

FOCUSED SITE INVESTIGATION

Former Industrial Property

2700 SE Tacoma Street Portland, Oregon

Agency Information

ECSI Site ID: 3884/6561

Prepared for:

Clear Sky Capital

4300 E Camelback Road Phoenix, Arizona 85018

In care of:

In Clover Consulting

Attn: Kim Freeman PO Box 1631 Clackamas, Oregon 97015

Issued on:

January 2, 2024

EVREN NORTHWEST, INC.
Project No. 1816-23001-04

Offices in Portland and Bend, OR / San Rafael, CA P.O. Box 14488, Portland, Oregon 97293 T. 503-452-5561 / E. ENW@EVREN-NW.com

Focused Site Investigation

for the:

Industrial Property

2700 SE Tacoma Street
Portland, Oregon

Has been prepared for the sole benefit and use of our Client:

Clear Sky Capital 4300 E Camelback Road Phoenix, Arizona 85018

In care of:

In Clover Consulting
Attn: Kim Freeman
PO Box 1631
Clackamas, Oregon 97015

and its assignees

Issued January 2, 2024 by:

EVRENNOR HWEST

ERIKR. CHAPMAN

EXP. 2/1/2025

Erik R.D. Chapman, R

Principal Geologist

Lynn D. Green, R.G.

Principal Engineering Geologist

1.0	Intro	duction	1									
	1.1	Background	1									
	1.2	Purpose	2									
2.0	Scop	e of Work	2									
3.0	Site Setting											
4.0	Methods and Procedures											
	4.1	Field Work Objectives	4									
	4.2	Preparation Activities	4									
	4.3	ISM Surface Soil Sampling Locations and Depths	4									
	4.4	Soil Borings Locations and Depths	5									
	4.5	Laboratory Analysis	5									
	4.6	Cleanup Standards and Other Numeric Criteria	5									
	4.7	Investigation Derived Waste Disposal	7									
5.0	Findings											
	5.1	Sample Locations and General Site Observations	8									
	5.2	Laboratory Results – Soil	9									
	5.3	Quality Assurance	10									
	5.4	Risk Screening – Soil	11									
	5.5	Soil Disposal Considerations	11									
6.0	Conc	lusions and Recommendations	12									
7.0	Limit	rations	12									

List of Tables, Figures and Appendices

Tables

IN TEXT (labeled by Section – Number)

- 5-1 Summary of Soil Samples
- 5-2 Statistical Evaluation of ISM Samples

AFTER TEXT (following 'Tables' tab)

- 1 Summary of Analytical Data, Soil
- 2 Summary of Analytical Data, Leachable Lead (TCLP)
- 3 Further Evaluation of COPC, Soil (Risk Drivers)

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Sample Location Diagram

Appendices

- A Photographic Log
- B Boring Logs
- C Laboratory Analytical Reports

List of Acronyms and Abbreviations

amsl above mean sea level
bgs below ground surface
CFSL Clean Fill Screening Levels

Client Clear Sky Capital

CMMP Contaminated Media Management Plan

COI Constituent of Interest

COPC Constituent of Potential Concern

DRO Diesel-Range Organics

DU decision unit

ECSI Environmental Cleanup Information

ENW EVREN Northwest, Inc.

EPA US Environmental Protection Agency

F&BI Friedman & Bruya, Inc.FSI Focused Site InvestigationIDW investigation derived waste

ISM incremental sample methodology

ITRC Interstate Technology Regulatory Council

mg/Kg milligram per kilogram
MRL method reporting limit
NFA No Further Action

OAR Oregon Administrative Rules

ODEQ Oregon Department of Environmental Quality

ODOT Oregon Department of Transportation
OWRD Oregon Water Resources Department

PCBs polychlorinated biphenyls
PID photoionization detector
ppmv parts per million by volume
RBCs risk-based concentrations

RBDM ODEQ's Risk-Based Decision Making for the Remediation of Contaminated Sites guidance

document

SLRBCs screening-level risk-based concentrations RCRA Resource Conservation and Recovery Act

RRO Residual (oil)-range organics

SOW scope of work

SWI soil-water interface

TCLP Toxicity Characteristic Leaching Procedure

USGS US Geological Survey

1.0 Introduction

On behalf of Clear Sky Capital (Client), EVREN Northwest, Inc. (ENW) has prepared this report documenting a Focused Site Investigation (FSI) performed at the subject property, which is located at 2700 SE Tacoma Street in Portland, Oregon (see Figures 1 and 2). The work was completed in accordance with ENW's November 2023 Work Plan¹ which was approved by the Oregon Department of Environmental Quality (ODEQ) on November 11, 2023.

This report presents background information, purpose, scope of work, and findings of the FSI.

1.1 Background

The subject property was the site of Pacific Hoe Saw and Knife Company (Pacific Hoe) and later Simmonds International (Simmonds) from 1954 through 2020. These companies were involved in the manufacture of band saws, circular saws, and industrial knives for the wood products industry. Historical placement of industrial waste ("swarth") on the ground surface and general spills related to industrial activities resulted in the presence of total petroleum hydrocarbons, heavy metals, polychlorinated biphenyls (PCBs) and other contaminants in soil, ground water and storm water at the subject property.

Between 2004 and 2013, multiple phases of investigation were completed to address chemical impacts to soil, ground water and storm water under the direction of ODEQ, which lists the site on the Environmental Cleanup Information (ECSI) database as site number 6561.² One of the primary environmental concerns was a flood control berm constructed of manufacturing waste (or 'swarth') containing elevated concentrations of PCBs and metals. Under a work plan approved by ODEQ, the berm was removed in 2008 and replaced with clean soil materials. ODEQ issued a No Further Action (NFA) determination in May of 2014 following site cleanup actions and assessment of impacts in areas not covered by paving or warehouses.

Clear Sky Capital, Inc. is in the process of demolishing existing buildings in preparation for site redevelopment into a new public storage facility.³ In recent discussions between ENW, Clear Sky Capital, and ODEQ, the ODEQ has indicated the previous NFA determination may not be applicable to areas of the subject property previously covered with hardscape (building and asphalt) that will be disturbed and/or exposed during planned development activities. Areas of particular interest included the eastern portion of the site to remain open (uncovered) and landscaped, a former covered swarth bin in the western portion of the site where swarth was stored, a storm water planter planned as a treatment facility, and foundation drains requiring excavation up to seven feet below ground surface (bgs). These areas were formerly beneath original building structures, will be uncovered for the first time, and have not been

¹ ENW, November 3, 2023. *November 2023 Work Plan: Focused Site Investigation*, Industrial Property, 2700 SE Tacoma Street, Portland, Oregon.

² A former ECSI number for the site was 3884. ECSI No. 6561 was assigned to address issue with the northern portion of 3884 after Clear Sky entered into a Voluntary Cleanup Agreement with ODEQ.

³ Clear Sky Capital Tacoma Street Self Storage LP is an affiliate of Clear Sky Capital, Inc. and the work proposed under this workplan and under the Voluntary Cleanup Agreement with ODEQ is intended for the benefit of both parties.

assessed for contaminants. Hence, ODEQ seeks to ensure the site conditions remain protective of human health and the environment during and following the redevelopment of the site.

1.2 Purpose

As part of a negotiated Voluntary Cleanup Agreement between Clear Sky Capital and ODEQ, a work plan¹ was prepared to collect additional information to allow ODEQ to track progress and eventually re-issue a NFA for the site. The scope of the FSI Work Plan was developed to provide additional data and risk screening for:

- Areas of newly exposed soil that could pose a risk of direct exposure or contaminate surface runoff, and
- Areas where deeper soil will be disturbed during upcoming construction/redevelopment activities.

2.0 Scope of Work

ENW performed the following scope of work (SOW) for this project during two separate mobilizations:

- Collected surface soil samples using incremental sampling methodology (ISM) from four decision units (DU01 through DU04) to screen for contaminants in surface soils.
- Collected two replicate samples from one of the DUs for quality control purposes.
- Advanced 10 temporary soil borings (EB01 EB10) to assess subsurface soils in areas planned for
 excavation and to potentially further define the vertical extent of impacts that may be identified
 in surface soils.
- Submitted samples to an independent laboratory under chain-of-custody protocols for appropriate analysis.
- Evaluated analytical results with respect to state regulatory standards and ODEQ guidance documents.
- Prepared this report documenting site conditions and findings.

3.0 Site Setting

Description and Location. The subject property consists of a 2.77-acre parcel of land located at the southeast corner of SE Tacoma Street and SE 26th Place in Portland, Multnomah County, Oregon. The subject property was historically developed with a two-story building, which was constructed in 1954 and later expanded in 1965 and 1990. The subject property building had undergone the complete demolition of all site buildings and decommissioning of all onsite industrial operations at the time of this FSI. In addition to the building structure, the subject property was improved with limited paved parking areas and associated landscaping.

The subject property is bounded by commercial property to the north and east, residential property to the southeast across SE Tacoma Street, commercial property to the south, and commercial properties to the west across SE 26th Place. Site features are presented on the Site Plan on Figure 2.

Topography. The subject site is located within the US Geological Survey (USGS) Lake Oswego, OR 7.5-minute quadrangle, at an approximate elevation of 64 feet above mean sea level (amsl) as shown in Figure 1. The site is situated on a terrace adjacent to Johnson Creek which defines its eastern property boundary. Storm water that is captured by storm drains discharges to Johnson Creek at an outfall along the eastern site boundary. Regional surface topography slopes gently to the west toward the Willamette River.

Geologic Setting. The site is located within the Portland Basin, a lowland area surrounding the confluence of the Columbia and Willamette Rivers and bounded by the Tualatin Mountains and Portland Hills to the west and the Cascade Range and Columbia Gorge to the east. The floor of the Portland Basin largely consists of Holocene sediments in the streambeds and flood plains of the active rivers and tributaries, and glacial outburst flood deposits of the late Pleistocene Missoula Floods which have been mapped at up to 400 feet elevation amsl.

Soils in the vicinity of the subject property have been mapped as Alluvium (Quaternary) and Channel facies (Pleistocene). Alluvium is present along the flood plain of Johnson Creek (i.e., within or immediately adjacent to the current Johnson Creek channel). Channel facies related to late Pleistocene catastrophic flood deposits are typically described as complexly interlayered and variable silts, sands, and gravels deposited in major floodways by flood events. The channel facies extend to at least 98 feet bgs in the site vicinity as documented in nearby Oregon Water Resources Department (OWRD) water well report MULT 63239, located at SE 23rd Avenue and Bybee Boulevard.⁴

According to previous investigations at the subject site, the subject site is underlain by complexly interlayered beds of silts, clayey silts, sandy silts, and silty gravels of fluvial origin. In general, the upper approximately 10 to 20 feet of soil beneath the subject site consists predominantly of silt, with a significant percentage of gravel and some sand. The fine-grained soils are generally underlain by gravels and sandy gravels with less silt.

Surface Water and Ground Water. Johnson Creek, the closest surface water body to the site, flows along the eastern subject property boundary. Johnson Creek flows 0.4 miles in a generally southwest direction to its confluence with Crystal Springs Creek. The combined stream flow then takes a southerly course to its confluence with the Willamette River near Milwaukie, Oregon. Crystal Springs is spring fed while Johnson Creek is recharged primarily by surface runoff. The surface water in Johnson Creek is supplemented by shallow ground water inflow during the rainy season.⁵

The shallow-most ground water beneath the subject site varies seasonally between 9 to 12 feet bgs. The direction of shallow ground water flow in the subject area has been documented to the west and southwest.

The Troutdale aquifer occurs at depths below 76 feet bgs according to a water well report provided by the OWRD (MULT 63239). The Troutdale aquifer provides ground water to water wells in the eastern

⁴ Madin, I.P., 1990. *Earthquake-Hazard Geology Maps of the Portland Metropolitan Area, Oregon*: Oregon Department of Geology and Mineral Industries Open-File Report O-90-2, scale 1:24,000.

⁵ USGS, 2009. *Hydrology of the Johnson Creek Basin, Oregon*, Scientific Investigations Report 2009-5123, US Geological Survey.

portion of the Johnson Creek watershed where it is primarily used for domestic and irrigation purposes. Water well MULT 63239 is owned by the City of Portland Bureau of Environmental Services and used for ground water monitoring purposes only. The well is screened from 79 feet to 98 feet bgs and static water levels in the well were recorded at 20 feet below land surface at the time of completion in 2000. The difference in screened interval and static water level suggests the Troutdale aquifer exists under semi-confined or confined aquifer conditions in the subject vicinity.

4.0 Methods and Procedures

Field activities were performed during November and December 2023. All methods and procedures were consistent with the ODEQ-approved Work Plan¹ except where noted below; please reference the Work Plan for a detailed understanding of the methods and procedures used.

A photographic log of select fieldwork is presented in Appendix A.

4.1 Field Work Objectives

Field work performed for this project was developed with the following specific objectives:

- To perform the work efficiently and cost-effectively, minimizing interference with any site operations.
- To perform the work in a safe manner for technical personnel and site employees / visitors.
- To document information and data generated in a professional manner that is valid for the intended use.

4.2 Preparation Activities

ENW performed or coordinated the following activities prior to conducting field activities:

Plan Preparation. In-house Sampling and Analysis Plan was prepared for the project, specific to this SOW.

One Call Notification. Prior to any subsurface site work, a call was placed with One Call Utility Notification Service to identify and locate all public utilities near each of the proposed sampling locations.

Planning. ENW scheduled and coordinated with the Client to begin site work.

4.3 ISM Surface Soil Sampling Locations and Depths

ISM samples were collected from four decision units (DU01 through DU04), collectively encompassing the eastern portion of the site. Decision units DU01 through DU04 were defined roughly as the northwest, northeast, southwest, and southeast quadrants of the planned landscaped area, respectively. Decision units DU01 through DU04 are illustrated on Figure 3.

Note: In a deviation from the Work Plan and as requested by ODEQ, for the purpose of gathering additional site data, a second ISM surface soil sample was collected from each of the DUs at a depth of approximately 2.5 feet bgs. All protocol for ISM sampling outlined in the Work Plan was followed.

ISM surface soil samples were collected from two depths (approximately 0.5 feet and 2.5 feet bgs) from each of the four DUs. For quality assurance/quality control purposes, two replicates that were

independent from the original incremental sampling location (center node of each grid) were collected from DU03 at the 0.5-foot sample depth. Replicate samples were labeled with "REP01" and REP02 appended to the sample ID.

All soil increments were combined into a dedicated one-gallon laboratory-prepared glass sample jar. Wood debris and large rocks were removed from each soil increment prior to combining in the laboratory-supplied glass sample container. All laboratory subsampling and sample preparations were conducted in accordance with ITRC protocols, as outlined in the Work Plan.

4.4 Soil Borings Locations and Depths

ENW supervised the advancement of 10 soil borings (EB01 through EB10) using direct-push technology on November 29-30, 2023.

Borings EB01 through EB04 were advanced in the eastern portion of the site where future plans call for landscaping. Boring EB05 was advanced below the planned storm water planter, and EB06 through EB10 were sited beneath or adjacent to the planned new building footprint and associated foundation drains. Additionally, boring EB10 was sited at the approximate location of the former Swarf bin. The locations of EB01 through EB10 are illustrated on Figure 3.

Soil Boring Logs. During advancement of the borings, soil cores were collected continuously from the surface to the total depth of each boring. Retrieved soil cores were field screened for evidence of chemical impact and described using the Unified Soil Classification System. Field screening results and soil descriptions were recorded onto soil boring logs included in Appendix B.

Soil Sampling. Grab samples were collected in accord with the Work Plan:

- A surface soil sample was collected from approximately 2 feet bgs in borings EB05 through EB10.
- Approximately 2 feet above the apparent soil-water interface (SWI) in all borings.

Note: field screening did not indicate any evidence of soil contamination which would have prompted the collection of additional grab samples.

Individual soil samples were designated with the sample's depth appended to the boring number. For example, EB01-08 would indicate a sample collected from boring EB01 at a depth of 8 feet bgs.

Boring Abandonment. Following removal of all soil samples, borings were backfilled with hydrated bentonite chips to just below ground surface, and the surface was restored to match the surrounding.

4.5 Laboratory Analysis

Soil samples were transported via courier to F&BI of Seattle, Washington under chain-of-custody protocols. Samples were analyzed according to the analytical plan presented in the Work Plan. Copies of the laboratory analytical reports are included in Appendix C.

4.6 Cleanup Standards and Other Numeric Criteria

Oregon's environmental cleanup rules (Oregon Administrative Rules [OAR] 340-122) establish the standards and procedures for the protection of current and future public health, safety and welfare, and the environment in the event of a release or threat of a release of a hazardous substance. In the event of a release of a hazardous substance, remedial actions shall be implemented to achieve:

- Acceptable risk levels defined in OAR 340-122-0115, as demonstrated by a residual risk assessment; or
- Numeric cleanup standards developed as part of an approved generic remedy identified or developed by the Department under OAR 340-122-0047, if applicable; or
- For areas where hazardous substances occur naturally (e.g., metals, etc.), the background level of the hazardous substances, if higher than those levels specified above.

Acceptable risk levels may be evaluated through conducting a site-specific risk assessment that calculates exposure point concentrations for specific exposure pathway receptor-scenarios or use generic for hazardous substances under ODEQ's Risk-Based Decision Making (RBDM) guideline to streamline the risk assessment process (see below).

The assessment and remediation of hazardous substances in Oregon are conducted according to OAR 340, Division 122, *Hazardous Substance Remedial Action Rules*. The following cleanup standards and numeric criteria may be applied in evaluating site assessment results.

Soil Matrix. Under the Soil Matrix Cleanup Option Rules (OARs 340-122-0320 through 0360) cleanup standards are determined by assigning site-specific values to environmental parameters (e.g., soil type, depth to ground water, etc.). For purposes of risk-based evaluations of soil, Soil Matrix Cleanup Levels are often used for screening purposes, where potentially significant levels of petroleum contamination may be present if concentrations of total petroleum hydrocarbons in soil exceed their respective soil matrix cleanup level or soil matrix level I for conservative screening purposes and may require remedial action. Concentrations of total petroleum hydrocarbons lower than their corresponding Soil Matrix Cleanup Level or Soil Matrix Level I if a cleanup level has not been determined, usually do not require any additional cleanup or risk management.

ODEQ Risk-Based Concentrations (RBCs). ODEQ has compiled default risk-based screening reference levels (RBDM guidance document) for common exposure-pathway receptor-scenarios that may be utilized in lieu of site-specific risk calculations (OAR 340-122-0115). In particular, the pre-calculated RBC represents the concentration of a constituent of interest (COI) in the impacted medium (e.g., soil, ground water, or air) that potentially represents an unacceptable risk level.

The published RBCs represent a conservative default concentration of a COI in an impacted medium (e.g., soil, ground water, soil gas, or air). When COI concentrations on a site exceed the RBC, unacceptable human health impacts are possible.

- For carcinogens, the regulatory standard is represented by an excess cancer risk of one in one million (1x10⁶), and
- For non-carcinogens, this is represented by a Hazard Index of 1.

RBC exceedances typically trigger further investigation and potentially a human health risk assessment. Therefore, RBCs can be applied at sites as generic, conservative cleanup standards and are routinely used by ODEQ to determine if a site requires additional action. Site-specific parameters used in the equations to develop the RBCs are often adjusted to match actual conditions in developing site-specific cleanup levels.

RBCs are generally used to evaluate sampling analytical results as follows:

- ODEQ's lowest RBC for all pathways for residential receptors is used as an initial 'conservative' screening of a constituent. If a constituent's concentration exceeds its screening level risk-based concentration (SLRBC), it requires further evaluation. Otherwise, the constituent is considered unlikely to pose unacceptable risk to any human receptor.
- Because ODEQ Generic RBCs are based on several conservative assumptions (e.g., duration and type of exposure), exceeding an SLRBC does not necessarily indicate that additional investigation or remediation is required. Rather, the exceedance of a SLRBC may indicate that additional investigation and evaluation, including consideration of site-specific information (e.g., current, and future land uses), may be necessary to determine if remediation or other actions are necessary. In many cases, it is not possible to determine whether unacceptable risks to human health and the environment are present, and require further action, until a risk assessment, including evaluation of current and reasonably likely land and water uses, is complete.
- In general, ODEQ considers chemical concentrations less than SLRBCs to be protective of human health.

Should constituents be identified that also exceed their generic, but exposure pathway- and receptor-specific RBCs, then the appropriateness of additional site-specific methods allowed under the RBDM guidance document will be evaluated (e.g., the development of site-specific RBCs, sampling of soil gas and/or vapor, etc.).

Other Numeric Criteria. In addition to the above risk-based cleanup standards, concentrations were also compared to the following numeric criteria to determine if possible enrichment was occurring, and/or determine if there may be offsite soil disposal restrictions.

• **Background Metals.** Analytical data were compared with background concentrations established by ODEQ. [1],[2] ODEQ does not require cleanup for metals concentrations below default background concentrations. Background concentrations are used for screening data for metals in soil as part of the risk assessment.

4.7 Investigation Derived Waste Disposal

Investigation-derived waste generated during the sampling effort included disposable personal protective clothing and sampling equipment (i.e., dedicated Nitril gloves, towels), soil cuttings, and decontamination liquids. The solid IDW was bagged in opaque plastic garbage bags and disposed of as municipal waste. Soil cuttings and decontamination fluids were temporarily placed inside Oregon Department of Transportation-approved 55-gallon drums and stored on site pending receipt of analytical results.

The drums and their contents will be disposed of at an appropriate disposal facility after a disposal profile has been approved.

^[1] ODEQ, March 2013. Development of Oregon Background Metals Concentrations in Soil: Technical Report, Land Quality Division Cleanup Program.

^[2] ODEQ, October 28, 2002. Default Background Concentrations for metals, Memo from Toxicology Workgroup to DEQ Cleanup, Table 1 – Oregon DEQ Suggested Default Background Concentrations for Inorganic Contaminants in Various Environmental Media.

5.0 Findings

The findings of this FSI are presented in this section. The results of laboratory analysis of the soil samples from borings EB01 through EB10 and DU01 through DU04 are summarized in Table 1 (following the Tables Tab after text). Site photographs of field activities are included in Appendix A. Soil boring logs are presented in Appendix B. Copies of the laboratory analytical reports are included in Appendix C.

5.1 Sample Locations and General Site Observations

ENW collected surface soil and discrete soil samples in general accordance with the approved Work Plan. A summary of final ISM and soil boring locations and sample depths is described in Section 4 and presented on Table 5-1.

	Table 5-1.	Summary	of Discrete and ISI	vi Soli Sampies
Borehole / Location ID	Date Sampled	Depth Sampled (feet)	Sampled By	Location
EB01	11/29/2023	9	ENW	Proposed Parking/Landscaped Area (NW Corner)
EB02	11/29/2023	8	ENW	Proposed Parking/Landscaped Area (NE Corner)
EB03	11/29/2023	9	ENW	Proposed Parking/Landscaped Area (SW Corner)
EB04	11/29/2023	8	ENW	Proposed Parking/Landscaped Area (SE Corner)
EB05	11/29/2023	2	ENW	Proposed Stormwater Planter
EB03	11/29/2023	9.5	ENW	Floposed Stollilwater Flantei
EB06	11/29/2023	2	ENW	Proposed Building Foundation Drain- SE
EB00	11/29/2023	8	ENW	Corner
EB07	11/29/2023	2	ENW	Proposed Building Foundation Drain- NE
EBUT	11/29/2023	6	ENW	Corner
EB08	11/30/2023	2	ENW	Proposed Building Foundation Drain-
LD00	11/30/2023	10	ENW	Center of Building
EB09	11/30/2023	2	ENW	Proposed Building Foundation Drain- NW
LB03	11/30/2023	8	ENW	Corner
EB10	11/30/2023	2	ENW	Former Covered Swarth Bin
LBTO	11/30/2023	7	ENW	Tomici covered ewarth biri
DU01	12/4/2023	0.5	ENW	Proposed Landscaping
D001	12/4/2023	2.5	ENW	(NW Corner)
DU02	12/5/2023	0.5	ENW	Proposed Landscaping
D002	12/5/2023	2.5	ENW	(NE Corner)
DU03	12/4/2023	0.5	ENW	Proposed Landscaping
5003	12/4/2023	2.5	ENW	(SW Corner)
DU04	12/4/2023	0.5	ENW	Proposed Parking/Landscaped Area
5004	12/4/2023	2.5	ENW	(SE Corner)

Table 5-1. Summary of Discrete and ISM Soil Samples

General Observations. Saturated conditions in borings were encountered at approximately 10 to 11 feet bgs with the deepest occurring at EB07.

None of the grab soils samples collected for field screening purposes exhibited any odors or staining suggestive of contaminant impacts. Photoionization detector (PID) headspace readings (recorded on soil boring logs in Appendix B) were all 0.0 parts per million by volume (ppmv).

EB01 through EB04. These borings generally encountered fine sands and silts overlying medium to course gravels to the maximum depth explored of 14 feet bgs. The thickness of the upper fine-grained sand/silt unit ranged from about 1-foot bgs in EB04 to 10 feet at EB01. Boring EB04 encountered brick debris

suggestive fill materials. Based on absence of obvious contamination, soil samples were only collected from approximately two feet above the saturated zone in borings EB01 through EB04, in accord with the work plan.

EB05 through EB10. These borings in the western part of the site encountered between 5 and 10 feet of fine-grained sand/silt coarsening to coarse sand and some gravels. In borings EB05, EB08, EB09 and EB10, the fine-grained soils were underlain by gravel layers between 2 to 4 feet thick. Underlying soils in these locations was described as fine sand with silt to the maximum depth explored. Gravels were not encountered in EB06 and EB07.

5.2 Laboratory Results – Soil

Analytical results of the soil samples are presented in Table 1, behind the Tables tab following text. Results are screened in Table 1 against ODEQ's SLRBCs and background concentrations. The sample results and screening are summarized below. Boring and ISM sample locations are shown on the Sample Location Diagram on Figure 3.

Petroleum Hydrocarbons. Laboratory analysis by NWTPH-Dx detected the presence of diesel- and/or residual-range organics (DRO and/or RRO) in ISM samples from DU01 (0.5-foot sample), DU02 (0.5-foot and 2.5-foot samples), DU03 (0.5-foot sample and replicates), and DU04 (0.5-foot and 2.5-foot samples). DRO and/or RRO were not detected above laboratory method reporting limit (MRL) in any of the soil samples collected from temporary soil borings EB01 through EB10.

- DRO ranged from 5.9 milligrams per kilogram (mg/Kg) to 18 mg/Kg, which are below ODEQ's SLRBC of 1,100 mg/Kg. All DRO results were flagged by the laboratory due to chromatograms not resembling the standard used for quantitation, suggesting that DRO may be the result of overlap from the residual range (RRO).
- **RRO** ranged from 28 mg/Kg to 260 mg/Kg, which are below ODEQ SLRBC for mineral oil of 2,800 mg/Kg.
- The combined total concentration of DRO+RRO exceeded the Soil Matrix Screening Level (most conservative, Level 1) at only one location (DUO4) at the 0.5-foot sampling depth.

Semi-Volatile Organic Constituents. All samples were analyzed for PCBs by EPA 8082-SIM and the results were as follows:

 PCBs were detected in the discrete soil samples from EB01, EB05, EB06, and ISM samples from DU03, and DU04. All PCB detections were below the ODEQ SLRBC of 0.23 mg/Kg. The remaining sample results were below the laboratory MRL.

RCRA 8 Metals.

- Arsenic was detected up to a maximum concentration of 5.37 mg/Kg, which is above the ODEQ SLRBC of 0.43 mg/Kg. However, the maximum arsenic concentration did not exceed ODEQ's published default background concentration of 8.8 mg/Kg, suggesting arsenic has not been enriched at the sampled locations.
- Barium and compounds were reported at between 58.7 mg/Kg and 252 mg/Kg, well below is SLRBC of 15,000 mg/Kg. Barium was not detected above its published default background

concentration of 790 mg/Kg at any of the sampled locations, suggesting barium has not been enriched at the sampled locations.

- Cadmium concentrations ranged from 0.24 to 0.636 mg/Kg, well below its SLRBC of 78 mg/Kg.
 Additionally, the detected concentrations of cadmium were at or below its default background
 concentration of 0.63 mg/Kg, suggesting cadmium is not likely enrichment at the sampled
 locations.
- Total chromium was detected in all samples; however, at concentrations below its SLRBC (120,000 mg/Kg). However, the chromium concentration in sample DU04-231204-0.5-IS exceeded its default background concentration of 76 mg/Kg, suggesting possible enrichment in surface soil at DU04. The sample from DU04-231204-0.5-IS was further analyzed for hexavalent chromium, which was not detected in the sample above the laboratory MRL.
- Lead was present in all samples ranging from 1.57 to 115 mg/Kg. The maximum lead detection exceeded its SLRBC (30 mg/Kg) and published background concentration (28 mg/Kg), suggesting possible enrichment in surface soil at DU04.
- Selenium and compounds, mercury and silver were not detected above laboratory MRLs.

Leachable Chromium and Lead. As a screen to determine the potential for shallow soil in decision unit DU04 to be characteristic of hazardous waste, sample DU04-231204-0.5-IS was further analyzed using the EPA Toxicity Characteristic Leaching Procedure (TCLP, see Table 2). As shown in Table 2, leachable chromium and lead were not detected above their respective laboratory MRLs.

5.3 Quality Assurance

The Quality Assurance Project Plan as detailed by the Work Plan¹ was followed. Data validation check sheets are included with the analytical reports in Appendix C and summarized in laboratory annotations and quality control notes. A review of the laboratory reports for soil samples indicates samples were generally analyzed within appropriate quality assurance/quality control procedures and specified holding times.

Laboratory data qualifiers. In all samples, F&BI reported the NWTPH-Dx results for DRO contained chromatographic patterns not resembling the fuel standard used for quantitation. Because none of the quantified results exceeded state risk-based screening level for DRO or RRO, the qualifier is not anticipated to affect the general conclusion of this report.

Quality Control Samples. The laboratory results of quality control samples are presented on Table 1 and summarized below.

Analyte	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	PCB
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
DU03-231204-0.5-IS	1.7	135	0.364	43	10.5	<0.2 (ND)	<1 (ND)	<1 (ND)	0.025
DU03-231204-0.5-IS-Rep01	2.02	163	0.5	28.3	19.4	<0.2 (ND)	<1 (ND)	<1 (ND)	0.029
DU03-231204-0.5-IS-Rep02	4.06	164	0.29	24.6	10.3	<0.2 (ND)	<1 (ND)	<1 (ND)	<0.02 (ND)
Mean	2.6	154.0	0.4	32.0	13	0.2	1.0	1.0	0.0
Standard Deviation	1.28	16.46	0.11	9.73	5.20	0.00	0.00	0.00	0.00
Coeficient of Variance	49.37%	10.69%	27.69%	30.45%	38.78%	0.00%	0.00%	0.00%	18.28%

Table 5-2. Statistical Evaluation of ISM Samples

Replicate samples "DU03-REP01" and DU03-REP02" indicated an acceptable variance for select metals and PCBs of 0% to 49.37% of the calculated mean, suggesting generally acceptable variance between sample and replicate data.

5.4 Risk Screening – Soil

In Table 3, constituents of potential concern (COPCs) in soil are compared to generic default RBCs developed for several receptor populations and exposure pathway scenarios given in *Appendix A - Table of Risk-Based Concentrations* in ODEQ's RBDM guidance document. As indicated in Table 3, lead exceeded its generic default RBCs for the following exposure scenarios:

- Soil Leaching to Ground Water:
 - Residential, urban residential, and occupational worker receptors. Lead could pose an unacceptable human health risk to future residents, urban residents, and occupational workers who ingest ground water contaminated with lead leached from impacted surface soil in DU04.

ENW believes it's unlikely for any leached lead to impact ground water aquifers beneath the site, particularly in the deeper Troutdale Formation aquifer based on the following:

- Leachable lead was not detected in the sample of soil collected from DU04 at the 0.5-foot depth, suggesting that lead is not likely to leach as concentrations of concern to a shallow ground water resource. Additionally, soil data from DU04 shows that total lead attenuates with depth; total lead did not exceed conservative risk-based concentrations in the ISM sample collected at the 2.5-foot depth bgs sample, or the discrete soil sample collected from EB04 at the 8-foot depth.
- The Troutdale aquifer occurs at a significant depth below surface soil in DU04.
- There are currently no water wells on the subject property. Because domestic water is provided by the City, the underlying ground water aquifer is unlikely to be used for domestic purposes in the future.

5.5 Soil Disposal Considerations

In addition to human health risk, Table 1 indicates chromium and lead in surface soil in DU04 exceeds its published default background concentration and may be enriched at this location. Soil containing chromium and lead in DU04 should not be treated as unrestricted clean fill. Rather, soils from DU04 should be managed appropriately, following the ODEQ-approved Contaminated Media Management Plan (CMMP).⁶

_

⁶ ENW. September 5, 2023. Contaminated Media Management Plan.

6.0 Conclusions and Recommendations

The findings of the FSI completed at the subject property support the following conclusions:

- Constituents of interest were not identified in surface or subsurface soil in borings placed at the following target areas:
 - The former Swarf waste decant area;
 - Planned lined concrete storm water feature; and,
 - Planned foundation drains.
- Soil in decision unit DU04 contains total lead at concentrations exceeding its generic RBCs for the
 Leaching to Ground Water exposure pathway. However, because the vertical extent of total lead
 has been delineated, leachable lead is not present at detectable concentrations, and the
 underlying ground water aquifer is both of significant depth and unlikely to be used for domestic
 purposes in the future, the leaching pathway is likely incomplete.
- Impacts identified in soil may limit certain off-site soil disposal options under state and federal Solid Waste rules. Soils in decision unit DU04 do not qualify as clean fill and will need to be managed.

Recommendations. Based on the findings and conclusions of this FSI, ENW recommends the following:

- Manage potentially enriched soil in DU04 according to the existing CMMP to ensure appropriate future management and handling of enriched surface soil.
 - If the surface soil in DU04 is deemed suitable by the geotechnical consultant of record, consider using the metals-impacted soils in DU04 as engineered fill beneath the future storage building.
- No further investigation is warranted at this time.

Following review of these findings, ODEQ should be requested to issue an opinion that No Further Action is required to further investigate this property.

We recommend this report is kept as part of the permanent property records.

7.0 Limitations

The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the site closure does not extend to the presence of the following conditions unless they were the express concerns of contacted personnel, report and literature authors or the work scope.

1. Naturally occurring toxic or hazardous substances in the subsurface soils, geology, and water,

- 2. Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- 3. Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,
- 4. Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.

There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the SOW. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited SOW, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW has endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. It is possible, despite the use of reasonable care and interpretation, that ENW may have failed to identify regulation violations related to the presence of hazardous substances other than those specifically mentioned at the closure site. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

	Location ID	EB01	EB02	EB03	EB04	EE	305	E	306	E	B07	E	B08	E	309	E	310
	Sample ID	EB01-9	EB02-8	EB03-9	EB04-8	EB05-2	EB05-9.5	EB06-2	EB06-8	EB07-2	EB07-6	EB08-2	EB08-10	EB09-2	EB09-8	EB10-2	EB10-7
	Date Sampled	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/30/2023	11/30/2023	11/30/2023	11/30/2023	11/30/2023	11/30/2023
De	pth Sampled (feet)	9	8	9	8	2	9.5	2	8	2	6	2	10	2	8	2	7
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	Proposed Parking/Landscaped Area (NW Corner)	Proposed Parking/Landscaped Area (NE Corner)	Proposed Parking/Landscaped Area (SW Corner)	Proposed Parking/Landscaped Area (SE Corner)	Proposed Stor	mwater Planter		oundation Drain- SE rner		Foundation Drain- NE orner		g Foundation Drain- of Building		oundation Drain- NW orner	Foremer Cove	ered Swarth Bin
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Metals																	
Arsenic	c, nv	1.72	2.25	2.37	1.74	2.5	2.74	2.08	2.72	4.19	2.69	2.84	3.28	5.73	2.39	3.07	2.33
Barium	nc, nv	133	94.3	87.8	58.7	252	85.2	192	161	227	175	168	122	186	150	149	148
Cadmium	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Chromium (III)	nc, nv	10.9	6	11.2	7.27	22.1	8.36	16.9	12.5	22.8	11.5	19.3	10.8	19.3	8.32	20.9	7.16
Chromium (VI)	c, nv							_									
Copper	nc, nv																
Lead	NA, nv	4.73	1.57	2.52	3.86	6.04	1.85	8.27	2.97	6.89	3.09	7.32	4.08	5.18	3.12	7.81	2.77
Mercury	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Silver	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Semivolatile Organic Constituents																	
Polychlorinated biphenyls (Total PCBs)	C, V	0.022	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	0.037	<0.02 (ND)	0.029	0.12	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)
Total Petroleum Hydrocarbons																	
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Page 1 of 2

mg/Kg = milligram per kilogram or parts per million (ppm).
<# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic

v = volatile

ENW

nv = nonvolatile DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

(Y) indicates analyte not detected, but detection limit is above screening concentration.
 BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

Location ID	DU	J01	DU	02		Dl	J03		DU	104					
Sample ID	DU01-231204-0.5- IS	DU01-231204-2.5- IS	DU02-231205- 0.5-IS	DU02-231205- 2.5-IS	DU03-231204-0.5- IS	DU03-231204-0.5- IS-Rep01	DU03-231204-0.5- IS-Rep02	DU03-231204-2.5- IS	DU04-231204-0.5- IS	DU04-231204-2.5- IS				Background Concentrations	Exceeds ODEQs Screening-Level
Date Sampled	12/4/2023	12/4/2023	12/5/2023	12/5/2023	12/4/2023	12/4/2023	12/4/2023	12/4/2023	12/4/2023	12/4/2023			ODEQs Screening-	(Regional Default)	SLRBCs (Soil) and/or Soil Matrix Cleanup
Depth Sampled (feet)	0.5	2.5	0.5	2.5	0.5	0.5	0.5	2.5	0.5	2.5	Maximum Soil	Soil Matrix	Level Risk-Based	,	Level
Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	Concentration (remaining soil)	Cleanup Level	Concentrations SLRBCs ¹ (Soil)		
Location		Landscaping Corner)	Proposed L (NE C				Landscaping Corner)		Proposed Parking (SE C	Landscaped Area orner)				Portland Basin	TRUE OR Y FALSE OR N
Constituent of Interest Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)		mg/l	Kg (ppm)							
Metals															
Arsenic c, nv	2.03	5.71	1.66	1.96	1.7	2.02	2.69	4.06	2.59	3.16	5.73	NE	0.43	8.8	BKG
Barium nc, nv	147	160	130	130	135	163	150	164	175	203	252	NE	15000	790	N
Cadmium nc, nv	0.253	0.301	0.268	0.24	0.364	0.5	0.413	0.29	0.636	0.462	0.636	NE	78	0.63	N
Chromium (III) nc, nv	35.8	15.6	12.8	14	43	28.3	18.5	24.6	197	22.7	197	NE	120000	76	N
Chromium (VI) c, nv			-				-		<0.603 (ND)		73.7	NE	0.3		(Y)
Copper nc, nv					_		_	1	_	-	30.6	NE	3100	34	N
Lead NA, nv	11.2	10.4	19.7	20.1	10.5	19.4	12.7	10.3	115	29.6	115	NE	30	28	Y
Mercury nc, nv	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<1 (ND)	NE	23	0.23	N					
Silver nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	NE	390	0.82	N					
Semivolatile Organic Constituents															
Polychlorinated biphenyls (Total PCBs) c, v	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	0.025	0.029	0.038	<0.02 (ND)	0.095	<0.02 (ND)	0.120	NE	0.23		N
Total Petroleum Hydrocarbons															
Generic Diesel / Heating Oil (DRO) nc, v	7.9x	<5 (ND)	5.9x	7.1x	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	18x	<5 (ND)	50	200	1100		N
Generic Mineral Insulating Oil (RRO) nc, nv	50	<25 (ND)	58	110	31	28	28	<25 (ND)	260	35	260	200	2800		N

Page 2 of 2

mg/Kg = milligram per kilogram or parts per million (ppm). <# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic

v = volatile

ENW

nv = nonvolatile DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

(Y) indicates analyte not detected, but detection limit is above

BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

	Location ID	DU04	
	Sample ID	DU04-231204-0.5- IS	
	Date Sampled	12/4/23	DODA ¹ Taviaitu
	Depth Sampled (feet)	0.5	RCRA ¹ Toxicity Characteristic
	Sampled By	ENW	
	Location		
Constituent of Interest	Note	mg/L (ppm)	mg/L (ppm)
Metals			
Chromium (III)	nc, nv	<1 (ND)	5
Lead	NA, nv	<0.015 (ND)	5

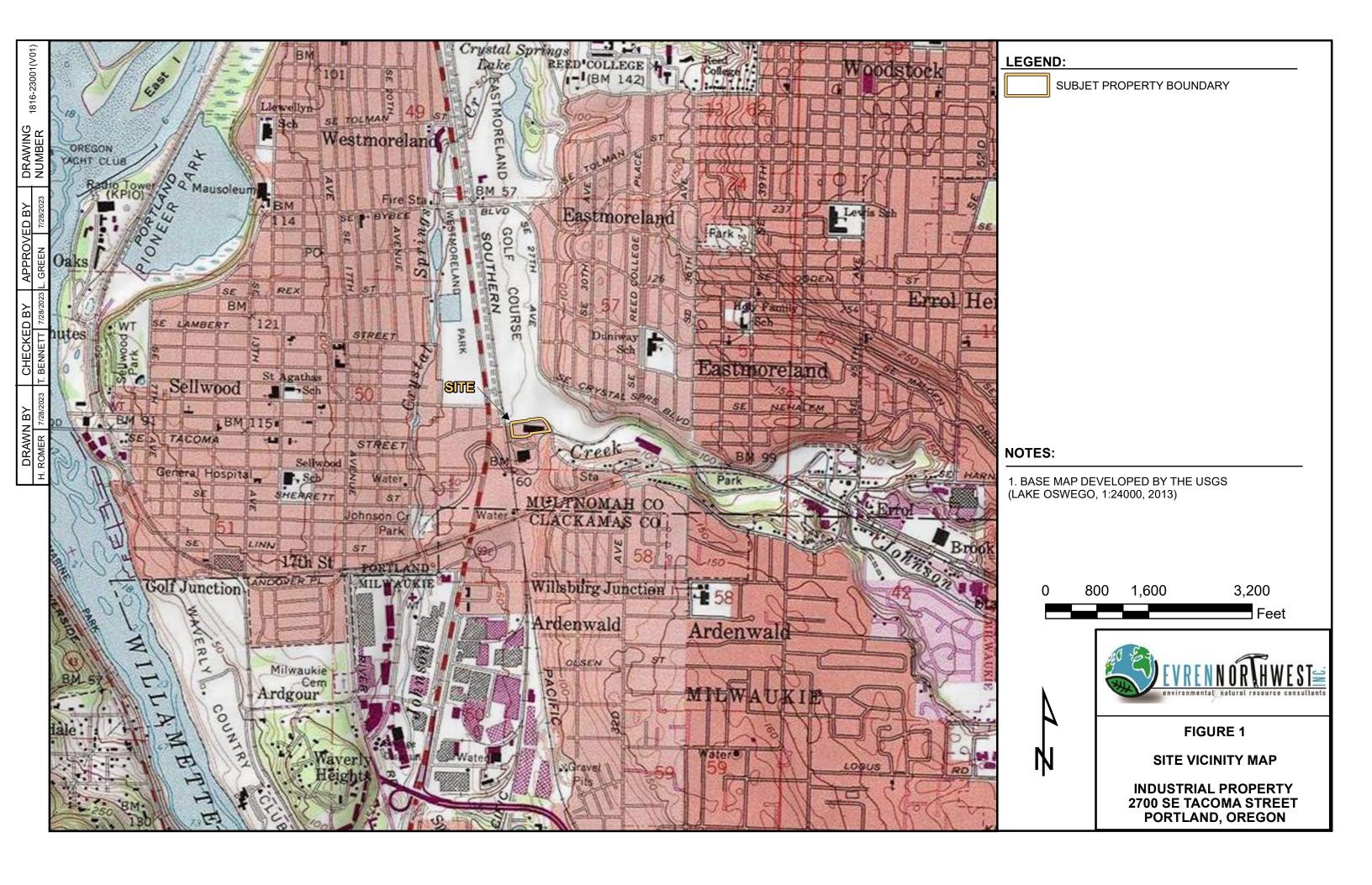
Notes:

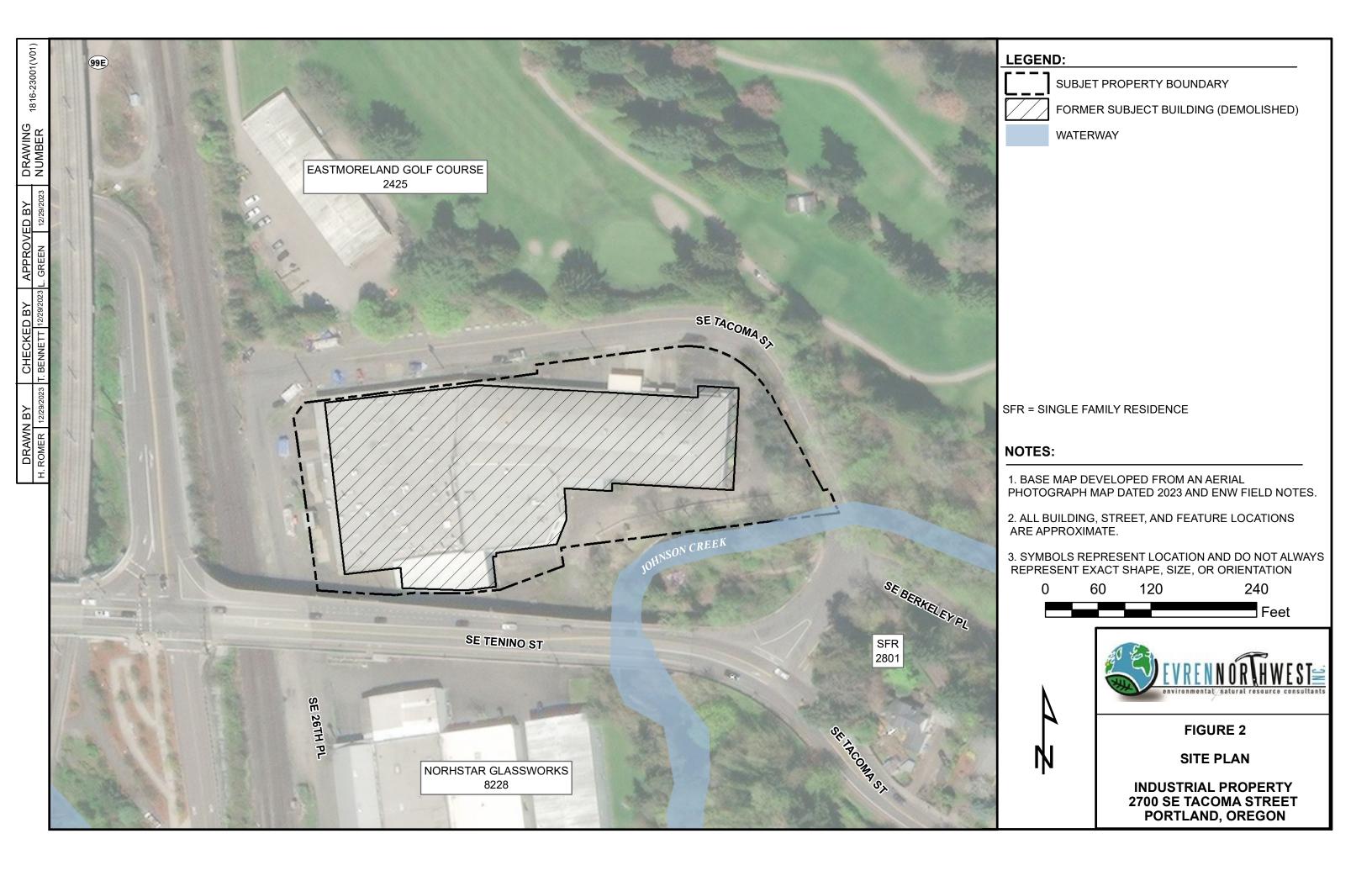
nv = nonvolatile

¹ Resource Conservation and Recovery Act, 1976 mg/L = milligram per Liter or parts per million (ppm). <# (ND) = not detected at or above the laboratory method reporting limit shown. nc = noncarcinogenic

Contaminated Medium								SOIL mg/Kg (pp	n)							
Exposure Pathway			Soil Ir	gestion, Dermal C	ontact, and Inhalation		Vola	atilization to Outdoo	Air	Vapor In	trusion into Building	js	Le	aching to Groundwa	ater	Maximum Detected Concentration
Receptor Scenario		Residential	Urban Residential	Occupational	Construction Worker	Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	1
Direct or Indirect Pathway (see notes)		DC	DC	DC	DC	DC	IVS	IVS	IVS	IVS	IVS	IVS	IS	IS	IS	1
Contaminant of Concern	Note	Note	Note	Note	Note	Note	Note	Note	Note	Note	Note	Note	Note	Note	Note	mg/Kg (ppm)
Metals																
Lead	NA, nv	400 L	400 L	800 L	800 L	800 L	- NV	- NV	- NV	- NV	- NV	- NV	30 L	30 L	30 L	115

Notes:


— = not analyzed or not applicable.


< = not detected above method reporting limit shown.

mg/Kg = milligrams per Kilogram or parts per million (ppm).

m = nonvolatile

Shaded cell = exceeds the RBC for this exposure pathway

Appendix A Photographic Log

On November 19 and 30, 2023, a direct-push drill rig was used to advance borings EB01 through EB10.

View of soil materials retrieved from boring EB01.

Soils were screened continuously for potential volatile using a PID.

Soils encountered in borings were generally described as silts and sands extending to around 10 to 20 feet bgs.

Industrial Property 2700 SE Tacoma Street Portland, Oregon

Site Photographs

Project No. 1816-23001-04 Appendix **A**

View of gravels encountered beneath the shallow, relatively finegrained sediments.

A small backhoe was used to facilitate the collection 50 increments of soil from DU01 through DU04.

View of brick material encountered in soils beneath DU04.

Industrial Property 2700 SE Tacoma Street Portland, Oregon

Site Photographs

Project No. 1816-23001-04 Appendix **A**

Appendix B
Boring Logs

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 | HOLE SIZE Sample Slab Penetration **EB01** SITE COMPLETED ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St 11-29-23 STATIC LEVEL DEPTH GROUND COORDINATES DATE SL **GROUND ELEVATION** WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Brown fine SAND with subrounded medium GRAVEL (GP-SP), moist, medium dense, trace mica, brick debris. 0.0 1.5 50 0.0 3 0.0 4.5 0.0 6 Brown coarse SAND (SP) with some subrounded medium GRAVEL, moist, rusty discoloration, quartz-rich, no visible mica. 0.0 7.5 50 9 EB01-9 0.0

Gray coarse to medium subrounded GRAVEL (GP) with SAND, wet, medium loose, no visible mica.

Saturated at 11 feet; SWI at 11 feet.

10.5

0.0

EVREN Northwest

		00	PROJECT			PF	ROJECT	NO.	E	BORING NO.
DR	ILL L	UG	Sample Slab Penetrat	ion			181	6-23001	1-03	EB01
DEPTH	STRATA ELEVATION/ DEPTH	GRAPHICLOG	DESCRIPTION			TABE LA	CORE PTA	MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
12 —			Lens of gray sand at 11.5 feet.	- - - - -	- - - -		70			
13.5 —			Refusal at 14 feet; end of boring at 14 feet.		- - - -				0.0	
15 —					- - -					
16.5 —					- - -					
18 				_ _ _ _	- - - -					
19.5 —					- - - -					
21 —					- - - -					
22.5 —				_ _ _ _	- - -					
24—				- - - -	 - -					
_					-					Page 2 of 2

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 | HOLE SIZE Sample Slab Penetration **EB02** SITE COMPLETED ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St STATIC LEVEL COORDINATES DEPTH DATE SL GROUND ELEVATION GROUND WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade LOGGED BY: DRILL MAKE AND MODEL DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Coarse gray and brown GRAVEL (GP) with SAND, moist, dense, no visible mica. Brown medium SAND (SP) with fine SAND and SILT, moist, medium dense, brick debris, no visible mica. 1.5 0.0 Lens of black SAND material at 2 feet. Below 2 feet strong orange and gray mottling, micaceous, brick debris absent. 70 3 0.0 0.0 4.5 0.0 6 0.0 0.0 Multicolored coarse rounded GRAVEL (GP) (brown, orange, pink, gray) with SAND, moist, 7.5 dense, micaceous. 40 EB02-8 0.0

9

10.5

Saturated at 10 feet; SWI at 10 feet.

0.0

0.0

0.0

EVREN Northwest

DDII I		DDO IFOT			PROJEC	ΓNO.	I	BORING NO.
DRILL	LUC	Sample Slab Penetration	l		181	6-2300	1-03	EB02
DEPTH STRATA ELEVATION/		DESCRIPTION	SAMPLE NO.	SAMPLE TYPE TYPE		MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
12 —					30		0.0	
- 13.5 — - - -		Refusal at 13 feet; end of boring at 13 feet.		- - -			0.0	
15 — 6.5 —		- - - -						
18—		- - - -		- - - -				
- - 19.5 - - -		- - - - -		- - - -				
21 —				- - -				
22.5 — 24 — -				- - - -				
		_		_				Page 2 o

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 Sample Slab Penetration **EB03** SITE COMPLETED HOLE SIZE ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St COORDINATES STATIC LEVEL DEPTH DATE SL GROUND ELEVATION GROUND WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Rounded gray fine GRAVEL (GP), moist, medium dense, no observable mica. Gray SILT with fine SAND (SM), moist, stiff, no visible mica, root traces, occasional trace brick debris. 0.0 1.5 90 3 At 3 feet, color changes to brown with orange 0.0 mottling, root traces gone, mica present. 4.5 0.0 Gray and brown GRAVEL (GW), coarse to fine, with SAND, moist, medium loose, orange and yellow discoloration in sand (interpret as mineral leaching), no visible mica. 6 7.5 70 0.0 9 EB03-9 0.0

10.5

Refusal at 11 feet; end of boring at 11 feet.

0.0

0.0

EVREN Northwest

EVREN NOI				PROJEC	ΓNO.		BORING NO.
DRILL LO	UG	Sample Slab Penetration		181	6-2300	1-03	EB03
DEPTH STRATA ELEVATION/ DEPTH	GRAPHICLOG	DESCRIPTION	SAMPLE ATA		MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
12 —			_				
-			_	20			
13.5 —		_	_				
-		-	_				
15 —		- - -	_				
		_	_				
16.5 —			_				
			_				
18—			_				
			_				
19.5 —			-				
			_				
21 —			-				
			_				
22.5 —			-				
-			_				
24 —			_				
		_	_				Page 2 of

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 | HOLE SIZE Sample Slab Penetration **EB04** SITE COMPLETED ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St 11-29-23 STATIC LEVEL DEPTH GROUND COORDINATES DATE SL GROUND ELEVATION WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY PID/OVM MW Const./ Completion DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Brown fine SAND with SILT (SM), moist, dense, gray mottling, no visible mica. 0.0 Coarse gray rounded GRAVEL (GP), barely moist, dense, copious fine brick debris, no visible mica. 1.5 15 3 0.0 4.5 0.0 6 0.0 7.5 20 EB04-8 0.0 9 0.0

Saturated at 10 feet; SWI at 10 feet. Refusal at 10

feet; end of boring at 10 feet.

10.5

0.0

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 Sample Slab Penetration **EB05** SITE COMPLETED HOLE SIZE ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St 11-29-23 STATIC LEVEL DEPTH GROUND COORDINATES DATE SL GROUND ELEVATION WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Brown coarse SAND (SP) with rounded GRAVEL, moist, loose, quartz-rich, trace mica. 0.0 1.5 EB05-2 Brown fine SAND (SP) with 10% medium 0.0 subrounded GRAVEL, moist, mottled orange, yellow mineral leaching, trace mica. 50 3 0.0 0.0 4.5 0.0 Brown GRAVEL (GW), coarse to fine, with SAND, coarse to medium, moist to wet, gray orange and red discoloration, medium loose, no visible mica. 6 0.0 7.5 70 0.0 9 0.0

EB05-9.5

Lens of brown silty SAND at 11 feet.

10.5

0.0

0.0

0.0

EVREN Northwest

	EN North	DDO IFOT			PROJEC [*]	T NO.		BORING NO.
DR	ILL LO	Sample Slab Penetration	n	1816-23001-03 EB05				
	2 5	Sample State 1 enetration		SAMPLE	DATA			REMARKS:
DEPTH	STRATA ELEVATION/ DEPTH GRAPHICLOG	DESCRIPTION	SAMPLE NO.	SAMPLE TYPE	CORE	MW Const./ Completion	PID/OVM	NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
12 —		Color changes to gray at 11.5 (no observable sheen or odor). Saturated at 11.5 feet; SWI at 11.5 feet.		_			0.0	
-		Lens of coarse sand at 12.5 feet.		_	95		0.0	
13.5 —		 - -		_				
- - 15 —		Refusal at 15 feet; SWI at 15 feet.		_			0.0	
_ _ _				- -				
- 16.5 — -		- - -		_ _ -				
- -		- - -		_ _ _				
18 		-		<u> </u>				
- 19.5 —				_				
- -		-						
21 				_				
-		-						
22.5 —		-		_				
24—		- -		_				
_		-						Page 2 of 2

EVREN Northwest, Inc.

			PROJECT				PROJEC	CT NO.		BORING NO.
DR	ILL I	OG	<u>1</u>						1 02	
SITE			Sample Slal	Penetration	1	MPLETED	18	16-2300 HOLE SIZE	1-03 =	EB06 ANGLE FROM HORIZ.
SIIE										ANGLE FROM HORIZ.
00000	INIATEO	2700	SE Tacoma St	11-29-	23	11-29-2	23	FIRST V	/4"	ODOLIND ELEVATION
COORDI	INATES			DEPTH GROUND	DATE SL	STATIC	LEVEL	FIRST	VATER	GROUND ELEVATION
				WATER						
DRILLEF	3			CORE RECO	VERY (%)	# SAMP	LES	# CORE	BOXES	DEPTH TOP OF ROCK
			Cascade				2			
DRILL M	IAKE AND M	ODEL		LOGGED BY:				_		DEPTH BOTTOM OF HOLE
7922 DT			7822 DT		J. Mori	rris			10	
			1022 D1			SAMPLE				REMARKS:
	STRATA ELEVATION/ DEPTH	GRAPHICLOG						` u	Σ	NOTES ON WATER
DEPTH	ZAT ATI	HIC	DESCRIPTION		SAMPLE NO.	SAMPLE TYPE	CORE RECOVERY	MW Const./ Completion	PID/OVM	LEVELS, LOSSES,
DE	STE EV DE	API			N N N	AM TY]	99	W C	l A	CAVING, CASING, DEPTH & DRILLING
	田	GR			S.	S.	R. R.	၂ ≨ ပိ		CONDITIONS.
0			Gray coarse GRAVEL (GP) with SA	ND, moist,						
_			dense, no observable mica.	-						
-			Brown fine SAND (SP), moist, medi	um dense,	1	_				
_			brick debris, no visible mica.	-	-	_				
				_]				0.0	
1.5 —				_	1					
-				-						
_				-	EB06-2	_			0.0	
_		l:::::::		_		_				
				_		L	80			
]					
3 —				_	1				0.0	
-				-		-				
_				=	<u> </u>	_				
_				_		L				
			Gray-brown coarse SAND (SP) with	fine					0.0	
			GRAVEL, moist, medium loose, oran	nge and gray]					
4.5			mottling, micaceous.	_	1					
-				-		_				
_				=	<u> </u>	_		1	0.0	
				_						
		::::::								
				_]					
6 —				_	1					
-				-		-				
_				=	<u> </u>	_				
				_		L				
									0.0	
7		:::::::		_		Γ				
7.5 —		::::::		_	1		60			
-		:::::::		-	-	+				
_				-	EB06-8	-			0.0	
				=		<u> </u>				
				_]	Γ				
9 —		::::::		_	1	F				
-		:::::::		-	-	-				
4		:::::i		=		-				
				_]	_				
			Saturated at 10 feet; SWI at 10 feet.	Refusal at 10		+		+	0.0	
_			feet; end of boring at 10 feet.		1	T				
10.5 —				_	1	\vdash				
-				-	-	-				
_				-		-				

EVREN Northwest, Inc.

DD	TT T T	00	PROJECT				PROJEC	ΓNO.		BORING NO.	
	ILL I	W	Sample Slab	Penetration	1		181	6-23001	1-03	EB07	
SITE			-	BEGUN	CON	MPLETED	Н	OLE SIZE		ANGLE FROM HORIZ.	
	INATES	2700 \$	SE Tacoma St	DEPTH DATE SL STATI GROUND WATER			CLEVEL	2 1/4" FIRST WATER		GROUND ELEVATION	
DRILLER			CORE RECOVERY (%) # SAMI		# SAMPL	ES	# CORE BOXES		DEPTH TOP OF ROCK		
DDII I M	IAKE AND M	ODEL	Cascade	LOGGED BY:			2			DEPTH BOTTOM OF HOLE	
DRILL IV	IAKE AND W		-000 P.F								
			7822 DT			J. Morr				10	
DEPTH	STRATA ELEVATION/ DEPTH	GRAPHICLOG	DESCRIPTION		SAMPLE NO.	SAMPLE TYPE	CORE RECOVERY	MW Const./ Completion	PID/OVM	REMARKS: NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.	
0		GR	Brown fine SAND with SILT (SM), s medium GRAVEL, moist, orange mo micaceous, occasional brick debris. Brown coarse SAND (SP) with GRA loose, orange mottling, micaceous.	ttling, -	EB07-2	S S	90 PG		0.0 0.0 0.0 0.0 0.0	CONDITIONS.	
- -						_					

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 | HOLE SIZE Sample Slab Penetration **EB08** SITE COMPLETED ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 11-30-23 STATIC LEVEL 2700 SE Tacoma St 11-30-23 COORDINATES DEPTH DATE SL GROUND ELEVATION GROUND WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morrisw SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Gray angular GRAVEL (GP) with medium SAND, moist, loose, no mica. 0.0 1.5 Brown well-graded SAND (SW)- coarse to fine-moist, medium dense, micaceous, rust-colored mineral leaching in horizontal beds. EB08-2 0.0 80 3 0.0 4.5 0.0 6 0.0 0.0 Coarse GRAVEL appears at 7 feet. 7.5 60 0.0 Gray coarse GRAVEL (GP), dry, dense, no visiblemica. 9

EB08-10

Brown and gray fine SAND with SILT (SM), wet,

gray and orange mottling, micaceous.

10.5

0.0

0.0

EVREN Northwest

	KEN NO		DDO IFOT			PROJEC:	T NO	1	BORING NO.
DR	ILL L	OG	Sample Slab Penetration		PROJECT NO. B11816-23001-03			EB08	
			Sample State Penetration		SAMPLE		0-2300	1-03	REMARKS:
DEPTH	STRATA ELEVATION/ DEPTH	GRAPHICLOG	DESCRIPTION	SAMPLE NO.	SAMPLE	CORE	MW Const./ Completion	PID/OVM	NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
12 —			Saturated at 12 feet; SWI at 12 feet.		- - -			0.0	
13.5 —			- - - -		_ _ _			0.0	
15 —			End of boring at 15 feet.		_			0.0	
16.5 —			- - - -		_ _ _ _				
- - 18 —			- - -		- - -				
- - -			- - - -		_ _ _				
19.5 —									
21 —									
- 22.5 — -			- - - -						
24 —			- - - -		_ _ 				
_			-		_				Page 2 of 2

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 Sample Slab Penetration **EB09** SITE COMPLETED HOLE SIZE ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St 11-30-23 DEPTH GROUND STATIC LEVEL COORDINATES DATE SL GROUND ELEVATION WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Gray angular GRAVEL, moist, medium loose, no visible mica. 1.5 0.0 Brown SAND (SW)--coarse to fine--moist, medium dense, orange leaching in horizontal beds, micaceous. EB09-2 0.0 30 3 0.0 4.5 0.0 6 0.0 Brown and gray GRAVEL (GW) with coarse to fine sand, moist to wet, medium loose, rusty mineral leaching, no visible mica. 7.5 50 EB09-8 0.0 Brown fine SAND with SILT (SM), wet, medium soft, strong gray mottling, micaceous. 9

Saturated at 10 feet; SWI at 10 feet.

10.5

0.0

EVREN Northwest

	ENNO		DDO IFOT			PROJEC	ΓNO.		BORING NO.
DR	ILL I	WG	Sample Slab Penetration				6-2300		EB09
	7	Ü	Sumple Side 1 energinal		SAMPLE	DATA	0 2500		REMARKS:
DEPTH	STRATA ELEVATION/ DEPTH	GRAPHICLOG	DESCRIPTION	SAMPLE NO.	SAMPLE TYPE	CORE	MW Const./ Completion	PID/OVM	NOTES ON WATER LEVELS, LOSSES, CAVING, CASING, DEPTH & DRILLING CONDITIONS.
- 12 — -					- - -	100		0.0	
- - 13.5 —					- - -	100		0.0	
-			_ _ _		- -			0.0	
15 —			End of boring at 15 feet.		- - -			0.0	
16.5 —					- - -				
-					- - -				
18 —					_ - -				
19.5 —			_ 		- - -				
- - - 21 —					- - -				
- -					- - -				
- 22.5 -			_ _ _		- -				
- - 24 —					- - -				
-					_				Page 2 of 2

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1816-23001-03 Sample Slab Penetration **EB10** SITE COMPLETED HOLE SIZE ANGLE FROM HORIZ. BEGUN 2 1/4" FIRST WATER 2700 SE Tacoma St 11-30-23 DEPTH GROUND COORDINATES STATIC LEVEL DATE SL GROUND ELEVATION WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade DRILL MAKE AND MODEL LOGGED BY: DEPTH BOTTOM OF HOLE 7822 DT J. Morris SAMPLE DATA STRATA ELEVATION/ DEPTH REMARKS: GRAPHICLOG NOTES ON WATER CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 Gray coarse SAND (SP) with GRAVEL, moist, medium dense, brick debris, no mica. Brown medium to fine SAND (SP), moist, medium dense, micaceous. 1.5 EB10-2 0.0 100 3 0.0 Coarse GRAVEL appears at 4 feet. 4.5 0.0 6 Gray coarse GRAVEL (GW) with brown coarse to fine SAND, moist, medium loose, micaceous. EB10-7 0.0 7.5 0.0 9 0.0 Brown medium SAND (SP) with fine GRAVEL,

saturated, medium loose, orange mottling,

micaceous. SWI at 9 feet.

10.5

End of boring at 10 feet.

0.0

Appendix C

Laboratory Analytical Reports

Summary: DATA VALID?

⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: 2700 SE Tacoma Street, Portland Project Number: 1816-23001-04 Date of Review: 12/14/23 Lab. Name: F&BI Lab Batch ID #: 312081 Chain of Custody 1.) Are all requested analyses reported? \boxtimes yes □no 2.) Were the requested methods used? \boxtimes ves □no 3.) Trip blank submitted? □yes ⊠no 4.) Field blank submitted? □yes ⊠no **Timing** 5.) Samples extracted within holding times? \boxtimes yes □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA 6.) Analysis performed within holding times? ⊠ves □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) \boxtimes yes □no 8.) Are all reported values above either MRL or MDL? \boxtimes yes □no 9.) Are all values between the MDL & PQL tagged as trace? □yes □no $\boxtimes NA$ 10a.) Are reporting limits raised for other reason besides high analyte conc.? □yes ⊠no 10b.) If so, are they footnoted? □yes □no $\boxtimes NA$ 11.) Lab method blank completed? □no \boxtimes yes 12.) Lab, Field, or Trip Blank(s) report detections? ⊠no □yes If yes, indicate blank type, chemical(s) and concentration(s): ⊠ves 13.) For inorganics and metals, is there one method blank for each analyte? □no \square NA If not, are all discrepancies footnoted? □yes □no 14.) For VOCs, is there one method blank for each day of analysis? \boxtimes yes □no \square NA □yes If not, are all discrepancies footnoted? □no 15.) For SVOC's, is there one method blank for each extraction batch? \boxtimes yes □no \square NA If not, are all discrepancies footnoted? □yes □no Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? \boxtimes yes □no \square NA Do all surrogate spike recoveries meet accepted criteria? \boxtimes ves □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 17.) Is there a spike recovery for all Laboratory Control Samples? \boxtimes yes □no \square NA Do all LCS/LCSD spike recoveries meet accepted criteria? \boxtimes yes □no If not, are all discrepancies footnoted? □ves □no $\boxtimes NA$ \boxtimes NA 18.) Are all LCS/LCSD RPDs within acceptable limits? □yes □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? □ves \boxtimes no \square NA If not, are all discrepancies footnoted? \boxtimes yes □no \square NA Lead was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful. (b)

 \boxtimes yes

 \square no

 \square NA

20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits?

If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA			
21.) Do all RPD calculations for Field Duplicates meet accepted criteria?	□yes	□no	⊠NA			
Comments: Lead was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable. (nm)						
Arsenic, Barium and Chromium were spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful. (b)						
For samples DU03-231205-0.5-IS & DU03-231205-2.5-IS, the sample chromatographic pattern does not resemble the fuel standard used for quantitation. (x)						
Initial Review By: AR Fina	l Review By:					

Summary: DATA VALID? ⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: 2700 SE Tacoma Street, Portland

Project Number: 1816-23001-04

Date of Review: 12/21/23 Lab. Name: F&BI Lab Batch ID #: 312054

Chain of Custody	
1 \ Are all requested analyses reported?	

20.) Are all matrix spike/matrix spike duplicate RPDs within

acceptable limits?

⊠ves □no 1.) Are all requested analyses reported? Sample DU04-231204-0.5-IS was sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed. 2.) Were the requested methods used? \boxtimes yes □no 3.) Trip blank submitted? □yes ⊠no 4.) Field blank submitted? □yes ⊠no **Timing** ⊠ves 5.) Samples extracted within holding times? □no □yes \boxtimes NA If not, are all discrepancies footnoted? □no 6.) Analysis performed within holding times? \boxtimes yes □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) \boxtimes yes □no 8.) Are all reported values above either MRL or MDL? \boxtimes yes □no 9.) Are all values between the MDL & PQL tagged as trace? □yes \square no $\boxtimes NA$ □yes ⊠no 10a.) Are reporting limits raised for other reason besides high analyte conc.? 10b.) If so, are they footnoted? □yes □no $\boxtimes NA$ 11.) Lab method blank completed? \boxtimes yes □no 12.) Lab, Field, or Trip Blank(s) report detections? □yes ⊠no If yes, indicate blank type, chemical(s) and concentration(s): 13.) For inorganics and metals, is there one method blank for each analyte? \boxtimes yes □no \square NA □yes □no If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? \boxtimes yes □no \square NA If not, are all discrepancies footnoted? □ves □no 15.) For SVOC's, is there one method blank for each extraction batch? ⊠ves □no \square NA If not, are all discrepancies footnoted? □yes □no **Accuracy** 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? \boxtimes yes □no \square NA Do all surrogate spike recoveries meet accepted criteria? \boxtimes yes □no If not, are all discrepancies footnoted? □no □yes $\boxtimes NA$ 17.) Is there a spike recovery for all Laboratory Control Samples? \boxtimes yes □no \square NA Do all LCS/LCSD spike recoveries meet accepted criteria? \boxtimes ves □no □yes □no If not, are all discrepancies footnoted? \boxtimes NA □no 18.) Are all LCS/LCSD RPDs within acceptable limits? $\boxtimes NA$ □yes If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 19.) Are all matrix spike/matrix spike duplicate recoveries within \square NA acceptable limits? \boxtimes yes □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$

 \boxtimes yes

□no

 \square NA

Initial Review By: AR	Final Review By:			-	
For samples DU04-231204-0.5-IS and DU01-231204-0.5-IS, the chromatographic pattern does not resemble the fuel standard used for quantitation. (x)					
Comments: Barium, Chromium (III) were spiked at a recoveries may not be meaningful. (b)	a level that was less than five times that prese	nt in the	sample.	Matrix spike	
21.) Do all RPD calculations for Field Du	plicates meet accepted criteria?	□yes	□no	⊠NA	
If not, are all discrepancies footnot	red?	□yes	□no	⊠NA	

Summary: DATA VALID?

⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: 2700 SE Tacoma Street, Portland Project Number: 1816-23001-04 Date of Review: 12/8/23 Lab. Name: F&BI Lab Batch ID #: 312015 Chain of Custody 1.) Are all requested analyses reported? \boxtimes yes □no 2.) Were the requested methods used? \boxtimes ves □no 3.) Trip blank submitted? □yes ⊠no 4.) Field blank submitted? □yes ⊠no **Timing** 5.) Samples extracted within holding times? \boxtimes yes □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA 6.) Analysis performed within holding times? ⊠ves □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) \boxtimes yes □no 8.) Are all reported values above either MRL or MDL? \boxtimes yes □no 9.) Are all values between the MDL & PQL tagged as trace? □yes □no $\boxtimes NA$ 10a.) Are reporting limits raised for other reason besides high analyte conc.? □yes ⊠no 10b.) If so, are they footnoted? □yes □no $\boxtimes NA$ 11.) Lab method blank completed? □no \boxtimes yes 12.) Lab, Field, or Trip Blank(s) report detections? ⊠no □yes If yes, indicate blank type, chemical(s) and concentration(s): ⊠ves 13.) For inorganics and metals, is there one method blank for each analyte? □no \square NA If not, are all discrepancies footnoted? □yes □no 14.) For VOCs, is there one method blank for each day of analysis? \boxtimes yes □no \square NA □yes If not, are all discrepancies footnoted? □no 15.) For SVOC's, is there one method blank for each extraction batch? \boxtimes yes □no \square NA If not, are all discrepancies footnoted? □yes □no Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? \boxtimes yes □no \square NA Do all surrogate spike recoveries meet accepted criteria? \boxtimes ves □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 17.) Is there a spike recovery for all Laboratory Control Samples? \boxtimes yes □no \square NA Do all LCS/LCSD spike recoveries meet accepted criteria? \boxtimes yes □no If not, are all discrepancies footnoted? □ves □no $\boxtimes NA$ \boxtimes NA 18.) Are all LCS/LCSD RPDs within acceptable limits? □yes □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? □ves \boxtimes no \square NA If not, are all discrepancies footnoted? \boxtimes yes □no \square NA Aroclor 1260 was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful. (b)

 \boxtimes yes

 \square no

 \square NA

20.) Are all matrix spike/matrix spike duplicate RPDs within

acceptable limits?

If not, are all discrepancies footnoted?	\square yes	□no	\boxtimes NA	
21.) Do all RPD calculations for Field Duplicates meet accepted criteria?	□yes	□no	\boxtimes NA	
Comments:				
Barium and Chromium were spiked at a level that was less than five times that pre	sent in the	sample.	Matrix spik	e
recoveries may not be meaningful (b)				
recoveries may not be meaningful. (b)				

Summary: DATA VALID? ⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: 2700 SE Tacoma Street, Portland

Project Number: 1816-23001-04 Date of Review: 12/13/23 Lab. Name: F&BI Lab Batch ID #: 311404 Chain of Custody 1.) Are all requested analyses reported? \boxtimes yes □no 2.) Were the requested methods used? ⊠ves □no 3.) Trip blank submitted? □yes ⊠no 4.) Field blank submitted? □yes ⊠no **Timing** 5.) Samples extracted within holding times? \boxtimes yes □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA 6.) Analysis performed within holding times? ⊠ves □no If not, are all discrepancies footnoted? □yes □no \boxtimes NA Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) \boxtimes yes □no 8.) Are all reported values above either MRL or MDL? \boxtimes yes □no 9.) Are all values between the MDL & PQL tagged as trace? □yes □no $\boxtimes NA$ 10a.) Are reporting limits raised for other reason besides high analyte conc.? □yes ⊠no 10b.) If so, are they footnoted? □yes □no $\boxtimes NA$ 11.) Lab method blank completed? □no \boxtimes yes 12.) Lab, Field, or Trip Blank(s) report detections? ⊠no □yes If yes, indicate blank type, chemical(s) and concentration(s): ⊠ves 13.) For inorganics and metals, is there one method blank for each analyte? □no \square NA If not, are all discrepancies footnoted? □yes □no 14.) For VOCs, is there one method blank for each day of analysis? \boxtimes yes □no \square NA □yes If not, are all discrepancies footnoted? □no 15.) For SVOC's, is there one method blank for each extraction batch? \boxtimes yes □no \square NA If not, are all discrepancies footnoted? □yes □no Accuracy $\square \mathsf{no}$ 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? \boxtimes yes \square NA Do all surrogate spike recoveries meet accepted criteria? \boxtimes ves □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 17.) Is there a spike recovery for all Laboratory Control Samples? \boxtimes yes □no \square NA Do all LCS/LCSD spike recoveries meet accepted criteria? \boxtimes yes □no If not, are all discrepancies footnoted? □ves □no $\boxtimes NA$ \square NA 18.) Are all LCS/LCSD RPDs within acceptable limits? \boxtimes yes □no If not, are all discrepancies footnoted? □yes □no $\boxtimes NA$ 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? □ves \boxtimes no \square NA If not, are all discrepancies footnoted? \boxtimes yes □no \square NA

Diesel Extended was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful. (b)

Aroclor 1260 was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful. (b)

20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits?		□ves	⊠no	□NA
If not, are all discrepancies footnoted?		⊠yes	□no	□NA
Diesel Extended was spiked at a level that was less than five times that may not be meaningful. (b)	at present in the	sample.	Matrix sp	ike recoveries
21.) Do all RPD calculations for Field Duplicates meet accepted criteria	?	□yes	□no	⊠NA
Comments:				
Initial Review By: AR	Final Review By:			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 20, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on December 5, 2023 from the 1816-23001-04, F&BI 312054 project. There are 35 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1220R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 5, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1816-23001-04, F&BI 312054 project. Samples were logged in under the laboratory ID's listed below.

Evren Northwest
DU04-231204-0.5-IS
DU04-231204-2.5-IS
DU03-231204-0.5-IS
DU03-231204-0.5-IS-Rep01
DU03-231204-0.5-IS-Rep02
DU03-231204-2.5-IS
DU01-231204-0.5-IS
DU01-231204-2.5-IS

Sample DU04-231204-0.5-IS was sent to Fremont Analytical for hexavalent chromium analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/23 Date Received: 12/05/23

Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/06/23 Date Analyzed: 12/06/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
DU04-231204-0.5-IS 312054-01	18 x	260	81
DU04-231204-2.5-IS 312054-02	<5	35	78
DU03-231204-0.5-IS	<5	31	91
DU03-231204-0.5-IS-Rep01	<5	28	72
DU03-231204-0.5-IS-Rep02	<5	28	75
DU03-231204-2.5-IS 312054-06	<5	<25	76
DU01-231204-0.5-IS 312054-07	7.9 x	50	83
DU01-231204-2.5-IS 312054-08	<5	<25	70
Method Blank 03-2816 MB	<5	<25	86

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU04-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-01

 Date Analyzed:
 12/06/23
 Data File:
 312054-01.093

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.59
Barium 175

 Cadmium
 0.636

 Lead
 115

 Mercury
 <0.2</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU04-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

g (ppm) Dry Weight Operator: Si

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Chromium 197

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: D	U04-231204-2.5-IS	Client:	Evren Northwest
--------------	-------------------	---------	-----------------

Date Received: 12/05/23 1816-23001-04, F&BI 312054

Project: Lab ID: Date Extracted: 12/06/23 312054-02Date Analyzed: 12/06/23 Data File: 312054-02.094 Matrix: Soil Instrument: ICPMS2

mg/kg (ppm) Dry Weight Units: Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	3.16
Barium	203
Cadmium	0.462
Lead	29.6
Mercury	< 0.2
Selenium	<1
Silver	<1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU04-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-02 x5

 Date Analyzed:
 12/06/23
 Data File:
 312054-02 x5.117

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 22.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-03

 Date Analyzed:
 12/06/23
 Data File:
 312054-03.095

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration mg/kg (ppm)

 Arsenic
 1.70

 Barium
 135

 Cadmium
 0.364

 Lead
 10.5

 Mercury
 <0.2</td>

 Selenium
 <1</td>

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-03 x5

 Date Analyzed:
 12/06/23
 Data File:
 312054-03 x5.118

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 43.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-0.5-IS-Rep01 Client:	Evren Northwest
---	-----------------

Date Received: 12/05/23Project: 1816-23001-04, F&BI 312054

Lab ID: Date Extracted: 12/06/23 312054-04Date Analyzed: 12/06/23 Data File: 312054-04.096 Matrix: Soil Instrument: ICPMS2 SP

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) Arsenic 2.02 Barium 163 Cadmium 0.50Lead 19.4 Mercury < 0.2 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-0.5-IS-Rep01 Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 28.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	DU03-231204-0.5-IS-Rep02	Client:	Evren Northwest

Date Received: 12/05/23Project: 1816-23001-04, F&BI 312054

Lab ID: Date Extracted: 12/06/23 312054-05 Date Analyzed: 12/06/23 Data File: 312054-05.097 Matrix: Soil Instrument: ICPMS2 SP

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) Arsenic 2.69 Barium 150 Cadmium 0.413 12.7 Lead

< 0.2 Mercury Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-0.5-IS-Rep02 Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

g (ppin) Dry Weight Operator.

Analyte: Concentration mg/kg (ppm)

Chromium 18.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-06

 Date Analyzed:
 12/06/23
 Data File:
 312054-06.106

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\$

Mercury <0.2 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU03-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 24.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	DU01-231204-0.5-IS	Client:	Evren Northwest

Date Received: 12/05/23Project: 1816-23001-04, F&BI 312054

Lab ID: Date Extracted: 12/06/23 312054-07 Date Analyzed: 12/06/23 Data File: $312054 \hbox{-} 07.107$ Matrix: Soil Instrument: ICPMS2 SP

<1

Units: mg/kg (ppm) Dry Weight Operator:

ConcentrationAnalyte: mg/kg (ppm) Arsenic 2.03 Barium 147 Cadmium 0.253Lead 11.2 < 0.2 Mercury Selenium <1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU01-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 35.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU01-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-08

 Date Analyzed:
 12/06/23
 Data File:
 312054-08.108

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 5.71

 Barium
 160

 Cadmium
 0.301

 Lead
 10.4

 Mercury
 <0.2</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU01-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/06/23
 Lab ID:
 312054-08 x5

 Date Analyzed:
 12/06/23
 Data File:
 312054-08 x5.134

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 15.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/06/23 Lab ID: I3-959 mb
Date Analyzed: 12/06/23 Data File: I3-959 mb.044
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic <1 Barium <1 Cadmium < 0.2 Chromium <1 Lead <1 Mercury < 0.2 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: DU04-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/14/23
 Lab ID:
 312054-01 x0.1

 Date Analyzed:
 12/18/23
 Data File:
 312054-01 x0.1.082

Matrix: Soil/Solid Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm) TCLP Limit

Chromium <1 5.0 Lead <0.015 5.0

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/14/23
 Lab ID:
 I3-991 mb x0.1

 Date Analyzed:
 12/18/23
 Data File:
 I3-991 mb x0.1.081

Matrix: Soil/Solid Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm) TCLP Limit

Chromium <1 5.0 Lead <0.015 5.0

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU04-231204-0.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-01 1/30 Date Analyzed: 12/07/23 Data File: 120713.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 0.036 Aroclor 1260 0.059 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU04-231204-2.5-IS Client: **Evren Northwest**

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-02 1/30 Date Analyzed: 12/07/23 Data File: 120714.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower % Recovery: Limit:

Surrogates: Tetrachlorometaxylene 184 92 11 Decachlorobiphenyl 82 $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02

Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU03-231204-0.5-IS Client: **Evren Northwest**

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-03 1/30 Date Analyzed: 12/07/23 Data File: 120715.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower % Recovery: Limit:

Surrogates: Tetrachlorometaxylene 184 90 11 Decachlorobiphenyl 87 $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02

Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 0.025 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU03-231204-0.5-IS-Rep01 **Evren Northwest** Client:

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-04 1/30 Date Analyzed: 12/07/23 Data File: 120716.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower

Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 95 11 Decachlorobiphenyl 90 $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 0.029

Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU03-231204-0.5-IS-Rep02 **Evren Northwest** Client:

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-05 1/30 Date Analyzed: 12/07/23 Data File: 120717.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower % Recovery: Limit:

Surrogates: Tetrachlorometaxylene 184 85 11 Decachlorobiphenyl 81 $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02

Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 0.038 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU03-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Lab ID: Date Extracted: 12/07/23 312054-06 1/30 Date Analyzed: 12/07/23 Data File: 120718.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 86 11 184
Decachlorobiphenyl 83 25 127

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU01-231204-0.5-IS Client: **Evren Northwest**

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-07 1/30 Date Analyzed: 12/07/23 Data File: 120719.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower % Recovery: Limit:

Surrogates: Tetrachlorometaxylene 92 85 184 11 Decachlorobiphenyl $\overline{25}$ 127

< 0.02

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02

Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU01-231204-2.5-IS Client: Evren Northwest

Date Received: 12/05/23 Project: 1816-23001-04, F&BI 312054

Date Extracted: 12/07/23 Lab ID: 312054-08 1/30 Date Analyzed: 12/08/23 Data File: 120720.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 89 11 184 Decachlorobiphenyl 81 25 127

Compounds: Concentration mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1816-23001-04, F&BI 312054

 Date Extracted:
 12/07/23
 Lab ID:
 03-2820 mb 1/30

 Date Analyzed:
 12/07/23
 Data File:
 120705.D

 Matrix:
 Soil
 Instrument:
 GC9

Matrix: Soil Instrument: GC9
Units: mg/kg (ppm) Dry Weight Operator: AL

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/23 Date Received: 12/05/23

Project: 1816-23001-04, F&BI 312054

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 312054-08 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	500	<5	90	83	63-146	8

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	500	91	77-123

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/23 Date Received: 12/05/23

Project: 1816-23001-04, F&BI 312054

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 311416-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	83	83	70-130	0
Barium	mg/kg (ppm)	50	21.3	90 b	97 b	70-130	7 b
Cadmium	mg/kg (ppm)	10	<5	97	93	70-130	4
Chromium	mg/kg (ppm)	50	12.6	83 b	89 b	70-130	7 b
Lead	mg/kg (ppm)	50	<5	94	95	70-130	1
Mercury	mg/kg (ppm	5	<5	93	93	70-130	0
Selenium	mg/kg (ppm)	5	<5	91	92	70-130	1
Silver	mg/kg (ppm)	10	<5	88	85	70-130	3

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	89	85-115
Barium	mg/kg (ppm)	50	93	85-115
Cadmium	mg/kg (ppm)	10	97	85-115
Chromium	mg/kg (ppm)	50	102	85-115
Lead	mg/kg (ppm)	50	91	85-115
Mercury	mg/kg (ppm)	5	91	85-115
Selenium	mg/kg (ppm)	5	93	85-115
Silver	mg/kg (ppm)	10	94	85-115

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/23 Date Received: 12/05/23

Project: 1816-23001-04, F&BI 312054

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/SOLID SAMPLES FOR TCLP METALS USING EPA METHODS 6020B AND 1311

Laboratory Code: 312223-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/L (ppm)	2.0	<1	98	99	75-125	1
Lead	mg/L (ppm)	1.0	<1	92	93	75 - 125	1

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	mg/L (ppm)	2.0	95	80-120
Lead	mg/L (ppm)	1.0	91	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/20/23 Date Received: 12/05/23

Project: 1816-23001-04, F&BI 312054

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 312038-02 1/30 (Matrix Spike) 1/30

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	87	92	24-163	6
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	78	83	10-194	6

Laboratory Code: Laboratory Control Sample 1/30

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	94	47-158
Aroclor 1260	mg/kg (ppm)	0.25	84	69-141

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Address 40 SE 24th Ave Report To Lynn Green Company EVREN-NW

Phone 503-452-5561 City, State, ZIP Portland, Oregon 97214 Email lynng@evren-nw.com

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature)

PROJECT NAME

1816-13001-64

REMARKS

Project Specific RLs - Yes / No

12/05/23 ISM/FIT

PO# Page #_____of ____

Rush charges authorized by: ✓Standard Turnaround RUSH_

Other_ **Archive Samples** SAMPLE DISPOSAL Dispose after 30 days

INVOICE TO

Ph. (206) 285-8282	Seattle, WA 98119-2029 Rel	3012 16th Avenue West	Friedman & Bruya, Inc. Rel			DB101-231204-25-75	51-5 0-hots 62-1000	D103-231204-7.5-IS	DUNG THE YOU STS REPORDS	DIO3-23/204-05-25-Repol 04	51-5.0-h81161-6.07	51-57-400-52-4010	51-5.0-42152-497C	Sample ID	
Received by:	Relinquished by:	Received by:	Relinquished by:	SI		80	40	96	105	OH	03	02	01	Lab ID	
		Must	Mal	SIGNATURE		10:41 52-40-21	12-4-23 14:01	12-04-73 17:04	12.12 12.17	77-04-13 77:17	11:11 E2-40-11	17-04-23 11:40	02:11 \$2-40-21	Date Sampled	
		\	1	,				13:04	12:17	7:17	17:17		04:11	Time Sampled	
			- Jordan Meris			20:1	501	20.	104	5	20:	5011	5011	Sample Type	
		An	day	PRI		7	_	-	-	=	~	~	~	# of Jars	
		ANHOUAN	1	PRINT NAME		X	X	X	X	×	X	X	X	NWTPH-Dx	
		בש	6	IAM			F .							NWTPH-Gx	
		D	Six	H										BTEX EPA 8021	
	1	2												VOCs EPA 8260	A
									8		V -	9-3	8	PAHs EPA 8270	NAL
			Ce			X	X		X	X	X	X	X	PCBs EPA 8082	YSE
			7			8	X	X	X	X	X	X	X	metals	SRE
		W W	2	COMPANY	70										ANALYSES REQUESTED
	-	3	0	PAN	San										STE
			2 mg	Y	Samples										-
			4	H	reg	-	-	-	-		-	_			+
		2/05/23 10:02	18:00 18:00 Thorn	DATE	received at									Notes	
		10:01	18:0	TIME	3									ŏ	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 312054

Work Order Number: 2312297

December 18, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 12/12/2023 for the analyses presented in the following report.

Hexavalent Chromium by EPA Method 7196 Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 12/18/2023

CLIENT: Friedman & Bruya Work Order Sample Summary

Project: 312054 **Work Order:** 2312297

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2312297-001
 DU04-231204-0.5-IS
 12/04/2023 11:40 AM
 12/12/2023 3:07 PM

Case Narrative

WO#: **2312297**Date: **12/18/2023**

CLIENT: Friedman & Bruya

Project: 312054

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original Page 3 of 7

Qualifiers & Acronyms

WO#: 2312297

Date Reported: 12/18/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: 2312297

Date Reported: 12/18/2023

CLIENT: Friedman & Bruya

Project: 312054

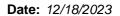
Lab ID: 2312297-001 **Collection Date:** 12/4/2023 11:40:00 AM

Client Sample ID: DU04-231204-0.5-IS Matrix: Soil

Analyses Result RL Qual Units DF Date Analyzed

Sample Moisture (Percent Moisture)

Batch ID: R88311


Analyst: MP

Percent Moisture 17.0 0.500 wt% 1 12/13/2023 8:29:41 AM

Hexavalent Chromium by EPA Method 7196 Batch ID: 42340 Analyst: ME

Chromium, Hexavalent ND 0.603 mg/Kg-dry 1 12/15/2023 4:37:00 PM

Original Page 5 of 7

Work Order: 2312297

QC SUMMARY REPORT

CLIENT: Friedman & Bruya

Hexavalent Chromium by EPA Method 7196

Project: 312054					Hexavalent Chromium by EPA Method 71
Sample ID: MB-42340	SampType: MBLK			Units: mg/Kg	Prep Date: 12/14/2023 RunNo: 88391
Client ID: MBLKS	Batch ID: 42340				Analysis Date: 12/15/2023 SeqNo: 1845781
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Chromium, Hexavalent	ND	0.500			
Sample ID: LCS-42340	SampType: LCS			Units: mg/Kg	Prep Date: 12/14/2023 RunNo: 88391
Client ID: LCSS	Batch ID: 42340				Analysis Date: 12/15/2023 SeqNo: 1845782
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Chromium, Hexavalent	10.3	0.500	12.87	0	80.2 66.6 106.6
Sample ID: 2312230-001ADUP	SampType: DUP			Units: mg/Kg	Prep Date: 12/14/2023 RunNo: 88391
Client ID: BATCH	Batch ID: 42340				Analysis Date: 12/15/2023 SeqNo: 1845787
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Chromium, Hexavalent	2.86	0.500			1.947 38.0 30
Sample ID: 2312230-001AMS1	SampType: MS			Units: mg/Kg	Prep Date: 12/14/2023 RunNo: 88391
Client ID: BATCH	Batch ID: 42340				Analysis Date: 12/15/2023 SeqNo: 1845788
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Chromium, Hexavalent	11.3	0.481	12.38	1.947	75.6 5 143
Sample ID: 2312230-001AMS2	SampType: MS			Units: mg/Kg	Prep Date: 12/14/2023 RunNo: 88391
Client ID: BATCH	Batch ID: 42340				Analysis Date: 12/15/2023 SeqNo: 1845789
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua
Chromium, Hexavalent	11.2	0.481	9.615	1.947	95.9 5 143

Original Page 6 of 7

Sample Log-In Check List

Clie	ent Name:	FB				Work O	rder Numb	er: 2312297	,	
Log	gged by:	Morgan Wil	son			Date Re	ceived:	12/12/20	023 3:07:00 PM	
<u>Chai</u>	n of Cust	<u>ody</u>								
1. l	s Chain of C	ustody compl	ete?			Yes	✓	No \square	Not Present	
2. F	low was the	sample delive	ered?			Clien	<u>ıt</u>			
Log I	<u>In</u>									
			shipping containe stody Seals not in			Yes		No 🗌	Not Present ✓	
4. W	Vas an atten	npt made to c	ool the samples?			Yes	✓	No \square	NA \square	
5. W	Vere all item	s received at	a temperature of	>2°C to 6°C	*	Yes	✓	No 🗌	NA \square	
6. S	Sample(s) in	proper contai	ner(s)?			Yes	✓	No \square		
7. S	Sufficient san	nple volume fo	or indicated test(s)?		Yes	✓	No \square		
8. A	re samples	properly prese	erved?			Yes	✓	No 🗌		
9. W	Vas preserva	ative added to	bottles?			Yes		No 🗸	NA 🗌	
10. ls	s there head	space in the \	/OA vials?			Yes		No 🗌	NA 🗹	
11. D	oid all sample	es containers	arrive in good cor	ndition(unbro	ken)?	Yes	✓	No \square		
12. ^D	oes paperw	ork match bot	tle labels?			Yes	✓	No \square		
13. A	re matrices	correctly iden	tified on Chain of	Custody?		Yes	✓	No 🗌		
14. ls	s it clear wha	it analyses we	ere requested?			Yes	✓	No \square		
	Vere all hold e met?	times (excep	t field parameters	, pH e.g.) ab	le to	Yes	✓	No \square		
Spec	cial Hand	ling (if app	licable)							
16.	Was client n	otified of all d	iscrepancies with	this order?		Yes		No \square	NA 🗸	_
	Person	Notified:			Date	: -				
	By Wh	om:			Via:	eМа	ail 🗌 Ph	one 🗌 Fax	In Person	
	Regard	ling:								
	Client I	nstructions:								
17.	Additional re	marks:								-
<u>ltem l</u>	Information									
		Item #		Temp ⁰C						
	Sample			1.0						

Original Page 7 of 7

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

end Report To	Send Report To Michael Erdahl
Company	Friedman and Bruya, Inc.
Address	5500 4th Ave S
ity, State, ZIP_	City, State, ZIP Seattle, WA 98108

		SUBCONTRACTER	
Send Report To Michael Erdahl	Michael Erdahl	Fremont	
Company	Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#
Address	5500 4th Ave S	312054	D-589
City, State, ZIP_	City, State, ZIP Seattle, WA 98108	REMARKS	
Phone # (206) 2	Phone #(206) 285-8282 merdahl@friedmanandbruya.com		

SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions	Rush charges authorized by:	Standard TAT RUSH	TURNAROUND TIME	Fage #1011_
--	-----------------------------	-----------------------	-----------------	-------------

Fax (206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.	DU04-231204-0.5-IS	Sample ID	
		929	est	lnc.		Lab ID	
Received by:	Relinquished by:	Received by:	Relinquished by:	70	12/4/2023	Date Sampled	
		myn	De.	SIGNATURE	1140 soil	Time Sampled	
			f	7	soil	Matrix	
		A	Mic		_	# of jars	
		111	hael I		×	hexavalent chromium	
		Alli Miller	Michael Erdahl	PRINT NAME		total aluminum dissolved aluminum	
				AME		ferrous iron	ANAL
						dissolved gases	YSES
						TOC	YSES REQUESTED
			riedn				UEST
		FA1	ıan &	COMPANY			ED
			Friedman & Bruya	ANY			-
		1212123	a h h	DATE		Notes	
		1507	MSO	TIME			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 27, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included is the amended report from the testing of material submitted on December 6, 2023 from the 1816-23001-04, F&BI 312081 project. Per your request, the sample IDs have been updated to DU02 from DU03.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman ENW1214R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 14, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on December 6, 2023 from the 1816-23001-04, F&BI 312081 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1214R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 6, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1816-23001-04, F&BI 312081 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Evren Northwest
312081 -01	DU02-231205-0.5-IS
312081 -02	DU02-231205-2.5-IS

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/23 Date Received: 12/06/23

Project: 1816-23001-04, F&BI 312081

Date Extracted: 12/07/23 Date Analyzed: 12/07/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	Residual Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
DU02-231205-0.5-IS 312081-01	5.9 x	58	90
DU02-231205-2.5-IS 312081-02	7.1 x	110	91
Method Blank	<5	<25	106

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU02-231205-0.5-IS Client: Evren Northwest

Date Received: 12/06/23 Project: 1816-23001-04, F&BI 312081

 Date Extracted:
 12/07/23
 Lab ID:
 312081-01

 Date Analyzed:
 12/07/23
 Data File:
 312081-01.055

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration mg/kg (ppm)

 Arsenic
 1.66

 Barium
 130

 Cadmium
 0.268

 Lead
 19.7

 Mercury
 <0.2</td>

 Selenium
 <1</td>

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU02-231205-0.5-IS Client: Evren Northwest

Date Received: 12/06/23 Project: 1816-23001-04, F&BI 312081

 Date Extracted:
 12/07/23
 Lab ID:
 312081-01 x5

 Date Analyzed:
 12/08/23
 Data File:
 312081-01 x5.040

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 12.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU02-231205-2.5-IS Client: Evren Northwest

Date Received: 12/06/23 Project: 1816-23001-04, F&BI 312081

 Date Extracted:
 12/07/23
 Lab ID:
 312081-02

 Date Analyzed:
 12/07/23
 Data File:
 312081-02.056

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration mg/kg (ppm)

 Arsenic
 1.96

 Barium
 130

 Cadmium
 0.240

 Lead
 20.1

 Mercury
 <0.2</td>

 Selenium
 <1</td>

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: DU02-231205-2.5-IS Client: Evren Northwest

Date Received: 12/06/23 Project: 1816-23001-04, F&BI 312081

 Date Extracted:
 12/07/23
 Lab ID:
 312081-02 x5

 Date Analyzed:
 12/08/23
 Data File:
 312081-02 x5.041

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 14.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 1816-23001-04, F&BI 312081

Date Extracted: 12/07/23 Lab ID: I3-959 mb2
Date Analyzed: 12/07/23 Data File: I3-959 mb2.047
Matrix: Soil Instrument: ICPMS2

Matrix: Soil Instrument: ICPMS
Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic <1 Barium <1 Cadmium < 0.2 Chromium <1 Lead <1 Mercury < 0.2 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU02-231205-0.5-IS Client: Evren Northwest

Date Received: 12/06/23 Project: 1816-23001-04, F&BI 312081

Date Extracted: 12/07/23 Lab ID: 312081-01 1/30 Date Analyzed: 12/08/23 Data File: 120721.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

 Aroclor 1016
 <0.02</td>

 Aroclor 1242
 <0.02</td>

 Aroclor 1248
 <0.02</td>

 Aroclor 1254
 <0.02</td>

 Aroclor 1260
 <0.02</td>

 Aroclor 1262
 <0.02</td>

 Aroclor 1268
 <0.02</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: DU02-231205-2.5-IS Client: **Evren Northwest**

Date Received: 12/06/23 Project: 1816-23001-04, F&BI 312081

Date Extracted: 12/07/23 Lab ID: 312081-02 1/30 Date Analyzed: 12/08/23 Data File: 120722.DMatrix: Soil Instrument: GC9 Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 94 11

Decachlorobiphenyl 83 $\overline{25}$ 127 Concentration

Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1816-23001-04, F&BI 312081

 Date Extracted:
 12/07/23
 Lab ID:
 03-2820 mb 1/30

 Date Analyzed:
 12/07/23
 Data File:
 120705.D

 Matrix:
 Soil
 Instrument:
 GC9

Units: Soil Instrument: GC9
Units: mg/kg (ppm) Dry Weight Operator: AL

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/23 Date Received: 12/06/23

Project: 1816-23001-04, F&BI 312081

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 312054-08 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	1,000	<5	90	83	63-146	8

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	1,000	91	77-123

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/23 Date Received: 12/06/23

Project: 1816-23001-04, F&BI 312081

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 312071-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	3.56	101 b	88 b	75-125	14 b
Barium	mg/kg (ppm)	50	55.9	92 b	104 b	75 - 125	12 b
Cadmium	mg/kg (ppm)	10	<1	93	94	75 - 125	1
Chromium	mg/kg (ppm)	50	12.6	91 b	92 b	75 - 125	1 b
Lead	mg/kg (ppm)	50	141	0 b	0 b	75 - 125	nm
Mercury	mg/kg (ppm	5	<1	78	79	75 - 125	1
Selenium	mg/kg (ppm)	5	<1	87	87	75 - 125	0
Silver	mg/kg (ppm)	10	<1	88	89	75 - 125	1

Laboratory Code: Laboratory Control Sample

		Percent	
Reporting	Spike	Recovery	Acceptance
Units	Level	LCS	Criteria
mg/kg (ppm)	10	89	80-120
mg/kg (ppm)	50	95	80-120
mg/kg (ppm)	10	99	80-120
mg/kg (ppm)	50	104	80-120
mg/kg (ppm)	50	96	80-120
mg/kg (ppm)	5	95	80-120
mg/kg (ppm)	5	96	80-120
mg/kg (ppm)	10	98	80-120
	Units mg/kg (ppm) mg/kg (ppm)	Units Level mg/kg (ppm) 10 mg/kg (ppm) 50 mg/kg (ppm) 10 mg/kg (ppm) 50 mg/kg (ppm) 50 mg/kg (ppm) 5 mg/kg (ppm) 5 mg/kg (ppm) 5	Reporting Units Spike Level Recovery LCS mg/kg (ppm) 10 89 mg/kg (ppm) 50 95 mg/kg (ppm) 10 99 mg/kg (ppm) 50 104 mg/kg (ppm) 50 96 mg/kg (ppm) 5 95 mg/kg (ppm) 5 96

ENVIRONMENTAL CHEMISTS

Date of Report: 12/14/23 Date Received: 12/06/23

Project: 1816-23001-04, F&BI 312081

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 312038-02 1/30 (Matrix Spike) 1/30

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	87	92	24-163	6
Aroclor 1260	mg/kg (ppm)	0.25	< 0.02	78	83	10-194	6

Laboratory Code: Laboratory Control Sample 1/30

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	94	47-158
Aroclor 1260	mg/kg (ppm)	0.25	84	69-141

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

DU02-DH3-23-25-15-15 DU02-DU03-231209-0-5-IS Phone 503-452-5561 City, State, ZIP Portland, Oregon 97214 Address 40 SE 24th Ave Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Company EVREN-NW Report To Lyan Green Ph. (206) 285-8282 18081 Sample ID Email lynng@evren-nw.com Relinquished by: Received by: Relinquished by: Received by: Lab ID SIGNATURE 12-05-13 10:05 12-05.73 /0:05 Sampled Date SAMPLE CHAIN OF CUSTODY Time Sampled SAMPLERS (signature) Project Specific RLs - Yes / No PROJECT NAME REMARKS 1816-23001-09 103 Sample 50! Type onder # of Jars PRINT NAME ANHPHAN NWTPH-Dx Nonto (1) NWTPH-Gx 77: BTEX EPA 8021 VOCs EPA 8260 ANALYSES REQUESTED 3 PAHs EPA 8270 INVOICE TO PCBs EPA 8082 PO# 2 12/06/23 ISM/Fg 18 B COMPANY ISM Pr Rush charges authorized by: Standard Turnaround Muest worza Archive Samples Dispose after 30 days Page # _______ of ______
TURNAROUND TIME SAMPLE DISPOSAL DATE Notes 18:31

TIME

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 8, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on December 1, 2023 from the 1816-23001-04, F&BI 312015 project. There are 25 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1208R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 1, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1816-23001-04, F&BI 312015 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Evren Northwest
312015 -01	EB08-2
312015 -02	EB08-10
312015 -03	EB09-2
312015 -04	EB09-8
312015 -05	EB10-2
312015 -06	EB10-7

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/08/23 Date Received: 12/01/23

Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Date Analyzed: 12/01/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	Residual Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
EB08-2 312015-01	<50	<250	84
EB08-10 310215-02	<50	<250	83
EB09-2 310215-03	<50	<250	87
EB09-8 310215-04	<50	<250	83
EB10-2 310215-05	<50	<250	85
EB10-7 310215-06	<50	<250	86
Method Blank	<50	<250	83

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB08-2 Client: Evren Northwes	Client ID:	EB08-2	Client:	Evren Northwes
--	------------	--------	---------	----------------

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 312015-01

 Date Analyzed:
 12/01/23
 Data File:
 312015-01.124

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.84

 Barium
 168

 Cadmium
 <1</td>

 Lead
 7.32

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB08-2 Client: **Evren Northwest**

Date Received: 12/01/23Project: 1816-23001-04, F&BI 312015

Lab ID: Date Extracted: 12/01/23 312015-01 x5 Date Analyzed: 12/04/23 Data File: 312015-01 x5.113

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight SPOperator:

Concentrationmg/kg (ppm)

Chromium 19.3

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Cheff ID. ED00-10 Cheff. Eviel Northwest	Client ID:	EB08-10	Client:	Evren Northwest
--	------------	---------	---------	-----------------

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 312015-02

 Date Analyzed:
 12/01/23
 Data File:
 312015-02.125

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration

 Analyte:
 mg/kg (ppm)

 Arsenic
 3.28

 Barium
 122

 Cadmium
 <1</td>

 Lead
 4.08

 Mercury
 <1</td>

 Selenium
 <1</td>

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB08-10 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 312015-02 x5

 Date Analyzed:
 12/04/23
 Data File:
 312015-02 x5.114

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 10.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB09-2 Client: Evren	n Northwest
---------------------------------	-------------

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 312015-03

 Date Analyzed:
 12/01/23
 Data File:
 312015-03.126

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

 Concentration

 Analyte:
 mg/kg (ppm)

 Arsenic
 5.73

 Barium
 186

 Cadmium
 <1</td>

 Lead
 5.18

 Mercury
 <1</td>

 Selenium
 <1</td>

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB09-2 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 19.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 12/01/23 1816-23001-04, F&BI 312015

Project: Lab ID: Date Extracted: 12/01/23 312015-04 Date Analyzed: 12/01/23 Data File: $312015 \hbox{-} 04.127$ Matrix: Instrument: Soil ICPMS2

<1

mg/kg (ppm) Dry Weight Units: Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.39
Barium	150
Cadmium	<1
Lead	3.12
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB09-8 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 8.32

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB10-2	Client:	Evren Northwest
-------------------	---------	-----------------

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 312015-05

 Date Analyzed:
 12/01/23
 Data File:
 312015-05.128

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 3.07
Barium 149
Cadmium <1
Lead 7.81
Mercury <1

Selenium

Silver

11

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB10-2 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 20.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB10-7 Client: Evren Northwest	Client ID:	EB10-7	Client:	Evren Northwest
---	------------	--------	---------	-----------------

Date Received: 12/01/23 1816-23001-04, F&BI 312015

Project: Lab ID: Date Extracted: 12/01/23 312015-06 Date Analyzed: 12/01/23 Data File: 312015-06.129 Matrix: Instrument: Soil ICPMS2

<1

mg/kg (ppm) Dry Weight Units: Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.33
Barium	148
Cadmium	<1
Lead	2.77
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB10-7 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 7.16

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 I3-945 mb2

 Date Analyzed:
 12/01/23
 Data File:
 I3-945 mb2.087

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB08-2 Client: **Evren Northwest**

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Lab ID: 312015-01 1/30 Date Analyzed: 12/01/23 Data File: 120132.DMatrix: Soil GC9 Instrument: mg/kg (ppm) Dry Weight Units: Operator: AL

Upper Limit: Lower

Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 80 11 Decachlorobiphenyl 81 $\overline{25}$ 127

Concentration

Compounds: mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB08-10 Client: **Evren Northwest**

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Lab ID: 312015-02 1/30 Date Analyzed: 12/01/23 Data File: 120133.D Matrix: Soil GC9 Instrument: mg/kg (ppm) Dry Weight Units: Operator: AL

Lower

Upper Limit: Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 $\begin{array}{c} 77 \\ 74 \end{array}$ 11 Decachlorobiphenyl $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02

Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB09-2 Client: **Evren Northwest**

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Lab ID: 312015-03 1/30 Date Analyzed: 12/01/23 Data File: 120134.DMatrix: Soil GC9 Instrument: mg/kg (ppm) Dry Weight Units: Operator: AL

Upper Limit: Lower

Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 67 11 127

Decachlorobiphenyl $7\dot{1}$ $\overline{25}$

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB09-8 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Lab ID: 312015-04 1/30 Date Analyzed: 12/02/23 Data File: 120135.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 100 11 184
Decachlorobiphenyl 90 25 127

Concentration mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB10-2 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Lab ID: 312015-05 1/30 Date Analyzed: 12/02/23 Data File: 120136.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 106 11 184 Decachlorobiphenyl 101 25 127

Concentration
Compounds: mg/kg (ppm)
Aroclor 1221 <0.02

Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB10-7 Client: Evren Northwest

Date Received: 12/01/23 Project: 1816-23001-04, F&BI 312015

Date Extracted: 12/01/23 Lab ID: 312015-06 1/30 Date Analyzed: 12/02/23 Data File: 120137.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 88 11 184 Decachlorobiphenyl 88 25 127

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1816-23001-04, F&BI 312015

 Date Extracted:
 12/01/23
 Lab ID:
 03-2773 mb 1/30

 Date Analyzed:
 12/01/23
 Data File:
 120106.D

 Matrices
 0.00
 0.00
 0.00

Matrix: Soil Instrument: GC9
Units: mg/kg (ppm) Dry Weight Operator: AL

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 12/08/23 Date Received: 12/01/23

Project: 1816-23001-04, F&BI 312015

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 312015-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	104	104	63-146	0

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	100	77-123

ENVIRONMENTAL CHEMISTS

Date of Report: 12/08/23 Date Received: 12/01/23

Project: 1816-23001-04, F&BI 312015

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 311411-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	<5	83	84	75-125	1
Barium	mg/kg (ppm)	50	62.1	90 b	92 b	75 - 125	2 b
Cadmium	mg/kg (ppm)	10	<5	101	96	75 - 125	5
Chromium	mg/kg (ppm)	50	13.8	99 b	92 b	75 - 125	7 b
Lead	mg/kg (ppm)	50	<5	99	93	75 - 125	6
Mercury	mg/kg (ppm	5	<5	96	91	75 - 125	5
Selenium	mg/kg (ppm)	5	<5	88	80	75 - 125	10
Silver	mg/kg (ppm)	10	<5	93	90	75 - 125	3

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Arsenic	mg/kg (ppm)	10	87	80-120
Barium	mg/kg (ppm)	50	99	80-120
Cadmium	mg/kg (ppm)	10	94	80-120
Chromium	mg/kg (ppm)	50	102	80-120
Lead	mg/kg (ppm)	50	91	80-120
Mercury	mg/kg (ppm)	5	89	80-120
Selenium	mg/kg (ppm)	5	94	80-120
Silver	mg/kg (ppm)	10	90	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 12/08/23 Date Received: 12/01/23

Project: 1816-23001-04, F&BI 312015

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 311366-02 1/30 (Matrix Spike) 1/30

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	121	120	24-163	1
Aroclor 1260	mg/kg (ppm)	0.25	30	$185 \mathrm{b}$	200 b	10-194	8 b

Laboratory Code: Laboratory Control Sample 1/30

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	116	47-158
Aroclor 1260	mg/kg (ppm)	0.25	109	69-141

SAMPLE CHAIN OF CUSTODY, 12/01/

Report To Lynn Green

Company EVREN-NW

Address 40 SE 24th Ave

City, State, ZIP Portland, Oregon 97214

Phone 503-452-5561 Email lynr

Email lynng@evren-nw.com

Project Specific RLs - Yes / No

SAMPLERS (signature)

PROJECT NAME

PO#

| 8|6-77eo - 04

REMARKS

**An Aroclors

INVOICE TO

Rush charges authorized by:

SAMPLE DISPOSAL
Dispose after 30 days
Archive Samples
Other

Ph. (206) 285-8282	Seattle, WA 98119-2029	Friedman & Bruya, Inc.	j				T-0183	EB10-2	8-6093	EB09-2	01-8083	(D08-Z	Sample ID	
Received by:	d by:	Received by:	SIC				06 A.E	20	DIA.E	<i>0</i> 3	03 A.E 11-70-23	10 ZOD 01	Lab ID	
	mylm	fred hall	SIGNATURE				06 A.E 11-30-23 9:14	11-30-73 9.10	01 H. E (1-30-73 8:55	11-30-23 8:40	11-70-23	11-20-23	Date Sampled	
	۲						9:14	9.10			8:32	81:18	Time Sampled	
	Nhan	Jorelan	•				1:05	Soll	1105	1:05	1105	703/	Sample Type	
		2	PRI			 	7	_	2	_	5	1	# of Jars	
	phán	2	PRINT NAME			,	X.	×	\times	R	X	X	NWTPH-Dx	
	3	Monis	AME										NWTPH-Gx	
		15		-				V.,					BTEX EPA 8021	
				-									VOCs EPA 8260 PAHs EPA 8270	AN
\dashv		+-	H				×	X	×	X	X	X	PCBs EPA 8082	ANALYSES
	1400	15				,	X	X	X	X	X	X	RORAG MELANG AN, Ba, Cay Cr, Po, He, 21, M	4.0
	17	bren	COM		Sam									REQUESTED
		Co	COMPANY		amples									ESTI
		6/Min	NA N											Ü
		657			receive									
	12/01/23	St 11-30 3	DATE		lat 2				,				Notes	
	0755	90:81	TIME		.C								es S	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

December 13, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on November 30, 2023 from the 1816-23001-04, F&BI 311404 project. There are 35 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1213R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 30, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1816-23001-04, F&BI 311404 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Evren Northwest
311404 -01	EB01-9
311404 -02	EB02-8
311404 -03	EB03-9
311404 -04	EB04-8
311404 -05	EB05-2
311404 -06	EB05-9.5
311404 -07	EB06-2
311404 -08	EB06-8
311404 -09	EB07-2
311404 -10	EB07-6

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 12/13/23 Date Received: 11/30/23

Project: 1816-23001-04, F&BI 311404

Date Extracted: 11/30/23

Date Analyzed: 11/30/23 and 12/01/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-}\text{C}_{25})}$	Residual Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
EB01-9 311404-01	<50	<250	92
EB02-8 311404-02	<50	<250	94
EB03-9 311404-03	<50	<250	96
EB04-8 311404-04	<50	<250	98
EB05-2 311404-05	<50	<250	97
EB05-9.5 311404-06	<50	<250	95
EB06-2 311404-07	<50	<250	95
EB06-8 311404-08	<50	<250	96
EB07-2 311404-09	<50	<250	96
EB07-6 311404-10	<50	<250	95
Method Blank 03-2771 MB	<50	<250	93

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 12/01/23
 Lab ID:
 311404-01

 Date Analyzed:
 12/01/23
 Data File:
 311404-01.111

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 1.72
Barium 133
Cadmium <1
Lead 4.73

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB01-9 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 10.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-02

 Date Analyzed:
 12/01/23
 Data File:
 311404-02.112

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte:	Concentration mg/kg (ppm)
Arsenic	2.25
Barium	94.3
Cadmium	<1
Chromium	6.00
Lead	1.57
Mercury	<1
Selenium	<1

Silver

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB03-9 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Cheffi ID. Evien Northwest	Client ID:	EB04-8	Client:	Evren Northwest
----------------------------	------------	--------	---------	-----------------

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-04

 Date Analyzed:
 12/01/23
 Data File:
 311404-04.114

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 1.74 Barium 58.7 Cadmium <1 7.27 Chromium Lead 3.86 Mercury <1 Selenium <1 Silver <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB05-2 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)Arsenic 2.50

 Barium
 252

 Cadmium
 <1</td>

 Lead
 6.04

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB05-2 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 22.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB05-9.5 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-06

 Date Analyzed:
 12/01/23
 Data File:
 311404-06.116

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.74

 Barium
 85.2

 Cadmium
 <1</td>

 Lead
 1.85

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB05-9.5 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 8.36

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-07

 Date Analyzed:
 12/01/23
 Data File:
 311404-07.117

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

Arsenic 2.08
Barium 192

 Cadmium
 <1</td>

 Lead
 8.27

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB06-2 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-07 x5

 Date Analyzed:
 12/04/23
 Data File:
 311404-07 x5.109

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 16.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB06-8 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-08

 Date Analyzed:
 12/01/23
 Data File:
 311404-08.118

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

 $\begin{array}{cc} & & Concentration \\ Analyte: & & mg/kg \ (ppm) \end{array}$

 Arsenic
 2.72

 Barium
 161

 Cadmium
 <1</td>

 Lead
 2.97

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB06-8 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-08 x5

 Date Analyzed:
 12/04/23
 Data File:
 311404-08 x5.110

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 12.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID:	EB07-2	Client:	Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-09

 Date Analyzed:
 12/01/23
 Data File:
 311404-09.119

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Analyte: Concentration mg/kg (ppm)

 Arsenic
 4.19

 Cadmium
 <1</td>

 Lead
 6.89

 Mercury
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB07-2 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Barium 227 Chromium 22.8

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 11/30/23
 Lab ID:
 311404-10

 Date Analyzed:
 12/01/23
 Data File:
 311404-10.123

 Matrix:
 Soil
 Instrument:
 ICPMS2

<1

<1

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic 2.69
Barium 175
Cadmium <1
Lead 3.09
Mercury <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: EB07-6 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Chromium 11.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 1816-23001-04, F&BI 311404

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration mg/kg (ppm)

Arsenic <1 Barium <1 Cadmium <1 Chromium <1 Lead <1 Mercury <1 Selenium <1 Silver <1

Analyte:

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB01-9 Client: **Evren Northwest**

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-01 1/30 Date Analyzed: 12/01/23 Data File: 120119.D Matrix: Soil GC9 Instrument: mg/kg (ppm) Dry Weight Units: Operator: AL

Upper Limit: Lower

Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 $\begin{array}{c} 78 \\ 77 \end{array}$ 11 Decachlorobiphenyl $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB02-8 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-02 1/30 Date Analyzed: 12/01/23 Data File: 120120.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 72 11 184 Decachlorobiphenyl 78 25 127

< 0.02

< 0.02

< 0.02

Aroclor 1260

Aroclor 1262

Aroclor 1268

22

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB03-9 Client: **Evren Northwest**

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-03 1/30 Date Analyzed: 12/01/23 Data File: 120121.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Upper Limit: Lower

Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 59 11 Decachlorobiphenyl 89 $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB04-8 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-04 1/30 Date Analyzed: 12/01/23 Data File: 120122.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 58 11 184
Decachlorobiphenyl 79 25 127

Concentration Compounds: mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB05-2 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-05 1/30 Date Analyzed: 12/01/23 Data File: 120123.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 40 11 184 Decachlorobiphenyl 79 25 127

< 0.02

< 0.02

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 0.037

Aroclor 1262

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB05-9.5 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-06 1/30 Date Analyzed: 12/01/23 Data File: 120124.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 78 11 184 Decachlorobiphenyl 79 25 127

< 0.02

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB06-2 Client: **Evren Northwest**

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-07 1/30 Date Analyzed: 12/01/23 Data File: 120125.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Lower

Upper Limit: Surrogates: Tetrachlorometaxylene % Recovery: Limit: 184 $\begin{array}{c} 52 \\ 87 \end{array}$ 11 Decachlorobiphenyl $\overline{25}$ 127

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02

Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 0.029 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB06-8 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-08 1/30 Date Analyzed: 12/01/23 Data File: 120126.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 48 11 184 Decachlorobiphenyl 85 25 127

0.12

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.02
Aroclor 1232 <0.02
Aroclor 1016 <0.02
Aroclor 1242 <0.02
Aroclor 1248 <0.02
Aroclor 1254 <0.02

Aroclor 1260

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB07-2 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-09 1/30 Date Analyzed: 12/01/23 Data File: 120127.DMatrix: Soil GC9 Instrument: Units: mg/kg (ppm) Dry Weight Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 45 11 184 Decachlorobiphenyl 76 25 127

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.02

Aroclor 1232 <0.02

Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: EB07-6 Client: Evren Northwest

Date Received: 11/30/23 Project: 1816-23001-04, F&BI 311404

Date Extracted: 12/01/23 Lab ID: 311404-10 1/30 Date Analyzed: 12/01/23 Data File: 120128.DMatrix: Soil GC9 Instrument: mg/kg (ppm) Dry Weight Units: Operator: AL

Surrogates: Lower Upper Limit: Limit:

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 43 11 184 Decachlorobiphenyl 83 25 127

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1816-23001-04, F&BI 311404

 Date Extracted:
 12/01/23
 Lab ID:
 03-2773 mb 1/30

 Date Analyzed:
 12/01/23
 Data File:
 120106.D

Matrix: Soil Instrument: GC9
Units: mg/kg (ppm) Dry Weight Operator: AL

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.02 Aroclor 1232 < 0.02 Aroclor 1016 < 0.02 Aroclor 1242 < 0.02 Aroclor 1248 < 0.02 Aroclor 1254 < 0.02 Aroclor 1260 < 0.02 Aroclor 1262 < 0.02 Aroclor 1268 < 0.02

ENVIRONMENTAL CHEMISTS

Date of Report: 12/13/23 Date Received: 11/30/23

Project: 1816-23001-04, F&BI 311404

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 311398-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	12,000	80 b	140 b	64-136	55 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	104	78-121

ENVIRONMENTAL CHEMISTS

Date of Report: 12/13/23 Date Received: 11/30/23

Project: 1816-23001-04, F&BI 311404

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Arsenic	mg/kg (ppm)	10	90	87	80-120	3
Barium	mg/kg (ppm)	50	100	95	80-120	5
Cadmium	mg/kg (ppm)	10	100	94	80-120	6
Chromium	mg/kg (ppm)	50	113	103	80-120	9
Lead	mg/kg (ppm)	50	104	94	80-120	10
Mercury	mg/kg (ppm)	5	95	86	80-120	10
Selenium	mg/kg (ppm)	5	99	97	80-120	2
Silver	mg/kg (ppm)	10	98	92	80-120	6

ENVIRONMENTAL CHEMISTS

Date of Report: 12/13/23 Date Received: 11/30/23

Project: 1816-23001-04, F&BI 311404

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 311366-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Control	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Limits	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.25	< 0.02	121	120	24-163	1
Aroclor 1260	mg/kg (ppm)	0.25	30	$185 \mathrm{b}$	200 b	10-194	8 b

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Aroclor 1016	mg/kg (ppm)	0.25	116	47-158
Aroclor 1260	mg/kg (ppm)	0.25	109	69-141

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Lynn Green

Address 40 SE 24th Ave Company_EVREN-NW

Phone 503-452-5561 City, State, ZIP Portland, Oregon 97214

Email lynng@evren-nw.com

Project Specific RLs - Yes / No

REMARKS

SAMPLE CHAIN OF CUSTODY PROJECT NAME SAMPLERS (signature) 1816-230011 8 PO#

INVOICE TO Rush charges authorized by: Standard Turnaround RUSH_

11/30/23 N3/03

Page # TURNAROUND TIME

SAMPLE DISPOSAL Dispose after 30 days

Archive Samples

Lab III Date Sampled Sample # of D. D. D. D. D. Notes Sampled Type Jarrs Type Type Jarrs Type	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 16th Avenue West	Friedman & Bruya, Inc.		6-4083	2-4083	CB06-8	CB06-2	5.B-5283	5805-2	8-4083	6-2083	6807-8	CB01-9	Sample ID		
Time Sample # of Holy ANALYSES REQUESTED I 10:08 So	Received by:	Relinquished by:	Received by:	Relinquished by:	SIG	A-E	·	08 A-E	67	06 A-E		V			01A-E	Lab ID		
ANALYSES BEQUESTED ANALYSES BEQUESTED ANALYSES BEGUESTED ANALYSES BEGUESTED ANALYSES BEGUESTED ANALYSES BEGUESTED ANALYSES BEGUESTED ANALYSES BEGUESTED Note Type Jar's NWTPH-Dx NWTPH-Gx NWTPH-Gx BTEX EPA 8021 VOCs EPA 8260 PAHs EPA 8270 ANALYSES BEGUESTED Note COMPANY PCBS EPA 8082 ANALYSES BEGUESTED Note Soll Sample Jar's NWTPH-Dx NWTPH-Dx NWTPH-Gx PANH PH AN F8b Ultra 6 MINN ANALYSES BEGUESTED Note 1130/833			0 /4	Um !//	NATURE	11-19-23	11-29-23	52.62-1	1.29.23			11-19:23	1-29-23	11-19-13		Date Sampled		
ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED NWTPH-Dx NWTPH-Gx BTEX EPA 8021 VOCs EPA 8260 PAHs EPA 8270 PAHs EPA 8270 PAHs EPA 8082 PAHs EPA 8082 ANALYSES REQUESTED Note Office of the part of the			1			14:04	13:59	34:51	13:39	13:33	'	12:40	12:03		10:08	Time Sampled		
ANALYSES BEQUESTED ANALYSES BERGUESTED ANALYSES BERGUESTED ANALYSES BERGUESTED NOTH-Ox NWTPH-Ox NWTPH-Gx BTEX EPA 8021 VOCs EPA 8260 PAHs EPA 8270 PCBs EPA 8082 An in				4			1.85	1,03	50:1	501/	103	1:03	50:1	5011	50-1	Sample Type		
ANALYSES REQUESTED ANALYSES REQUESTED ANALYSES REQUESTED NOTE			+	orde	PRII	3	_	2	-	2	_	2	5	1	24	# of Jars	*sa = s	
ANALYSES PAHS EPA 8021 VOCS EPA 8260 PAHS EPA 8082 PCBS EPA 80			2	تخ	NIN	X	×	X.	X	X	X	\times	X	×	X	NWTPH-	Dx	
ANALYSES PAHS EPA 8021 VOCS EPA 8260 PAHS EPA 8082 PCBS EPA 80			P	2	AME								Į.			NWTPH-	Gx	
PAHS EPA 8270 PAHS EPA 8082 PCBs EPA 8082 PCBs EPA 8082 X X X X X X X X X X X X X				ON														
Note Os receivod at U-19-17 U30/23			R	Ž												VOCs EPA	8260	AN
Note Os receivod at U-19-17 U30/23					H	X	X	X.	X	×	2	X	X	×	X	PCBs EPA	8082	ALY
Note Os receivod at U-19-17 U30/23	`			5		X	X	X	X	X	X	X	X	\overline{Z}	X	PERAB Meter	Ph Ha	ES.
Note Os receivod at U-19-17 U30/23			27	E	COM		`			-			,			2. 90 1 301 70	·)	TEQU
Note Os receivod at U-19-17 U30/23			6	_	PAN		Sar											ESTE
				in h	Y		nple											Ď
				Est			(1)											
			1130/23	11-19-11	DATE											Not		
				18:0	TIME		-									S		