadmium	0.2	NE	0.094					
Chromium	1	100	100					
Copper	5	2.74	2.7					
Lead	0.2	NE	0.54					
Manganese	1 .	NE	10					
Silver	0.2	NE	0.12					
Zinc	5	36.5	33					
Semi-Volatile Organic Constitu	uents							
Total PCB (as congeners)	0.00000121 - 0.00000497	0.0000064	0.0000064					
2,3,7,8-TCDD eq	0.000000304 - 0.000000732	0.0000000005	0.0000000005					
Phthalates								
Bis(2-ethylhexyl)phthalate	0.5	. NE	0.22					
Polycyclic Aromatic Hydroca	rbons)					
Acenaphthene	0.0037	NE	0.2					
Anthracene	0.0023	NE	0.2					
Fluorene	0.0044	NE	0.2					
Naphthalene	0.005	NE ·	0.2					
Phenanthrene	0.0062	NE	0.2					
Benz(a)anthracene	0.007	0.0012	0.018					
Benzo(a)pyrene	0.0028	0.00012	0.018					
Benzo(b)fluoranthene	0.0021	0.0012	0.018					
Benzo(k)fluoranthene	0.0035	0.0013	0.018					
Benzo(g,h,i)perylene	0.0057	NE	0.2					
Chrysene	0.0024	0.0013	0.018					
Dibenz(a,h)anthracene	0.0051	0.00012	0.018					
Fluoranthene	0.0029	NE	0.2					
Indeno(1,2,3-cd)pyrene	0.0049	0.0012	0.018					
Pyrene	0.0054	NE	0.2					
Total Suspended Solids								
TSS	5000	NE	NE					

Work Order 2301182

Sample Log-In Checklist

Page # _____ of ____ TAT Std Work Order #: Location: WR-2 Initials: Date/Time **Samples** Arrival: Shelf/Rack: Hand Delivered By: FedEx UPS On Trac **GLS** DHL Other Delivered Techni Preservation: Ice Blue Ice Dry Ice None Ice Temp °C: 44 (uncorrected) Thermometer ID: 12-3 Probe used: Y / Temp °C: 2.5 (corrected)

					I LO	140	11/4				
Shipping Contain	er(s) Intact?				V						
Shipping Custody	Seals Intact?	·				V	V				
Airbill	Airbill Trk# 8175 1926 0700										
Shipping Docume	entation Prese	nt?			V						
Shipping Contain	er	Enthalpy	Client	Retain F	eturn	Disp	ose				
Chain of Custody	nain of Custody / Sample Documentation Present?										
Chain of Custody	Chain of Custody / Sample Documentation Complete?										
Holding Time Acc	ceptable?				V						
	Date/Time		Initials:	Location:	WR-2						
Logged In: Date/Time Initials: Location: WP-2 KW 01/19/23 Shelf/Rack: D-3 B-2											
COC Anomaly/Sa		V	V								

Comments:

ID.: LR - SLC

Rev No.: 7

Rev Date: 01/02/2023

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2301182

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2301182-01	A M1001-SW-230113		THE PARTY OF THE PROPERTY OF THE PARTY OF TH	13-Jan-23 12:15	Amber Glass NM Bottle, 1L	Aqueous	
2301182-01	B M1001-SW-230113	\square		13-Jan-23 12:15	Amber Glass NM Bottle, 1L	Aqueous	
2301182-01	C M1001-SW-230113			13-Jan-23 12:15	Amber Glass NM Bottle, 1L	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	V			
Sample Custody Seals Intact?	,	V	V	
Adequate Sample Volume?	V			
Container Type Appropriate for Analysis(es)	V			
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 Non Al	ne C	ther		-

Verifed by/Date: W01/19/23

Printed: 1/19/2023 12:35:53PM 2301182

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 301237

Work Order Number: 2301312

January 24, 2023

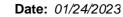
Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 1/17/2023 for the analyses presented in the following report.

Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 301237 **Work Order:** 2301312

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2301312-001 M1001-SW-230113 01/13/2023 12:15 PM 01/17/2023 1:20 PM

Case Narrative

WO#: **2301312**Date: **1/24/2023**

CLIENT: Friedman & Bruya

Project: 301237

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2301312**

Date Reported: 1/24/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

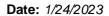
Surr - Surrogate

Analytical Report

Work Order: **2301312**Date Reported: **1/24/2023**

Client: Friedman & Bruya Collection Date: 1/13/2023 12:15:00 PM

Project: 301237


Lab ID: 2301312-001 **Matrix:** Water

Client Sample ID: M1001-SW-230113

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Total Metals by EPA Method 200.8
 Batch ID: 39187
 Analyst: EH

 Aluminum
 780
 10.0
 μg/L
 1
 1/23/2023 12:06:00 PM

Work Order: 2301312

CLIENT: Friedman & Bruya

Project: 301237

QC SUMMARY REPORT

Total Metals by EPA Method 200.8

Sample ID: MB-39187	SampType: MBLK			Units: µg/L		Prep Date	1/23/2023	RunNo: 81315	
Client ID: MBLKW	Batch ID: 39187				A	Analysis Date	1/23/2023	SeqNo: 1684079	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	ND	10.0							
Sample ID: LCS-39187	SampType: LCS			Units: µg/L		Prep Date:	1/23/2023	RunNo: 81315	
Client ID: LCSW	Batch ID: 39187				A	Analysis Date	1/23/2023	SeqNo: 1684080	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	976	10.0	1,000	0	97.6	85	115		
Sample ID: 2301312-001ADUP	SampType: DUP			Units: μg/L		Prep Date	1/23/2023	RunNo: 81315	
Client ID: M1001-SW-230113	Batch ID: 39187				A	Analysis Date	1/23/2023	SeqNo: 1684084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	740	10.0					780.1	5.33 30	
Sample ID: 2301312-001AMS	SampType: MS			Units: µg/L		Prep Date:	1/23/2023	RunNo: 81315	
Client ID: M1001-SW-230113	Batch ID: 39187				A	Analysis Date	1/23/2023	SeqNo: 1684085	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	1,750	10.0	1,000	780.1	96.8	70	130		
Sample ID: 2301317-001EMS	SampType: MS			Units: μg/L		Prep Date	1/23/2023	RunNo: 81315	
Client ID: BATCH	Batch ID: 39187				A	Analysis Date	1/23/2023	SeqNo: 1684059	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aluminum	1,010	10.0	1,000	65.38	94.9	70	130		

Original Page 6 of 8

Sample Log-In Check List

CI	ient Name:	FB				Work Or	der Num	ber: 2301312	2	
Lo	ogged by:	Clare Grigg	gs .			Date Red	ceived:	1/17/202	23 1:20:00 PM	
Cha	in of Cust	od <u>y</u>								
1.	Is Chain of C	ustody comp	lete?			Yes	✓	No \square	Not Present	
2.	How was the	sample deliv	ered?			Client				
<u>Log</u>	· In									
	— Coolers are p	resent?				Yes	✓	No 🗌	na 🗆	
4.	Shipping con	tainer/cooler	in good condition	?		Yes	✓	No 🗌		
5.			shipping containe ustody Seals not i			Yes		No 🗌	Not Present 🗹	
6.	Was an atten	npt made to o	cool the samples?	?		Yes	✓	No 🗌	NA 🗆	
7.	Were all item	s received at	t a temperature of	f >2°C to 6°C	*	Yes	✓	No 🗌	NA \square	
8.	Sample(s) in	proper conta	iner(s)?			Yes	✓	No 🗌		
9.	Sufficient sar	nple volume	for indicated test((s)?		Yes	✓	No 🗌		
10.	Are samples	properly pres	served?			Yes	✓	No \square		
11.	Was preserva	ative added to	o bottles?			Yes		No 🗸	NA \square	
12	Is there head	space in the	VOA vials?			Yes		No 🗌	NA 🗹	
			s arrive in good co	ondition(unbroke	en)?		<u>✓</u>	No 🗌		
_	Does paperw			`	,	Yes	✓	No 🗌		
15	Are matrices	correctly idea	ntified on Chain o	f Custody?		Yes	✓	No 🗌		
			ere requested?				<u> </u>	No 🗌		
	Were all hold						✓	No 🗌		
Spe	cial Handl	ing (if app	licable)							
18.	Was client no	otified of all d	iscrepancies with	this order?		Yes		No \square	NA 🗸	
	Person	Notified:			Date:					
	By Who	m:			Via:	¯ ☐ eMai	l 🗌 Pł	hone Fax	☐ In Person	
	Regardi	ng:								
	Client In	structions:								
19.	Additional rer	narks:								_
<u>ltem</u>	<u>Information</u>									
		Item #		Temp °C						

5.6

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

				_																					
Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman o D											And the second of the second o	Clinera	MI001- <1.>-22>	Sample ID			Phone #(206) 285-8282_merdahl@friedmanandbruya.com	City, State, ZIP Sea		y	Send Report <u>To</u> Mi
Rec	Re	Re		+	+	+	+	\vdash	+	\vdash	+	\perp	\perp	4		4	1	Lab ID			282 r	ttle, V	2 16t	edma	chael
Received by:	Relinquished by:	Received by:	Relinguished by:													10		Date Sampled			nerdahl@fr	Seattle, WA 98119	3012 16th Ave W	Friedman and Bruya, Inc	Michael Erdahl
	Musik	1	SIGNATURE													12:15		Time Sampled			edmanandbruy			a, Inc.	
																3		Matrix			a.com	RE	(1)	PF	IS
	>		Mich													-		# of jars	1			REMARKS	301237	PROJECT NAME/NO.	SUBCONTRACTER
	Pte	TILL YOU				-~-	ė.							-	1	†	Di	oxins/Furan	8		Please	S	F8 9	TNAN	VTRA(
	13	July Prince	PRINT NAME															ЕРН			Please Email Results			Æ/NO	TER
	212	-	NAMI	\perp			1											VPH			Result				
		form		4	\downarrow	1	_	1	1							7	To		ANA		જે				
				+	1	_	1	1	4	1								(AI)	ANALYSES				0-12		
	AF	Fried		+	+	+	+	+	+	+	-								REQ				7	PO#	
	A	man &	COMPANY	+	+	+	+	+	+	+	+	-	-		_				REQUESTED						
		Friedman & Bruya	PANY	+	+	+	+	+	+	+	+	\dashv	-		-				ED				Ru	X	7
			_	+	+	+	+	+	+	+	+	+	\dashv						$\ \ $	WIII Cal	Dispose Return	SA	ush cha	Standa	Pa
	1/17/23	41	DATE	\dagger	+	+	+	+	\dagger	+	+	+	\dashv						Н	r ulth 1	Dispose after 30 days Return samples	MPLE	rges au	Standard TAT	Page #
			H															N _o		WILL CALL WITH Instructions	0 days	SAMPLE DISPOSAL	Rush charges authorized by:	COMP	Page #of
	3:20	2007	IMIT															Notes		ons		SAL	by:	TIME	of

13:20 2002

TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 6, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on March 24, 2023 from the 1355-19001-03, F&BI 303396 project. There are 10 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0606R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 24, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1355-19001-03, F&BI 303396 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Evren Northwest</u> 303396 -01 <u>ML001-SW-230323</u>

The samples were sent to Enthalpy for dioxin and furan and PCB congener analyses. In addition, the sample was sent to Fremont for total aluminum analysis. The reports are enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: ML001-SW-230323 Client	nt: Evren Northwest
-----------------------------------	---------------------

Date Received: 03/24/23 Project: 1355-19001-03, F&BI 303396

Lab ID: Date Extracted: 303396-01 03/24/23 Date Analyzed: 03/24/23 Data File: 303396-01.152 Matrix: Instrument: ICPMS2Water Units: ug/L (ppb) Operator: SP

Analyte:	Concentration ug/L (ppb)
Arsenic	14.0
Cadmium	< 0.2
Chromium	<1
Copper	2.28
Lead	< 0.2
Manganese	535
Silver	< 0.2
Zinc	3.37

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: **Evren Northwest**

Date Received: Not Applicable Project: 1355-19001-03, F&BI 303396

Lab ID: I3-228 mbDate Extracted: 03/24/23 Date Analyzed: 03/24/23 Data File: I3-228 mb.128 Matrix: Water Instrument: ICPMS2 SP

Units: ug/L (ppb) Operator:

Analyte:	Concentration ug/L (ppb)
Arsenic	< 0.2
Cadmium	< 0.2
Chromium	<1
Copper	< 0.5
Lead	< 0.2
Manganese	< 0.24
Silver	< 0.2
Zinc	< 0.68

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: ML001-SW-230	Client:	Evren Northwest
--------------------------------	---------	-----------------

Date Received: 03/24/23Project: 1355-19001-03, F&BI 303396 Lab ID: Date Extracted: 03/27/23 303396-01 1/0.5 Date Analyzed: 03/27/23 Data File: 032709.DMatrix: Water Instrument: GCMS12 ug/L (ppb)

Operator:

VM

Upper Limit: 173 Lower Surrogates: % Recovery: Limit: Nitrobenzene-d5 66 11 2-Fluorobiphenyl $7\overline{1}$ 44 108 2,4,6-Tribromophenol Terphenyl-d14 98 10 140 95 50 150

Concentration

ug/L (ppb)
< 0.1
< 0.1
< 0.1
< 0.01
< 0.01
0.015
0.057
< 0.01
0.029
0.21
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.02
< 0.01
<1.6

Units:

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
D D 1	37	-	

Date Received: Not Applicable Project: 1355-19001-03, F&BI 303396 Lab ID: 03-800 mb 1/0.5 03/27/23 Date Extracted:

Date Analyzed: 03/27/23 Data File: 032706.DMatrix: Instrument: GCMS12Water Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	79	11	173
2-Fluorobiphenyl	77	44	108
2,4,6-Tribromophenol	81	10	140
Terphenyl-d14	91	50	150

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.1
2-Methylnaphthalene	< 0.1
1-Methylnaphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.02
Bis(2-ethylhexyl) phthalate	<1.6

ENVIRONMENTAL CHEMISTS

Date of Report: 06/06/23 Date Received: 03/24/23

Project: 1355-19001-03, F&BI 303396

Date Extracted: 03/28/23 Date Analyzed: 03/30/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Results Reported as mg/L (ppm)

Sample ID Laboratory ID	Total Suspended <u>Solids</u>
ML001-SW-230323 303396-01	7.6
Method Blank	<5

ENVIRONMENTAL CHEMISTS

Date of Report: 06/06/23 Date Received: 03/24/23

Project: 1355-19001-03, F&BI 303396

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 303398-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Arsenic	ug/L (ppb)	10	3.54	95 b	94 b	70-130	1 b
Cadmium	ug/L (ppb)	5	<1	98	98	70-130	0
Chromium	ug/L (ppb)	20	<1	98	98	70-130	0
Copper	ug/L (ppb)	20	8.60	98 b	96 b	70-130	$2 \mathrm{\ b}$
Lead	ug/L (ppb)	10	<1	95	95	70-130	0
Manganese	ug/L (ppb)	20	7.17	97 b	$95 \mathrm{\ b}$	70-130	$2 \mathrm{\ b}$
Silver	ug/L (ppb)	5	<1	90	90	70-130	0
Zinc	ug/L (ppb)	50	390	102 b	93 b	70-130	9 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	ug/L (ppb)	10	96	85-115
Cadmium	ug/L (ppb)	5	100	85-115
Chromium	ug/L (ppb)	20	97	85-115
Copper	ug/L (ppb)	20	100	85-115
Lead	ug/L (ppb)	10	102	85-115
Manganese	ug/L (ppb)	20	97	85-115
Silver	ug/L (ppb)	5	96	85-115
Zinc	ug/L (ppb)	50	100	85-115

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/06/23 Date Received: 03/24/23

Project: 1355-19001-03, F&BI 303396

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample

-			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	5	77	76	62-97	1
2-Methylnaphthalene	ug/L (ppb)	5	79	78	64-101	1
1-Methylnaphthalene	ug/L (ppb)	5	79	77	64-93	3
Acenaphthylene	ug/L (ppb)	5	93	90	70-130	3
Acenaphthene	ug/L (ppb)	5	90	88	70-130	2
Fluorene	ug/L (ppb)	5	96	93	70-130	3
Phenanthrene	ug/L (ppb)	5	93	96	70-130	3
Anthracene	ug/L (ppb)	5	97	97	70-130	0
Fluoranthene	ug/L (ppb)	5	100	105	70-130	5
Pyrene	ug/L (ppb)	5	108	101	70-130	7
Benz(a)anthracene	ug/L (ppb)	5	102	104	70-130	2
Chrysene	ug/L (ppb)	5	102	101	70-130	1
Bis(2-ethylhexyl) phthalate	ug/L (ppb)	5	99	105	44-140	6
Benzo(a)pyrene	ug/L (ppb)	5	100	100	70-130	0
Benzo(b)fluoranthene	ug/L (ppb)	5	99	98	70-130	1
Benzo(k)fluoranthene	ug/L (ppb)	5	100	97	70-130	3
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	106	104	70-130	2
Dibenz(a,h)anthracene	ug/L (ppb)	5	107	103	70-130	4
Benzo(g,h,i)perylene	ug/L (ppb)	5	105	100	70-130	5

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/06/23 Date Received: 03/24/23

Project: 1355-19001-03, F&BI 303396

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL SUSPENDED SOLIDS BY METHOD 2540D

Laboratory Code: 303417-10 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
TSS	mg/L (ppm)	5.2	<5	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
TSS	mg/L (ppm)	20	96	35-146

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Friedman & Bruya, Inc. Ph. (206) 285-8282						ML 001-5w-230323	Sample ID		nte, ZIP_	20	303396 Report To Cama G
Received by: Received by: Received by: Received by:	J					23 OIA-J	Lab ID	,	Fortland OF	14488	Sræn
ANATURE and annu						3/23/23	Date Sampled		y-mu-row		
					<u> </u>	1:0	Time Sampled		REMARK Sher	PROJECT NAME	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)
PRID						٤	Sample #		REMARKE COLOR OF TOJECT Specific RLs?)355- 19001-03	MPLE CHAIN OF SAMPLERS (signature)
PRINT NAME			San			۵۱	NWTPH-Dx		attached clicit awalts s? Yes *North	20-1	F CUSTO
E Ran			amples r				BTEX EPA 8021 NWTPH-HCID VOCs EPA 8260	AN,	स्क		
7,418			nples received				PAHs EPA 8270 PCBs EPA 8082	ANALYSES REQUESTED	INVOICE TO	PO#	05/24/23
ENW Fib.7			at 3 °C		·	X X X	TBS Select PAHS	QUESTED	SA SA Crchiv Other Default:	XStar □ RUY Rush	
DATE 03/24/						X	Phylaintes 135 (2)		SAMPLE DISPOSAL trchive samples ther fault: Dispose after 30	XStandard turnaround □ RUSH Rush charges authorized by:	Page # _ 1 _ of _ 1 TURNAROUND TIME
E TIME \$\frac{1}{123} 0:\&						2h.f3	Notes		SAMPLE DISPOSAL Archive samples Other Default: Dispose after 30 days	ound orized by:	of TIME
8	<u> </u>	I	<u> </u>	11				ا لــا	<u>[</u>		''

May 31, 2023

Enthalpy Analytical - El Dorado Hills Work Order No. 2303225

Mr. Michael Erdahl Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119

Dear Mr. Erdahl,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on March 28, 2023 under your Project Name '303396'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Enthalpy Analytical - EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical - EDH.

Enthalpy Analytical - EDH 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.enthalpy.com

Work Order 2303225 1 of 28

Enthalpy Analytical - EDH Work Order No. 2303225 Case Narrative

Sample Condition on Receipt:

One water sample was received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The sample was received in good condition and within the method temperature requirements. An additional bottle was received on May 11, 2023 in good condition.

Analytical Notes:

EPA Method 8290A

The sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 8290A using a ZB-DIOXIN GC column.

Holding Times

The method holding time criteria was met for this sample.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

EPA Method 1668A

The sample was extracted and analyzed for 209 PCB congeners by EPA Method 1668A using a ZB-1 GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Work Order 2303225 2 of 28

The labeled standard recoveries outside the acceptance criteria are flagged with an "H" qualifier.

Work Order 2303225 3 of 28

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	22
Certifications	23
Sample Receipt	24

Work Order 2303225 4 of 28

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2303225-01	ML001-SW-230323	23-Mar-23 11:10	28-Mar-23 09:19	Amber Glass NM Bottle, 1L
				Amher Glass NM Bottle 11

Work Order 2303225 5 of 28

ANALYTICAL RESULTS

Work Order 2303225 6 of 28

Client Data

Laboratory Data

Name:

Lab Sample: Friedman & Bruya, Inc.

Project: 303396 B23D041-BLK1

B23D041 QC Batch: Date Extracted: Sample Size: Column

04-Apr-23

Matrix: Aqueous			Sam	ple Size:	1.00 L	Column:	ZB-DIOXIN	ſ
Analyte	Conc. (pg/L)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		1.78	0.553			21-Apr-23 18:40	1
1,2,3,7,8-PeCDD	ND	0.918	5.63				21-Apr-23 18:40	1
1,2,3,4,7,8-HxCDD	ND	0.937	4.18				21-Apr-23 18:40	1
1,2,3,6,7,8-HxCDD	ND	1.11	3.51				21-Apr-23 18:40	1
1,2,3,7,8,9-HxCDD	ND	1.14	4.46				21-Apr-23 18:40	1
1,2,3,4,6,7,8-HpCDD	ND	0.856	4.84				21-Apr-23 18:40	1
OCDD	ND	4.62	16.4				21-Apr-23 18:40	1
2,3,7,8-TCDF	ND	0.230	1.78				21-Apr-23 18:40	1
1,2,3,7,8-PeCDF	ND	0.383	5.01				21-Apr-23 18:40	1
2,3,4,7,8-PeCDF	ND	0.432	4.99				21-Apr-23 18:40	1
1,2,3,4,7,8-HxCDF	ND	0.531	6.87				21-Apr-23 18:40	1
1,2,3,6,7,8-HxCDF	ND	0.519	6.31				21-Apr-23 18:40	1
2,3,4,6,7,8-HxCDF	ND	0.563	5.80				21-Apr-23 18:40	
1,2,3,7,8,9-HxCDF	ND	0.736	5.33				21-Apr-23 18:40	
1,2,3,4,6,7,8-HpCDF	ND	0.366	5.96				21-Apr-23 18:40	
1,2,3,4,7,8,9-HpCDF	ND	0.550	5.34				21-Apr-23 18:40	
OCDF	ND	1.48	11.3				21-Apr-23 18:40	
Toxic Equivalent		-	-				1	
TEQMinWHO2005Dioxin	0.00							
Totals								
Total TCDD	ND			0.553				
Total PeCDD	ND	0.918						
Total HxCDD	ND	1.14						
Total HpCDD	ND	0.856						
Total TCDF	ND	0.230						
Total PeCDF	ND	0.432						
Total HxCDF	0.479							
Total HpCDF	ND	0.550						
Labeled Standards	Type		Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		70.4		40 - 135		21-Apr-23 18:40) 1
13C-1,2,3,7,8-PeCDD	IS		88.1		40 - 135		21-Apr-23 18:40	
13C-1,2,3,4,7,8-HxCDD	IS		93.4		40 - 135		21-Apr-23 18:40	
13C-1,2,3,6,7,8-HxCDD	IS		83.9		40 - 135		21-Apr-23 18:40	
13C-1,2,3,7,8,9-HxCDD	IS		82.1		40 - 135		21-Apr-23 18:40	
13C-1,2,3,4,6,7,8-HpCDD	IS		76.8		40 - 135		21-Apr-23 18:40	
13C-OCDD	IS		40.6		40 - 135		21-Apr-23 18:40	
13C-2,3,7,8-TCDF	IS		88.1		40 - 135		21-Apr-23 18:40	
13C-1,2,3,7,8-PeCDF	IS		96.7		40 - 135		21-Apr-23 18:40	
13C-2,3,4,7,8-PeCDF	IS		92.8		40 - 135		21-Apr-23 18:40	
13C-1,2,3,4,7,8-HxCDF	IS		87.1		40 - 135		21-Apr-23 18:40	
13C-1,2,3,6,7,8-HxCDF	IS		85.0		40 - 135		21-Apr-23 18:40	
13C-2,3,4,6,7,8-HxCDF	IS		89.5		40 - 135		21-Apr-23 18:40	
13C-1,2,3,7,8,9-HxCDF					40 - 135		21-Apr-23 18:40 21-Apr-23 18:40	
13C-1,2,3,4,6,7,8-HpCDF	IS IS		84.7				•	
-			80.9		40 - 135 40 - 135		21-Apr-23 18:40	
13C-1,2,3,4,7,8,9-HpCDF	IS		88.8				21-Apr-23 18:40	
13C-OCDF	IS		58.9		40 - 135		21-Apr-23 18:40	
37Cl-2,3,7,8-TCDD	CRS		69.0		40 - 135		21-Apr-23 18:40) 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

7 of 28 Work Order 2303225

Sample ID: OPR EPA Method 8290A

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous Laboratory Data

Lab Sample: B23D041-BS1

QC Batch: B23D041 Date Extracted: 04-Apr-23 15:34 Sample Size: 1.00 L Column: ZB-DIOXIN

Analyte	Amt Found (pg/L)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	251	200	125	70-130		24-Apr-23 15:57	1
1,2,3,7,8-PeCDD	1210	1000	121	70-130		24-Apr-23 15:57	1
1,2,3,4,7,8-HxCDD	1080	1000	108	70-130		24-Apr-23 15:57	1
1,2,3,6,7,8-HxCDD	1190	1000	119	70-130		24-Apr-23 15:57	1
1,2,3,7,8,9-HxCDD	1230	1000	123	70-130		24-Apr-23 15:57	1
1,2,3,4,6,7,8-HpCDD	1100	1000	110	70-130		24-Apr-23 15:57	
OCDD	2530	2000	126	70-130		24-Apr-23 15:57	
2,3,7,8-TCDF	222	200	111	70-130		24-Apr-23 15:57	1
1,2,3,7,8-PeCDF	1050	1000	105	70-130		24-Apr-23 15:57	1
2,3,4,7,8-PeCDF	1090	1000	109	70-130		24-Apr-23 15:57	
1,2,3,4,7,8-HxCDF	1170	1000	117	70-130		24-Apr-23 15:57	1
1,2,3,6,7,8-HxCDF	1160	1000	116	70-130		24-Apr-23 15:57	
2,3,4,6,7,8-HxCDF	1160	1000	116	70-130		24-Apr-23 15:57	
1,2,3,7,8,9-HxCDF	1160	1000	116	70-130		24-Apr-23 15:57	
1,2,3,4,6,7,8-HpCDF	1050	1000	105	70-130		24-Apr-23 15:57	
1,2,3,4,7,8,9-HpCDF	1150	1000	115	70-130		24-Apr-23 15:57	
OCDF	2410	2000	121	70-130		24-Apr-23 15:57	1
Labeled Standards	Туре		% Recovery	Limits	Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS		74.0	40-135		24-Apr-23 15:57	1
13C-1,2,3,7,8-PeCDD	IS		112	40-135		24-Apr-23 15:57	1
13C-1,2,3,4,7,8-HxCDD	IS		102	40-135		24-Apr-23 15:57	1
13C-1,2,3,6,7,8-HxCDD	IS		93.5	40-135		24-Apr-23 15:57	1
13C-1,2,3,7,8,9-HxCDD	IS		89.1	40-135		24-Apr-23 15:57	1
13C-1,2,3,4,6,7,8-HpCDD	IS		89.2	40-135		24-Apr-23 15:57	1
13C-OCDD	IS		60.5	40-135		24-Apr-23 15:57	1
13C-2,3,7,8-TCDF	IS		83.6	40-135		24-Apr-23 15:57	1
13C-1,2,3,7,8-PeCDF	IS		92.1	40-135		24-Apr-23 15:57	1
13C-2,3,4,7,8-PeCDF	IS		95.4	40-135		24-Apr-23 15:57	1
13C-1,2,3,4,7,8-HxCDF	IS		91.6	40-135		24-Apr-23 15:57	1
13C-1,2,3,6,7,8-HxCDF	IS		93.1	40-135		24-Apr-23 15:57	1
13C-2,3,4,6,7,8-HxCDF	IS		94.0	40-135		24-Apr-23 15:57	1
13C-1,2,3,7,8,9-HxCDF	IS		87.7	40-135		24-Apr-23 15:57	1
13C-1,2,3,4,6,7,8-HpCDF	IS		84.3	40-135		24-Apr-23 15:57	1
13C-1,2,3,4,7,8,9-HpCDF	IS		82.3	40-135		24-Apr-23 15:57	1
13C-OCDF	IS		64.6	40-135		24-Apr-23 15:57	1
37Cl-2,3,7,8-TCDD	CRS		78.1	40-135		24-Apr-23 15:57	1

Work Order 2303225 8 of 28

24-Apr-23 17:28

1

1

1

1

						E A I	IALYTI	CAL
Sample ID: ML001-SW-	230323						EPA Method	8290A
Client Data			Lab	oratory Da	ta			
Name: Friedman &	Bruva, Inc.		Lab	Sample:	2303225-01	Date Received:	28-Mar-23 09	9:19
Project: 303396	<i>3</i> ,		QC	Batch:	B23D041	Date Extracted:	04-Apr-23	
Matrix: Water			Sam	ple Size:	0.982 L	Column:	ZB-DIOXIN	
Date Collected: 23-Mar-23	11:10						ZB-DIOMIN	
Analyte	Conc. (pg/L)	EDL	MDL	EMPC	·	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.18	1.81				24-Apr-23 17:28	
1,2,3,7,8-PeCDD	ND	1.54	5.73				24-Apr-23 17:28	
1,2,3,4,7,8-HxCDD	ND	2.18	4.26				24-Apr-23 17:28	1
1,2,3,6,7,8-HxCDD	ND	2.46	3.57				24-Apr-23 17:28	1
1,2,3,7,8,9-HxCDD	ND	2.58	4.54				24-Apr-23 17:28	1
1,2,3,4,6,7,8-HpCDD	ND		4.93	0.716			24-Apr-23 17:28	1
OCDD	5.84		16.7			J	24-Apr-23 17:28	1
2,3,7,8-TCDF	ND	0.589	1.81				24-Apr-23 17:28	1
1,2,3,7,8-PeCDF	ND	1.07	5.10				24-Apr-23 17:28	1
2,3,4,7,8-PeCDF	ND	0.975	5.08				24-Apr-23 17:28	1
1,2,3,4,7,8-HxCDF	ND	0.983	7.00				24-Apr-23 17:28	
1,2,3,6,7,8-HxCDF	ND	0.944	6.42				24-Apr-23 17:28	
2,3,4,6,7,8-HxCDF	ND	1.09	5.91				24-Apr-23 17:28	
1,2,3,7,8,9-HxCDF	ND	1.48	5.43				24-Apr-23 17:28	
1,2,3,4,6,7,8-HpCDF	ND	1.15	6.07				24-Apr-23 17:28	
1,2,3,4,7,8,9-HpCDF	ND	1.76	5.44				24-Apr-23 17:28	
OCDF	ND	4.88	11.5				24-Apr-23 17:28	
Toxic Equivalent							•	
TEQMinWHO2005Dioxin	0.00175							
Totals								
Total TCDD	ND	1.18						
Total PeCDD	ND	1.54						
Total HxCDD	ND	2.58						
Total HpCDD	ND	2.00		0.716				
Total TCDF	ND	0.589						
Total PeCDF	ND	1.07						
Total HxCDF	ND	1.48						
Total HpCDF	ND	1.76						
Labeled Standards	Туре		Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		58.2		40 - 135		24-Apr-23 17:28	1
13C-1,2,3,7,8-PeCDD	IS		90.7		40 - 135		24-Apr-23 17:28	
13C-1,2,3,4,7,8-HxCDD	IS		79.1		40 - 135		24-Apr-23 17:28	
13C-1,2,3,6,7,8-HxCDD	IS		72.0		40 - 135		24-Apr-23 17:28	
13C-1,2,3,7,8,9-HxCDD	IS		68.6		40 - 135		24-Apr-23 17:28	
13C-1,2,3,4,6,7,8-HpCDD	IS		68.2		40 - 135		24-Apr-23 17:28	
13C-OCDD	IS		47.8		40 - 135		24-Apr-23 17:28	
13C-2,3,7,8-TCDF	IS		74.2		40 - 135		24-Apr-23 17:28	
13C-1,2,3,7,8-PeCDF	IS		79.2		40 - 135		24-Apr-23 17:28 24-Apr-23 17:28	
13C-2,3,4,7,8-PeCDF	IS		82.7		40 - 135		24-Apr-23 17:28 24-Apr-23 17:28	
13C-1,2,3,4,7,8-PeCDF	IS IS		74.6		40 - 135		24-Apr-23 17:28 24-Apr-23 17:28	
13C-1,2,3,4,7,8-HXCDF	18		74.0		40 - 133		24-Apr-23 17:28	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

IS

IS

IS

IS

IS

IS

CRS

MDL - Method Detection Limit

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

Work Order 2303225 9 of 28

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

74.0

74.1

69.6

64.5

61.4

49.9

64.5

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous Laboratory Data

Lab Sample: B23E167-BLK1

QC Batch: B23E167 Date Extracted: 15-May-23

Sample Size: 1.00 L Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-1	11.0		1.89			25-May-23 20:01	1
PCB-2	ND	1.23	2.37			25-May-23 20:01	1
PCB-3	ND	1.25	3.08			25-May-23 20:01	1
PCB-4/10	ND	19.2	2.46			25-May-23 20:01	1
PCB-5/8	ND	13.6	3.62			25-May-23 20:01	1
PCB-6	ND	13.3	1.89			25-May-23 20:01	1
PCB-7/9	ND	14.1	2.22			25-May-23 20:01	1
PCB-11	ND	10.6	5.18			25-May-23 20:01	1
PCB-12/13	ND	11.6	3.29			25-May-23 20:01	1
PCB-14	ND	11.6	1.42			25-May-23 20:01	1
PCB-15	ND	11.6	1.98			25-May-23 20:01	1
PCB-16/32	ND		1.65	4.49		25-May-23 20:01	1
PCB-17	ND	1.62	1.44			25-May-23 20:01	1
PCB-18	ND		1.94	7.41		25-May-23 20:01	1
PCB-19	ND	1.83	0.851			25-May-23 20:01	1
PCB-20/21/33	7.36		4.47		J	25-May-23 20:01	1
PCB-22	ND	1.29	2.06			25-May-23 20:01	1
PCB-23	ND	1.37	2.07			25-May-23 20:01	1
PCB-24/27	ND	1.17	1.67			25-May-23 20:01	1
PCB-25	ND	1.33	1.63			25-May-23 20:01	1
PCB-26	ND	1.33	1.85			25-May-23 20:01	1
PCB-28	8.83	1.55	6.43		J	25-May-23 20:01	1
PCB-29	ND	1.41	1.62		J	25-May-23 20:01	1
PCB-30	ND	1.15	1.12			25-May-23 20:01	1
PCB-31	7.23	1.13	5.75		J	25-May-23 20:01 25-May-23 20:01	1
PCB-34	ND	1.39	1.48		3	25-May-23 20:01	
PCB-35	ND	1.57	1.67			25-May-23 20:01 25-May-23 20:01	1
PCB-36	ND	1.54	1.44			25-May-23 20:01 25-May-23 20:01	1
PCB-37	ND	1.60	1.22			25-May-23 20:01 25-May-23 20:01	1
PCB-38	ND	1.56	1.73			25-May-23 20:01 25-May-23 20:01	1
PCB-39	ND	1.64	1.60			25-May-23 20:01 25-May-23 20:01	1
PCB-40	ND	1.28	2.26			25-May-23 20:01 25-May-23 20:01	1
PCB-41/64/71/72	ND	1.20	4.25	3.13		25-May-23 20:01 25-May-23 20:01	1
PCB-42/59	ND		2.02	1.29		25-May-23 20:01 25-May-23 20:01	
PCB-43/49	3.73		3.88	1.29	J	25-May-23 20:01 25-May-23 20:01	1
PCB-44	3.28		13.2		J	25-May-23 20:01 25-May-23 20:01	1
PCB-45	ND	0.945	1.61		J	25-May-23 20:01 25-May-23 20:01	1
PCB-46	ND	0.984	1.58			25-May-23 20:01 25-May-23 20:01	1
PCB-47	ND ND	0.850	3.22			25-May-23 20:01 25-May-23 20:01	1
PCB-48/75	ND ND	0.830	2.81			25-May-23 20:01 25-May-23 20:01	
PCB-50	ND ND	0.700	1.90			25-May-23 20:01 25-May-23 20:01	1
PCB-51	ND ND	0.822	1.15			25-May-23 20:01 25-May-23 20:01	
PCB-52/69		0.739	1.13	4.61		·	
	ND ND	0.808		4.01		25-May-23 20:01	
PCB-53			1.58			25-May-23 20:01	1
PCB-54	ND ND	0.677	1.31			25-May-23 20:01	
PCB-55	ND ND	0.589	1.24	1 27		25-May-23 20:01	
PCB-56/60	ND	0.500	4.70	1.37		25-May-23 20:01	
PCB-57	ND	0.569	1.09			25-May-23 20:01	1
PCB-58	ND	0.566	1.33			25-May-23 20:01	1
PCB-61/70	ND	0.626	3.10			25-May-23 20:01	
PCB-62	ND	0.707	1.32			25-May-23 20:01	
PCB-63	ND	0.631	1.11			25-May-23 20:01	1

Work Order 2303225 10 of 28

Client Data

Name:

Laboratory Data

Project: 303396 Matrix: Aqueous

Friedman & Bruya, Inc.

Lab Sample: B23E167-BLK1

QC Batch: B23E167 Date Extracted: 15-May-23

Sample Size: 1.00 L Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-65	ND	0.632	1.40			25-May-23 20:01	1
PCB-66/76	ND	0.572	6.10			25-May-23 20:01	1
PCB-67	ND	0.603	1.20			25-May-23 20:01	1
PCB-68	ND	0.617	1.94			25-May-23 20:01	1
PCB-73	ND	0.581	1.44			25-May-23 20:01	1
PCB-74	ND	0.563	1.39			25-May-23 20:01	1
PCB-77	ND	0.740	1.91			25-May-23 20:01	1
PCB-78	ND	0.706	1.22			25-May-23 20:01	1
PCB-79	ND	0.592	1.30			25-May-23 20:01	1
PCB-80	ND	0.582	0.807			25-May-23 20:01	1
PCB-81	ND	0.755	1.14			25-May-23 20:01	1
PCB-82	ND	0.918	1.85			25-May-23 20:01	1
PCB-83	ND	0.569	1.23			25-May-23 20:01	1
PCB-84/92	ND	0.871	1.75			25-May-23 20:01	1
PCB-85/116	ND	0.719	2.13			25-May-23 20:01	1
PCB-86	ND	0.837	2.05			25-May-23 20:01	1
PCB-87/117/125	ND	0.661	2.99			25-May-23 20:01	
PCB-88/91	ND	0.881	2.32			25-May-23 20:01	
PCB-89	ND	0.812	1.10			25-May-23 20:01	
PCB-90/101	3.41		2.23		J	25-May-23 20:01	1
PCB-93	ND	1.05	2.80			25-May-23 20:01	
PCB-94	ND	0.965	1.79			25-May-23 20:01	
PCB-95/98/102	ND	0.749	2.16			25-May-23 20:01	
PCB-96	ND	0.657	1.40			25-May-23 20:01	
PCB-97	ND	0.789	1.01			25-May-23 20:01	
PCB-99	ND	0.724	1.97			25-May-23 20:01	
PCB-100	ND	0.802	1.49			25-May-23 20:01	
PCB-103	ND	0.838	1.27			25-May-23 20:01	
PCB-104	ND	0.657	1.09			25-May-23 20:01	
PCB-105	ND	0.568	1.64			25-May-23 20:01	
PCB-106/118	ND	0.605	3.03			25-May-23 20:01	
PCB-107/109	ND	0.528	1.89			25-May-23 20:01	
PCB-108/112	ND	0.711	2.94			25-May-23 20:01	
PCB-110	ND	0.591	2.79			25-May-23 20:01	
PCB-111/115	ND	0.548	2.31			25-May-23 20:01	
PCB-113	ND	0.571	1.00			25-May-23 20:01	
PCB-114	ND	0.545	0.980			25-May-23 20:01	
PCB-119	ND	0.579	0.983			25-May-23 20:01	
PCB-120	ND	0.494	1.46			25-May-23 20:01	
PCB-121	ND	0.547	1.73			25-May-23 20:01	
PCB-122	ND	0.636	1.77			25-May-23 20:01	
PCB-123	ND	0.585	1.45			25-May-23 20:01	
PCB-124	ND	0.542	1.22			25-May-23 20:01	
PCB-126	ND	0.631	1.68			25-May-23 20:01	
PCB-127	ND	0.558	1.53			25-May-23 20:01	
PCB-128/162	ND	0.635	1.74			25-May-23 20:01	
PCB-129	ND	0.832	1.88			25-May-23 20:01	
PCB-130	ND	0.867	2.25			25-May-23 20:01	
PCB-131/133	ND	0.747	2.63			25-May-23 20:01 25-May-23 20:01	
PCB-132/161	ND	0.599	2.43			25-May-23 20:01	
PCB-134/143	ND ND	0.799	1.76			25-May-23 20:01 25-May-23 20:01	
PCB-135	ND	0.767	2.40			25-May-23 20:01 25-May-23 20:01	
1 CD-133	ND	0.707	۷.٦٠			25-1v1ay-25 20.01	1

Work Order 2303225 11 of 28

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous Laboratory Data

Lab Sample: B23E167-BLK1

QC Batch: B23E167 Date Extracted: 15-May-23

Sample Size: 1.00 L Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-136	ND	0.629	1.62			25-May-23 20:01	1
PCB-137	ND	0.734	1.47			25-May-23 20:01	1
PCB-138/163/164	2.18		2.54		J	25-May-23 20:01	1
PCB-139/149	ND		3.61	1.38		25-May-23 20:01	1
PCB-140	ND	0.850	1.71			25-May-23 20:01	1
PCB-141	ND	0.746	1.16			25-May-23 20:01	1
PCB-142	ND	0.834	1.64			25-May-23 20:01	1
PCB-144	ND	0.802	1.75			25-May-23 20:01	1
PCB-145	ND	0.564	1.86			25-May-23 20:01	1
PCB-146/165	ND	0.607	2.67			25-May-23 20:01	1
PCB-147	ND	0.778	1.61			25-May-23 20:01	1
PCB-148	ND	0.832	1.80			25-May-23 20:01	1
PCB-150	ND	0.594	1.44			25-May-23 20:01	1
PCB-151	ND	0.823	2.18			25-May-23 20:01	1
PCB-152	ND	0.545	1.07			25-May-23 20:01	1
PCB-153	2.25	0.0.0	2.20		J	25-May-23 20:01	1
PCB-154	ND	0.769	1.38		,	25-May-23 20:01	1
PCB-155	ND	0.650	1.27			25-May-23 20:01	1
PCB-156	ND	0.544	1.64			25-May-23 20:01	1
PCB-157	ND	0.615	1.22			25-May-23 20:01	1
PCB-158/160	ND	0.590	2.40			25-May-23 20:01	1
PCB-159	ND	0.484	1.32			25-May-23 20:01	1
PCB-166	ND	0.515	1.18			25-May-23 20:01 25-May-23 20:01	1
PCB-167	ND	0.515	0.889			25-May-23 20:01 25-May-23 20:01	1
PCB-168	ND ND	0.554	0.893			25-May-23 20:01 25-May-23 20:01	1
PCB-169	ND	0.554	1.45			-	
PCB-170	ND ND	0.870	1.52			25-May-23 20:01	
PCB-170		0.870	1.32			25-May-23 20:01	1
	ND		1.68			25-May-23 20:01	1
PCB-172	ND	0.761				25-May-23 20:01	1
PCB-173	ND	0.896	1.42			25-May-23 20:01	1
PCB-174	ND	0.799	1.54			25-May-23 20:01	1
PCB-175	ND	0.751	1.13			25-May-23 20:01	1
PCB-176	ND	0.575	0.816			25-May-23 20:01	1
PCB-177	ND	0.839	1.58			25-May-23 20:01	
PCB-178	ND	0.771	1.61			25-May-23 20:01	1
PCB-179	ND	0.596	1.06			25-May-23 20:01	1
PCB-180	ND	0.735	1.78			25-May-23 20:01	1
PCB-181	ND	0.720	1.15			25-May-23 20:01	1
PCB-182/187	ND	0.680	2.33			25-May-23 20:01	1
PCB-183	ND	0.703	1.49			25-May-23 20:01	1
PCB-184	ND	0.562	0.951			25-May-23 20:01	
PCB-185	ND	0.773	1.28			25-May-23 20:01	
PCB-186	ND	0.520	0.985			25-May-23 20:01	
PCB-188	ND	0.557	1.06			25-May-23 20:01	1
PCB-189	ND	0.572	1.26			25-May-23 20:01	
PCB-190	ND	0.665	1.44			25-May-23 20:01	
PCB-191	ND	0.635	1.85			25-May-23 20:01	
PCB-192	ND	0.593	1.70			25-May-23 20:01	1
PCB-193	ND	0.650	1.81			25-May-23 20:01	1
PCB-194	ND		2.10	1.01		25-May-23 20:01	
PCB-195	ND	0.496	1.54			25-May-23 20:01	
PCB-196/203	ND	0.543	2.34			25-May-23 20:01	1

Work Order 2303225 12 of 28

15-May-23

Sample ID: Method Blank EPA Method 1668A

Client Data

Laboratory Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous

B23E167-BLK1 Lab Sample:

QC Batch: B23E167

Sample Size: 1.00 L Column: ZB-1

Date Extracted:

EDL MDL EMPC Qualifiers Analyzed Dilution Analyte Conc. (pg/L) PCB-197 ND 0.425 1.45 25-May-23 20:01 PCB-198 ND 0.589 2.07 25-May-23 20:01 1 PCB-199 ND 0.58025-May-23 20:01 1.48 PCB-200 ND 0.449 0.890 25-May-23 20:01 PCB-201 ND 0.4531.33 25-May-23 20:01 PCB-202 ND 0.4121.24 25-May-23 20:01 ND PCB-204 0.4291.06 25-May-23 20:01 PCB-205 ND 0.374 1.56 25-May-23 20:01 ND 25-May-23 20:01 PCB-206 0.281 1.62 PCB-207 ND 1.56 25-May-23 20:01 0.214 1 PCB-208 ND 0.211 1.53 25-May-23 20:01 PCB-209 ND 0.112 1.93 25-May-23 20:01 Totals Total monoCB 11.0 Total diCB ND 19.2 Total triCB 23.4 35.3 Total tetraCB 7.01 17.4 3.41 Total pentaCB 5.81 Total hexaCB 4.43 Total heptaCB ND 0.896 1.01 Total octaCB ND 0.281 Total nonaCB ND DecaCB ND 0.112

T-4-1 DCD	40.2	0.112				
Total PCB Labeled Standards	49.2 Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-PCB-1	IS	33.1	15 - 150	<u></u>	25-May-23 20:01	
13C-PCB-3	IS	33.1	15 - 150		25-May-23 20:01	
13C-PCB-4	IS	29.5	25 - 150		25-May-23 20:01	
13C-PCB-11	IS	31.1	25 - 150		25-May-23 20:01	
13C-PCB-9	IS	29.4	25 - 150		25-May-23 20:01	
13C-PCB-19	IS	43.6	25 - 150		25-May-23 20:01	
13C-PCB-28	IS	34.1	25 - 150		25-May-23 20:01	
13C-PCB-32	IS	46.6	25 - 150		25-May-23 20:01	
13C-PCB-37	IS	30.6	25 - 150		25-May-23 20:01	
13C-PCB-47	IS	31.1	25 - 150		25-May-23 20:01	1
13C-PCB-52	IS	31.7	25 - 150		25-May-23 20:01	1
13C-PCB-54	IS	31.2	25 - 150		25-May-23 20:01	1
13C-PCB-70	IS	32.5	25 - 150		25-May-23 20:01	1
13C-PCB-77	IS	28.8	25 - 150		25-May-23 20:01	1
13C-PCB-80	IS	31.0	25 - 150		25-May-23 20:01	1
13C-PCB-81	IS	29.0	25 - 150		25-May-23 20:01	1
13C-PCB-95	IS	29.5	25 - 150		25-May-23 20:01	1
13C-PCB-97	IS	30.6	25 - 150		25-May-23 20:01	1
13C-PCB-101	IS	30.7	25 - 150		25-May-23 20:01	1
13C-PCB-104	IS	28.7	25 - 150		25-May-23 20:01	1
13C-PCB-105	IS	25.8	25 - 150		25-May-23 20:01	1
13C-PCB-114	IS	26.4	25 - 150		25-May-23 20:01	1
13C-PCB-118	IS	31.0	25 - 150		25-May-23 20:01	1
13C-PCB-123	IS	31.9	25 - 150		25-May-23 20:01	1
13C-PCB-126	IS	22.9	25 - 150	Н	25-May-23 20:01	1
13C-PCB-127	IS	25.8	25 - 150		25-May-23 20:01	1
I						

Work Order 2303225 13 of 28

Client Data

Name: Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous Laboratory Data

Lab Sample: B23E167-BLK1

QC Batch: B23E167 Date Extracted: 15-May-23 Sample Size: 1.00 L Column: ZB-1

Labeled Standards Type Limits Qualifiers Analyzed Dilution % Recovery 13C-PCB-138 IS 33.1 25 - 150 25-May-23 20:01 IS 25 - 150 25-May-23 20:01 13C-PCB-141 31.9 13C-PCB-153 IS 32.9 25 - 150 25-May-23 20:01 IS 25 - 150 25-May-23 20:01 13C-PCB-155 34.8 1 IS 25 - 150 32.2 25-May-23 20:01 13C-PCB-156 13C-PCB-157 IS 32.1 25 - 150 25-May-23 20:01 1 34.3 IS 13C-PCB-159 25 - 150 25-May-23 20:01 1 13C-PCB-167 IS 32.0 25 - 150 25-May-23 20:01 1 13C-PCB-169 IS 28.7 25 - 150 25-May-23 20:01 1 13C-PCB-170 IS 31.3 25 - 150 25-May-23 20:01 13C-PCB-180 IS 31.9 25 - 150 25-May-23 20:01 13C-PCB-188 IS 30.6 25 - 150 25-May-23 20:01 1 IS 25 - 150 25-May-23 20:01 13C-PCB-189 32.0 IS 13C-PCB-194 30.0 25 - 150 25-May-23 20:01 13C-PCB-202 IS 25 - 150 25-May-23 20:01 38.0 IS 35.6 25 - 150 25-May-23 20:01 13C-PCB-206 1 IS 25 - 150 13C-PCB-208 36.7 25-May-23 20:01 13C-PCB-209 IS 46.0 25 - 150 25-May-23 20:01 1 **CRS** 13C-PCB-79 32.9 30 - 135 25-May-23 20:01 13C-PCB-178 **CRS** 47.1 30 - 135 25-May-23 20:01 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Work Order 2303225 14 of 28

Sample ID: OPR EPA Method 1668A

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous Laboratory Data

Lab Sample: B23E167-BS1

QC Batch: B23E167 Date Extracted: 15-May-23 07:36

Sample Size: 1.00 L Column: ZB-1

Analyte	Amt Found (pg/L)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
PCB-1	873	1000	87.3	50-150	В	25-May-23 15:59	1
PCB-3	900	1000	90.0	50-150		25-May-23 15:59	1
PCB-4/10	2050	2000	102	50-150		25-May-23 15:59	1
PCB-15	982	1000	98.2	50-150		25-May-23 15:59	1
PCB-19	754	1000	75.4	50-150		25-May-23 15:59	1
PCB-37	1060	1000	106	50-150		25-May-23 15:59	1
PCB-54	863	1000	86.3	50-150		25-May-23 15:59	1
PCB-77	812	1000	81.2	50-150		25-May-23 15:59	1
PCB-81	820	1000	82.0	50-150		25-May-23 15:59	1
PCB-104	836	1000	83.6	50-150		25-May-23 15:59	1
PCB-105	1010	1000	101	50-150		25-May-23 15:59	1
PCB-106/118	1660	2000	83.2	50-150		25-May-23 15:59	1
PCB-114	995	1000	99.5	50-150		25-May-23 15:59	1
PCB-123	828	1000	82.8	50-150		25-May-23 15:59	1
PCB-126	983	1000	98.3	50-150		25-May-23 15:59	1
PCB-155	843	1000	84.3	50-150		25-May-23 15:59	1
PCB-156	836	1000	83.6	50-150		25-May-23 15:59	1
PCB-157	836	1000	83.6	50-150		25-May-23 15:59	1
PCB-167	863	1000	86.3	50-150		25-May-23 15:59	1
PCB-169	850	1000	85.0	50-150		25-May-23 15:59	1
PCB-188	837	1000	83.7	50-150		25-May-23 15:59	1
PCB-189	807	1000	80.7	50-150		25-May-23 15:59	1
PCB-202	836	1000	83.6	50-150		25-May-23 15:59	1
PCB-205	1020	1000	102	50-150		25-May-23 15:59	1
PCB-206	856	1000	85.6	50-150		25-May-23 15:59	1
PCB-208	907	1000	90.7	50-150		25-May-23 15:59	1
PCB-209	777	1000	77.7	50-150	0 1'6	25-May-23 15:59	1
Labeled Standards	Туре		% Recovery	Limits	Qualifiers		Dilution
13C-PCB-1	IS		47.7	15-140		25-May-23 15:59	
13C-PCB-3	IS		46.7	15-140		25-May-23 15:59	
13C-PCB-4	IS		41.5	30-140		25-May-23 15:59	1
13C-PCB-11	IS		44.3	30-140		25-May-23 15:59	1
13C-PCB-9	IS		41.2	30-140		25-May-23 15:59	1
13C-PCB-19	IS		59.3	30-140		25-May-23 15:59	1
13C-PCB-28	IS		47.1	30-140		25-May-23 15:59	1
13C-PCB-32	IS		66.0	30-140		25-May-23 15:59	
13C-PCB-37	IS		42.1	30-140		25-May-23 15:59	
13C-PCB-47	IS		43.9			25-May-23 15:59	
13C-PCB-52	IS		45.4	30-140		25-May-23 15:59	
				30-140		-	
13C-PCB-54	IS		40.6	30-140		25-May-23 15:59	
13C-PCB-70	IS		46.6	30-140		25-May-23 15:59	
13C-PCB-77	IS		44.0	30-140		25-May-23 15:59	
13C-PCB-80	TO		44.7	440		25-May-23 15:59	1
13C-FCB-80	IS		44./	30-140		23-Way-23 13.39	

Work Order 2303225 15 of 28

Sample ID: OPR EPA Method 1668A

Client Data

Name: Friedman & Bruya, Inc.

Project: 303396 Matrix: Aqueous Laboratory Data

Lab Sample: B23E167-BS1

QC Batch: B23E167 Date Extracted: 15-May-23 07:36

Sample Size: 1.00 L Column: ZB-1

Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
IS	42.9	30-140		25-May-23 15:59	1
IS	45.9	30-140		25-May-23 15:59	1
IS	45.2	30-140		25-May-23 15:59	1
IS	40.6	30-140		25-May-23 15:59	1
IS	39.0	30-140		25-May-23 15:59	1
IS	39.8	30-140		25-May-23 15:59	1
IS	47.5	30-140		25-May-23 15:59	1
IS	47.9	30-140		25-May-23 15:59	1
IS	35.3	30-140		25-May-23 15:59	1
IS	38.7	30-140		25-May-23 15:59	1
IS	49.6	30-140		25-May-23 15:59	1
IS	47.6	30-140		25-May-23 15:59	1
IS	49.1	30-140		25-May-23 15:59	1
IS	52.6	30-140		25-May-23 15:59	1
IS	47.8	30-140		25-May-23 15:59	1
IS	48.5	30-140		25-May-23 15:59	1
IS	51.0	30-140		25-May-23 15:59	1
IS	48.9	30-140		25-May-23 15:59	1
IS	44.0	30-140		25-May-23 15:59	1
IS	49.7	30-140		25-May-23 15:59	1
IS	50.0	30-140		25-May-23 15:59	1
IS	48.4	30-140		25-May-23 15:59	1
IS	50.2	30-140		25-May-23 15:59	1
IS	47.7	30-140		25-May-23 15:59	1
IS	61.1	30-140		25-May-23 15:59	1
IS	53.3	30-140		25-May-23 15:59	1
IS	57.9	30-140		25-May-23 15:59	1
IS	69.7	30-140		25-May-23 15:59	1
CRS	47.0	25-125		25-May-23 15:59	1
CRS	64.0	25-125		25-May-23 15:59	1
	IS IS	IS 42.9 IS 45.9 IS 45.2 IS 40.6 IS 39.0 IS 39.8 IS 47.5 IS 47.9 IS 35.3 IS 38.7 IS 49.6 IS 49.6 IS 49.1 IS 52.6 IS 47.8 IS 48.5 IS 51.0 IS 48.9 IS 44.0 IS 50.0 IS 50.0 IS 50.0 IS 50.0 IS 50.2 IS 61.1 IS 57.9 IS 57.9 IS 57.9 IS 57.9 IS 57.9 IS 69.7 CRS 47.0	IS 42.9 30·140 IS 45.9 30·140 IS 45.2 30·140 IS 40.6 30·140 IS 39.0 30·140 IS 39.8 30·140 IS 47.5 30·140 IS 47.5 30·140 IS 35.3 30·140 IS 35.3 30·140 IS 49.6 30·140 IS 49.6 30·140 IS 49.1 30·140 IS 52.6 30·140 IS 49.1 30·140 IS 49.7 30·140 IS 48.9 30·140 IS 48.9 30·140 IS 48.9 30·140 IS 49.7 30·140 IS 49.7 30·140 IS 49.7 30·140 IS 49.7 30·140 IS 50.0 30·140 IS 50.0 30·140 IS 50.1 30·140 IS 50.2 30·140	IS 42.9 30·140 IS 45.9 30·140 IS 45.2 30·140 IS 40.6 30·140 IS 39.0 30·140 IS 39.8 30·140 IS 39.8 30·140 IS 47.5 30·140 IS 47.9 30·140 IS 35.3 30·140 IS 35.3 30·140 IS 49.6 30·140 IS 47.6 30·140 IS 47.6 30·140 IS 49.1 30·140 IS 49.1 30·140 IS 52.6 30·140 IS 48.5 30·140 IS 48.5 30·140 IS 48.5 30·140 IS 48.7 30·140 IS 48.9 30·140 IS 48.9 30·140 IS 48.9 30·140 IS 48.4 30·140 IS 50.2 30·140 IS 50.2 30·140 IS 51.0 30·140 IS 50.2 30·140 IS 57.9 30·140	IS 42.9 30-140 25-May-23 15:55 IS 45.9 30-140 25-May-23 15:55 IS 45.2 30-140 25-May-23 15:55 IS 40.6 30-140 25-May-23 15:55 IS 39.0 30-140 25-May-23 15:55 IS 39.8 30-140 25-May-23 15:55 IS 47.5 30-140 25-May-23 15:55 IS 47.9 30-140 25-May-23 15:55 IS 35.3 30-140 25-May-23 15:55 IS 36.3 30-140 25-May-23 15:55 IS 47.6 30-140 25-May-23 15:55 IS 47.6 30-140 25-May-23 15:55 IS 49.1 30-140 25-May-23 15:55 IS 49.1 30-140 25-May-23 15:55 IS 47.8 30-140 25-May-23 15:55 IS 48.5 30-140 25-May-23 15:55 IS 48.5 30-140 25-May-23 15:55 IS 48.5 30-140 25-May-23 15:55 IS 48.9 30-140 25-May-23 15:55 IS 49.7 30-140 25-May-23 15:55 IS 49.7 30-140 25-May-23 15:55 IS 49.7 30-140 25-May-23 15:55 IS 50.0 30-140 25-May-23 15:55

Work Order 2303225 16 of 28

Sample ID: ML001-SW-230323 EPA Method 1668A

Sample Size:

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Water

Date Collected: 23-Mar-23 11:10

Laboratory Data

Lab Sample: 2303225-01 QC Batch: B23E167

B23E167 0.859 L Date Received:
Date Extracted:

28-Mar-23 09:19 15-May-23

Column: ZB-1

EDL MDL **EMPC Qualifiers** Analyzed Dilution Analyte Conc. (pg/L) PCB-1 ND 1.18 2.20 25-May-23 03:23 PCB-2 ND 2.76 3.05 25-May-23 03:23 1 PCB-3 ND 3.59 3.30 25-May-23 03:23 1 PCB-4/10 ND 14.9 2.86 25-May-23 03:23 1 ND 42.3 PCB-5/8 4.22 25-May-23 03:23 1 ND 10.3 2.20 PCB-6 25-May-23 03:23 1 ND PCB-7/9 10.9 2.58 25-May-23 03:23 PCB-11 ND 25-May-23 03:23 8.77 6.03 1 PCB-12/13 ND 9.60 3.83 25-May-23 03:23 PCB-14 ND 9.56 1.65 25-May-23 03:23 1 PCB-15 ND 9.62 2.31 25-May-23 03:23 10.8 PCB-16/32 ND 1.92 25-May-23 03:23 1 PCB-17 13.5 1.68 25-May-23 03:23 PCB-18 37.4 2.26 25-May-23 03:23 1 25-May-23 03:23 PCB-19 ND 0.991 5.51 1 В PCB-20/21/33 25.8 5.20 25-May-23 03:23 1 PCB-22 13.2 2.40 25-May-23 03:23 1 0.954 PCB-23 ND 2.41 25-May-23 03:23 1 PCB-24/27 ND 0.849 1.94 25-May-23 03:23 1 PCB-25 ND 1.90 2.61 25-May-23 03:23 1 PCB-26 7.17 2.15 25-May-23 03:23 PCB-28 ND 7.49 23.4 25-May-23 03:23 PCB-29 ND 0.988 1.89 25-May-23 03:23 PCB-30 ND 0.791 1.30 25-May-23 03:23 1 PCB-31 26.4 6.70 B 25-May-23 03:23 PCB-34 ND 0.969 1.72 25-May-23 03:23 1 PCB-35 ND 0.932 1.94 25-May-23 03:23 PCB-36 ND 0.913 1.68 25-May-23 03:23 1 PCB-37 6.33 1.42 25-May-23 03:23 PCB-38 ND 0.929 2.01 25-May-23 03:23 1 PCB-39 ND 0.973 1.86 25-May-23 03:23 1 2.97 PCB-40 ND 2.63 25-May-23 03:23 1 PCB-41/64/71/72 13.5 4.95 25-May-23 03:23 1 PCB-42/59 ND 2.35 4.67 25-May-23 03:23 1 PCB-43/49 11.1 J, B 4.52 25-May-23 03:23 PCB-44 22.8 15.4 В 25-May-23 03:23 PCB-45 ND 3.83 1.87 25-May-23 03:23 PCB-46 ND 1.84 1.15 25-May-23 03:23 1 25-May-23 03:23 PCB-47 3.61 3.75 PCB-48/75 ND 3.27 2.62 25-May-23 03:23 PCB-50 ND 0.532 2.21 25-May-23 03:23 PCB-51 ND 1.34 0.704 25-May-23 03:23 1 25.5 PCB-52/69 18.0 25-May-23 03:23 PCB-53 ND 3.27 1.84 25-May-23 03:23 1 PCB-54 ND 0.439 1.53 25-May-23 03:23 1 PCB-55 0.389 ND 1.44 25-May-23 03:23 1 PCB-56/60 5.27 5.47 25-May-23 03:23 1 PCB-57 ND 0.372 1.27 25-May-23 03:23 1 ND PCB-58 0.370 1.55 25-May-23 03:23 PCB-61/70 14.8 3.61 25-May-23 03:23 PCB-62 ND 0.478 1.54 25-May-23 03:23 PCB-63 ND 0.412 1.29 25-May-23 03:23

Work Order 2303225 17 of 28

Sample ID: ML001-SW-230323 EPA Method 1668A

Sample Size:

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Water

Date Collected: 23-Mar-23 11:10

Laboratory Data

Lab Sample: 2303225-01 QC Batch: B23E167

B23E167 0.859 L Date Received:
Date Extracted:

28-Mar-23 09:19 15-May-23

Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-65	ND	0.428	1.63			25-May-23 03:23	1
PCB-66/76	7.07		7.10		J	25-May-23 03:23	1
PCB-67	ND	0.394	1.40			25-May-23 03:23	
PCB-68	ND	0.417	2.26			25-May-23 03:23	1
PCB-73	ND	0.406	1.68			25-May-23 03:23	1
PCB-74	ND		1.62	3.78		25-May-23 03:23	
PCB-77	ND	0.461	2.22			25-May-23 03:23	
PCB-78	ND	0.448	1.42			25-May-23 03:23	
PCB-79	ND	0.391	1.51			25-May-23 03:23	
PCB-80	ND	0.385	0.940			25-May-23 03:23	
PCB-81	ND	0.479	1.33			25-May-23 03:23	
PCB-82	4.20		2.15		J	25-May-23 03:23	
PCB-83	ND	0.617	1.43			25-May-23 03:23	
PCB-84/92	ND		2.04	11.8		25-May-23 03:23	
PCB-85/116	3.58		2.48		J	25-May-23 03:23	
PCB-86	ND	0.907	2.39			25-May-23 03:23	
PCB-87/117/125	ND	0.507	3.48	5.88		25-May-23 03:23	
PCB-88/91	ND		2.70	1.76		25-May-23 03:23	
PCB-89	ND	0.904	1.28	1.70		25-May-23 03:23	
PCB-90/101	22.2	0.501	2.60		В	25-May-23 03:23	
PCB-93	ND	1.12	3.26			25-May-23 03:23	
PCB-94	ND	1.02	2.08			25-May-23 03:23	
PCB-95/98/102	21.7	1.02	2.52			25-May-23 03:23	
PCB-96	ND	0.656	1.63			25-May-23 03:23	
PCB-97	ND ND	0.050	1.18	6.19		25-May-23 03:23	
PCB-99	7.53		2.29	0.17		25-May-23 03:23	
PCB-100	ND	0.801	1.73			25-May-23 03:23	
PCB-103	ND	0.838	1.48			25-May-23 03:23	
PCB-104	ND	0.657	1.27			25-May-23 03:23	
PCB-105	7.67	0.037	1.91			25-May-23 03:23	
PCB-106/118	16.3		3.53			25-May-23 03:23	
PCB-107/109	ND	0.627	2.20			25-May-23 03:23	
PCB-108/112	1.33	0.027	3.42		J	25-May-23 03:23	
PCB-110	25.5		3.42		J	25-May-23 03:23	
PCB-111/115	ND	0.594	2.69			25-May-23 03:23	
PCB-113	ND	0.534	1.16			25-May-23 03:23	
PCB-114	ND ND	0.030	1.14			25-May-23 03:23	
PCB-119	ND	0.713	1.14			•	
PCB-119 PCB-120	ND ND	0.628	1.70			25-May-23 03:23	
PCB-121	ND ND	0.581	2.01			25-May-23 03:23 25-May-23 03:23	
PCB-121 PCB-122		0.833	2.06				
	ND					25-May-23 03:23	
PCB-123	ND	0.695	1.69			25-May-23 03:23	
PCB-124	ND	0.645	1.42			25-May-23 03:23	
PCB-126	ND	0.684	1.96			25-May-23 03:23	
PCB-127	ND	0.699	1.78	2.10		25-May-23 03:23	
PCB-128/162	ND	0.021	2.03	3.18		25-May-23 03:23	
PCB-129	ND	0.921	2.19			25-May-23 03:23	
PCB-130	ND	1.03	2.62			25-May-23 03:23	
PCB-131/133	ND	0.855	3.06			25-May-23 03:23	
PCB-132/161	6.03	0.011	2.83		J	25-May-23 03:23	
PCB-134/143	ND	0.914	2.05			25-May-23 03:23	
PCB-135	ND	0.812	2.79			25-May-23 03:23	1

Work Order 2303225 18 of 28

Sample ID: ML001-SW-230323 EPA Method 1668A

Sample Size:

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Water

Date Collected: 23-Mar-23 11:10 **Laboratory Data**

2303225-01 Lab Sample: QC Batch:

B23E167 0.859 L

Date Received: Date Extracted: 28-Mar-23 09:19 15-May-23

Column: ZB-1

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers	Analyzed	Dilution
PCB-136	1.99		1.89		J	25-May-23 03:23	1
PCB-137	ND	0.876	1.71			25-May-23 03:23	1
PCB-138/163/164	16.0		2.96			25-May-23 03:23	1
PCB-139/149	13.4		4.20			25-May-23 03:23	1
PCB-140	ND	0.900	1.99			25-May-23 03:23	1
PCB-141	4.23		1.35			25-May-23 03:23	1
PCB-142	ND	0.955	1.91			25-May-23 03:23	1
PCB-144	ND	0.849	2.04			25-May-23 03:23	1
PCB-145	ND	0.597	2.17			25-May-23 03:23	1
PCB-146/165	ND		3.11	2.00		25-May-23 03:23	1
PCB-147	ND	0.823	1.87			25-May-23 03:23	1
PCB-148	ND	0.881	2.10			25-May-23 03:23	1
PCB-150	ND	0.628	1.68			25-May-23 03:23	1
PCB-151	ND	0.020	2.54	2.78		25-May-23 03:23	1
PCB-152	ND	0.576	1.25			25-May-23 03:23	1
PCB-153	11.9	0.570	2.56			25-May-23 03:23	1
PCB-154	ND	0.814	1.61			25-May-23 03:23	1
PCB-155	ND	0.688	1.48			25-May-23 03:23	1
PCB-156	ND	0.609	1.91			25-May-23 03:23	1
PCB-157	ND	0.708	1.42			25-May-23 03:23	1
PCB-158/160	ND	0.653	2.79			25-May-23 03:23	1
PCB-159	ND	0.567	1.54			25-May-23 03:23 25-May-23 03:23	1
PCB-166	ND	0.602	1.37			25-May-23 03:23	1
PCB-167	ND ND	0.644	1.04				
PCB-168	ND ND	0.634	1.04			25-May-23 03:23	1
						25-May-23 03:23	1
PCB-169	ND	0.708	1.69	3.09		25-May-23 03:23	1
PCB-170	ND	0.724	1.77	3.09		25-May-23 03:23	1
PCB-171	ND	0.724	1.47			25-May-23 03:23	1
PCB-172	ND	0.701	1.96			25-May-23 03:23	1
PCB-173	ND	0.826	1.65	2.04		25-May-23 03:23	1
PCB-174	ND	0.655	1.79	3.94		25-May-23 03:23	1
PCB-175	ND	0.657	1.32			25-May-23 03:23	1
PCB-176	ND	0.503	0.950	1.01		25-May-23 03:23	1
PCB-177	ND	0.655	1.84	1.91		25-May-23 03:23	1
PCB-178	ND	0.675	1.87			25-May-23 03:23	1
PCB-179	ND	0.521	1.23	- 40		25-May-23 03:23	1
PCB-180	ND		2.07	7.40		25-May-23 03:23	1
PCB-181	ND	0.663	1.34			25-May-23 03:23	1
PCB-182/187	ND		2.71	3.97		25-May-23 03:23	1
PCB-183	ND		1.73	1.12		25-May-23 03:23	
PCB-184	ND	0.492	1.11			25-May-23 03:23	
PCB-185	ND	0.712	1.49			25-May-23 03:23	1
PCB-186	ND	0.455	1.15			25-May-23 03:23	1
PCB-188	ND	0.487	1.23			25-May-23 03:23	1
PCB-189	ND	0.478	1.47			25-May-23 03:23	1
PCB-190	ND	0.575	1.68			25-May-23 03:23	1
PCB-191	ND	0.585	2.15			25-May-23 03:23	1
PCB-192	ND	0.546	1.98			25-May-23 03:23	1
PCB-193	ND	0.599	2.11			25-May-23 03:23	
PCB-194	ND		2.45	2.94		25-May-23 03:23	1
PCB-195	1.09		1.79			25-May-23 03:23	1
PCB-196/203	2.85		2.72		J	25-May-23 03:23	1

19 of 28 Work Order 2303225

Sample ID: ML001-SW-230323 EPA Method 1668A

Client Data

Laboratory Data

Name: Friedman & Bruya, Inc. Project: 303396

2303225-01 Lab Sample: QC Batch: B23E167 Sample Size:

0.859 L

28-Mar-23 09:19 Date Received: Date Extracted: 15-May-23

ZB-1

Column:

Matrix: Water Date Collected: 23-Mar-23 11:10

Analyte	Conc. (pg/L)	EDL	MDL	EMPC	Qualifiers Analyzed	Dilution
PCB-197	ND	0.565	1.69		25-May-23 03:23	1
PCB-198	ND	0.783	2.41		25-May-23 03:23	1
PCB-199	ND		1.72	1.96	25-May-23 03:23	1
PCB-200	ND	0.598	1.04		25-May-23 03:23	1
PCB-201	ND	0.603	1.55		25-May-23 03:23	1
PCB-202	ND	0.548	1.44		25-May-23 03:23	1
PCB-204	ND	0.571	1.23		25-May-23 03:23	1
PCB-205	ND	0.507	1.82		25-May-23 03:23	1
PCB-206	ND		1.89	0.714	25-May-23 03:23	1
PCB-207	ND	0.216	1.82		25-May-23 03:23	1
PCB-208	ND		1.78	0.636	25-May-23 03:23	1
PCB-209	ND		2.25	0.371	25-May-23 03:23	1
Totals						
Total monoCB	ND			6.35		
Total diCB	ND			42.3		
Total triCB	130			172		
Total tetraCB	104			127		
Total pentaCB	110			136		
Total hexaCB	53.5			61.5		
Total heptaCB	ND			21.4		
Total octaCB	3.94			8.84		
Total nonaCB	ND			1.35		
DecaCB	ND			0.371		
Total PCB	401					

Total PCB 401 Labeled Standards Type % Recovery Limits Qualifiers Analyzed 13C-PCB-1 1S 65.0 15 - 150 25-May-23 0 13C-PCB-3 1S 63.0 15 - 150 25-May-23 0 13C-PCB-4 1S 57.3 25 - 150 25-May-23 0 13C-PCB-11 1S 58.4 25 - 150 25-May-23 0 13C-PCB-9 1S 57.9 25 - 150 25-May-23 0 13C-PCB-9 1S 71.4 25 - 150 25-May-23 0 13C-PCB-19 1S 71.4 25 - 150 25-May-23 0 13C-PCB-28 1S 49.1 25 - 150 25-May-23 0 13C-PCB-32 1S 70.0 25 - 150 25-May-23 0 13C-PCB-37 1S 51.7 25 - 150 25-May-23 0 13C-PCB-47 1S 59.1 25 - 150 25-May-23 0 13C-PCB-52 1S 58.5 25 - 150 25-May-23 0 13C-PCB-54 1S 59.	:23 1 :23 1 :23 1 :23 1 :23 1 :23 1 :23 1
I3C-PCB-1 IS 65.0 15 - 150 25-May-23 0 13C-PCB-3 IS 63.0 15 - 150 25-May-23 0 13C-PCB-4 IS 57.3 25 - 150 25-May-23 0 13C-PCB-11 IS 58.4 25 - 150 25-May-23 0 13C-PCB-9 IS 57.9 25 - 150 25-May-23 0 13C-PCB-19 IS 71.4 25 - 150 25-May-23 0 13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-70 IS 50.6 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81<	:23 1 :23 1 :23 1 :23 1 :23 1 :23 1 :23 1 :23 1 :23 1
13C-PCB-3 IS 63.0 15 - 150 25-May-23 0 13C-PCB-4 IS 57.3 25 - 150 25-May-23 0 13C-PCB-11 IS 58.4 25 - 150 25-May-23 0 13C-PCB-9 IS 57.9 25 - 150 25-May-23 0 13C-PCB-19 IS 71.4 25 - 150 25-May-23 0 13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-	:23 1 :23 1 :23 1 :23 1 :23 1 :23 1 :23 1
13C-PCB-4 IS 57.3 25 - 150 25-May-23 0 13C-PCB-11 IS 58.4 25 - 150 25-May-23 0 13C-PCB-9 IS 57.9 25 - 150 25-May-23 0 13C-PCB-19 IS 71.4 25 - 150 25-May-23 0 13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1 :23 1 :23 1 :23 1 :23 1 :23 1
13C-PCB-11 IS 58.4 25 - 150 25-May-23 0 13C-PCB-9 IS 57.9 25 - 150 25-May-23 0 13C-PCB-19 IS 71.4 25 - 150 25-May-23 0 13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1 :23 1 :23 1 :23 1 :23 1
13C-PCB-9 IS 57.9 25 - 150 25-May-23 0 13C-PCB-19 IS 71.4 25 - 150 25-May-23 0 13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1 :23 1 :23 1 :23 1
13C-PCB-19 IS 71.4 25 - 150 25-May-23 0 13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1 :23 1 :23 1
13C-PCB-28 IS 49.1 25 - 150 25-May-23 0 13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1 :23 1
13C-PCB-32 IS 70.0 25 - 150 25-May-23 0 13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-37 IS 51.7 25 - 150 25-May-23 0 13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	
13C-PCB-47 IS 59.1 25 - 150 25-May-23 0 13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	
13C-PCB-52 IS 58.5 25 - 150 25-May-23 0 13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-54 IS 59.6 25 - 150 25-May-23 0 13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-70 IS 60.4 25 - 150 25-May-23 0 13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-77 IS 55.5 25 - 150 25-May-23 0 13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-80 IS 57.6 25 - 150 25-May-23 0 13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-81 IS 54.8 25 - 150 25-May-23 0 13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-95 IS 59.3 25 - 150 25-May-23 0 13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
13C-PCB-97 IS 60.4 25 - 150 25-May-23 0	:23 1
	:23 1
12C DCD 101 IS 57.0 25.150 25.May 22.0	:23 1
15C-FCB-101 15 5/.8 25 - 150 25-101ay-25 0	:23 1
13C-PCB-104 IS 61.5 25 - 150 25-May-23 0	:23 1
13C-PCB-105 IS 57.9 25 - 150 25-May-23 0	:23 1
13C-PCB-114 IS 55.3 25 - 150 25-May-23 0	:23 1
13C-PCB-118 IS 57.9 25 - 150 25-May-23 0	:23 1
13C-PCB-123 IS 59.3 25 - 150 25-May-23 0	:23 1
13C-PCB-126 IS 53.1 25 - 150 25-May-23 0	:23 1
13C-PCB-127 IS 57.4 25 - 150 25-May-23 0	:23 1

20 of 28 Work Order 2303225

Sample ID: ML001-SW-230323 EPA Method 1668A

Client Data

Name:

Friedman & Bruya, Inc.

Project: 303396 Matrix: Water

Date Collected: 23-Mar-23 11:10

Laboratory Data

 Lab Sample:
 2303225-01

 QC Batch:
 B23E167

 Sample Size:
 0.859 L

B23E167 Date Extracted: 0.859 L Column:

Date Received: 28-Mar-23 09:19 Date Extracted: 15-May-23

olumn: ZB-1

Date Collected: 23-Mar-23	5 11:10			
Labeled Standards	Type	% Recovery	Limits	Qualifiers Analyzed Dilution
13C-PCB-138	IS	60.7	25 - 150	25-May-23 03:23 1
13C-PCB-141	IS	59.6	25 - 150	25-May-23 03:23 1
13C-PCB-153	IS	60.3	25 - 150	25-May-23 03:23 1
13C-PCB-155	IS	66.0	25 - 150	25-May-23 03:23 1
13C-PCB-156	IS	61.4	25 - 150	25-May-23 03:23 1
13C-PCB-157	IS	60.8	25 - 150	25-May-23 03:23 1
13C-PCB-159	IS	63.4	25 - 150	25-May-23 03:23 1
13C-PCB-167	IS	61.2	25 - 150	25-May-23 03:23 1
13C-PCB-169	IS	56.4	25 - 150	25-May-23 03:23 1
13C-PCB-170	IS	60.2	25 - 150	25-May-23 03:23 1
13C-PCB-180	IS	61.1	25 - 150	25-May-23 03:23 1
13C-PCB-188	IS	60.5	25 - 150	25-May-23 03:23 1
13C-PCB-189	IS	64.4	25 - 150	25-May-23 03:23 1
13C-PCB-194	IS	56.1	25 - 150	25-May-23 03:23 1
13C-PCB-202	IS	64.6	25 - 150	25-May-23 03:23 1
13C-PCB-206	IS	57.9	25 - 150	25-May-23 03:23 1
13C-PCB-208	IS	60.4	25 - 150	25-May-23 03:23 1
13C-PCB-209	IS	70.0	25 - 150	25-May-23 03:23 1
13C-PCB-79	CRS	59.2	30 - 135	25-May-23 03:23 1
13C-PCB-178	CRS	73.3	30 - 135	25-May-23 03:23 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Work Order 2303225 21 of 28

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2303225 22 of 28

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

Work Order 2303225 23 of 28

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Please Email Results Control See Kithy 2	Phone #(206) 285-8282_merdahl@friedmanandbruya.com	Pho
REMARKS Replacement Volume	City, State, ZIP Seattle, WA 98119	Cit
303396	Address3012 16th Ave W	Ado
PROJECT NAME/NO.	CompanyFriedman and Bruya, Inc	Cor
SUBCONTRACTER Enthology	Send Report To Michael Erdahl	Ser

e Kethy Zipo	t Volume for	1.4	.'/ PO#	thelpy	
Return samples Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by:	XStandard TAT RUSH	TURNAROUND TIME	Page #of

Sample ID Lab Date Time Matrix #of Friedman & Friedman & Bruya, Inc. 3012 16th Avenue West Friedman & Bruya, Inc. 3012 16th Avenue West Received by: Rece																_		
Date Time Matrix # of prince Matrix jars # of prince Matrix jars # of prince Matrix jars Matrix jars Matrix jars Matrix jars Matrix jars Matrix jars Matrix Matrix jars Matrix jars Matrix Matr	Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2	3012 16th Avenue V	Friedman & Bruya,			·	1					ML001-SW-230323	Sample ID			
ANALYSES REQUESTED ANALYSES REQUESTED No Sampled Matrix # of Furans EPH VPH X IIIO Link			2029	Vest	Inc.							e.			Lab ID			
ANALYSES REQUESTED ANALYSES REQUESTED No jars EPH VPH X VPL PRINT NAME PRINT NAME COMPANY Michael Erdahl Kelia Wackweth Friedman & Bruya S/16/1%	Received by:	Relinquished l	Received by:	Relinguished			*						_	3/13/13	Date Sampled			
ANALYSES REQUESTED ANALYSES REQUESTED No jars EPH VPH X VPH X ANALYSES REQUESTED No jars ENTITY NAME PRINT NAME PRINT NAME COMPANY DATE COMPANY DATE COMPANY DATE THOMAS Bruya S/10/1%		by:	elia Wadawa	J. C.	SIGNATURE	٠			٠		30			1110	Time Sampled			
Dioxins/Furans EPH VPH X PEROGRAPH PRINT NAME Priedman & Bruya S/n/X S/n/X			MA		7		Section 19						÷.	moter	Matrix			
ANALYSES REQUESTED PLANT NAME TO NAME COMPANY Friedman & Bruya S/e/3 S/e/3			3	Mich			2								# of jars			
ANALYSES REQUESTED PURCHASINATE PURCHASINA			io Mac	ael Er	Ŧ										Dioxins/Furans			
ANALYSES REQUESTED POSTUME ANALYSES REQUESTED No. POSTUME Friedman & Bruya S/a/3 Entrapy-EDH DATE Friedman & Bruya			+ ACIONS	rdahl	dahl	RINT						7				ЕРН		
NALYSES REQUESTED Not the state of the stat			5		NAM											<i>*</i>		
No. No. No. No. No. No. No. No.							Æ				¥					X	PCB	ANAL
Not																YSES		
Not Not DATE Bruya S/1a/33 H DAINE			Ent	Frie												REQU		
Not			nallan	lman (CON											JESTI		
No. DATE S/10/3			193	& Bruy	PANY							,			e.j. e.	D		
				á	ì													
TIME TOO AM.			05/1/23	5/10/73	DATE										Z			
			0913	1000AM.	TIME										lotes			

Work Order 2303225

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Phone #(206) 285-8282_merdahl@friedmanandbruya.com	City, State, ZIP_Seattle, WA 98119	Address 3012 16th Ave W	CompanyFriedman and Bruya, Inc	Send Report To Michael Erdahl
	×		, ,	5 0

	SUBCONTRACTER A. Enthalpy - CA	y · CA
	PROJECT NAME/NO.	PO#
ļ	303396	1222-1
	REMARKS	
ļ	Please Email Results 🕭	

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	**Standard TAT RUSH Rush charges authorized by:	Page #of
--	--	----------

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.							ML001-SW-230323	Sample ID	
_Z	_Z											Lab ID S	
Received by:	Relinquished by:	Received by:	Relinquished by:)						•	2/23/25	Date Sampled	
	y:		media	SIGNATURE							1110	Time Sampled	
											water.	Matrix	
		X	Mich								2	#of jars	
	200	La v. Lak	Michael Erdahl	J.							×	8216 Dioxins/Furans	
	1	لمركد	dahl	PRINT NAME								ЕРН	
				NAM								VPH PCB Conjerts	
				ਲ							X	PCB Congeners	ANAI
													YSE
		1	Fri							٠		8	ANALYSES REQUESTED
		Kuthal	edmaı	CC									UES'
35	Y		Friedman & Bruya	COMPANY						×			CEU
		17014	ruya	Ϋ́									
	1	_											
		07/26/20	3/12/13	DATE									
		51.60	(h/1)	TIME								Notes	
		19		Æ									

Sample Log-In Checklist

		Page #	of2
Work Order #:	2303225	TAT Std	km 02/13/53

Samples	Date/Tim	Initials:			Location: wp. 2					
Arrival:	03/28	90 ودار	:19		160		Shel	f/Rack:	P102	
Delivered By:	FedEx	UPS	On Tra	ıc	GLŚ	DHI	-	Hand Delivered	Other	
Preservation:	Preservation: lce		Blue Ice				Techni lce Dry Ice None			
Temp °C: 3.8	Dueles used V (Al)		Thermometer ID: <u>IR-</u> 4							
Temp °C: j. (ted)	Probe used: Y / N			iner	mometer ib	<u> </u>			
<u> </u>										

							YES	NO	NA
Shipping Contain									
Shipping Custody									
Airbill									
Shipping Docume									
Shipping Contain								Disp	ose
Chain of Custody / Sample Documentation Present?									
Chain of Custody	/ Sample Do	ocumentation Co	omplete?				~		
Holding Time Acc	ceptable?		*				_		
	Date/Time	:	Initials:		Locat	ion:	WR-)	
Logged In:	03/28/2	3 1254	KW				:B-21		_ ,
COC Anomaly/Sample Acceptance Form completed?									

Comments:

ID.: LR - SLC

Rev No.: 7

Rev Date: 01/02/2023

Page: 1 of 1

Sample Log-In Checklist

Page # _____ of ____ Work Order #: 2303225 TAT Stel

Samples	Date/Tim	е		Initials:		Loca	ation: WR-2	
Arrival:	05/11/23 0)913	913 KW		Shelf/Rack:		
Delivered By:	y: FedEx UPS		On Tra	c GLS	DHI	Hand Delivered		Other
Preservation: Ice		Blue Ice			chni ce	Dry Ice	None	
Temp °C: 4.6	(uncorr	ected)	robo uso	used: Y / (N)		Thermometer ID: TR-4		
Temp °C: Q.2	(correc		robe use	u. i / [N		iner	mometerio	14

	YES	NO	NA
Shipping Container(s) Intact?	V		
Shipping Custody Seals Intact?		V	V
Airbill Trk# 3175 1926 D033	V		
Shipping Documentation Present?	V		
Shipping Container Enthalpy Client Retain	Return	Disp	ose
Chain of Custody / Sample Documentation Present?	V		
Chain of Custody / Sample Documentation Complete?	V		
Holding Time Acceptable?	V		
Date/Time Initials: Location	1: WK-7		
Logged In: (B) KW Shelf/Ra	ck: <u>B-</u> 2	Ct-2	
COC Anomaly/Sample Acceptance Form completed?		V	V

in this shipment. Backup volume added on oslialas at 1525.

kew 05/12/27

ID.: LR - SLC

Rev No.: 7

Rev Date: 01/02/2023

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2303225

1	2303225-01 A ML001-SW-230323	LabNumber CoC Sample ID
₽ 3		SampleAlias
23-Mar-23 11:10 🗹	23-Mar-23 11:10 🙀	Sample Date/Time
Amber Glass NM Bottle, 1L	Amber Glass NM Boule, IL	Container
Aqueous	Aqueous	BaseMatrix
		Sample Comments

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

- Comments: (A) Received backup Volume on 05/12/23. (1-120ml Jak) per-Labelect and reconciled by kw on 05/12/23

Verified by/Date: KW 05/28/23

Printed: 3/28/2023 2:48:35PM

Work Order 2303225

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl

5500 4th Ave S Seattle, WA 98108

RE: 303396

Work Order Number: 2303580

April 03, 2023

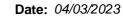
Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 3/24/2023 for the analyses presented in the following report.

Total Metals by EPA Method 200.8

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 303396 **Work Order:** 2303580

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2303580-001 M1-001-SW-230323 03/23/2023 11:10 AM 03/24/2023 3:50 PM

Case Narrative

WO#: **2303580**Date: **4/3/2023**

CLIENT: Friedman & Bruya

Project: 303396

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2303580**

Date Reported: 4/3/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

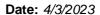
Analytical Report

Work Order: **2303580**Date Reported: **4/3/2023**

CLIENT: Friedman & Bruya

Project: 303396

Lab ID: 2303580-001 **Collection Date:** 3/23/2023 11:10:00 AM


Client Sample ID: M1-001-SW-230323 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Total Metals by EPA Method 200.8 Batch ID: 39887 Analyst: JR

Aluminum 16.6 10.0 µg/L 1 3/31/2023 6:38:00 PM

Original

Work Order: 2303580

CLIENT: Friedman & Bruya

Project: 303396

QC SUMMARY REPORT

Total Metals by EPA Method 200.8

110jcct. 300000					
Sample ID: MB-39887	SampType: MBLK			Units: µg/L	Prep Date: 3/31/2023 RunNo: 82873
Client ID: MBLKW	Batch ID: 39887				Analysis Date: 3/31/2023 SeqNo: 1724295
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Aluminum	ND	10.0			
Sample ID: LCS-39887	SampType: LCS			Units: µg/L	Prep Date: 3/31/2023 RunNo: 82873
Client ID: LCSW	Batch ID: 39887				Analysis Date: 3/31/2023 SeqNo: 1724296
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Aluminum	1,010	10.0	1,000	0	101 85 115
Sample ID: 2303530-001ADUP	SampType: DUP			Units: µg/L	Prep Date: 3/31/2023 RunNo: 82873
Client ID: BATCH	Batch ID: 39887				Analysis Date: 3/31/2023 SeqNo: 1724298
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Aluminum	884	10.0			877.1 0.822 30
Sample ID: 2303530-001AMS	SampType: MS			Units: µg/L	Prep Date: 3/31/2023 RunNo: 82873
Client ID: BATCH	Batch ID: 39887				Analysis Date: 3/31/2023 SeqNo: 1724299
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Aluminum	2,080	10.0	1,000	877.1	120 70 130
Sample ID: 2303530-001AMSD	SampType: MSD			Units: µg/L	Prep Date: 3/31/2023 RunNo: 82873
Client ID: BATCH	Batch ID: 39887				Analysis Date: 3/31/2023 SeqNo: 1724300
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Aluminum	2,090	10.0	1,000	877.1	121 70 130 2,082 0.363 30

Original Page 6 of 9

Date: 4/3/2023

Work Order: 2303580

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Total Metals by EPA Method 200.8

Project: 303396

Client ID: **BATCH** Batch ID: **39887** Analysis Date: **3/31/2023** SeqNo: **1724355**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Aluminum 1,190 10.0 1,000 108.8 108 70 130

Original Page 7 of 9

Sample Log-In Check List

С	lient Name:	FB		Work Order Numb	er: 2303580	
Lo	ogged by:	Morgan Wilson		Date Received:	3/24/2023	3:50:00 PM
Cha	in of Cust	<u>ody</u>				
1.	Is Chain of C	sustody complete?		Yes 🗸	No 🗌	Not Present
2.	How was the	sample delivered?		<u>Client</u>		
<u>Log</u>	ıln					
_	Coolers are p	oresent?		Yes 🗸	No 🗆	NA 🗆
٥.	Ooolers are p	oresent:		103 🖭	140	NA 🗀
4.	Shipping con	tainer/cooler in good conditior	1?	Yes 🗸	No \square	
5.		ls present on shipping contain nments for Custody Seals not		Yes	No \square	Not Present ✓
6.	Was an atter	npt made to cool the samples	?	Yes 🗸	No 🗌	NA 🗆
7.	Were all item	ns received at a temperature o	f >2°C to 6°C *	Yes 🗸	No 🗌	NA 🗆
8.	Sample(s) in	proper container(s)?		Yes 🗸	No \square	
9.	Sufficient sar	mple volume for indicated test	(s)?	Yes 🗸	No 🗌	
10.	Are samples	properly preserved?		Yes 🗸	No 🗌	
11.	Was preserv	ative added to bottles?		Yes 🗸	No 🗌	NA \square
						HNO3
		Ispace in the VOA vials?		Yes 🗔	No 🗀	NA 🗸
_		es containers arrive in good c	ondition(unbroken)?	Yes ✓	No 🗀	
14.	Does paperw	ork match bottle labels?		Yes 🗸	No 🗀	
15.	Are matrices	correctly identified on Chain of	of Custody?	Yes 🗸	No \square	
16.	Is it clear wha	at analyses were requested?		Yes 🗹	No 🗌	
17.	Were all hold	ling times able to be met?		Yes 🗸	No \square	
Spe	cial Handl	ing (if applicable)				
_		otified of all discrepancies with	this order?	Yes	No 🗌	NA 🗹
		Notified:	Dat	te.		
	By Who		Via		ne Fax	In Person
	Regardi	,				
	_	nstructions:				
19	Additional rei	P				
	<u>Information</u>					
	omation	Item #	Temp °C			
	Sample		0.7			

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

X Standard TAT RUSH

Page # of
TURNAROUND TIME

2303580

Rush charges authorized by:

Page 9 of 9

SAMPLE DISPOSAL

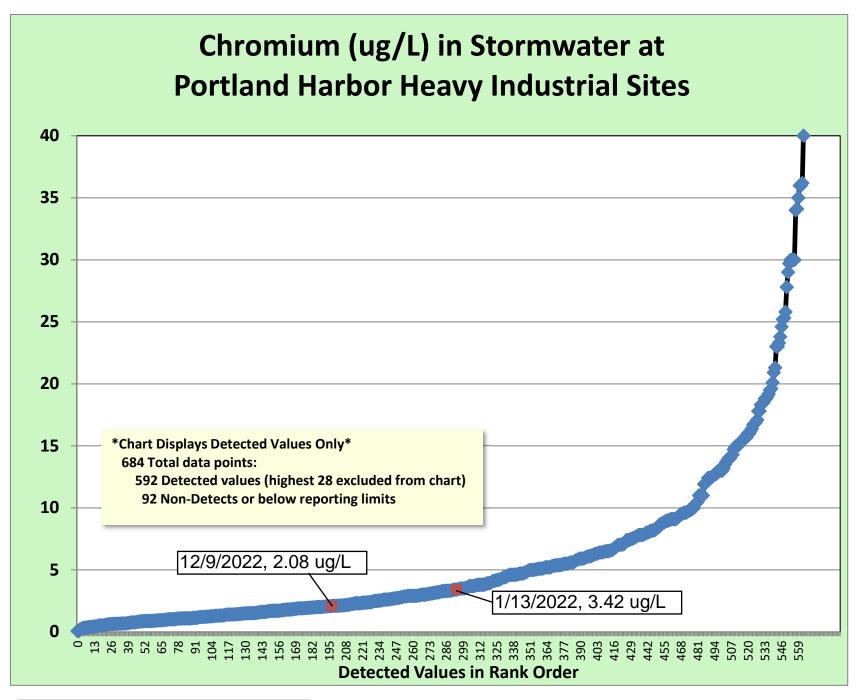
Dispose after 30 days Return samples Will call with instructions

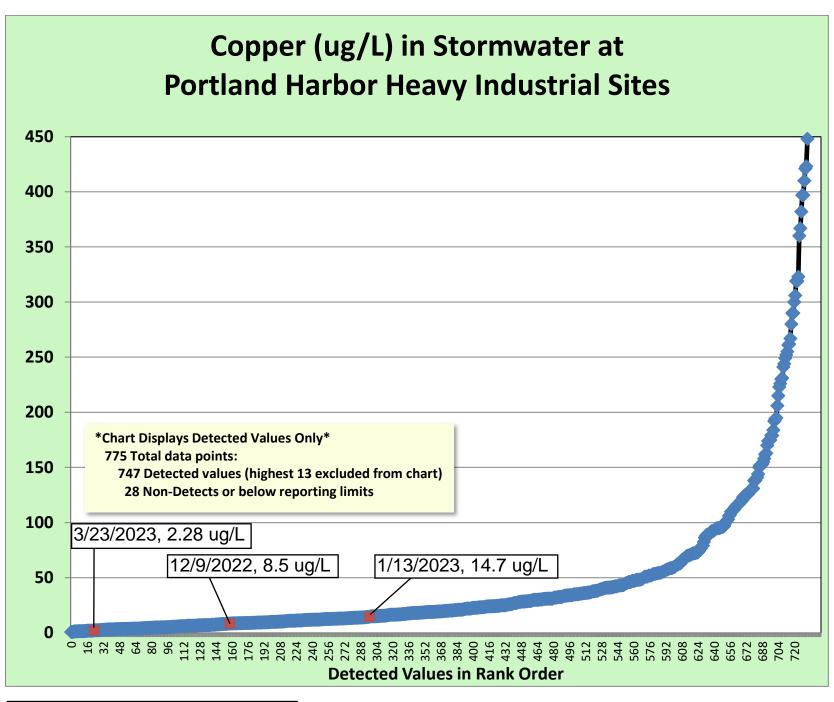
Notes

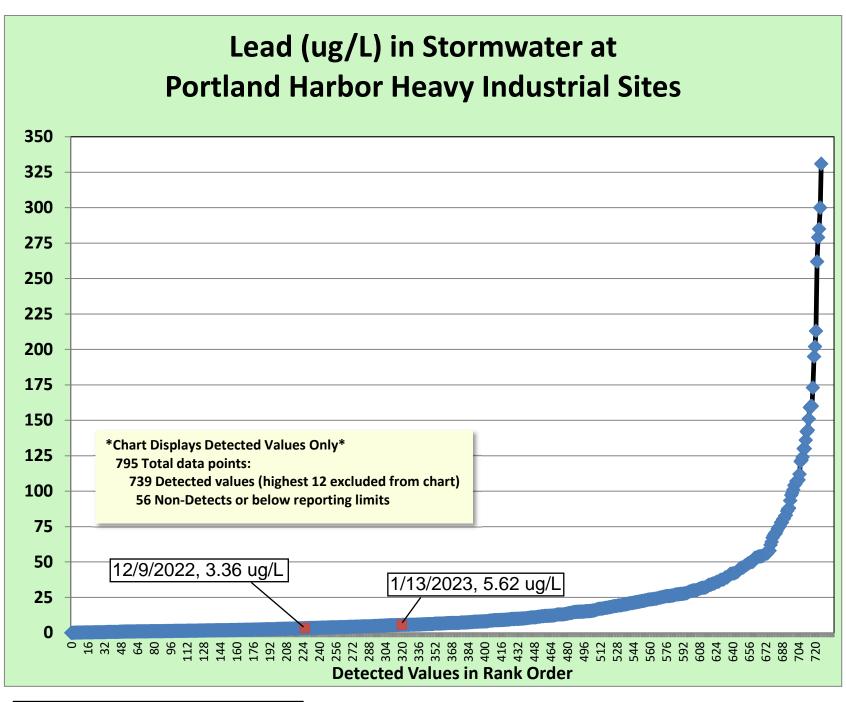
Send Report To N Company F ₁ Address 30	Iichael riedma 012 16t	Michael Erdahl Friedman and Bruya, Inc 3012 16th Ave W	L Inc.	PR	PROJECT NAME/NO. 503396	TRACTER NAME/NO.	ER F /NO.	Fig		PO# D- 230	X St. RU Rush
City, State, ZIP_Se Phone #_(206) 285-	8282	Seattle, WA 98119 35-8282 merdahl@fri	e, ZIP_Seattle, WA 98119 (206) 285-8282 merdahl@friedmanandbruya.com		REMARKS Ple	KS Please Email Results	mail R	esults	-		Dia Re Wi
Sample ID	Lab	Date Sampled	Time Sampled	Matrix	# of jars	Dioxins/Furans	EPH	VPH	TALIAI ANAE	NALYSES REQUESTED	
ML 001-5M-230375		3/11/15	1116	H20					×		
Friedman & Bruya, Inc. 3012 16th Avenue West	Inc.	Relinquished by:	SIGNATURE	7	Mich	PRIN Michael Erdahl	PRINT NAME	NAM		COMPANY Friedman & Bruya	COMPANY nan & Bruya
Seattle, WA 98119-2029 Ph. (206) 285-8282 For (206) 283-5044		Received by: Relinquished by: Received by:	× W		20	mmo		2		Fremont	Anal
Fax (206) 283-5044		Received by:									

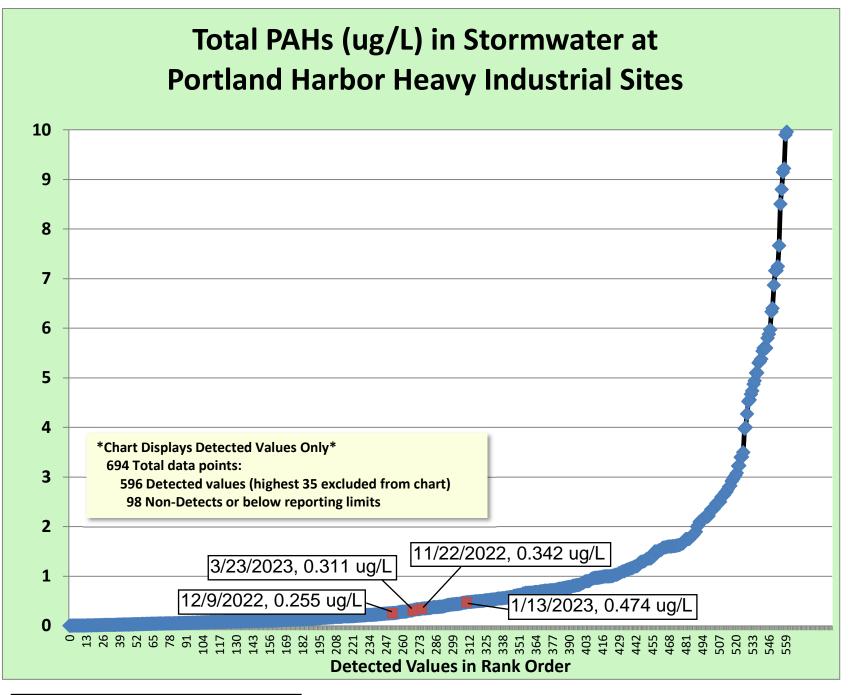
DATE 3/24/m

0950


TIME


15:50


Appendix C


Comparison of Detected Storm Water Analytical Results to Typical Industrial Sites

