LINN COUNTY, OREGON E-EAS

2023-04078

Cnt=2 Stn=10130 COUNTER 04/17/2023 10:01:22 AM

\$290.00 \$5.00 \$11.00 \$60.00 \$19.00

0 \$19.00 **\$395.**

00455227202300040780580580 I, Steve Druckenmiller, County Clerk for Linn County, Oragon, certify that the instrument identified herein was recorded in the Clerk

Steve Druckenmiller - County Clerk

Space above this line for Recorder's use,

After recording, return to:

Grantee

Oregon DEQ 4026 Fairview Industrial Dr. SE Salem, OR 97302 Attention: Nancy Sawka Grantor

Will Payne Sierra Cascade Forest Products, LLC PO Box 2404 Santa Rosa, CA 95405

EASEMENT AND EQUITABLE SERVITUDES

This grant of Easement and acceptance of Equitable Servitudes ("EES") is made on 0.3 -\0., 203 between Sierra Cascade Forest Products, LLC ("Grantor") and the State of Oregon, acting by and through the Oregon Department of Environmental Quality ("DEQ" or "Grantee").

RECITALS

- A. Grantor is the owner of certain real property located at 40919 16th Street, Lyons, Oregon on Linn County Map and Tax Lots 09S02E19D000902, 09S02E20C001201 and 09S02E20C001300 (the "*Property*") the location of which is more particularly described in Exhibit A to this EES. The Property is referenced under the name Shaniko Lumber, ECSI #2387 in the files of DEQ's Environmental Cleanup Program Western Region office located at 4026 Fairview Industrial Dr. SE, Salem, Oregon, and telephone 503-378-8240. Interested parties may contact the Western Region office to review a detailed description of the risks from contamination remaining at the Property and described in the September 2022 *Remedial Action Report* prepared by PBS Engineering and Environmental, Inc.
- B. In September 2021, the Director of the Oregon Department of Environmental Quality or delegate specified a remedial action for the Property in the Scope of Work for a Perspective Purchaser Agreement Order on Consent (DEQ No. 20-12) for the Property. The Order on Consent was recorded with the Property with the Linn County Clerk on October 14, 2021. The remedial action requires the following conditions through this EES: 1) except for the existing water supply well, groundwater use from beneath the Property is prohibited on tax lot 902, 2) a contaminated media management plan (CMMP) has been prepared and must be implemented during any excavation, construction, development and/or subsurface work on the Property and 3) annual sampling of the existing water supply well is required.

- C. This EES is intended to further the implementation of the selected remedial action and protect human health and the environment.
- D. Nothing in this Easement and Equitable Servitude constitutes an admission by Grantor of any liability for the contamination described in the Easement and Equitable Servitude.

1. **DEFINITIONS**

- 1.1 "Beneficial use" has the meaning set forth in OAR 340-122-0115.
- "DEQ" means the Oregon Department of Environmental Quality, and its employees, agents, and authorized representatives. "DEQ" also means any successor or assign of DEQ under the laws of Oregon, including but not limited to any entity or instrumentality of the State of Oregon authorized to perform any of the functions or to exercise any of the powers currently performed or exercised by DEQ.
- 1.3 "Owner" means any person or entity, including Grantor, who at any time owns, occupies, or acquires any right, title, or interest in or to any portion of the Property or a vendee's interest of record to any portion of the Property, including any successor, heir, assign or holder of title or a vendee's interest of record to any portion of the Property, but excluding any entity or person who holds such interest solely for the security for the payment of an obligation and does not possess or control use of the Property.
- 1.4 "Remedial Action" has the meaning set forth in ORS 465.200 and OAR 340-122-0115.

2. GENERAL DECLARATION

- 2.1 Grantor, in consideration of Grantee's issuance of Certification of Completion on the Order on Consent, grants to DEQ an Easement for access and accepts the Equitable Servitudes described in this instrument and, in so doing, declares that the Property is now subject to and must in future be conveyed, transferred, leased, encumbered, occupied, built upon, or otherwise used or improved, in whole or in part, subject to this EES.
- 2.2 Each condition and restriction set forth in this EES touches and concerns the Property and the equitable servitudes granted in Section 3 and easement granted in Section 4 below, runs with the land for all purposes, is binding upon all current and future owners of the Property as set forth in this EES, and inures to the benefit of the State of Oregon. Grantor further conveys to DEQ the perpetual right to enforce the conditions and restrictions set forth in this EES.

3. EQUITABLE SERVITUDES (REQUIRED ACTIONS AND RESTRICTIONS ON USE)

3.1. **Groundwater Use Restriction.** Except for the existing water well (Linn 1542), the Owner may not extract through wells or by other means or use the groundwater on Map and Tax Lot 09S02E19D000902 at the Property for consumption or other beneficial use without prior written approval by DEQ. This prohibition does not apply to extraction of groundwater associated with groundwater treatment or monitoring activities approved by DEQ or to temporary dewatering activities related to construction, development, or the installation of sewer or utilities at the Property. Owner must conduct a waste determination on any groundwater that is

extracted during such monitoring, treatment, or dewatering activities and handle, store and manage wastewater according to applicable laws.

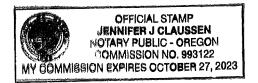
- 3,2 Contaminated Media Management Plan. The Owner must implement or have implemented the November 2022 CMMP prepared by PBS Engineering and Environmental, Inc. prior to conducting or having any subsurface work or development conducted on the Property. The Owner should notify DEQ at least 14 days prior to starting any development or subsurface activities and provide written plans for DEQ review. Construction and excavation workers working on the Property should be provided and familiar with the CMMP. A copy of the CMMP is in Exhibit B.
- 3.3 Water Supply Well Sampling. The Owner must have the existing water supply well (Linn 1542) sampled on an annual basis and in accordance with the schedule, procedures, laboratory analyses and reporting requirements describe in the September 23, 2022, *Drinking Water Well Sampling and Analysis Plan*, prepared by PBS Engineering and Environmental. A copy of the plan is in Exhibit C.
- 3.4 **Use of Property.** Owner may not occupy or allow other parties to occupy the Property unless the controls listed in this Section 3 are maintained.

4. EASEMENT (RIGHT OF ENTRY)

During reasonable hours and subject to reasonable security requirements, DEQ may enter upon and inspect any portion of the Property to determine whether the requirements of this EES have been or are being complied with. Except when necessary to address an imminent threat to human health or the environment, DEQ will use its best efforts to notify the Owner 72 hours before DEQ entry to the Property. DEQ may enter upon the Property at any time to abate, mitigate, or cure at the expense of the Owner the violation of any condition or restriction contained in this EES, provided DEQ first gives written notice of the violation to Owner describing what is necessary to correct the violation and Owner fails to cure the violation within the time specified in such notice. Any such entry by DEQ to evaluate compliance or to abate, mitigate, or cure a violation may not be deemed a trespass.

5. RELEASE OF RESTRICTIONS

- 5.1. Owner may request release of any or all of the conditions or restrictions contained in this EES by submitting such request to the DEQ in writing with evidence that the conditions or restrictions are no longer necessary to protect human health and the environment. The decision to release any or all of the conditions or restrictions in this EES will be within the sole discretion of DEQ.
- 5.2. Upon a determination pursuant to Subsection 5.1, DEQ will, as appropriate, execute and deliver to Owner a release of specific conditions or restrictions, or a release of this EES in its entirety.


6. GENERAL PROVISIONS

- 6.1. Notice of Transfer/Change of Use. Owner must notify DEQ within 10 days after the effective date of any conveyance, grant, gift, or other transfer, in whole or in part, of Owner's interest in or occupancy of the Property. Such notice must include the full name and address of the Party to whom Owner has transferred an interest or right of occupancy. In addition, Owner must notify DEQ a minimum of 10 days before the effective date of any change in use of the Property that might expose human or ecological receptors to hazardous substances. Such notice must include complete details of any planned development activities or change in use. Notwithstanding the foregoing, Owner may not commence any development inconsistent with the conditions or restrictions in Section 3 without prior written approval from DEQ as provided in Subsection 3 of this EES or removal of the condition or restriction as provided in Subsection 5.1. This subsection does not apply to the grant or conveyance of a security interest in the Property.
- 6.2. **Zoning Changes.** Owner must notify DEQ no less than 30 days before Owner's petitioning for or filing of any document initiating a rezoning of the Property that would change the base zone of the Property under the Linn County zoning code or any successor code. As of the date of this EES, the base zone of the Property is Industrial.
- 6.3. Cost Recovery. Owner will pay DEQ's costs for review and oversight of implementation of and compliance with the provisions in this EES, including but not limited to periodic review and tracking of actions required by this EES. This EES constitutes the binding agreement by the Owner to reimburse DEQ for all such eligible review and oversight costs. DEQ will establish a cost recovery account for tracking and invoicing DEQ project costs. DEQ will provide the Owner with a monthly statement and direct labor summary. DEQ costs will include direct and indirect costs. Direct costs include site-specific expenses and legal costs. Indirect costs are those general management and support costs of the State of Oregon and DEQ allocable to DEQ oversight of this EES and not charged as direct site-specific costs. Indirect charges are based on actual costs and are applied as a percentage of direct personal services costs.
- 6.4. **Reference in Deed**. A reference to this EES, including its location in the public records, must be recited in any deed conveying the Property or any portion of the Property. Each condition and restriction contained in this EES runs with the land so burdened until such time as the condition or restriction is removed by written certification from DEQ, recorded in the deed records of the County in which the Property is located, certifying that the condition or restriction is no longer required to protect human health or the environment.
- 6.5. **Effect of Recording**. Upon the recording of this EES, all future Owners are conclusively deemed to have consented and agreed to every condition and restriction contained in this EES, whether or not any reference to this EES is contained in an instrument by which such person or entity occupies or acquires an interest in the Property.
- 6.6. **Enforcement and Remedies**. Upon any violation of any condition or restriction contained in this EES, the State of Oregon, in addition to the remedies described in Section 4, may enforce this EES or seek available legal or equitable remedies to enforce this EES, including civil penalties as set forth in ORS 465.900.

6.7. **IN WITNESS WHEREOF** Grantor and Grantee have executed this Easement and Equitable Servitude as of the date and year first set forth above.

BY SIGNATURE BELOW, THE STATE OF OREGON APPROVES AND ACCEPTS THIS CONVEYANCE PURSUANT TO ORS 93.808.

GRANTOR: Sierra Cascade Forest Pro	·
By:	Date.
STATE OF OREGON) ss.	
) ss. County of)	
, 20, by Will Payne	nowledged before me this day of as Member of Sierra Cascade Forest Products, on
its behalf.	·
	NOTARY PUBLIC FOR OREGON My commission expires:
GRANTEE: State of Oregon, Department	ent of Environmental Quality
By: Mancy A. Sawka, Acting Cleanup Mana	Date: <u>/2-20-2022</u> ager, Western Region
STATE OF OREGON)	
STATE OF OREGON) ss. County of Maxion)	
The foregoing instrument is ack	nowledged before me this 2011 day of awka as Acting Western Region Cleanup mental Quality, on its behalf.

NOTARY POBLIC FOR OREGON
My commission expires: 10-27-2023

6.7. **IN WITNESS WHEREOF** Grantor and Grantee have executed this Easement and Equitable Servitude as of the date and year first set forth above.

BY SIGNATURE BELOW, THE STATE OF OREGON APPROVES AND ACCEPTS THIS CONVEYANCE PURSUANT TO ORS 93,808.

GRANTOR: Sierra Cascade Forest Products, LLC	
By: Will Payne, Member	_ Date: <u>03-10-23</u>
STATE OF OREGON)	
County of Linn) ss.	
The foregoing instrument is acknowledged before its behalf. Will Payne as Member of Side CERTIFICATED	e me this day of erra Cascade Forest Products, on
	LIC FOR OREGON
wiy commission	n expires:
By: A Sawka, Acting Cleanup Manager, Western Reg	ntal Quality Date: <u>/2-20-2</u> 022 gion
STATE OF OREGON)	
STATE OF OREGON) ss. County of Marion)	
The foregoing instrument is acknowledged before December, 2022, by Nancy A. Sawka as Acting V. Manager of the Oregon Department of Environmental Quality, or	Vestern Region Cleanup

EXHIBIT A

Legal Description of the Property

Map: 09S02E19D

Tax Lot: 902

Account# 4495

Pacific Railroad ri Southeast Quarte County, Oregon; Road from Lyons	ght of way; Beginning at the er Section 19, Township 9 S thence East 15.75 chains; to to Rock Creek; thence Sout I County Road 10.02 chains	tract lying South of the Southerly Southwest corner of the East half touth of Range 2 East of the Willathence North 31.95 chains to the th 88° West 5.75 chains; thence North a point due North of the point	of the East half of the mette Meridian, Linn center of the County Jorth 85° West along
Property #2	Account# 5484	Map: 09S02E20C	Tax Lot: 1201
Doninaina 270 E	fact Each of the Couthwest a	arner of Section 30 in Township O	Courts Dance 2 Each

Beginning 379.5 feet East of the Southwest corner of Section 20, in Township 9 South, Range 2 East of the Williamette Meridian, Linn County, Oregon; thence East 662.5 feet to the Southwest corner of that tract of land conveyed to the Wren Lumber Company by deed recorded February 13, 1930 in Book 135, age 290 Deed Records; thence North 1212.5 feet to the South line of the Southern Pacific Railroad right of way; thence North 74° 45′ West along said right of way to a point North of the point of beginning; thence South 1403 feet to the point of beginning.

Property #3 Account# 5492 & 926346 Map: 09S02E20C Tax Lot: 1300

Beginning at a point on the South line of and East 15.68 chains distant from the Southwest corner of Section 20, Township 9 South, Range 2 East of the Willamette Meridian, Linn County, Oregon; thence East 4.32 chains to the Southwest corner of the East half of the Southwest Quarter of said Section 20; thence North parallel with the West line of said Section, 31 chains to the Fox Valley County Road; thence Westerly along South line of said road, 10 feet; thence South parallel with the West line of said Section 806 feet to the South line of the Southern Pacific Railroad right of way; thence North 74 3/4° West along the South line of said Railroad right of way 4.23 chains to a point 15.68 chains East of West line of said Section 20; thence South, parallel with the west line of Section 20, a distance of 1212.5 feet to the place of beginning.

SAVE AND EXCEPT therefrom the right of way the Southern Pacific Railroad Company

ACKNOWLEDGMENT

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California County ofSanta Cruz)
On 03/10/2023	before me, Connie G Vargas, Notary Public (insert name and title of the officer)
personally appearedWilliam Pa	,
who proved to me on the basis of s subscribed to the within instrument his/her/their authorized capacity(ies	satisfactory evidence to be the person(s) whose name(s) is/are t and acknowledged to me that he/she/they executed the same in s), and that by his/her/their signature(s) on the instrument the f of which the person(s) acted, executed the instrument.
I certify under PENALTY OF PERJ paragraph is true and correct.	JURY under the laws of the State of California that the foregoing
WITNESS my hand and official sea	CONNIE G, VARGAS COMM. #2383761 SUTARY PUBLIC - CALIFORMA SANTA CRUZ COUNTY My Commission Expires 07/29/2025
Signature Commile G	Vargad (Seal)

Anderse services and services and and a services a

EXHIBIT B

Contaminated Media Management Plan

Contaminated Media Management Plan

Former Shaniko Lumber Property 40919 16th Street Lyons, Oregon 97358 ECSI# 2387

Prepared for:

Sierra Cascade Forest Products 42565 Valley View Drive Scio, Oregon 97374

November 2022 PBS Project 22925.001

Table of Contents

1	INTRODUCTION	
	1.1 Purpose of Plan	1
	1.2 Site Description	1
	1.3 Project Background	1
	1.4 Key Personnel	
2	PREVIOUSLY IDENTIFIED ENVIRONMENTAL CONDITIONS	
3	AREAS REQUIRING MANAGEMENT	3
	3.1 Distribution of Contamination in Soil	3
	3.1.1 AEI 1: Truck Shop and Former Diesel ASTs	3
	3.1.2 AEI 2: Staining East of Finger Joint Building (Former Drum Storage Area)	3
	3.1.3 AEI 10: Former Cone Burner	
	3.2 Distribution of Contamination in Groundwater	
	3.3 Primary Contaminants of Interest	
4	RISK SUMMARY	5
5	HEALTH AND SAFETY INFORMATION	5
6	SOIL MANAGEMENT	5
	6.1 Field Screening for Contaminated Media	5
	6.2 Soil Handling Procedures	6
	6.3 Soil Sampling Procedures	7
	6.3.1 Sample Frequency	7
	6.3.2 Sample Collection and Handling	7
	6.3.3 Sample Identification	
	6.3.4 Laboratory Analysis	8
	6.3.5 Sample Delivery and Schedule	8
	6.3.6 Sample Custody	9
	6.3.7 Sample Containers and Coolers	9
	6.4 Transportation and Disposal of Contaminated Soil	
7	MANAGEMENT OF STORMWATER AND GROUNDWATER	
8	FUGITIVE DUST AND DUST CONTROL	
9	UST MANAGEMENT	
10	PROJECT PROTOCOLS	
	10.1 Compliance with Applicable Environmental Laws and Regulations	
	10.2 Recordkeeping	
	10.3 Unforeseen Conditions	11
	10.4 Hazardous Materials	11
11	ASSUMPTIONS AND LIMITATIONS	11

Supporting Data

FIGURES

Figure 1. Vicinity Map

Figure 2. Site Plan

Figure 3. Detailed Site Plan

Figure 4. AEI 1 Truck Shop and Diesel AST Area

Figure 5. AEI 2 Stained Soil Area

Figure 6. AEI 10 Former Cone Burner

APPENDICES

Appendix A: Previous Soil Analytical Information - Soil Analytical Tables

Table 1. Summary of Soil Analytical Results – TPH and Metals

Table 2. Summary of Soil Analytical Results – VOCs

Table 3. Summary of Soil Analytical Results – PAHs and Pentachlorophenol

Table 4. Summary of Soil Analytical Results – PCBs and Formaldehyde

Table 5. Summary of Soil Analytical Results – Pesticides and Herbicides

Table 6A. Summary of Soil Sample Analytical Results – Dioxins/Furans (ND = 0)

Table 6B. Summary of Soil Sample Analytical Results – Dioxins/Furans (ND = 0.5 EDL by TEF)

Table 6C. Summary of Soil Sample Analytical Results – Dioxins/Furans (ND = EDL by TEF)

Table 7. Summary of Sediment Analytical Results – TPH and Metals

Table 8. Summary of Sediment Analytical Results – PCBs and Formaldehyde

Table 9. Summary of Sediment Analytical Results – PAHs

Appendix B: Previous Groundwater Analytical Information – Groundwater Analytical Tables

Table 10. Summary of Groundwater Analytical Results – TPH and VOCs

Table 11. Summary of Groundwater Analytical Results – PAHs and Pentachlorophenol

Table 12. Summary of Groundwater Analytical Results – PCBs and Formaldehyde

Appendix C: Previous Soil and Groundwater Analytical Information - Laboratory Reports

January 2021 Site Assessment Reports May 2021 Additional Site Assessment Reports June 2022 Remedial Action Reports

©2022 PBS Engineering and Environmental Inc.

1 INTRODUCTION

1.1 Purpose of Plan

PBS Engineering and Environmental Inc. (PBS) has completed this Contaminated Media Management Plan (CMMP or Plan) to facilitate proper management of potentially impacted media that may be encountered during redevelopment of the former Shaniko Lumber Property in Lyons, Oregon (Site).

1.2 Site Description

The Site is currently owned by Sierra Cascade Forest Products (SCFP) and consists of three parcels of land comprising 37 acres, 19.87 acres, and 8 acres, or approximately 65 acres in total. The Site is distributed across parts of Section 19 and 20 of Township 9 South, Range 2 East of the Willamette Base and Meridian (Figure 1). The address associated with the property is 40919 16th Street, Lyons, Oregon. The Site is bounded to the north by railroad tracks which also offer access to the property via crossings on 18th Street and 21st Street (Figure 2).

The Site is approximately 700 feet above mean sea level, and it is located approximately 0.5 mile to the south of the westward-flowing Santiam River. The western one-third and southern one-half of the property are generally vacant and heavily vegetated, with two ponds, standing water, and dug channels present on the west side. The remaining area, primarily in the north-central and northeastern portion of the property, was developed for wood products manufacturing (Figure 3).

1.3 Project Background

SCFP will be redeveloping the property for its use manufacturing decorative wood products. SCFP initially plans to occupy the large manufacturing building on the property's east side, however other buildings will be used for storage of manufacturing supplies and finished products. This plan is intended to communicate the risk to construction and excavation workers, and provide recommendations for how to screen, handle, and dispose of contaminated media that may be encountered during the planned redevelopment activities.

1.4 Key Personnel

Key personnel for the project are identified in the following table.

Key Personnel

Company	Name and Title	Contact Information
Property Owner	Adam Burton	Cell: 716.374.2996
Sierra Cascade Forest Products	Operations Manager	
Construction Manager	TBD	Office:
TBD		Cell:
General Contractor (GC)	TBD	Office:
TBD		
Environmental Consultant (EC)	Bret Waldron, RG	Office: 503.935.5514
PBS Engineering and	Senior Geologist	
Environmental Inc.		

2 PREVIOUSLY IDENTIFIED ENVIRONMENTAL CONDITIONS

Previous investigations were completed to characterize known or suspected contamination at the site; however, the following section describes findings relevant to contamination known to still be present on the property that may be encountered during construction and excavation activities. Tables presenting results for

all site samples (Tables 1 through 9) and laboratory reports (Appendix C) are provided as attachments to assist in future waste permitting, as needed.

PBS completed several environmental scopes of work at the site between 2019 and 2022 focusing on evaluation and investigation of potential Areas of Interest (AOI) across the site. In 2021, following completion of site assessment activities related to obtaining a Prospective Purchaser Agreement (PPA) for the site, PBS oversaw remedial activities in the following AOI:

- Area of Environmental Interest (AEI) 2: Stained Surface Soil East of Finger Joint Building (former drum storage area). PBS oversaw removal of the upper 6 inches of soil contaminated with polychlorinated biphenyls (PCBs) and petroleum hydrocarbons in an area measuring 30 by 70 feet (Figure 5), Confirmation samples indicated that there is no residual risk to occupational, construction, or excavation workers; however, one sample, COMP-10, exceeded clean fill criteria, indicating that it cannot be transported off site for unrestricted use.
- AEI 15: Mounded Soil and Debris Pile. Following removal of the pile to Visqueen sheeting and over
 excavation to approximately 4 to 6 inches below ground surface (bgs), a four-point composite sample
 (COMP-7) was collected from the excavation base. The sample confirmed contamination had been
 sufficiently excavated and the pile could be disposed as nonhazardous waste at a licensed Subtitle D
 landfill. PBS concluded that excavation conducted in this area was successful in removing all residual
 contaminated soil. Soil requiring management is no longer present in this area.

As well, PBS completed multiple assessment activities in AEI 1, located on the northwest corner of the site, related to residual soil and groundwater contamination present in this area resulting from historic releases from former aboveground fueling tanks. PBS noted the following conditions in this AEI area:

- Petroleum-containing soil (PCS) was present at depths as shallow as 1 foot bgs to approximately 14 feet bgs. Petroleum impacts in soil dissipated quickly given the shallow seasonal groundwater table, where groundwater was observed at approximately 1 foot bgs in January, and at approximately 6 to 8 feet bgs in May. Soil samples collected from the areas and depths of the highest contamination, as indicated by field screening, yielded sample concentrations of diesel-range total petroleum hydrocarbons (TPH) ranging from 2,240 milligrams per kilogram (mg/kg) to 6,990 mg/kg, which exceeded construction worker Risk Based Concentrations (RBCs) for direct contact. This area is located on the north side of the former aboveground storage tank (AST) containment basin and south of the truck shop.
- Dissolved diesel-range impacts range from 14,400 micrograms per liter (µg/L) to 59,700 µg/L in the area between the AST containment area and the truck shop. These concentrations exceeded the solubility limit for diesel in groundwater. A petroleum sheen was observed on groundwater; however, free product was not observed in any of the borings or test pits.
- Soil and groundwater impacts dissipated quickly and do not extend as far north as boring B3, centrally located inside the truck shop. The network of test pits and borings delineated the soil and groundwater plume in this area, and impacts are localized and are not migrating off site.
- Concentrations were below applicable occupational RBCs, indicating that a protective soil cap was
 unnecessary. The lateral extent of the contaminated soil and groundwater is primarily located on the
 north side of the former diesel-fuel ASTs.

Dioxins at the Property:

• Low concentrations of dioxins were observed across the property. These were specifically sampled for at the stained soil area (AEI 2), former cone burner (AEI 10), and mounded soil and debris area

(AEI 15). According to DEQ, the resulting concentrations are similar to those collected from other sites in the area and are not indicative of a release of dioxins on the property due to the site's previous use. The concentrations are below RBCs protective of human health and do not pose a risk to the environment; however, the concentrations exceeded clean fill criteria and the soil from these areas are not suitable for transportation off site for unrestricted use.

3 AREAS REQUIRING MANAGEMENT

Areas that will require contaminated media management include the AEI 1: Truck Shop and Former Diesel ASTs, AEI 2: Staining East of the Finger Joint Building (former drum storage), and AEI 10: Former Cone Burner.

Contaminated soil in these areas can be left in place and does not pose a risk to current or future occupational workers. If intrusive activities occur in these areas and soil is generated that cannot be managed in place, the soil management strategies for the various contaminated areas differ.

Contaminated soil in the AEI 1 area should be disposed of off site and disposed as solid waste at a Subtitle D landfill. Disposal of soil generated from the AEI 2 or AEI 10 areas may go to a Subtitle D landfill or as an alternative soil from these two areas may be further characterized to determine the appropriate disposal option.

Excavation activities in the AEI 1 area may require dewatering during the wet winter months. PBS recommends completing intrusive excavation activities during the drier summer months, if possible, to avoid perched groundwater conditions and the need for dewatering. If dewatering is necessary, water should be containerized and sampled to determine the appropriate disposal method. Containerization and sampling procedures are described in section 7.

Soil outside of the known areas of contamination should be evaluated in accordance with current Department of Environmental Quality (DEQ) Clean Fill Determination recommendations to determine if the soil meets clean fill criteria or must be managed and disposed as solid waste. Sampling procedures are described in section 6.3.

3.1 Distribution of Contamination in Soil

Contamination in soil is described as soil that will require special handling if removed from the Site, i.e., soil where contaminants exceed DEQ clean fill screening criteria. There are three general areas of the site where soil management should be considered (see Figure 3).

3.1.1 AEI 1: Truck Shop and Former Diesel ASTs

PCS in shallow soil (depths of 0 to 14 feet bgs) is present in the AEI 1: Truck Shop and Former Diesel ASTs area (see Figure 4). Most of the contaminated soil is concentrated between the former diesel AST containment basin and the truck shop building, where concentrations range from non-detect up to 10,300 mg/kg for diesel-range TPH. The lateral extent of PCS was delineated to approximately 35 feet north and 25 feet east, 10 feet south, and 20 feet west of the diesel saddle's exterior containment walls, amounting to an area of approximately 4,800 square feet. PCS may be left in place; however, if disturbed PCS may pose a risk to construction and excavation workers and will require proper handling and disposal in accordance with the procedures presented in section 6.

3.1.2 AEI 2: Staining East of Finger Joint Building (Former Drum Storage Area)

Previous remedial soil removal actions succeeded in removing contaminated soil that exceeded applicable RBCs south of the Finger Joint Building (see Figure 5). The remaining soil does not pose any risk to

occupational, construction, or excavation workers; however, residual oil-range TPH exceeded clean fill criteria (see sample COMP-10 in Appendix A Table 1). Soil from this area may be left in place, or managed on site; however, it may not meet clean fill criteria and if removed from the site will require proper handling and disposal in accordance with the procedures presented in section 6.

3.1.3 **AEI 10: Former Cone Burner**

Dioxins were identified in soil at the former wigwam-style cone burner area during the 2021 site assessment (see Figure 6). The calculated maximum possible concentration was 2.3 mg/kg, (see sample COMP-1 on Appendix A Tables 6A through 6C). DEQ determined that these are like other sites in the area, and that the source of the dioxins could not be differentiated from the background concentrations. As detected dioxin concentrations were determined to be consistent with background levels, management of soil from this area on site is not required; however, soil from this area should not be reused off site as it does not meet clean fill criteria.

3.2 **Distribution of Contamination in Groundwater**

Petroleum-contaminated groundwater is present in the AEI1: Truck Shop and Former Diesel ASTs area where concentrations of diesel-range TPH range from non-detect up to 59,700 µg/L between the former ASTs and the truck shop (see sample TP30-GW on Appendix B Table 10). The plume has been delineated to approximately 35 feet north, 25 feet east, 35 feet south, and 35 feet west of the diesel saddle's exterior containment walls, which amounts to an area of approximately 7,450 square feet (see Figure 4). The contaminated plume appears to be localized and not migrating off site. Depth to groundwater changes seasonally, and during the wet winter months may be encountered as shallow as 1 foot bgs, around 5.5 to 9 feet bgs in the late spring, and potentially deeper during the dry summer months. There are not any other known areas of groundwater contamination.

Primary Contaminants of Interest

The primary contaminants of interest remaining at the Site are summarized in the table below. Appendix A provides data tables for soil from historical reports summarizing detections. Appendix B provides data tables for groundwater from historical reports summarizing detections. Appendix C provides the associated analytical laboratory reports. These are estimates only and intended for planning purposes, Actual volumes, depths, and area may differ during construction.

	Soil	Groundwater
Compound	Concentration Range	Concentration Range
Diesel- and oil- range hydrocarbons	ND to 10,200 mg/kg	ND to 59,700 μg/L
VOCs	ND to 12.1 mg/kg	ND to 195 μg/L
PAHs	ND to 20.7 mg/kg	ND to 112 μg/L
Lead	<3.76 to 4.31 mg/kg	ND to 33.9 µg/L
Dioxins	0.17 to 2.3 mg/kg	NA

μg/L = micrograms per liter

mg/kg = milligrams per kilogram

NA = not analyzed

ND = non-detect

PAH = polycyclic aromatic hydrocarbon

VOC = volatile organic compound

4 RISK SUMMARY

Based on our current understanding, the contaminants of potential concern (COPCs) in soil and groundwater for the Site include all of those mentioned in section 3, but primarily focus on diesel-range TPH at the AEI 1: Truck Shop and Former Diesel ASTs, where concentrations for direct contact exceed the RBCs for construction workers.

Risk to future construction workers can be managed by avoiding intrusive construction work in that area, or by avoiding direct contact with contaminated soil by using mechanical excavation equipment instead of hand tools, or by using proper personal protective equipment (PPE) and following the handling and disposal procedures presented in section 6.

5 HEALTH AND SAFETY INFORMATION

All workers should be advised of the potential for contamination to be present at the property. As stated above, except for diesel-range TPH in the AEI 1 area, concentrations of COPCs were below levels protective of construction workers. Standard construction PPE and health and safety protocols should be implemented for worker exposure when handling soil or groundwater. If unanticipated contamination is identified or Site conditions change, this section will be revised to reflect the change in conditions.

All employers at the Site are required to develop and manage their own corporate safety program for their workers. This program must be compliant with regulations governed by Oregon Occupational Safety and Health Administration (OSHA), which generally follows federal OSHA requirements.

6 SOIL MANAGEMENT

This CMMP addresses evaluating and handling contaminated soil that may be encountered during future site development activities in a manner that protects the environment and ensures proper off-site disposal of impacted media.

As discussed in section 5, soil contamination may be encountered on the Site. If unanticipated or suspect contaminated soil, groundwater, containers, or other unusual findings are encountered during earthwork, the environmental consultant (EC) will immediately be notified to perform a field inspection, screening, and appropriate sampling to determine proper disposition of the materials. Based on the type and concentrations of contamination, contaminated soil removal may need to be handled in accordance with Oregon Administrative Rule 340-093-040, or as hazardous waste in accordance with the Resource Conservation and Recovery Act (RCRA). Contaminated soil must be transported to a DEQ landfill authorized to accept the material if it is not considered acceptable as clean fill. Section 6.3 describes the soil sampling procedures necessary to ensure proper off-site disposal.

6.1 Field Screening for Contaminated Media

PCS may exhibit gray or blue discoloration, a characteristic odor, and/or may have a petroleum sheen when moist. Solvent-contaminated soil may exhibit a sweet, ether-like odor. Soil solely contaminated with heavy metals may not exhibit signs of contamination but building materials such as brick or painted scrap metal are common indicators that elevated concentrations of metals may be present. Screening is the responsibility of all individuals completing work activities. Workers should be instructed to continuously screen during work activities.

The following continuous field screening methods will be used by the general contractor (GC) and its subcontractors to assess the potential for disturbed soils to be impacted:

- Visual observation for indications of stained soil, buried objects, or other humanmade products
- Olfactory observation for unusual odors emanating from recently exposed soils

Additional field screening of soil following excavation can be conducted using the following methods:

- A photoionization detector to screen soils for volatile organic compounds (VOCs)
- A sheen test to evaluate soils for the presence of petroleum hydrocarbons

If field screening methods identify potentially contaminated soil, site activities around suspect soil should be halted to allow an environmental professional to determine the nature of contamination.

Buried objects such as drums, septic tanks, drywells, and underground storage tanks (USTs) may be encountered during construction activities. If an unexpected object is encountered, proper decommissioning and disposal required by DEQ must be followed. An environmental professional may be contacted to conduct the screening, if needed.

6.2 Soil Handling Procedures

Site monitoring is the responsibility of individuals completing work activities during invasive actions that disturb soil. The following procedures are recommended for such activities in areas identified as having residual impacts. This section assumes that the material can be managed as nonhazardous waste. If this is not the case, this section must be revised to include additional soil handling protocols.

- The GC will determine appropriate soil disposal facilities for media known or assumed to be contaminated.
- The area will be secured for safety and to control sediment and surface water runoff, and to minimize
 entry or collection of water in excavations. Appropriate construction best management practices
 (BMPs) should be used including, but not limited to, use of silt fences and appropriate site grading
 and sloping.
- Contaminated areas will be excavated in a manner that prevents commingling of contaminated and uncontaminated soil.
- If contaminated soil is stockpiled on site, the GC will ensure that a berm (e.g., straw bale underlying a plastic barrier) is constructed on all sides so that it adequately isolates the soil and prevents erosion or stormwater runoff and can be readily expanded. The GC shall provide enough 6-mil plastic sheeting to place beneath the soil pile and cover it nightly with plastic.
- Stockpiled soil will be analyzed to determine the potential for COPCs to be present. Section 6.3
 describes soil sampling procedures and frequency. Additional analyses may be necessary if
 unexpected conditions are encountered.
- If contaminated soil is directly loaded into trucks and transported directly to a disposal site, the GC will ensure that a valid permit has been obtained from the disposal facility prior to direct loading.
- Contaminated soil will be loaded into trucks or approved containers in a manner that prevents dust, spilling, or tracking of the soil into uncontaminated areas.
- The GC will construct a decontamination area, if necessary, for cleaning excavation equipment used to handle contaminated media.

- Loose material on trucks will be swept off or otherwise removed before the trucks leave the loading area. Contaminated material collected in the loading areas will be placed into the trucks or back into the excavation for future loading.
- Every effort will be made to load trucks on paved surfaces, and those surfaces will be swept at the conclusion of each day's loading activities. The sweepings will be placed back in the impacted soil area for removal during the next round of truck loading.
- Trucks will be covered prior to leaving the loading area.
- Loose construction material brought onto the Site, such as gravel, sand, and topsoil, shall not be stockpiled in an area of known contamination. Clean material placed on these areas may become contaminated if mixed with underlying soil and would then not be suitable for use at the Site.

Additionally, if unanticipated contaminated media is encountered, PBS recommends that an environmental professional be contacted to assist in screening, characterizing, handling, and disposing of the material.

Soil Sampling Procedures

Soil suspected of having contamination may require sampling and laboratory analysis before it can be removed for off-site disposal. The GC should coordinate with the EC to ensure the soil is characterized and managed properly. Suspect contaminated material not related to previously identified areas that is slated for off-site disposal will be sampled.

Sample Frequency

The DEQ Clean Fill Determination guidance suggests a sampling frequency of 1 sample per 100 cubic yards; however, this frequency can often be reduced if the material is relatively homogeneous. The specific sampling frequency will be determined by the EC and GC based on discussions with the receiving facility and nature of stockpiled soil. For large volumes of soil, incremental sampling methodology (ISM) sampling may be more appropriate.

6.3.2 Sample Collection and Handling

Samples will be collected in accordance with the following guidelines:

- The sampler will wear a clean pair of disposable nitrile gloves each time a new sample is collected.
- Composite soil samples will consist of three representative subsamples homogenized then placed into clean containers provided by the laboratory. If ISM sampling is used, a 50-point composite sample will be collected to be processed by the laboratory using ISM protocols.
- It is likely that hand tools (trowel, shovel) or a backhoe bucket will be used to obtain representative soil sample material. If possible, the bucket of the backhoe shall be decontaminated prior to sample collection; however, this is not always feasible. Hand tools will be decontaminated with detergent and water rinse prior to each use between composite samples. Sampling from a backhoe bucket will entail scraping a clean surface before collecting the sample using hand tools and collecting the sample from the middle of the bucket, away from the bottom and sides, to avoid any potential residual crosscontamination from the bucket.
- Custody procedures will ensure that accurate and complete records of sample collection, transfer between personnel, shipment, and receiving by the laboratory are generated and retained.

6.3.3 Sample Identification

At the time of collection, a unique identification number will be assigned to all composite samples and a complete label attached to each sample container. All sample identification numbers and depths will be keyed to the sample location and type and recorded in a field notebook. Each sample for the life of the project must have a unique sample name.

Sample labels will be completed and attached to the jars in the field to prevent misidentification. All sample labels will include the following information:

- Project name or number
- Sample identification
- Sample collection date and time

The sample identification is unique to a particular sample and the format must be consistently used for all samples collected at the site. The sample identification typically includes the sample location and the collection depth. The sample location is the soil boring or stockpile number or otherwise designated sample location. Standard abbreviations for sample location types are:

- Date (YEARMMDD)-LOCATION (Contaminated Stockpile [CSP])-Number
- Example: 20220701-CSP-1
- Date (YEARMMDD)-LOCATION (Soil boring [SB])-Number-Depth (feet)
- Example: 20220701-SB-1-3

6.3.4 Laboratory Analysis

Based on historical site operations and soil contaminants of concern, the following laboratory analyses may be performed for disposal characterization if unanticipated contaminated soil is encountered:

- Gasoline-range hydrocarbons by Northwest Method Total Petroleum Hydrocarbons, gasoline extended (NWTPH-Gx)
- Diesel- and oil-range hydrocarbons by Northwest Method Total Petroleum Hydrocarbons, diesel extended (NWTPH-Dx)
- VOCs by Environmental Protection Agency (EPA) method 8260D
- RCRA eight metals by EPA method 6010, with potential follow-up Toxicity Characteristic Leaching Procedure (TCLP) analysis depending on the initial concentrations
- PAHs by EPA method 8270 SIM
- PCBs by EPA method 8081

Analytical results will be provided to the receiving facility for acceptance of the material.

The receiving facility may require additional analysis prior to accepting soil for disposal. The GC is responsible for coordinating with the EC and disposal facility regarding additional analytical requirements.

6.3.5 Sample Delivery and Schedule

Samples will be stored on ice in a cooler. The GC project manager will coordinate with an Oregon-certified laboratory to minimize sample transport and holding time to ensure that all shipments are received by laboratory personnel within an appropriate timeframe suitable for the analysis requested.

6.3.6 Sample Custody

The chain-of-custody (COC) protocol establishes each sample or group of samples, the possessor of the samples, and the date and time of possession be documented beginning with sample collection and ending with sample disposal. Under no circumstance is there to be a break in this chain of custody. A COC form will be completed by staff members for each sample or group of samples submitted to the laboratory and will remain with samples until receipt by the laboratory.

6.3.7 Sample Containers and Coolers

The laboratory will provide containers for sampling. Staff members responsible for sampling will inspect all containers and coolers prior to use. Sample containers will be kept away from fuels and solvents. Container type and volume, preservation, and holding time requirements for each sample analysis will be in accordance with analytical method requirements.

6.4 Transportation and Disposal of Contaminated Soil

Contaminated soil that cannot be reused on site must be tested to meet requirements for disposal at a Subtitle D landfill. If testing confirms that soil is an RCRA (hazardous) waste requiring disposal at a Subtitle C landfill, this section must be revised. Existing data from historical Site sampling activities may be sufficient for initial permitting of PCS, with the suitability of this data determined by the receiving facility.

The GC and its subcontractors will comply with all applicable federal, state, and local laws, codes, and ordinances that govern or regulate contaminated soil transportation. Prior to transportation, the GC will ensure that all required permits are obtained. Drivers hauling contaminated soil will have in their possession all applicable state and local vehicle insurance requirements, valid driver's license, copies of waste disposal permit(s), and vehicle registration and license. Drivers of haul vehicles shall be informed of the following:

- The nature of the material being hauled
- The required route to and from disposal site(s)
- The applicable city street regulations and requirements, and Oregon Department of Transportation (ODOT) codes, regulations, and requirements
- The legal maximum load limits per vehicle

Trucks will not be allowed off site if free liquids (including water) are draining from the load. It may be necessary to line trucks or require dewatering of soil before transporting off site. Trucks used for the transportation of contaminated soil must be substance-compatible; licensed; insured against spill accidents; and permitted pursuant to federal, state, and local statutes, rules, regulations, and ordinances. Weigh tickets from any local scale and disposal facility should be retained by the GC and provided to the EC and owner for future reporting.

7 MANAGEMENT OF STORMWATER AND GROUNDWATER

Stormwater is a water source expected to encounter contaminated soil during construction activities in the known contaminated areas. Also, contaminated groundwater is anticipated to be encountered in the AEI 1 area. If excavation dewatering is required and discharge of water to a municipal sanitary system is proposed, the governing municipality or disposal agent may require permitting, treatment, and characterization of the water prior to discharge. The analyses required will be determined by the governing municipal agency or disposal agent during the permitting process.

If stormwater or groundwater are encountered within an excavation and dewatering activities are required, the following will be conducted:

- Contain and Analyze. Water will be pumped into an appropriate container (temporary tank) and samples collected following de-sedimentation treatment. The samples will be analyzed to confirm that the water meets applicable disposal requirements. The entity (e.g., publicly operated treatment works) generating the permit for disposal of the containerized water will specify the disposal and analytical requirements. The sediments resulting from the de-sedimentation treatment may be contaminated and may require proper sampling and disposal.
- Halt Work. If significant contaminant indicators are observed in water in an area where contaminants
 were not previously found and characterized, Site work will be halted while analytical testing is
 conducted to determine options for treatment, disposal, and health and safety requirements. Such
 indicators could include the presence of free phase liquids, odors, or extreme discoloration of
 groundwater.
- **Disposal.** Water confirmed as contaminated through sampling and analysis must be disposed of in accordance with applicable regulations. Options for disposal include contacting a vendor to collect the water and transport it to a licensed disposal or recycling facility; obtaining a National Pollutant Discharge Elimination System (NPDES) permit from DEQ to allow discharge to the storm sewer; or obtaining a permit from the local municipality to allow discharge to the municipal sanitary sewer. If collected water does not contain contaminants at concentrations above disposal permit screening values, allowable discharge to the municipal storm sewer or other appropriate disposal procedure should be pursued, which may require pretreatment prior to disposal.

If construction activities disturb 1 or more acres, and discharge to surface waters or conveyance systems leading to surface waters of the state occur, the legally authorized representative for construction activities must register for coverage under an NPDES 1200-C General Stormwater Discharge Permit (1200-C Permit). Construction activities include clearing, grading, excavation, materials or equipment staging, and stockpiling. Applicants must submit complete applications to DEQ at least 30 calendar days before commencing any land disturbance activities, unless otherwise approved by DEQ. It is the GC's responsibility to ensure that proper permitting occurs.

In some jurisdictions, construction activities that disturb less than 1 acre are automatically covered under the 1200-CN Permit. It is the GC's responsibility to ensure that proper permitting occurs. While an application to DEQ and permit fees are not required to obtain coverage under the 1200-CN Permit, owners and operators of automatically-covered construction activities must comply with performance requirements and other terms of the 1200-CN Permit.

Runoff from construction activities must be controlled. Construction-related runoff may include sediment, suspended solids, colloidal suspensions, and site contaminants in soil or water. Sediment and suspended solids can readily be controlled and minimized using standard BMPs. If maintenance of the BMPs is lacking, or if care is not used when removing these BMPs after the Site is finished with construction, then any retained pollutants may still be released into the environment. It will be up to the professional judgment of the GC to choose and implement effective BMPs for the Site to control runoff.

8 FUGITIVE DUST AND DUST CONTROL

Dust control measures should be prepared and implemented in accordance with applicable city and county grading and excavation permit requirements.

9 UST MANAGEMENT

If site activities confirm the presence of a previously unidentified UST, a licensed tank decommissioning contractor must be engaged to ensure proper decommissioning of the UST(s). Characterization and disposal of any contaminated media encountered around the UST(s) during decommissioning will be managed by the tank decommissioning contractor.

10 PROJECT PROTOCOLS

10.1 Compliance with Applicable Environmental Laws and Regulations

The GC and its subcontractors shall comply with all applicable state and federal environmental laws. In addition, the Site owner shall ensure that on-site workers have been trained on the contents of this plan. Management and handling of contaminated media shall be conducted in accordance with Oregon Revised Statutes (ORS), Chapter 459, Solid Waste Management (ORS 459.005 through 459.997).

10.2 Recordkeeping

Disposal tickets for impacted media, largely expected to be soil or landfill debris at this site, must be maintained by the disposal contractor and provided to the owner promptly upon receipt from the receiving facility.

10.3 Unforeseen Conditions

If USTs, buried drums, or other unforeseen conditions that could pose an environmental concern are encountered at the Site, the GC should immediately notify the owner and the EC for further direction.

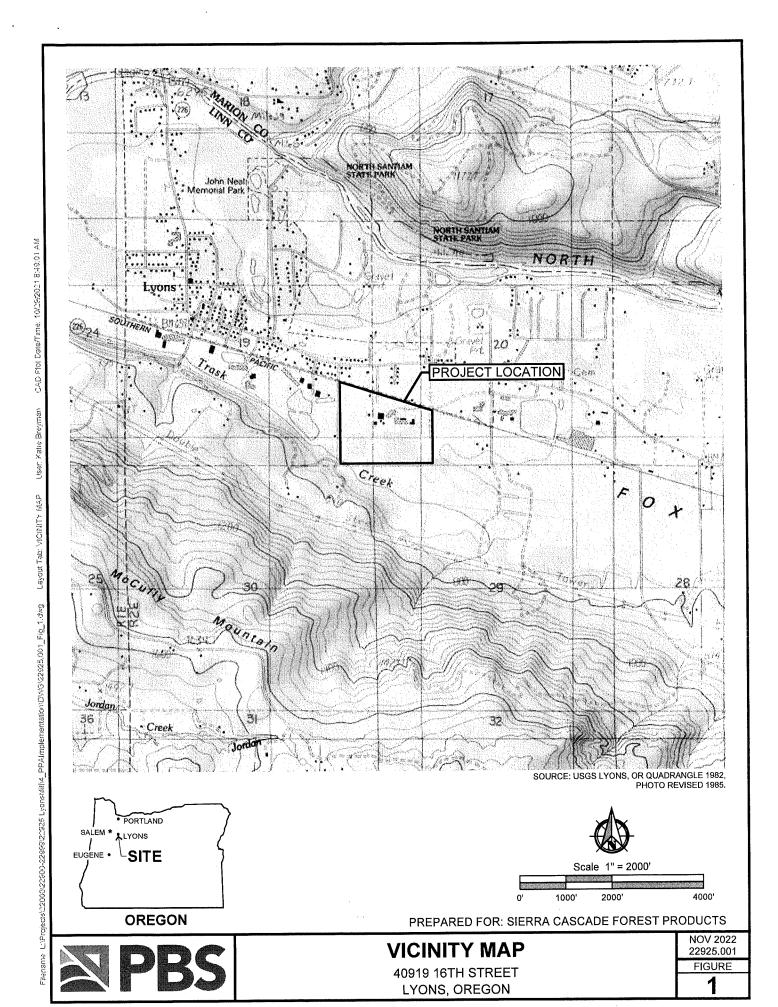
10.4 Hazardous Materials

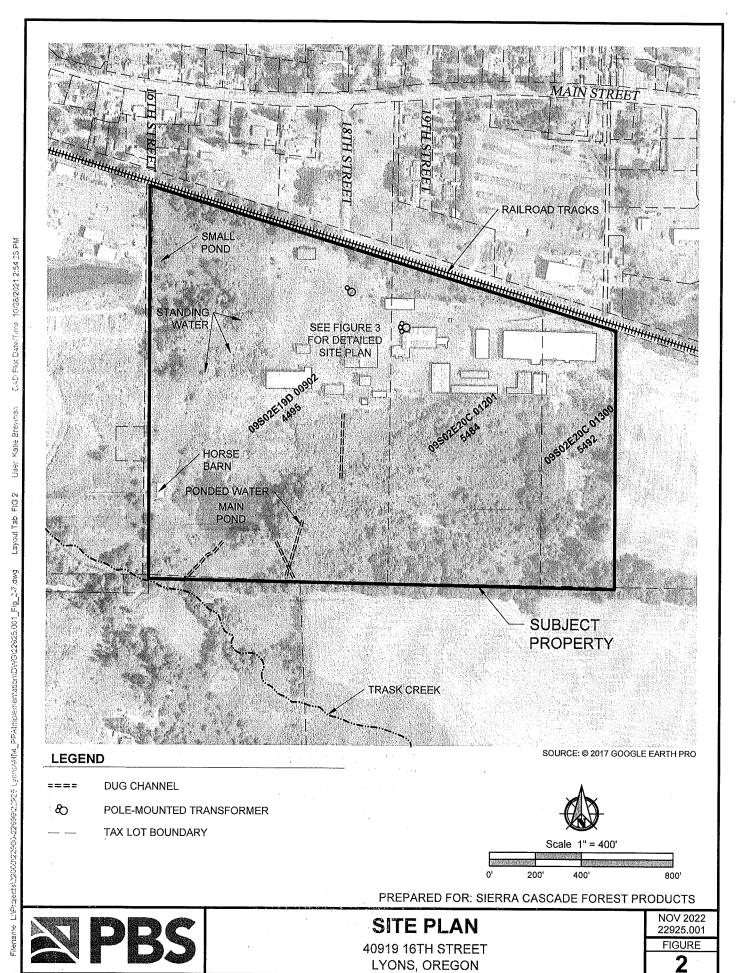
This CMMP does not apply to the use or encountering unanticipated hazardous materials, such as asbestos, or stored wood preservatives like formaldehyde and pentachlorophenol (PCP). A separate handling and management plan shall be developed to cover these scenarios, if applicable.

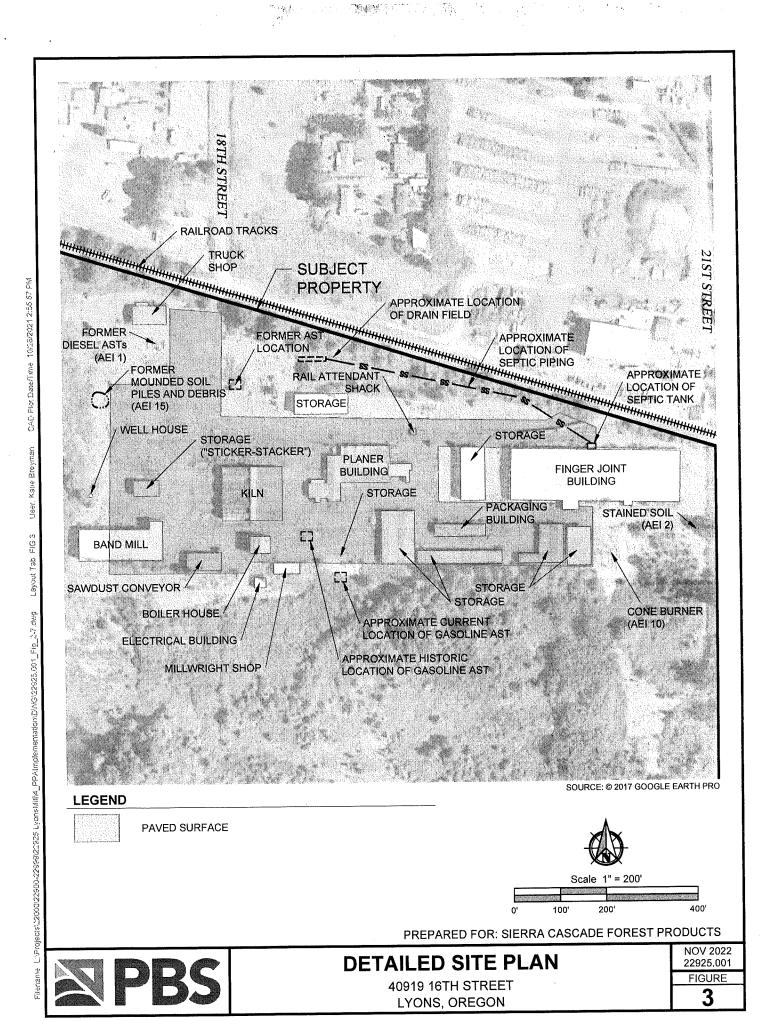
The GC and its subcontractors shall properly handle, store, use, and dispose of hazardous materials brought onto the Site in accordance with all applicable environmental laws. In the event of a spill or release of hazardous material brought onto the Site, the procedures as set forth in their corporate safety program, or other management plan concerning hazardous materials encountered during construction, shall be followed.

11 ASSUMPTIONS AND LIMITATIONS

PBS has prepared this plan for use by Sierra Cascade Forest Products and its contractors during earth-disturbing activities at the Site relying on information known and available at the time the Plan was developed. If new information is determined prior to or during the construction period, the Plan should be updated to reflect that information.


This CMMP provides the project team with guidance for the appropriate handling and management of potentially contaminated media and is intended to be used as a general overview document for contractors and the project team during the earthwork portions of the project. Contractors are required to comply with applicable rules and regulations when handling contaminated media regardless of whether it is addressed in this CMMP.


The contractor is responsible for notifying subcontractors of pertinent environmental conditions. Each contractor and subcontractor are responsible for the safety of their employees, including compliance with applicable OSHA regulations and compliance with all specifications in the technical specification's manual for the project.



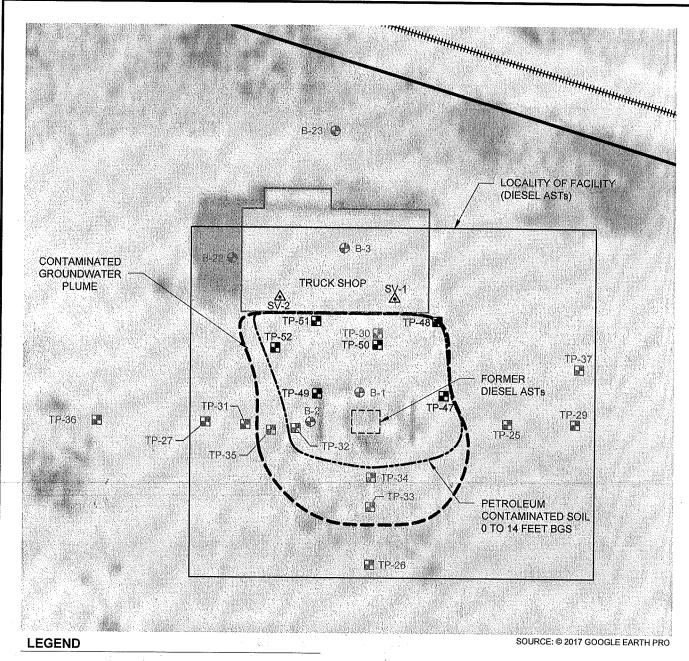
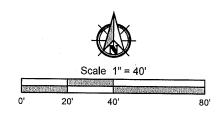

Figures

Figure 1. Vicinity Map Figure 2. Site Plan Figure 3. Detailed Site Plan Figure 4. AEI 1 Truck Shop and Diesel AST Area Figure 5. AEI 2 Stained Soil Area Figure 6. AEI 10 Former Cone Burner

₱ B-1 PREVIOUS DIRECT-PUSH BORINGS

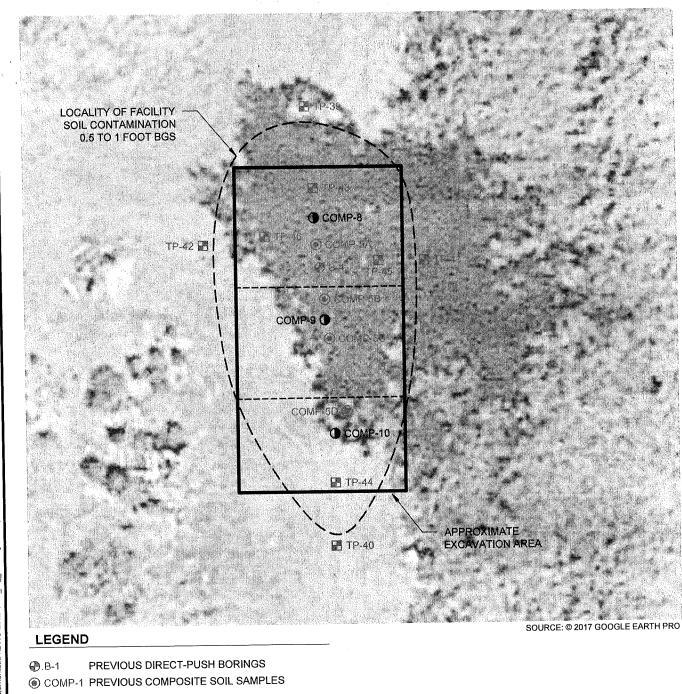

© COMP-1 PREVIOUS COMPOSITE SOIL SAMPLES

TP-1 PREVIOUS TEST PIT TP-1 TEST PIT (JUNE 2022)

Layout Tab: FIG 6

▲ SSV-1 SUB-SLAB VAPOR SAMPLE (JUNE 2022)

LOCALITY OF FACILITY

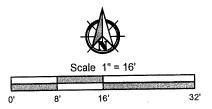


PREPARED FOR: SIERRA CASCADE FOREST PRODUCTS

AEI 1 TRUCK SHOP AND DIESEL AST AREA

40919 16TH STREET LYONS, OREGON NOV 2022 22925.001 FIGURE

AND THE


TP-1 PREVIOUS TEST PIT

CAD Plot Date/Time: 10/14/2022 12:53:18 PM

User, Katte Breyman

FIG 3

CONFIRMATION COMPOSITE SOIL SAMPLING AREAS

PREPARED FOR: SIERRA CASCADE FOREST PRODUCTS

AEI 2 STAINED SOIL AREA

40919 16TH STREET LYONS, OREGON NOV 2022 22925.001

FIGURE

LEGEND

B-1 PREVIOUS DIRECT-PUSH BORINGS

TP-1 PREVIOUS TEST PITS

● COMP-1 CONFIRMATION COMPOSITE SAMPLE

PREPARED FOR: SIERRA CASCADE FOREST PRODUCTS

AEI 10 FORMER CONE BURNER

40919 16TH STREET LYONS, OREGON NOV 2022 22925.001

FIGURE

Appendix A

Previous Soil Analytical Information – Soil Analytical Tables

Table 1. Summary of Soil Analytical Results – TPH and Metals

Table 2. Summary of Soil Analytical Results – VOCs

Table 3. Summary of Soil Analytical Results – PAHs and Pentachlorophenol

Table 4. Summary of Soil Analytical Results – PCBs and Formaldehyde

Table 5. Summary of Soil Analytical Results – Pesticides and Herbicides

Table 6A. Summary of Soil Sample Analytical Results – Dioxins/Furans (ND = 0)

Table 6B. Summary of Soil Sample Analytical Results – Dioxins/Furans (ND = 0.5 EDL by TEF)

Table 6C. Summary of Soil Sample Analytical Results – Dioxins/Furans (ND = EDL by TEF)

Table 7. Summary of Sediment Analytical Results – PCBs and Formaldehyde

Table 9. Summary of Sediment Analytical Results – PAHs

Page 1 of 16

Sample ID B1-2.5 B2-3													
Sample ID 81-2.5 82-3													
B1-2.5 B2-3	Location	Sample Date	Depth (feet bgs)	eniloseð	Diesel	IIO yveaH	ojuestA	muine8	mulmbsጋ	mulmondጋ	рвәт	Метсигу	Silver
B1-2.5 B2-3													
B1-2.5 B2-3				, rectine	lanian 2021 Cite Accommen	***************************************		m	mg/kg				
B2-3	AEI 1	1/4/2021	2.5	-	496	< 15.0	6.49	262	< 150	37.0	8.33	02300	, 0.754
	AEI 1	1/5/2021	3.0		2,240	99	5.82	274	416	32.4	ς α α	65000	07.0
B3-1	AEI 1	1/4/2021	1.0	6.02	< 6.38	24.4	4.24	178	< 1.59	22.0	5.92	< 0.0638	< 0.797
84-1	AEI 2	1/5/2021	1.0	< 3.09	1773	954²	3.77	287	5.62	79.3	386	1.75	621
B4-5	AEI 2	1/5/2021	2.0	< 4.5	32.6	179	5.77	178	< 1.39	38.6	12.4	< 0.0554	< 0.693
B5-1	AEI 3	1/6/2021	1.0	< 4.97		-	3.92	134	< 1.47	23.8	5.38	< 0.0589	< 0.736
B6-1	AEI 3	1/4/2021	0:1	< 4.19	1	1	2.83	63.9	< 1.14	15.8	3.87	< 0.0457	< 0.572
B/-1	AEI 4	1/6/2021	1.0	< 3.15	< 4.47	< 11.2	3.99	60.2	< 1.12	18.0	4.90	< 0.0447	< 0.559
. B8-1	AEI 5	1/4/2021	1.0	< 4.91	< 5.86	< 14.6	6.84	137	< 1.46	40.1	7.70	< 0.0586	< 0.732
1.68-1	AEI 6	1/6/2021	1.0	-	< 5.91	< 14.8	6.45	201	< 1.48	31.0	7.03	< 0.0591	< 0.738
810-5	AEI 9	1/7/2021	5.0	× 4.44	< 5.50	< 13.7	4.96	271	< 1.37	21.9	4.57	< 0.0550	< 0.687
2-119 2-13	AEI 9	1/6/2021	2.0	< 3.65	× 4.84	< 12.1	3.59	105	< 1.21	15.9	4.06	0.0530	< 0.606
E12-5	AEI 9	1/6/2021	5.0	< 3.60	< 4.87	< 12.2	4.32	174	< 1.22	25.1	4.95	< 0.0487	< 0.608
613-1	AEI 12	1/5/2021	1.0	1	6.71	40.9	4.31	133	< 1.21	25.3	7.24	0.785	< 0.607
814-1	AEI 12	1/7/2021	1.0	ł	< 6.83	< 17.1	8.71	123	< 1.71	29.9	5.96	< 0.0683	< 0.854
815-1	AEI 12	1/5/2021	1.0	-	< 5.72	< 14.3	5.27	485	< 1.43	31.1	28.1	< 0.0572	< 0.715
B16-1	AEI 13	1/7/2021	1.0	-	< 94.6	940³	2.34	81.2	< 1.18	14.7	13.7	0.0563	< 0.591
61/-1	AEI 13	1/7/2021	1.0	1	12.1	90.7	3.86	208	< 1.42	23.5	7.74	< 0.0568	< 0.710
010-1	AEI 13	1/7/2021	1.0	1	7.20	30.8	4.10	247	< 1.61	23.0	6.81	< 0.0644	< 0.805
619-1	AEI 13	1/6/2021	1.0	< 3.58	< 4.84	< 12.1	2.74	78.5	< 1.21	16.1	5.95	< 0.0484	< 0.604
B20-1	AEI 10	1/6/2021	1.0	< 4.98	< 5.80	< 14.5	8.71	160	< 1.45	40.3	8.84	< 0.0580	< 0.725
1-12g	AEI 8	1/6/2021	1.0	< 4.28	< 5.36	< 13.4	5.09	166	< 1.34	46.3	8.75	< 0.0536	< 0.670
1-779	AEI 1	1/4/2021	1.0		< 7.23	21.3	4.64	208	< 1.81	29.0	8.50	< 0.0723	< 0.904
823-1	AEI 1	1/4/2021	1.0	-	< 4.66	36.1	2.67	121	< 1.16	11.2	5.63	< 0.0466	< 0.582
624-1	AEI 8	1/7/2021	1.0	8.41	< 5.72	< 14.3	3.34	155	< 1.43	28.3	6.95	< 0.0572	< 0.715
COMP1	AEI 10	1/7/2021	1.0	< 4.11	< 5.28	< 13.2	6.51	143	< 1.32	26.6	9.58	< 0.0528	< 0.660
COMP2	AEI 14	1/7/2021	1.0	:	1	-	;	1		-	,	. 1	
COMP3	AEI 14	1/7/2021	1.0	:	1	:	1	-1		:		1	1
COMP4	AEI 15	1/5/2021	1.0		1	ı	3.7	42	0.61	16	22	< 0.029	<21

Table 1. Summary of Soil Analytical Results - TPH and Metals Former Shaniko Mill 40919 16th Street, Lyons, Oregon

					TPH				Metals	Metals (detections only)	only)		
Sample ID	Location	Sample Date	Depth (feet bgs)	ənilozad	Jeseid	liO yvsəH	эіпөгчА	muhsa	muimbs2	тиіточАЭ	рвэд	Mercury	tevlič
								mg/kg	/kg				
				May 2	May 2021 Site Assessment	essment							
TP25-1	AEI 1	5/3/2021	1.0		3.07	12.8	-		1	1	,	'	1
TP28-1	AEI 1	5/3/2021	1.0		< 5.99	< 15.0	-	1	1	1	1		_
TP30-5	AEI 1	5/3/2021	5.0	1	066'9	81.9	1	1	-	1	1	,	1
TP34-1	AEI 1	5/4/2021	1.0	ı	4.14	32.6	;	1	:	1	:	,	1
TP35-1	AEI 1	5/4/2021	1.0	1	< 5.89	< 14.7	1	1	i	1	;		1
TP38-3	AFI 9	5/4/2021	3.0	-	< 6.14	< 15.4	6.10	272	0.140	33.5	8.98	0.0738	< 0.768
TP43-1	AEI 2	5/5/2021	1.0	1	2.33	7.73	ı	-	0.137	1	18.2	0.0256	< 0.588
T-DAA-1	AFI 2	5/5/2021	1.0	-	3.67	19.5	1	ı	0.152	-	10.5	0.0359	< 0.712
TPA5-1	AEI 2	5/5/2021	1.0	ı	12.8	87.4	1	1	0.218	-	15.5	0.0314	< 0.665
TP46-1	AFI 2	5/5/2021	1.0	-	< 2.21	< 5.54	1	1	< 1.66	1	8.32	< 0.0665	< 0.0832
COMP-6	AEI 12	5/4/2021	1.0	1			-	1	1	-	-	0.0238	-
COMP-7	AEI 15	5/4/2021	1.0	-		1	-	;	0.12	1	-	;	'
			June 20	22 AEI 1 Tr	ck Shop Are	June 2022 AEI 1 Truck Shop Area Focused Assessment	\ssessment						
TP47-3	AEI 1	6/6/2022	3.0	1	6,750	< 593	-	1	١	1	1	1	
TP48-2	AEI 1	6/7/2022	2.0	1	329	92.3	1	ı	1	1	1	-	-
TP49-2	AEI 1	6/7/2022	2.0	1	>∵< 30.6	< 61.2	1	l	1	!	1	-	,
7-05dT	AEI 1	6/7/2022	2.0	ı	3,490	< 110	1	-	,	ŧ	1	-	1
TP51-2	AEI 1	6/7/2022	2.0	l	10,300	< 1,250	1	-		1	1	:	1
TP52-2	AEI 1	6/7/2022	2.0	١	< 29.1	< 58.3	1	1		;	-	}	-

 $\left\{ \frac{1}{2} + \frac$

					TPH				Metal	Metale (detections only)	Mac		
Sample ID	Location	Sample Date	Depth (feet bgs)	Gasoline	Diesel	Heavy Oil	Arsenic	muhea	muimbe⊃	тијтол4О	рвэ	Метситу	Silver
								m	mg/kg				
		June	June 2022 AEI 2 Stained Soil Area Post Remediation Confirmation Samples	ained Soil A	rea Post Re	mediation C	onfirmation	1 Samples					
COMP-8	AEI 2	6/6/2022	1.0	-	< 25.0	354	t i	1	< 0.229	1	4.31	< 0.0916	< 0.229
COMP-9	AEI 2	6/6/2022	1.0	1	< 25.0	672	-		< 0.239	1	3.76	< 0.0958	< 0.239
COMP-10	AEI 2	6/6/2022	1.0	ı	< 25.0	2,050 J	1		< 0.232	1	3.82	< 0.0926	< 0.232
Oregon DEO RRC ¹ - Ind	Oregon DEO 88C1 - Ingestion Dermal Contact &	Occupational		20,000	14,(14,000	1.9	220,000	1,100	>MAX	800	350	5,800
Inhalation	י אינייין אינייין אינייין אינייין	Construction Worker	ırker	9,700	4,6	4,600	15	000'69	350	530,000	800	110	1,800
		Excavation Worker	er	>MAX	Ϋ́Α	>MAX	420	>MAX	002'6	>MAX	800	2,900	49,000
Oregon DEQ RBC¹ - Volatilization to Outdoor	latilization to Outdoor Air	Occupational		000'69	N.	>MAX	Ν	N	NV	NV	N	Š	ž
Oregon DEQ RBC' - Va		ings Occupational		>MAX	× N	>MAX	NV	NV	ΛN	ΛN	N	N	ž
Oregon DEQ RBC ¹ - Le	Dregon DEQ RBC ¹ - Leaching to Groundwater	Occupational		130	× ×	>MAX	*	*	*	*	30	*	*
DEQ Clean Fill Screening Levels ²	ig Levels²			31	1,1	1,100	19	630	0.54	200	34	0.24	0.17
Oregon DEQ Eco Risk ³ - Direct Toxicity	- Direct Toxicity	Plants		120	76	260	18	110	32	SN	120	34	560
		Invertebrates		120	260	9	6.8	330	140	NS	1,700	0.05	NS
;		Birds	T&E	5,000	9,000	8	15	720	0.29	23	11	0.013	2.6
Oregon DEO Eco Bisk3 - Ground Feeding	- Ground Feeding		Non-T&E	5,000	6,000	8	32	1,200	1.6	73	23	0.13	26
		Mammais	T&E	2,000	6,000	8	19	1,800	0.27	34	99	1.7	14
			Non-T&E	5,000	6,000	8	31	8,700	4.0	1,600	170	17	140
		Rirds	T&E	5,000	6,000	8	100	630	1.3	170	æ	0.058	13
Oregon DEO Eco Risk ³ - Tap Consumers	- Top Consumers		Non-T&E	5,000	6,000	8	1,000	13,000	7.7	260	160	0.58	130
,		Mammals	T&E	5,000	6,000	.00	170	9,100	84	180	460	56	066
			Non-T&E	5,000	6,000	00	290	44,000	1,700	10,000	1,600	130	10,000

Csatt Soil RBC exceeds the limit of three phase equilibrium partitioning.

See laboratory report for full list of analytes. mg/kg: milligrams per kilogram

Bold text, if present, indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill oriteria and a RBC value, the respective cleanup value is also bolded.

>MAX: The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario.

NS: not set for this analyte

AEI: Area of Environmental Interest (See Fig. 4 for locations) <: not detected above the laboratory reporting limit

--: analyte not tested J: value is estimated

TPH: total petroleum hydrocarbons bgs: below ground surface

*: Leaching to groundwater RBCs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must be performed.

Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018.

Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.

dregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a.

The concentration at this location is below dean fill criteria, however is considered above background concentrations in an area where ecological pathways are complete. The value therefore is considered an exceedance.

N PBS

Table 2. Summary of Soil Analytical Results - VOCs

	rons. Oregon
Former Shaniko Mill	40919 16th Street L

40919 16th St	40919 16th Street, Lyons, Oregon	regon	_							b) s)ON	VOCe (detections only)	(A)						
										200	erections o				l		-	
Sample ID	Location	Sample Date	Depth (feet bgs)	ənəznədlydəmhT-E,S,1	ənəznədiydiəmirT-A,S,i	ənəznədiydəmiriT-2,£,İ	əuəzuəg .	Ethylbenzene	Isopropylbenzene	enoneine4-2-lydieM-4	enelsd/dgs//	n-Butylbenzene	n-Propylbenzene	eneulożiyqorqosi-q	euezueq[ʎʒng-ɔes	eneznedlytu8-het	eneulo ī	səuəļʎχ
											mg/kg							
							January 20	January 2021 Site Assessment		H				1000	2,53	ŀ	70,000	7.00135
81-2.5	AEI 1	1/4/2021	2.5	5.24	< 0.0104	< 0.0104	\dashv	< 0.00518	+	+	< 0.0259	1.87	1.95	× 0.0104	252	0.0320	V 0003	0.116
82-3	AEI 1	1/5/2021	3.0	0.477	0.693	+	-	0.0255	0.102	< 0.0115	1.23	0.636	< 0.017	< 0.0111	, ,	+	< 0.0111	0.0159
B3-1	AEI 1	1/4/2021	0 7	< 0.0111	< U.U.I.I.	< 0.0111	0.00225	0.0967	<u> </u>	+	┿	+-	ᇈ	< 0.00615	Н	< 0.00615	0.00646	0.533
<u>*</u>	AEI 2	1/3/5071	2.	100000	-	Ž	May 2021 Additional Site Assessment	itional Site	Assessment	i								
2 0004	AEI 3	5/2/2011	0.5	12.1	< 0.00707	< 0.00707	< 0.00141	0.00509	1.53	1.04	11.2	3.86	5.81	< 0.00707	Н	4	.	< 0.00919
1130-3	AEI 0	5/2/2021	3.0	< 0.0109	0.00424	┰	+-	╁	× 0.00544	4	< 0.0272	< 0.0272	< 0.0109	< 0.0109	< 0.0272	< 0.0109	< 0.0109	0.00270
1730-5	Acra	3/4/2021	25	20100	2000	12	AEI 1 Truck	Shop Area	Focused Assessment	essment							Ì	
TD47.2	A 171	5505/3/3	3.0		> 0.364	< 0.364	< 0.0729	< 0.182	1.69	< 3.64	5.90	2.76	3.59	< 0.364	3.24	< 0.364	< 0.364	< 0.182
TD48-2	AEI 1	6/7/2022	20	١	< 0.0832	< 0.0832	┝	1,0	0.134	< 0.832	0.177	0.187	0.290	< 0.0832	+	< 0.0832	< 0.0832	< 0.0416
2-01-1	7 1 1	6/7/2022	20		> 0.0896	> 0.0896	⊢	< 0.0448	> 0.0896	> 0.896	< 0.179	> 0.0896	< 0.0448	> 0.0896	او	< 0.0896	< 0.0896	< 0.0448
1749-2	7 1 1	6/7/2022	20		0.746	0.383	⊢	-	2.14	<3.30	<.1.35	2.93	4.04	< 0.330	4.06	< 0.330	< 0.330	0.928
TDC1.2	1 10	6/1/2022	20	,	< 0.419	< 0.419	< 0.0838	< 0.210	4.53	< 0.419	8.95	6.93	8.34	< 0.419	9.16	< 0.419	< 0.419	< 0.210
TD52-3	AEI 1	67777022	2.0	1	< 0.0905	< 0.0905	< 0.0181	< 0.0452	< 0.0905	< 0.905	< 0.181	< 0.0905	< 0.0452	< 0.0905	< 0.0905	< 0.0905	< 0.0905	< 0.0452
11.36-2		Occupational		SN	006.9	9000	37	150	57,000	SN	23	NS	NS	SN	NS	SN	88,000	25,000
Oregon DEQ RBC ¹ - Ingestion,		Construction Worker		SN	2,900	2,900	380	1,700	27,000	NS	280	SN	SN	S	SN	S	28,000	20,000
Dermal Contact, & Inhalation		Excavation Worker		SN	81,000	81,000	11,000	49,000	750,000	NS	16,000	SN	SS	S	SN	2	0000//	260,000
Oregon DEQ RBC1	- Volatilization	Occupational		SN	>Csat	>Csat	20	160	>Csat	SN	83	SN	SS	SN	S.	SN	>Csat	>Csat
to Outdoor Air								1						1	3	1	1	, (,,,,
Oregon DEQ RBC - Vapor Intrision into Buildings	C' - Vapor ildinas	Occupational		NS	>Csat	>Csat	2.1	17	>Csat	SN	83	SN	SN	SS	S	ź	, Sar	>\csat
Oregon DEQ RBC¹ - Leaching to	C¹ - Leaching to	Occupational		SN	48.0	53.0	0.10	06.0	>Csat	SZ	0.34	SX	SN	SN	SN	SN	490	100
Groundwater				,	ç	-	0.003	0.00	å	ŠŽ	7.700	190	72	SN	350	96	23	1.4
DEO Clean Fill Screening Levels	creening Levels			C.	2 1	2	No.	Y Y	¥	¥	0,	SN	SN	ž	SN	S	200	100
Oregon DEQ Eco Risk' - Direct	o Risk' - Direct	Plants		2	2 2	2 2	2 2	2 22	2 ×	NA.	ž	Ϋ́	SN	SZ	SN	SZ	SS	NS
Toxicity		Invertebrates	101	2 2	2 2	2 2	2 2	2 2	ž	NA NA	3.4	S	SZ	SN	SS	SN	SN	41
		Birds	I ØE	2 2	CN SI	2 2	2 2	2 ×	Y Y	N N	24	SN	SN	SN	ž	ž	SR	410
Oregon DEQ Ecc	Oregon DEQ Eco Risk" - Ground		Non-1 or	ž	S V	ž	24	SZ	NS NS	NS	9.6	SN	SS	SN	SN	NS	23	1.4
hinaa-		Mammals	Non-Ter	ž	ž	ž	240	SZ	SN	SS	27	SN	NS	SN	NS	NS	230	1.8
			TASE	Z Z	SZ	S	SZ	SN	SN	S	78	SS	NS	NS	NS	NS	SE	190
£1.13	F. E. 1.	Birds	Non-T&F	ž	ž	SZ	Š	SS	SS	SS	780	SN	SN	NS	NS	SN	SN	1,900
Oregon DEC EC	derisk = 10p		T&F	SS	SN	SN	4,300	SS	SS	SN	5,800	NS	SN	NS	SN	SS	3,300	210
company		Mammals	Non-T&F	SZ	ž	SS	43,000	S	S	SN	16,000	SN	NS	NS	NS		33,000	260
FDA Radional Sc	EDA Bacional Screening Level (HO Indoor Worker	Indoor Worker		224								11,700	2,710	NS	23,400	L		
= 0.1. Target Risk 10 ⁻⁵) ⁴	ik 10 ⁻⁵ / ⁴	Outdoor Worker		227								6,490	2,700	SN	13,000	13,000		
	-					ĺ												

See laboratory report for full list of analytes.

mg/kg: milligrams per kilogram

bgs: below ground surface c: not detected above the laboratory reporting limit

-: analyte not tested

>Csat: soil RBC exceeds the limit of three phase equilibrium partitioning

>MAX. The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario. AEI: Area of Environmental Interest (See Figure 4 for locations)

NS: not set for this analyte

Bold text, if present indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded. US Environmental Protection Agency (EPA) regional screening levels (RSL) are provided when RBCs are not set. RSL values assume a hazard quotient (HQ) of 0.1, target risk 10.5.

VOCs: volatile organic compounds

* Leaching-to-groundwater RBCs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must be performed. *Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018. *Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.

³Oregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a.

Table 3. Summary of Soil Analytical Results - PAHs and Pentachlorophenol

	Orego
Former Shaniko Mill	40919 16th Street, Lyons, Orego

uoba.
ŏ
yons,
treet, 1
許
9.1
919

		_	_	T	Т	Т	1	٦			7	اء.	Т		Ţ	7	1	7
(4D	Pentachlorophenol (P			'	1	1	4	_	< 1.14	< 0.476	< 3.94	< 0.946	< 1.07	< 0.403	× 0.483	× 0.44		:
	eneryq			0.0759	0.0168	-	0.023	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0288	< 0.00967	-	1	-		0.554
	Phenanthrene			0.445	0.45	1	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0158	< 0.00967	-	1	1		4.28
	eneledidgeN			0.0988	0.394	1	< 0.0222	< 0.0243	< 0.0341	< 0.0286	< 0.118	< 0.0284	< 0.0322	1	-			3.94
	navyq(bɔ-ɛ̄,ʕ,ʔ)onabni			< 0.00901	< 0.00958	-	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0284	< 0.00967	:	-			< 0.00703
	eneroul7			0.293	0.232	}	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	< 0.00852	< 0.00967		1	1		2.74
	enerî însvoul î			< 0.00901	0.015	1	0.00702	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0216	< 0.00967	,	Ί	1		0.131
only)	nerutoznediQ	/kg			-	1		-	:	-	-			1	-	1		-
PAHs (detections only)	Сһгуѕепе	mg/kg		< 0.00901	< 0.00958	1	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0233	< 0.00967	-	+	1		0.0163
PAHs	euej/ued(j'ų'f)ozueg			< 0.00901	< 0.00958	1	0.00787	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0311	< 0.00967		1	**	ent	< 0.00703
	anadវារាតាouli(d)oxna8		ssessment	< 0.00901	< 0.00958	ı	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0236	< 0.00967	***	Ι,		May 2021 Additional Site Assessment	0.00586 < 0.00703 < 0.00703 < 0.00703
	Benzo(a)pyrene		January 2021 Site Assessment	< 0.00901	< 0.00958	ł	0.00749	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0237	< 0.00967	1	-	1	Additional S	< 0.00703
	eneoहातीशाह(ह)oxneB		January	< 0.00901	< 0.00958	1	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	0.0131	< 0.00967	-	-	1	May 2021	0.00586
	өпөэьчийлА			. 0.173	< 0.00958	-	< 0.00666	< 0.00729	< 0.0102	< 0.00858	< 0.0355	< 0.00852	< 0.00967	1	-	1	,	0.286
	ənəlsrifiqsrilyriəM-S	1		1.17	1.98	!	< 0.0222	< 0.0243	< 0.0341	< 0.0286	< 0.118	< 0.0284	< 0.0322	-	ı	-		16.3
	ənəladirdqaniydiəM-f			0.915	1.74		< 0.0222	< 0.0243	/ 0.0341	× 0.0286	< 0.118	< 0.0284	< 0.0322	1	!	-		12.7
	Depth (feet bgs)	-		2.5	3.0	1.0	1.0	10	2 6	1.0	5 5	10	1.0	1.0	1.0	10		5.0
	Sample Date			1/4/2021	1/5/2021	1/4/2021	1/5/2021	1/5/2021	1777021	1/5/2/21	17/2021	1/7/2021	1/7/2021	1/6/2021	1/6/2021	1777071		5/3/2021
	Location			AFI 1	AE 1	ΔEI 1	AFI 2	AEI 12	75 12	AEI 12	AEI 12	AEI 13	AFI 13	AEI 10	AEI 10	AFI 2		AFI 1
	Sample ID			R1-2 5	B7-3	2. 1 15. 1	1 CG	1 610	013-1	514-1	015-1	B17-1	B18-1	B19-1	R20-1	COMP1		TP30-5

Table 3. Summary of Soil Analytical Results - PAHs and Pentachlorophenol

Former Shaniko Mill

40919 16th Street, Lyons, Oregon

			ļ	ľ		-	ŀ		PAHs (de	PAHs (detections only)	- 							(dD
5.2.3	Sample Date	Depth (feet bgs)	ənəlsdəriydəniyəM-1	enelsdthqsnlydsene	enesendinA	Benzo(a)anthracene	Benzo(a)pyrene	anadłinsrouli(d)ozna8	Benzo(g,h,i)perylene	епьгулі	Dibenzofuran	enedination!4	эпэтои!Т	Indeno(1,2,3-cd)pyren	enelsdridgsM	Phenanthrene	Pyrene	9) loneriqotolicstre9
_										mg/kg								
ĺ					June 2022	June 2022 AEI 1 Truck Shop Area Focused Assessment	Shop Area F	ocused Ass	essment									
Γ	6/6/2022	3.0	14.6	20.7	< 0.642	< 0.146 <	< 0.146 <	< 0.146	L	< 0.146	2,33	0.173	4.73	< 0.146	5.14	6.76	0.940	1
Г	2202/2/9	2.0	1	1	1	1	-	1			-	-			1	1	1	-
	6/7/2022	2:0	1	1	1	1	1	ı	1	1		-			-		ı	1
	6/7/2022	2.0	1	!	ı	1	1	-	:	- -		-	ı	-	,	1	1	
Γ	6/7/2022	2.0	11.5	16.8	< 0.529	< 0.151 <	. 0.151 <	< 0.151 <	< 0.151 <	: 0.151	1.99	< 0.151	3.88	< 0.151	3.22	4.76	0.626	
	6/7/2022	2.0	1	1	1	1	1	1	-	-				ı	1	1	1	1
	Occupational .		SN	NS	350,000	21	2.1	21	L	2,100	\vdash	30,000	47,000	21	23	SS	23,000	4.0
Oregon DEC NDC - Ingestor, Denniel	Construction Worker		SN	NS	110,000	170	17	170	NS	17,000		┢	14,000	170	280	SS	7,500	¥
	Excavation Worker		NS	NS	>Max	4,800	490	4,900		490,000	SN	┢	390,000	4,900	16,000	SN	210,000	960
	Occupational		SN	NS	>Max	> Csat	ž	Ž	NS	ž			>Max	Ž	83	SN	>Max	Ž
Oregon DEQ RBC¹ - Vapor Intrusion into	Occupational		SN	SN	>Max	>Csat	2	ž	SN	2	SN	ž	>Max	Ž	83	SN	>Max	⋛
	Occupational:		SN	SN	>Csat	>Csat	>Csat	>Csat	SN	>Csat	SN	>Csat	>Csat	>Csat	0.34	NS	>Csat	0.17
			0.36	11	8'9	0.73	0.11	1:1	25		0.002	10	3.7	1:1	0.077	5.5	10	0.066
I think the Ship and Old accord	Plants		NS	NS	6.8	18	. SN	18	NS	NS	6.1	NS	SN	NS	5-	SN	SN	5.0
	Invertebrates		SN	NS	SN	NS	NS	NS	NS	NS	NS	10	3.7	NS	SN	5.5	10	31
	Birds	T&E Non-T&F	SN SN	SN SN	NS NS	0.73	NS NS	SN SN	NS NS	NS	NS N	NS NS	SN	NS SA	3.4	NS	33	0.36
Oregon DEQ Eco Risk" - Ground Feeding	A dominant	T&E	NS	16	210	3,4	62	4	25	3.1	SN	22	250	2 12	9.6	2 =	33	0.81
	Mailliais	Non-T&E	NS	160	2100	¥	190	440	250	31	NS	220	510	710	27	110	230	8.1
	Birde	T&E	SN	NS	NS	6.4	NS	NS	NS	NS	SN	NS	NS	NS	78	SN	160	1.7
Township of the Strip of Canada	en no	Non-T&E	SN	NS	SN		NS	-	NS	NS	NS	NS	SN	NS	780	NS	1,600	17
	Mammak	T&E	NS	4,900	38,000	Н	Н	Н		110	NS	3,900	50,000	4,600	5,800	1,900	3,100	32
	e a la company	Non-T&E	SN	49,000	380,000		_			1,100	Н	_	100,000	46,000	16,000	19,000	31,000	85
== == ==	EPA Regional Screening Level (HQ = 0.1, Indoor Worker		226	934					SN		NS					SN		
				2.4	Company of the Compan	The second secon		The state of the s			-							and the second second second

See laboratory report for full list of analytes.

mg/kg: milligram per kilogram bgs: below ground surface

AEI: Area of Environmental Interest (See Figure 4 for locations) <: not detected above the laboratory reporting limit

PAHs: polycyclic aromatic hydrocarbons

--: analyte not tested > Csat. Soil RBC exceeds the limit of three phase equilibrium partitioning.

Bold text, if present, indicates an exceedance of one or more of the deamup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded. US Environmental Protection Agency (EPA) regional screening levels (RSL) are provided when RBCs are not set. RSL values assume a hazard quotient (HQ) of 0.1, target risk 10°.
>MAX: The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario.
NS: not set for this analyte

NV: compound not volatile so pathway is not valid

Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018. Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents. Oregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a. "United States Environmental Protection Agency (EPA) Regional Screening Levels (RSLS) - Generic Tables.

Page 8 of 16

Formaldehyde	
lts - PCBs and	
Inalytical Resu	
rv of Soil An	
Table 4. Summa	
Ē	

Ē	
<u>\$</u>	
ani	
ᄯ	
ē	
Ē	
ē	

Oregon
Lyons,
Street,
16th
919

Sample ID Location Sample Date Creet base Creek	Aroclor 1248 6.19 6.00477 6.00380 6.00477 6.00478 6.00478 6.00478 6.00478 6.00478 6.00478 6.00478 6.00478 6.00478	kg Aroclor 1254 277 < 0.0271 283 < 0.283 286 < 0.0236 249 < 0.0249 225 < 0.0225 225 < 0.0225 225 < 0.0225	Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260 Aroclor 1260	SS S S S S S S S S S S S S S S S S S S
January 2021 Site Assessment 1,4/2021		▎ ▎ ▐ ▗▎▕▕▕▗▎	- 9009 9	
January 2021 Site Assessment	 	│ ┠┋ ┼┼┼┼┼┼		
1/4/2021 1.0 < 0.0542 < 0.0542 < 0.0545 < 0.0545 < 0.0545 < 0.0545 < 0.0545 < 0.0547 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0			9 0 6 9 5	
1/5/2021 1.0 < 0.566 < 0.566 < 0.566 < 0.566 < 0.566 < 0.566 < 0.566 < 0.566 < 0.566 < 0.567 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0471 < 0.0370 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0471 < 0.0449 < 0.0498 < 0.0498 < 0.0498 < 0.0498 < 0.0498 < 0.0498 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 < 0.0491 <				
1/5/2021 5.0				
1,6/2021 1.0 < 0.0380 < 0.0380 < 0.0380 < 0.0380 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0488 < 0.0489 < 0.0448 < 0.0449 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0.0449 < 0				
1/5/2021 1.0 < 0.0498 < 0.0498 < 0.0498 < 0.0498 < 0.04918 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0413 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 < 0.0414 <		++++++		+
1/5/2021	++			
1/5/2021	╀	++++		
1/5/2021		H	L	- 0.210
1/5/2021	70007	н.		GN
1.5/2021	+	1	L	
May 2021 Additional Site Assistantent 5/5/2021 1.0 < 0.0400 < 0.0400 < 5/5/2021 1.0 < 0.0404 < 0.0404 < 0.0404 < 0.0404 < 0.0404 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405 < 0.0405	4		-	1
5/5/2021	0000	1 000 0 / 1 000	0000	- UN
5/5/2021 1.0 < 0.0484 < 0.0494 < 0.0494 < 0.0494 < 0.0494 < 0.0494 < 0.0494 < 0.0494 < 0.0494 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0.0495 < 0	+	+	↓	
5/5/2021	ᆚ	+	1	+
5/5/2021 1.0 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0.0556 < 0	< 0.0452 < 0.0220	2770 < 0.0270	1	1
		1	-	$\frac{1}{1}$
6/6/2022	4111pies	115 / 00115	/ 00115 A	CN
6/6/2022 1.0	+	+	ļ	25
b/b/2022 1.0 Coupational Construction Worker Excavation Worker Construction Worker Coupational Occupational Occupational Invertebrates Birds Mammals	< 0.0113 < 0.0113 < 0.0115 < 0.0115	115 < 0.0115	1	+
	4	4	Ļ	H
			7	1.600
ings		-		t
ings			1	+
ings		- Landing		+
			^	+
				1.1 0.0086
			O	0.23 0.002
				160 NS
				NS NS
	T&F	- Line	0	0.041 NS
	Fuel	3'6.		\vdash
	NON-ION	ØE.		1
Maninais	T&E		ő	
	Non-T&E	-&E	o.	0.073 19
	T&E			0.19 NS
Birds	Non-T&E	-84E		1.9 NS
Oregon DEQ Eco Risk ² - Top Consumers	T&E			0.69 1,700
Mammals	L'64	7.0		0078

Page 9 of 16

>Csat: Soil RBC exceeds the limit of three phase equilibrium partitioning. mg/kg: milligrams per kilogram bgs: below ground surface <: not detected above the laboratory reporting limit See laboratory report for full list of analytes. PAHs: polycyclic aromatic hydrocarbons TPH: total petroleum hydrocarbons --: analyte not tested

AEI: Area of Environmental Interest (See Figure 4 for locations)

respective deanup value is also bolded, >MAX. The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario.

Bold text, if present, indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the

NS: not set for this analyte

NV: compound not volatile so pathway is not valid

**Leaching-to-groundwater RBCs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must

*Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018

*Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.

*Oregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a.

Table 5. Summary of Soil Analytical Results - Pesticides and Herbicides

Former Shaniko Mill

40919 16th Street, Lyons, Oregon

			All Chlorinated	All Organophosphorus	All Chlorinated
	. 1	Depth Collected	Pesticides	Pesticides	Herbicides
Sample ID	Sample Date	(feet bgs)		mg/kg	
COMP 2	1) t	-	ΩN	ND	QN
COMP 3	1/7/2021		ND	ND .	ND

mg/kg: milligrams per kilogram

ND: analyte not detected

Table 6A: Summary of Soil Sample Analytical Results - Dioxins/Furans (ND = 0)

Former Shaniko Mill 40919 16th Street, Lyons, Oregon

May 2021 Additional Site Assessment January 2021 Site Assessment

								the state of the s		
				Californ	Calculation			Calculation	Calculation	Notes:
COMPOUND	TEF	COMP 1	COMP 4	COMP 1		COMP 5	COMP 7	COMP 5	COMP 7	Bold text, if present, indicates an exceedance of one or more of the dearup levels. Values less than the regional background concentrations for metals or less than clean fill a remains are not bolded. In instances where a concentration exceeds dean fill criteria and a RBC value, the respective cleanty value is also bolded.
			-			6/6d				U, Italicized values represent results where individual compounds were not detected above estimated detection limits.
Dioxins		Result	Result	Result	Result	Result	Result	Result	Result	Result Laboratory results using EPA Method 1613. Values in picograms per gram(pg/g).
2,3,7,8-TCDD		U 0.91	U 0.39	0	0	U 0.28	U 0.27	0	0	EMPC Estimated maximum possible concentration
1,2,3,7,8-PeCDD	-	U 0.70	U 0.41	0	0	U 0.25	1.2	0	12	J: Value is estimated
1,2,3,4,7,8-HxCDD	0.1	U 0.47	2.4	0	0.24	0.40	1.9	0.04	0.19	ND: Non-detect
1,2,3,6,7,8-HxCDD	0.1	U 0.40	5.2	0	0.52	0.45	4.3	0.045	0.43	TEF Toxic Equivalency Factor. Zero used for non detected compounds in TEC calculation (non-detects indicated by itolics).
1,2,3,7,8,9-HxCDD	0.1	U 0.38	5.0	0	0.5	U 0.22	3.8	0	0.38	TEQ: Taxic Equivalency Quotient
1,2,3,4,6,7,8-HpCDD	0.01	11	92	0.11	0.92	3.0 J	74 J	0.03	0.74	0.74 WHO: World Health Organization
1,2,3,4,6,7,8,9-OCDD	0.0003	66	710	0.030	0.27	18 J	620 J	0.0054	0.186	*Calculation of the Total 2.3.7,8-TCDD TEF was calculated by the laboratory using ITE factors.
Furans										Creeon Rid-Based Concentrations for Individual Chemicals. Oreston DEO Seet. 2003. Revised RRCs May 2018.

culated by the laboratory using ITE Factors. 0.063

Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents. Chemicals, Oregon DEQ Sept. 2003, Revised RBCs May 2018 Oregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a. Compounds in this category are considered in aggregate as a chemical class and should be evaluated as single substances

1234789-HpCDF - 1,2,3,4,7,8,9-heptachlorodibenzofuran 123678-HxCDF - 1,2,3,6,7,8-hexachlorodibenzofuran 123789-HxCDF - 1,2,3,7,8,9-hexachlorodibenzofuran 123478-HxCDF - 1,2,3,4,7,8-hexachlorodibenzofuran 234678-HxCDF - 2,3,4,6,7,8-hexachlorodibenzofuran 12378-PeCDF - 1,2,3,7,8-pentachlorodibenzofuran 23478-PeCDF - 2,3,4,7,8-pentachlorodibenzofuran 2378-TCDF - 2,3,7,8-tetrachlorodibenzofuran

1234678-HpCDD - 1,2,3,4,5,7,8-heptachlorodibenzo-p-dioxin

CDD - 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin

31,000 170

123789-HxCDD - 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin 123478-HxCDD - 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin 123678-HxCDD - 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin

0.0123

0.0078

0.48

0.23

4.29

Construction Worker Excavation Worker

2,3,7,8-TCDD equivalents**

gestion, Dermal

(dioxin)

ontact, and Inhalation regon DEQ RBC² -

eaching to

Occupational

0.0020 0.025

6.5

0.000

1.23.4.6.7.8-HpCDF 0.0 1.23.4.7.82-HpCDF 0.0 1.23.4.6.7.8-0-CDF 0.00 TEQ WHOZO05 ND-0 with EMPCs Oregon DEQ RBC²-

23 23

2.5

12378-PeCDD - 1,2,3,7,8 -pentachlorodibenzo-p-dioxin

2378-TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin

0.18 0.088 0.16 0.013

0.66

0.78

0.20 1.4 0.73 0.32

0.28

0.62 0.46 0.48 0.38 0.39

1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF

2,3,7,8-PeCDF

OCDF - 1,2,3,4,6,7,8,9-octachlorodibenzofuran

0.29 NS 5,000,000 0.52 0.037 0.25 0.057 0.38 5.2 27 25 Non-T&E Non-T&E Non-T&E Non-T&E **T&E** T&E **T&E** T&E Plants Invertebrates Mammals Mammals Birds Birds Dregon DEQ Eco Risk⁴ - Ground Feeding Dregon DEQ Eco Risk⁴ - Top Consumers Oregon DEQ Eco Risk⁴ - Direct Toxicity Q Clean Fill Screening Level

= 0.5 EDL by TEF)	
tical Results - Dioxins/Furans (ND	
Table 68: Summary of Soil Sample Analy	ormer Shaniko Mill

Oregon
Lyons,
Street,
16th
40919

Table 68: Summary of Soil Sample Analytical Results - Dioxins/Furans (ND = Former Shaniko Mill	ry of Soil Se	ample An≀	alytical Re	sults - Dioxi	ns/Furans (F	_	S EDL by (EF)	ī			,
40919 16th Street, Lyons, Oregon	yons, Orego	Ē	100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			A 1000 meM	May 2021 Additional Cita Accorment	tramant		
			January 2021	1 Site Assessmen			May 2021 Ac	SW alic leucinon	Sessiller II.	Nebar	
COMPOUND	TEF	COMP 1	COMP 4	Calulation COMP 1	Calculation COMP 4	COMP 5	COMP 7	Calculation COMP 5	Calculation COMP 7	proceed by the control of the control of the cleanty levels. Values less than the regional background concentrations for metals or less than clean fill walter are not bedoed in instances where a concentration posseeds clean fill criteria and a RBC walte, the respective cleanty value is also bodied.	for metals or less than clean fill led.
						6/60				U, Italiaized values represent results where individual compounds were not detected above estimated detection limits.	
Dioxins		Result	Result	Result	Γ	Result	Result	Result	Result	Laboratory results using EPA Method 1613. Values in picograms per gram(pg/g).	:
2.3.7.8-TCDD	1	U 0.97	U 0.39	0.46	0.20	U 0.28	U 0.27	0.74	0.14	EMPC Estimated maximum possible concentration	
1,2,3,7,8-PeCDD		U 0.70	U 0.41	0.35	Γ	U 0.25	1.2	0.13	1.2	J: Value is estimated	
1.2.3.4.7.8-HxCDD	0.1	5	2.4	0.021		0.40	1.9	0.04	0.19	ND: Non-detect	
1,2,3,6,7,8-HxCDD	0.1	U 0.40	52	0.02	Π	0.45	4.3	0.045	0.43	TEF: Toxic Equivalency Factor. Zero used for non detected compounds in TEQ calculation (non-detects indicated by italics).	
1,2,3,7,8,9-HxCDD	0.1	5	5.0	0.079		U 0.22	3.8	0.011	0.38	TEQ: Toxic Equivalency Quotient	
1,2,3,4,6,7,8-HpCDD	0.01		35	0,11		3.0 J	74 J	0.03	0.74	WHO: World Health Organization	
1,2,3,4,6,7,8,9-OCDD	0.0003		710	0.030		18	620	0.0054	0.19	*Calculation of the Total 23,7,8-TCDD TEF was calculated by the laboratory using TE Factors.	
Furans										Oregon Risk-Based Concentrations for Individual Chemicals, Oregon DEQ Sept. 2003, Revised RBCs May 2018	
2,3,7,8-TCDF	0.1	U 0.56	1.1	0.028	Г	U 0.18	0.63	0.009	0.063	³ Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.	•
1,2,3,7,8-PeCDF	0.03	U 0.62	1.4	0.0093		U 0.20	99'0	0.003	0.020	*Oregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a.	
2,3,4,7,8-PeCDF	0.3	U 0.64	2.4	0.096		U 0.20	09'0	0.03	0.18		
1,2,3,4,7,8-HxCDF	0.1	U 0.46	2.8	0.023		1.4	1.5	0.14	0.15	*Compounds in this category are considered in aggregate as a chemical class and should be evaluated as single substances.	
1,2,3,6,7,8-HxCDF	0.1	U 0.43	2.4	0.022	0.24	0.73	1.7	0.073	0.17		i
2,3,4,6,7,8-HxCDF	0.1	U 0.38	2.5	0.019		U 0.32	1.8	0.076	0.18		
1,2,3,7,8,9-HxCDF	0.1	U 0.39	U 0.27	0.020		U 0.34	0.88	0.017	0.088		
1,2,3,4,6,7,8-HpCDF	0.01		23	0.025		25 J	16 J	0.25	0.16		
1,2,3,4,7,8,9-HpCDF	0.01	n	1.5	0.0078		U 0.48	.1.3	0.0024	0.013		
1,2,3,4,6,7,8,9-OCDF	0.0003		32	0.0020		26	41	0.0078	0.012	123478-HxCDD - 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin	
TEQ WHO2005 ND=0.5*EDL with EMPCs	'EDL with EMP	2		1.2	4.7			0.94	4.3	123678-HxCDD - 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin	
Oregon DEO RBC ² -		Occupational	nal				16			1234678-HpCDD - 1,2,3,4,6,7,8-herachlorodibenzo-p-dioxin 1234678-HpCDF - 1,2,3,4,7,8-hexachlorodibenzofuran	
	70719766	Construct	ion Worker				170				
ation	(45,7,8-1CUD	Excavation	Excavation Worker				4,800			1234789-HpCDF - 1,2,3,4,7,8,9-heptachlorodibenzofuran	uran
	(aloxin) ea iivələnte**									ACRE - 1934 6 78 Querrachinan distance in an acceptance of the contraction of the contrac	
Leaching to		Occupational	onal				31,000			יייין איייין	
DFO Clean Fill Screening Level	evel						0.29				
		Plants					NS				
Oregon DEQ Eco Risk" - Direct Toxiaty		Invertebrates	s			5,	5,000,000				
			T&E				0.52				
		Birds	Non-T&E				5.2				
Oregon DEQ Eco Risk ⁴ - Ground Feeding	Fround Feeding		T&E				0.037				
		Mammals	Non-T&E				0.25				
			T&E				5.2				
	,	Birds	Non-T&E				25				
Oregon DEQ Eco Risk ~ Top Consumers	lop Consumers		T&E				0.057				
		Mammals	7.07				0.38				
			Non-I &E	_			000				

E	
y TEF)	
ED	
II	
S	
ıs (
<u>a</u>	
Ē	
ġ.	
<u>.</u>	
٩	
Ŧ	
esn	
84	
Ę	
a <u>k</u>	
٩	
əje	
Ĕ	
Š	
S.	
ð	
چ	=
Ě	2
Ä	ķ
ä	Į,
9	7
able	Ě
Τa	ŝ

	s, Oregon
IIVO MIIII	treet, Lyon
2	40919 16th S
2	40919

			January 202	January 2021 Site Assessment	ıt	Ma	y 2021 Addit	May 2021 Additional Site Assessment	ment		ı
				Cahrlation	Calculation			Calculation	Calculation	Notes:	
COMPOUND	押	COMP 1	COMP 4	COMP 1	COMP 4	COMP 5	COMP 7	COMP 5	COMP 7	Bodd text, if present, indicates an exceedance of one or more of the cleanup levels. Values less than the regional badground concentrations for me fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded.	Bod text if present, indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded.
					6/6d	6				U, Italicized values represent results where individual compounds were not detected above estimated detection limits.	cted above estimated detection limits.
Dioxins		Result	Result	Result	ļ.,	Result	Result	Result	Result	Laboratory results using EPA Method 1613. Values in picograms per gram(pg/g).	
2,3,7,8-TCDD		U 0.91	U 0.39	0.97			U 0.27	0.28	0.27	EMPC: Estimated maximum possible concentration	
1,2,3,7,8-PeCDD		U 0.70	U 0.41	0.7	0.47	U 0.25	1.2	0.25	1.2	J. Value is estimated	
1,2,3,4,7,8-HxCDD	0.1	Ļ	2.4	0.047		0.40	1.9	50.0	0.19	ND: Non-detect	
1,2,3,6,7,8-HxCDD	0.1	U 0.40	5.2	0.04		0.45	4.3	0.045	0.43	TEF: Toxic Equivalency Factor. The estimated detection limit (EDL) used for non detected compounds in TEQ calculation (non-detects indicated by italize).	etected compounds in TEQ calculation (non-detects indicated by italics).
1,2,3,7,8,9-HxCDD	0.1	_	5.0	0.038		U 0.22	3.8	0.022	0.38	TEQ: Toxic Equivalency Quotient	
1,2,3,4,6,7,8-HpCDD	10.0		95	0.11		3.0	74)	0.03	0.74	WHO: World Health Organization	
1,2,3,4,6,7,8,9-OCDD	0.0003	66	710	0.030		18	620 J	0.0054	0.19	Calculation of the Total 2,3,7,8-TCDD TEF was calculated by the laboratory using ITE Factors.	ITE Factors,
Furans										*Oregon Risk-Based Concentrations for Individual Chemicals, Oregon DEQ Sept. 2003, Revised RBCs May 2018	:003, Revised RBCs May 2018
2,3,7,8-TCDF	1.0	5	1.1	0.056		U 0.78	0.63	0.018	0.063	Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.	r organics and other selected constituents,
1,2,3,7,8-PeCDF	0.03	5	1.4	0.019		U 0.20	99'0	0.006	0.020	*Oregon DEQ Conducting Ecological Risk Assessments, September 2020, Table 1a.	
2,3,4,7,8-PeCDF	6.0	U 0.64	2.4	0,19	0.72	U 0.20	09'0	90'0	0.18		
1,2,3,4,7,8-HxCDF	0.1	5	28	0.046		1.4	1.5	0.14	0.15	"Compounds in this category are considered in aggregate as a chemical class and should be evaluated as single substances.	d should be evaluated as single substances.
1,2,3,6,7,8-HxCDF	0.1	5	2.4	0.043	0.24	0.73	1.7	0.073	0.17		
2,3,4,6,7,8-HxCDF	1.0	5	2.5	0.038	0.25	U 0.32	1.8	0.032	0.18	Dioxins	Furans
1,2,3,7,8,9-HxCDF	0.1	Ω	U 0.27	0.039	0.027	U 0.34	0.88	0.034	0.088	2378-TCDD - 2,3,7,8-tetrachlorodibenzo-p-dioxin	2378-TCDF - 2,3,7,8-tetrachlorodibenzofuran
1,2,3,4,6,7,8-HpCDF	0.01		23	0.025		Z5 J	16 J	0.25	0.16	12378-PeCDD - 1,2,3,7,8 -pentachlorodibenzo-p-dioxin	12378-PeCDF - 1,2,3,7,8-pentachlorodibenzofuran
1,2,3,4,7,8,9-HpCDF	0.01	מ	1.5	0.0035		U 0.48	1.3	0.0048	0.013	123789-HxCDD - 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin	23478-PeCDF - 2,3,4,7,8-pentachlorodibenzofuran
1,2,3,4,6,7,8,9-OCDF	60000	6.5	32	0.0020	0.0096	56	41	0.0078	0.012	123478-HxCDD - 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin	123678-HxCDF - 1,2,3,6,7,8-hexachlorodibenzofuran
TEQ WHO2005 ND=EDL with EMPCs	with EMPCs			2.3	5.1			1.3	4.4	123678-HkCDD - 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin	123789-HxCDF - 1,2,3,7,8,9-hexachlorodibenzofuran
Oregon DEQ RBC' -		Occupational	onal			16				1234678-HpCDD - 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin	123478-tkCDF - 1,2,3,4,7,8-hexachlorodibenzofuran
Ingestion, Dermal	0270 TCDD	Construc	Construction Worker			170				OCDD - 12.3.4.6.7.8.9-octachlorodibenzo-p-dioxin	234678-HxCDF - 2.3.4.6.7.8-hexachlorodibenzofuran
lation	2,3,1,0=1,00 (dioxin)	Excavatic	Excavation Worker			4,800	20			•	1234789-HpCDF - 1,2,3,4,7,8,9-heptachlorodibenzofuran
_	(dioxin) equivalents**										
Leaching to Groundwater		Occupational	ional			31,000	8		,		OCDF - 1,2,3,4,6,7,8,9-octachlorodibenzofuran
DEQ Clean Fill Screening Level ³	Level ³					0.29	6				
Spirit Training Philipping Common	Stroet Towisite	Plants				NS					
Olegon DEC ECO NSK - 1	JIECE LOXICES	Invertebrates	S			5,000,000	000				
			T&E			0.52	2				
Oregon DEQ Eco Risk* - Ground	iround	Birds	Non-T&E			5.2	6		7		
Feeding			T&E			0.037	37				
		Mammals	Non-T&E			0.25	2				
		·	T&E			5.2	2				
		Birds	Non-T&E			52					
Oregon DEQ Eco Risk" - Top Consumers	lop Consumers		T&E			0.057	25				
		Mammals	Non-T&E			0.38	8				
			-						Control of the last of the las		

Table 7. Summary of Sediment Analytical Results - TPH and Metals Former Shaniko Mill

40919 16th Street, Lyons, Oregon

					ТРН				Metal	Metals (detections only)	oniy)		
Sample ID	Location	Sample Date	Depth (feet bgs)	Gasoline	Diesel	Heavy Oll	əlnəsıA	muited	mulmbsD	muimond⊃	реад	Метситу	Silver
								mg/kg	/kg		-		
SED1-COMP	AFI 7	1/7/2021	1.0	< 6.51	< 7.20	< 18.0	4.17	203 J	< 1.80	21.8 J	8.11	< 0.0720	> 0.900
SED2-COMP	AEI 7	1/7/2021	1.0	< 4.20	< 5.36	< 13.4	1.80	58.2	< 134	10.5	13.6	< 0.0536	< 0.670
SED3-COMP	AEI 8	1/7/2021	1.0	< 8.65	< 8.92	26.1	4.79	357	< 2.23	36.8	16.3	< 0.0892	< 1.11
SED4-COMP	AEI 8	1/7/2021	1.0	< 5.85	< 6.68	< 16.7	3.45	221	< 1.67	25.0	9.51	< 0.0668	< 0.835
SED5-COMP	AEI 7	1/7/2021	1.0	< 6.55	< 7.24	< 18.1	2.72	142 J	< 1.81	11.3 J	5.81	< 0.0724	< 0.905
SED-6	AEI 1	5/4/2021	1.0	-	22.7	138	1	1	1	;	-	-	1
SED-7	AEI 1	5/4/2021	1.0	1	17.4	125	1	l	ı		-	1	:
		Occupational		20,000	14,0	14,000	1.9	220,000	1,100	>MAX	800	350	5,800
Oregon DEQ RBC ¹ - Ing	Oregon DEQ RBC ¹ - Ingestion, Dermal Contact, &	Construction Worker	ter	9,700	4,6	4,600	15	000'69	350	530,000	800	110	1,800
Inhalation		Excavation Worker		>MAX	ν.	>MAX	420	>MAX	9,700	>MAX	800	2,900	49,000
Oregon DEQ RBC1 - Vol.	Oregon DEQ RBC ¹ - Volatilization to Outdoor Air	Occupational		000'69	W<	>MAX	NN	N	N	N N	N	≩	N
Oregon DEQ RBC1 - Vap	Oregon DEQ RBC ¹ - Vapor Intrusion into Buildings	Occupational		>MAX	W^	>MAX	N	λ	Ž	N	ž	N	≥
Oregon DEQ RBC ¹ - Leaching to Groundwater	aching to Groundwater	Occupational		130	W <	>MAX	*	*	*	*	30	*	*
DEQ Clean Fill Screening Levels ²	g Levels ²			31	1,1	1,100	19	630	0.54	200	34	. 0.24	0.17
Oregon DEQ Eco Risk ³ - Sediment	- Sediment	Freshwater		SN	z	NS	9	NS	9.0	37	35	0.2	4.5

See laboratory report for full list of analytes.

mg/kg: milligrams per kilogram bgs: below ground surface

<: not detected above the laboratory reporting limit

TPH: total petroleum hydrocarbons

AEI: Area of Environmental Interest (See Fig. 4 for locations) VOCs: volatile organic compounds

--: analyte not tested

value is estimated

>Csat: Soil RBC exceeds the limit of three phase equilibrium partitioning.

Bold text, if present indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded.

> MAX: The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario.

NS: not set for this analyte

* Leaching to groundwater RBGs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must be performed.

'Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018. *Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.

*Oregon DEQ Guidance for Ecological Risk Assessment Levels I, II, IV, April 1998, rev. December 2001, Table 2.

*The concentration at this location is below dean fill criteria, however is considered above background concentrations in an area where ecological pathways are complete.

The value therefore is considered an exceedance.

Table 8. Summary of Sediment Analytical Results - PCBs and Formaldehyde

Former Shaniko Mill

40919 16th Street, Lyons, Oregon

to 15 tottl street, Lyons, Oregon	Joles, Oregon										
							Z	PCBs			
				S			•		•	((eroloor
Sample ID	Location	Sample Date	Depth (feet bgs)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 126(2829 IstoT is betseteb î
							, 1	,			o wns)
							bw	mg/kg			
SED1-COMP	AEI 7	1/7/2021	1.0	< 0.0612	< 0.0612	< 0.0612	< 0.0612	< 0.0306	< 0.0306	< 0.0306	< 0.0612
SED2-COMP	AEI 7	1/7/2021	1.0	< 0.0456	< 0.0456	< 0.0456	< 0.0456	< 0.0228	< 0.0228	< 0.0228	< 0.0456
SED3-COMP	AEI 8	1/7/2021	1.0	< 0.0758	< 0.0758	< 0.0758	< 0.0758	< 0.0379	< 0.0379	< 0.0379	< 0.0758
SED5-COMP	AEI 7	1/7/2021	1.0	< 0.0615	< 0.0615	< 0.0615	< 0.0615	< 0.0308	< 0.0308	< 0.0308	< 0.0615
				Occupational							0.59
Oregon DEQ RBC1 - Ingesti	Oregon DEQ RBC1 - Ingestion, Dermal Contact, & Inhalation			Construction Worker	Worker						4.9
				Excavation Worker	/orker						140
Oregon DEQ RBC1 - Volatilization to Outdoor	ization to Outdoor Air			Occupational	-						>Csat
Oregon DEQ RBC ¹ - Vapor Intrusion into Buildings	Intrusion into Buildings			Occupational							>Csat
Oragon DEQ RBC¹ - Leaching to Groundwater	ng to Groundwater			Occupational	_						1.1
DEQ Clean Fill Screening Levels ²	evels²										0.23
uO	Oregon DEQ Eco Risk ³ - Sediment		Freshwater	SN:	NS	SN	NS	0.021	0.007	SN	0.034
											-

Bold text, if present, indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than dean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded.

> MAX. The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario.

NS: not set for this analyte

NV: compound not volatile so pathway is not valid

*Leaching-to-groundwater RBCs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must be performed.

Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018.

²Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents.

>Csat: Soil RBC exceeds the limit of three phase equilibrium partitioning. AEI: Area of Environmental Interest (See Figure 4 for locations)

<: not detected above the laboratory reporting limit</p>

PAHs: polycyclic aromatic hydrocarbons TPH: total petroleum hydrocarbons

--: analyte not tested

See laboratory report for full list of analytes.

mg/kg: milligrams per kilogram bgs: below ground surface *Oregon DEQ Guidance for Ecological Risk Assessment. Levels I, II, III, IV, April 1998, rev. December 2001, Table 2.

Table 9. Summary of Sediment Analytical Results - PAHs

Former Shaniko Mill

40919 16th Street, Lyons, Oregon

אינים ויסתו שתבבר, בלסווש, סובשמוו	Lydio, citegen									PAHS	PAHs (defections only)	(Ala						
Sample ID	Location	Sample Date	Depth (feet bgs)	enesent‡nA	ənəlydthqenəsA	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(h)fluoranthene	Benzo(k)fluoranthene	оцэх⁄лц	Dibenz(a,h)ลทน์ทเลсеทอ	2-Methylnaphthalene	Benzo(9,h,l)perylene	enerbristouli	ananyq(bɔ-ɛ,ઽ,١)onabnl	enelschiqeN	Phenanthrene 4	өпөтүЧ
											mg/kg							
						May	May 2021 Additional Site Assessment	ional Site As	sessment									
SED-6	AEI 1	5/4/2021	1.0	< 0.0144	< 0.0144	< 0.0144	< 0.0144	< 0.0144	< 0.0144	< 0.0144	< 0.0144	0.0118	0.00846	0.00784	< 0.0144	0.0252	0.0130	0.0126
SED-7	AEI 1	5/4/2021	1.0	0.00498	0.00513	0.00552	0.00922	0.0238	0.00746	0.0195	0.00523	0.00858	0.0235	0.0127	0.0229	0.0189	0.0138	0.0138
		Occupational		350,000	SS	21	2.1	21	210	2,100	2.1	NS	NS	30,000	21	23	SN	23,000
Oregon DEQ RBC' - Ingestion, Dermal	- Ingestion, Dermal	Construction Worker	Ji.	110,000	NS	170	17	170	1,700	17,000	17	NS	NS	10,000	170	280	SN	7,500
Contact, & Inhalation	Ë	Excavation Worker		>Max	NS.	4,800	490	4,900	. 49,000	490,000	490	NS	SN	280,000	4,900	16,000	S	210,000
Oregon DEQ RBC¹ - Volatilization to Outdoor Air	- Volatilization to	Occupational		>Max	SN	>Csat	Š	Š	Ž	N	Ŋ	NS	SN.	N	Ž	83	NS	>Max
Oregon DEQ RBC¹ - Buildings	Oregon DEQ RBC¹ - Vapor Intrusion into Occupational Buildings	Occupational		>Max	NS	>Csat	ž	N.	NS.	N N	λ	SN	NS	Š	ž	83	NS	>Max
Oregon DEQ RBC ¹ - Leaching to Groundwater	- Leaching to	Occupational		>Csat	SN	>Csat	>Csat	>Csat	>Csat	>Csat	>Csat	NS	SN	>Csat	>Csat	0.34	NS	>Csat
DEQ Clean Fill Screening Levels ²	ening Levels ²			6.8	120 ->	0.73	0.11	1:	11	3.1	0.11	11	25	10	1.1	0.077	5.5	10
EPA Regional Screer	EPA Regional Screening Level (HQ = 0.1, Indoor Worker	Indoor Worker			SN							526	NS				SN	
Target Risk 10 ⁻⁶) ³		Outdoor Worker			NS							80.8	S				S	
Oregon DEQ Eco Risk ⁴ - Sediment	sk ⁴ - Sediment	Freshwater		22	160	32	32	NS	27	27	33	SN	300	==	17	176	42	53

See laboratory report for full list of analytes.

mg/kg: milligrams per kilogram bgs: below ground surface

c: not detected above the laboratory reporting limit
 AEI: Area of Environmental Interest (See Figure 4 for locations)

PAHs: polycyclic aromatic hydrocarbons

TPH: total petroleum hydrocarbons

> Csat: Soil RBC exceeds the limit of three phase equilibrium partitioning. -: analyte not tested

Bold text, if present, indicates an exceedance of one or more of the cleanup levels. Values less than the regional background concentrations for metals or less than clean fill values are not bolded. In instances where a concentration exceeds clean fill criteria and a RBC value, the respective cleanup value is also bolded. US Environmental Protection Agency (EPA) regional screening levels (RSL) are provided when RBCs are not set. RSL values assume a hazard quotient (HQ) of 0.1, target risk 10⁻⁶.

> MAX: The RBC for this pathway is greater than 1,000,000 mg/kg. This substance is not deemed to pose a risk in this scenario.

NS: not set for this analyte

NV: compound not volatile so pathway is not valid

*-Leaching-to-groundwater RBCs are not provided for inorganic chemicals. If this pathway is of concern, then site-specific leaching tests must be performed. *Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018. *Oregon Department of Environmental Quality (DEQ) Clean fill screening levels for organics and other selected constituents. *United States Environmental Protection Agency (EPA) Regional Screening Levels (RSLS) - Generic Tables. *Oregon DEQ Guidance for Ecological Risk Assessment Levels I, II, II, IV, April 1998, rev. December 2001, Table 2.

Appendix B

Previous Groundwater Analytical Information – Groundwater Analytical Tables

Table 10. Summary of Groundwater Analytical Results – TPH and VOCs
Table 11. Summary of Groundwater Analytical Results – PAHs and Pentachlorophenol
Table 12. Summary of Groundwater Analytical Results – PCBs and Formaldehyde

H and VOCs		
Table 10. Summary of Groundwater Analytical Results - TPH and VOCs	Former Shaniko Mill	40040 464L Strang Dunnan

The control of the	The control of the					HEL	-				OCs (detectio	ns only)			1				Met	als (detection	s only)			
Particular Par	Part			ľ			1								•	l		-	-			-		\mid
Noticing 1.5	Mail			Depth to Water (feet bgs)	ənilozeD	Diesel	Heavy Oil	ənəznədlyıltəmhT-E,S,}	an sxnadlyqo1qosl	anəlediriqeM	n-Butylbenzene	n-Propylbenzene	sec-gnt/jpetrxene			Arsenic		BeylosziQ ,muhsß	Chloride	Сһетіш	noni			
Name	Noticing 1.5),d	W.								-	
NYMINGEN 151 14,000 15	Vignozia 15 1 1 1 1 1 1 1 1										January	2021 Site As	sessment											
No. 1740-1751 1.1	Vignosia 1, Vignosia 1	-	1/4/2021	1.6		14,400	< 250	68.3	18.0	Н	10.1	23.8		Н	_	,	,	-	+	1	1	1	1	+
1,40,2019 2,10 4,100 4	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		1/4/2021	0.7	< 100	× 100	< 250	-	< 1.00	H	-	_			5.00	-	,	-		-	-	-	+	+
Noticial 1	Visional Circle Visional C	-	1/5/2021	2.1	< 100	< 100	< 250	-	< 1.00			\vdash	Н	\dashv		,	,	-		-		+	+	+
1,40,2020 2, 2 4, 100 4, 100 4, 200	1,40,2021 2.5 4.0 6.10 6.20 6.2 6.		1/4/2021	1.7	> 100		1		,	-		-	1			-	-		;	;	1	:	+	+
Viside Color Col	1,400,001 1.3 1.0		1/6/2021	28	< 100	-	;	1	,			,	1	_		-	-	-	1	-	1	-		
1,500,000 1,30 1,000	Ministry 1. 1. 1. 1. 1. 1. 1. 1	1	1/6/2021	22	< 100	> 100	× 250	ı	,		-	,					_	_	-	1	1	-	-	
1,40,6021 13 13 14 14 14 14 14 1	1,000,000 1.0		1/4/2021	18	× 100	> 100	< 250	,	-	1			-	_	,		_	:	-	1	-	1		
1,000 1,00	Victorial 2.5 C. 100 C. 200 C		1/6/2021	12		× 100	< 250	,								-	,		_	1	-	-	-	
1,000,000 23 1,100 1,1	1,0002000000000000000000000000000000000		1/7/2021	23	× 100	× 100	< 250	1		,	-	-			<u>_</u>	-	-	-	-	1	-	-		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1,40,2021 1,11 1,10 1,		1/2/2021	23	4 100	v 100	< 250			:						_	-	:	-	-	_	-		+
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		1,6,0031	23	100	× 100	052.5	<u> </u>			1	-					-	,			1	1	_	-
1,17,221 1,1	1,17,221 11 11 11 11 11 11 11	+	1/6/2021	2] =	8 5	1 2	032.7	+	 						_			1		,	-	1	٠.	
1,50,2022 1,10 1	1,1,2,2,2,1 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1	\dagger		3	3 5	25.					-	1		<u> </u>			,		1			-	
1,1,1,2,2,1 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1,1,1,2,2,2,3 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	+	†	=		3 5	320								ļ,				<u></u>	ı		-		
Vivilization Vivi	1,11/2021 1,13 1,10 1,10 1,10 1,20 1,		1/3/2021	17 2		3 5	052			+	+			<u> </u>	ł						,	,	<u> </u>	
1,00,0,0,1 1,00 2,100 2,500	1,10,2021 1, 15 1, 10	$\frac{\perp}{1}$	\dagger	co ;	1	2 5	200			1	+		+	-	ł	1				-				
1,17,22,12, 1,28 1,29	1,10,222 1,2	1	\dagger	0.1	90. v	3 5	057	1	1	+	+	1	+			-	1			-		-	-	
SACADE 6.5	1/1/2021 6.55 1.00 2.500 -	-	1/4/2021	8		3 8	000	+		+				-	-			-				1	-	
Square Signature Signatu	SAPAZRET S.S.		17/1/2021	80	1001 >	300 >	062 >				15	Aditional C	e Assessment											
SAPACRET S.S.	SAGRES S.S. S.100 C.250							1	-		įŀ	S leunnan	The property of			-	H	-		-				-
SACRON S.S. SqAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ		5/3/2021	6.5	,	× 100	< 250	,		1	1	+		+	+	+							+	 	
System 1, 10	SAGROST A.		5/3/2021	5.5	;	× 100 J	< 250 J	1	-	+	1	1	1	+		+		,				1		
542021 85	System Store System Sy		5/3/5021	0'/		39.0	062.5	+	1 6	1	1 5		30.0	ŀ	20						-			
SAJOUNT S. O. C.	System S	-	5/3/2021	8.0	'	29,700	000,5 >	8	U,14.	74.0	£	į	800	+					,	1		1		
SAGRETIAN CONTRIBLE CONT	Symbol S	+	5/3/2021	0.7		22.00	3 5			+	+			H					_		1	-		
Syzigoria 1.00 1.	Syd2021 7.5	+	5/4/2021	2.0		100	< 250		<u> </u>	1		,	,	-		<u> </u>			_		1	-		
SAPPORTION A STANDORM A S	Signature Comparity Comp	1	t	2 2		4.100	052 >	1		-	,			_					-	-	1	-		
State NA	S4742221 N/A < 100 < 250	+	†	7.5	,	4 100	05.5			,	1		1		\vdash	L	31.1	-	-	222		\vdash	_	
Sizzi 2021 N/A	Sizzidozi NiA	-	\dagger	N/N		× 100	< 250	;	j		-		1		_	_	-	_	025	-		-	-	-
Occupational 450 450 1300 NS 2000 Orsignational Assistance Assist	Coccupational A50	WEI	t	d Z	ľ	1		1	-			,	,		ď	2495	1	,	-	1	_	-		-
Occupational SS SS SS SS SS SS SS	Occupational SS SS SS SS SS SS SS	Oregon DEQ RBC' - Ingestion, Dermal	Γ		450	430	1300	ş	2,000	0.72	NS	SN	ž	_	\vdash	\vdash	-	3,000	-	20,000	NS	15		
Occupational 25 25 NS SS NS SS NS NS NS N	Occupational S S S S S S S S S	Contact & Inhalation from Tapwater Oregon DEQ RBC - Volatilization to	1		,	,	,	N/C	-	16,000	N.	VZ	Y.	+	╀	+	2	N.	SZ	Š	SN	ž		_
Occupational SS SS SS NS SI 11000 NS NS NS NS NS NS NS	Occupational SS SS NS S1,000 NS NS NS NS NS NS NS	Outdoor Air	\neg		;	,	,	2		333,51		!	!	+	+	+		1	†					L
Construction & Excavation 14,000 SS SS NS 51,000 SS NS SS NS NS NS NS	Construction & Excavation 14,000 -55 NS 51,000 SO NS NS NS NS NS NS NS	Oregon DEQ RBC' - Vapor Intrusion in Buildings			×	×	××	NS	×	11,000	SN	SN	S		\dashv	Ş	N.	N	NS	≥	S.	2	+	+
Worrec Bold text if present, indicates an exceedance of one or more of the deamp levels. AB: Area of Environmental Interest (See Figure 4 for locations) Is nable to expressed Not not set of the the analyte Not: this chemical is considered morroubaile for purposes of the expisoure calculations	Woorser Bold text if present indicates an exceedance of one or more of the deamy levels. AB. Asso of Environmental Interest [See Figure 4 for locations) I value is estimated to be offered to the small of the standard of the small offered to the small offe	Oregon DEQ RBC ¹ - GW in Excavation		& Excavation	14,000	ň	>×	NS	51,000	200	SS	SS	S.			300	×	×	SN.	×	SS	ň		S
AE: Area of Environmental Interest (See Figure 4 for locations) 1: value is estimated NS: not set for the analyte NS: not set for the analyte NS: this chemical is considered monodaile for purposes of the exposure calculations.	AE: Area of Environmental Interest (See Figure 4 for locations) I: value is estimated NS: not set for this sualyte NS: the set for this sualyte NS: the set for this sualyte NS: the set for this sualyte NS: this contains its considerant monoistile for purposes of the exposure calculations into fine the set for the set	See laboratory report for full list of analyte	٦.		Bold text if press	ent. indicates ar	n exceedance of	one or more of		12	δ×	Cs: volatile orga	nic compounds											
It youlds be certinated NS not set for this passable NS not set for this chamble NS this chamble this chamble to purpose of the exposure calculations. NS this chamble is one of the exposure calculations.	I-value is estimated NS not set for this analyte NS not set for this analyte NV: this channel is considered nonvolatile for purposes of the exposure calculations NV: this channel is considered nonvolatile for purposes of the exposure calculations TOP - this demander is considered nonvolatile for purposes of the exposure calculations.	ug/L: micrograms per liter			AEI: Area of Envis	ronmental Inter-	rest (See Figure 4	for locations)			Ital	icized text indic.	ates that the sam	ple is a duplicate	of the sample	of the same na	36							
		bgs: below ground surface			J; value is estima	ted					Ď	egon Risk-Base	d Decision-Makis	g for the Remed	ation of Petrok	um-Contamina	ted Sites, Oreg	on DEQ Sept. 20	03, Revised RB	Cs May 2018.				
		: analyte not tested			NS: not set for the	his analyte			,															
		s: not detected above the laboratory report	rting limit		NV: this chemica	il is considered i	nonvolatile for p	urposes of the &	xposure calculat	ions														

Page 1 of 3

Table 11. Summary of Groundwater Analytical Results - PAHs and Pentachlorophenol Former Shaniko Mill 40919 16th Street, Lyons, Oregon

								PAHs (dete	PAHs (detections only)					.(
Sample ID	Location	Sample Date	Depth to Water (feet bgs)	ənəlariziqeniyrizəM-f	ջ-Me <i>th</i> ylnaphthalene	enssenfinA	enedidqenesA	Chrysene	enedtneroul?	Fluorene	eneledtdgsN	Phenanthrene	Pyrene	Pentachlorophenol (PCF
									1/6rt					
					January 20	January 2021 Site Assessment	sment							
B1-GW	AEI 1	1/4/2021	1,6	93.7	112	< 0.0500	11.3	0.0949	0.674	23.8	7.90	33.9	4.55	1
B3-GW	AEI 1	1/4/2021	0.7	;	1	ı	ı	!	1	1	< 5.00	ı		
B4-GW	AEI 2	1/5/2021	2.1	< 0.250	< 0.250	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.250	< 0.0500	< 0.0500	-
B6-GW	AEI 3	1/4/2021	1.7	-		1	-	-	1	ł			-	í
BS-GW	AEI 3	1/6/2021	2.8			١	1	ı	1	1	1	1	1	-
B7-GW	AEI 4	1/6/2021	2.2	-		1	-	;	1	1	1	1		1
B8-GW	AEI 5	1,4/2021	1.8	!	1	1	1	ţ	:	1		-	l	1
MS-68	AEI 6	1/6/2021	1.0	1	:	ı	1	ı	1	1	ŧ	1	1	1
B10-GW	AEI 9	1/7/2021	2.3	1	ı	1	1	1	1	ì	1	1	1	1
B10-GW DUP	AEI 9	1/7/2021	2.3			1	-	1	-	I	-	-	1	
B11-GW	AEI 9	1/6/2021	2.3	1	1	1	ł	1		1	-		1	
B12-GW	AEI 9	1/6/2021	1.1	1	I	ı	ı	1	1	1	1	1	1.	-
814-GW	AEI 12	1/7/2021	1.1	< 0.250	< 0.250	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.250	< 0.0500	< 0.0500	< 10.0
B15-GW	AEI 12	1/5/2021	2.1	< 0.500	< 0.500	< 0.100	< 0.100	< 0.100	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 10.0
B16-GW	AEI 13	1/7/2021	0.5	< 0.250	< 0.250	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.250	< 0.0500	< 0.0500	< 10.0
B20-GW	AEI 13	1/5/2021	1.0	-	-	-	-	1	1	-	1		1	< 10.4
B23-GW	AEI 1	1/4/2021	1.8	< 0.250	< 0.250	< 0.0500	< 0.0500	< 0.0500	< 0.100	< 0.0500	< 0.250	< 0.0500	< 0.0500	1
824-GW	AEI 8	1/7/2021	0.8	ı	1	1	1	1	1	***	1	1	ı	-
					ay 2021 Add	May 2021 Additional Site Assessment	ssessment							
TP30-GW	AE11	5/3/2021	8.0	156	187	2.79	12.6	0.148	1.17	27.5	82.2	40.8	4.78	1
TP38-GW	AEI9	5/5/2021	7.5	< 0.0687	< 0.0674	0.0196 J	< 0.0500	< 0.0500	< 0.100	0.0169	< 0.250	0.0424 J	< 0.050	ŀ
Oregon DEQ RBC ¹ - Ingestion, Dermal Contact, & Inhalation from Tapwater	on, Dermal Contact, &	Occupational	•	SN	SN	Š	2,500	ž	š	1,300	0.72	SN	×	0.12
Oregon DEQ RBC ¹ - Volatilization to Outdoor Air	zation to Outdoor Air	Occupational		SN	SN	×	×s	N	N	s,	16,000	SN	s,	ş
Oregon DEQ RBC' - Vapor Intrusion into Buildings	Intrusion into Buildings			NS	NS	۶×	>>	N N	N	s×	11,000	SZ	χ	2
Oregon DEQ RBC¹ - GW in Excavation	Excavation	Construction & Excavation Worker	avation	SN	SN	Š	δ×	s^	Š	\$<	200	NS	S<	53
See laboratory report for full list of analytes.	t of analytes.		Bold text, if present, indicates an exceedance of one or more of the cleanup levels.	ent, indicates an	exceedance of	one or more of	the cleanup lev	ek.						
µg/L: micrograms per liter			NS: not set for this analyte	is analyte										,
bas: below ground surface			NV: this chemical is considered nonvolatile for purposes of the exposure calculations	is considered n	anvolatile for p	urposes of the	xposure calcula	tions						
								1						

AEI: Area of Environmental Interest (See Figure 4 for locations) c: not detected above the laboratory reporting limitS: the groundwater RBC exceeds the solubility limit

--: analyte not tested

Bold text, if present, indicates an exceedance of one or more of the cleanup levels.

NS: not set for this analyte
NY: this chemical is considered nonvolatile for purposes of the exposure calculations
PAHs: poblycyclic aromatic hydrocarbons
**Tolegon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept 2003, Revised RBCs, May 2018.

Page 2 of 3

Table 12. Summary of Groundwater Analytical Results - PCBs and Formaldehyde Former Shaniko Mill 40919 16th Street, Lyons, Oregon

	Sample Date	Depth to Water	All PCBs	Formaldehyde
Sample ID		(feet bgs)	μg/L	
B4-GW	1/5/2021	2.1	ND	int and
B15-GW	1/5/2021	2.1		< 40
Oregon DEQ RBC ¹ Dermal Contact, & Tapwater		Occupational	0.028	1.0
Oregon DEQ RBC ¹ Outdoor Air	- Volatization to	Occupational	>S	8,500,000
Oregon DEQ RBC ¹ Intrusion into Build	•	Occupational	>S	8,500,000
Oregon DEQ RBC ¹ Excavation		Construction & Excavation Worker	30	1,300

μg/L: micrograms per liter

bgs; below ground surface

ND: analyte not detected

PCBs: polychlorinated biphenyls

^{--:} analyte not tested

>S: the groundwater RBC exceeds the solubility limit

¹Oregon Risk-Based Decision-Making for the Remediation of Petroleum-Contaminated Sites, Oregon DEQ Sept. 2003, Revised RBCs May 2018.

Appendix C

Previous Soil and Groundwater Analytical Information – Laboratory Reports

January 2021 Site Assessment Reports May 2021 Additional Site Assessment Reports June 2022 Remedial Action Reports

HARD COPIES NOT INCLUDED SEE DIGITAL COPY FOR LABORATORY REPORTS

EXHIBIT C

Drinking Water Well Sampling and Analysis Plan

September 23, 2022

Nancy Sawka, RG Oregon Department of Environmental Quality 4026 Fairview Industrial Drive SE Salem, Oregon 97302

Via email:

sawka.nancy@deq.state.or.us

Regarding:

Drinking Water Well Sampling and Analysis Plan

Former Shaniko Lumber Property

40919 16th Street Lyons, Oregon ECSI# 2387

PBS Project 22925.001, Phase 0004, Task 006

Dear Ms. Sawka:

PBS Engineering and Environmental Inc. (PBS) has prepared this workplan on behalf of Sierra Cascade Forest Products (SCFP) to the Oregon Department of Environmental Quality (DEQ) for completing annual water well testing at the former Shaniko Lumber Property in Lyons, Oregon (Site). This workplan presents the procedures that will be followed, analyses that will be completed, and the anticipated schedule. The scope of work presented herein is intended to satisfy the requirements established in the Prospective Purchaser Agreement (PPA) Scope of Work (SOW) document completed by DEQ dated September 22, 2021.

BACKGROUND

SCFP intends to use the Site for manufacturing seasonal forest products. SCFP initially expects approximately 50 employees but has plans in the future to potentially expand on-site operations. A water well (LINN1542) is located on the site, and SCFP intends to repair the water well and use it for drinking water and restroom facilities. Consumption from the well is not anticipated to exceed the 5,000 gallons per day (gpd) exempt water use criteria for commercial and industrial properties. If greater than 5,000 gpd is anticipated, SCFP will procure water from another source or will apply for a water right permit and certificate.

The well requires a new pump and filtration equipment to make it operable. Once the well has been repaired, it will be sampled to confirm the water meets applicable Oregon Health Authority (OHA) requirements and is absent of contaminants of concern, as defined by DEQ, to ensure the water is safe for human consumption.

WELL SAMPLING PROCEDURES

Water samples will be collected from a sampling port installed at the well head, following filtration. If the well head is not accessible, the sample will be collected from a non-swivel faucet commonly used for drinking water. The sampler will remove any screens, aerators, or other attachments and clean the tap with alcohol or a sanitizing wipe prior to sampling.

The tap will be allowed to run for three to five minutes before sampling at the well head to obtain fresh water from the formation. The well pump will typically turn on once the pressure vessel float valve reaches a certain level

Department of Environmental Quality Drinking Water Well Sampling and Analysis Plan September 23, 2022 Page 2 of 3

to begin pumping fresh formation water into the well system. A temperature change may also accommodate fresh water depending on the season and external air temperature. If a sample is being collected from a faucet located away from the well head, additional purging will be completed until fresh formation water is being discharged at the sample point.

Prior to sample collection, the sampler will don new nitrile disposable gloves. For sampling, the tap may be turned down to reduce flow rate to allow for sample collection and minimize spillage. The sampler will collect samples into laboratory-provided bottles and glassware, being careful not to touch the lip or inside of the bottle to the sampling tap. The sampler will also be careful not to spill or overtop the bottles to not discard any sample preservative that may be in the container.

For fecal coliform, the sampler will fill the sample bottle past the 100-milliliter (mL) fill line but not past 120 mL. If there are no fill lines, at least 1-inch of headspace will be left in the bottle.

For volatile organic compounds (VOCs), samples will be collected into 40-mL volatile organic analysis (VOA) vials with no headspace to eliminate the loss of volatiles.

SAMPLING ANALYSIS

Per OHA Well Testing and Regulations, water samples will be analyzed for the following:

- Total Coliform Bacteria (E coli)
- Arsenic
- Nitrate

Additionally, per DEQ site requirements, water samples will also be analyzed for the following:

- Diesel- and residual-range hydrocarbons by Northwest Method Total Petroleum Hydrocarbons (NWTPH-Dx)
- VOCs by Environmental Protection Agency (EPA) Method 8260
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270 SIM

All samples will be collected in laboratory-supplied containers and labeled with the well ID, date, and time of collection. Samples will be placed on ice in a cooler and transported to an analytical testing laboratory within 24 hours, with chain-of-custody documentation. Analyses will be conducted under normal turnaround time.

SAMPLING SCHEDULE

Per DEQ and OHA requirements, the water well will be sampled annually.

REPORTING REQUIREMENTS

Upon receiving final laboratory analytical testing reports, PBS will prepare an electronic copy of its report that will include a description of field activities, a table of analytical results, figures, and the laboratory report. A copy of the test results will be mailed to the OHA Drinking Water Program and DEQ.

Department of Environmental Quality Drinking Water Well Sampling and Analysis Plan September 23, 2022 Page 3 of 3

APPROVAL

Please feel free to contact me at 503.935.5514 or bret.waldron@pbsusa.com with any questions or comments.

Sincerely,

Digitally signed by Bret Waldron Date: 2022.09.23 15:57:01 -07'00'

Bret Waldron, RG Senior Geologist

cc: Will Payne and Chris Sevilla – Sierra Cascade Forest Products

Attachment(s):

Well Log

Figure 1: Vicinity Map Figure 2: Site Plan

Figure 3: Detailed Site Plan

BW:tl

STATE OF OREGON

WATER WELL REPORT (as required by ORS 537.765) JUN 1 8 1992 (START CARD) #_ 92-WATER RECOLOGATION OF WELL by legal description: (1) OWNER: Well Number_ Name BURKLAND WESTGULF LUMBER INC. SALIM, CONTROLLINA Latitude (Address 5255 Chicago Street Township_ N or Range_ **Ø**or W. WM. Turner Zip 97392 SE Section 1/4 (2) TYPE OF WORK: Lot Block Subdivision New Well Deepen ☐ Recondition ☐ Abandon Street Address of Well (or nearest address)_ & Main (3) DRILL METHOD: <u>Lyons, OR, 97358</u> X Rotary Air ☐ Rotary Mud ☐ Cable (10) STATIC WATER LEVEL: Other. Date_6/12/92 __ ft, below land surface. (4) PROPOSED USE: lb. per square inch. Artesian pressure ☐ Domestic ☐ Community ☐ Industrial X Irrigation (11) WATER BEARING ZONES: ☐ Injection ☐ Other ☐ Thermal (5) BORE HOLE CONSTRUCTION: Depth at which water was first found. Special Construction approval Yes No Depth of Completed Well 135 ft. Explosives used Yes X No Type_ From Estimated Flow Rate SWL 40 44 10 42' HOLE Amount Diameter From 88 Material 95 15 70 sacks or pounds 10" Cement grt. 107 130 17 sacks 40 701 6" 140 (12) WELL LOG: Ground elevation <u>7</u>25 How was seal placed: Method A X c □в Material From SWL To Backfill placed from 135 ft. to 140 ft. Material Native slough Gravel boulders clay fill 0 3 Gravel placed from_ ft. to_ ___ ft. Size of gravel Clay & cobbles sandy 3 5 (6) CASING/LINER: Boulders gravel & sand br. 5 8 Diameter Gravel cobbles loosely cemented 8 11 Gauge Steel Plastic Welded Threaded Casing:__6" 100 250 X X Gravel & sand w/cobbles 11 15 Sand br. w/gravel 15 18 \Box Clay brown w/cobbles 18 29 Gravel cobbles loosely cemented 29 33 Boulders cobbles & gravel 33 36 Cobbles gravel sandy losly cem 36 44 42 5 5/8" Final location of shoe(s) D. shoe at Clay brown w/claystone brown 44 53 (7) PERFORATIONS/SCREENS: Clay blue firm w/boulders 53 55 X Perforations Method PVC skillsaw, Clay blue firm w/gravel & bould 55 Type SDR 26 Material PVC & steel ☐ Screens Clay sandy black w/gravel sm. 78 82 Claystone gray w/gravel_ 82 88 Tele/pipe From To Number Diameter Casing Liner Gravel med. w/sand blk. med-cod 88 95 70 85 <u>1/4" 240</u> 1 1/2 Clay gray sandy w/gravel loose 98 Claystone blue sandy w/boulders 95 135 1/8" 120 5 1/4" X gravel & cobbles 102 Gravel & sand loosely cemented 102 105 Clay gray wstreks of claystone 105 107 Gravel cobbles & boulders loos (8) WELL TESTS: Minimum testing time is 1 hour 107 115 Semented. 6/10/92 Completed Flowing ☐ Pump ☐ Bailer X Air ☐ Artesian (unbonded) Water Well Constructor Certification: I certify that the work I performed on the construction, alteration, or abandon-Yield gal/min Drawdown Drill stem at Time ment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my best knowledge and belief. 1 hr. 50 40 feet 130 feet 2 hrs. WWC Number _

(bonded) Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment work performed on this well during the construction dates reported above. All work performed during this time is in compliance with Oregon well construction standards. This report is true to the best of my knowledge and belief.
MACK DRILLIANG CO.

Date

ORIGINAL & FIRST COPY - WATER RESOURCES DEPARTMENT

Depth Artesian Flow Found

Temperature of Water 49°

Was a water analysis done? Yes By whom_

Did any strata contain water not suitable for intended use?

Salty Muddy Odor Colored Other

SECOND COPY - CONSTRUCTOR

THIRD COPY - CUSTOMER

STATE OF OREGON

WATER WELL REPORT

HELET HELD + MIN	95/7E/1911
IIIN 1 0 1000 15117	5/0/26/1100
OON 1 8 1992 (START CARD) #	43731

(as required by	ORS 537.765)		WATE	PRESOURCES DEPARTS				
(1) OWNER:	AND LECTOID	LF LUMBER INC	ber:S	County Latitude Nor S, Range	escripti	ion:		
	AND WESTGO	LT LUMBER INC	•	County Latitude	Longitude			
Address				Township Nor S. Range		_E or W.	WM.	
City State Lip .				Section 4				
TYPE OF				Tax Lot Block				
New Well [Deepen 🗆	Recondition .	bandon:	Street Address of Well (or nearest address).				
DRILL M		weter a sum						
Rotary Air	Rotary Mud	Cable		(10) STATIC WATER LEVEL:				
Other				ft. below land surface, Date				
) PROPOS	ED USE:			Artesian pressure lb. per square inch.	Date .			
		Industrial Irriga		(11) WATER BEARING ZONES:				
		Other		Depth at which water was first found				
5) BORE HO	LE CONSTI	RUCTION:		<u> </u>	nated Flow	Pote	SWL	
ecial Construction	approval Yes No	Depth of Comple	eted Wellft.	From 10 Esti	nateu r niw	Itate	3112	
ye plosives used = =		Ampunt .		3				
		SEAL .						
HOLE - ameter From	To Materia	SEAL I From To	Amount sacks or pounds			:		
				(12) WELL LOG: Ground elevation			L	
· -				Ground elevation				
		·. · · · ·		Material	From	То	SWL	
				_CONTINUATION_PAGE #2	-		ļ	
	Method 🔲 A	a Do a d	⊔ E		1		<u> </u>	
Other	.	PA 3.5-4- 3.5	· · · · · · · · · · · · · · · · · · ·	Clay gray soft w/grave1	115	117	ļ	
		ftMaterial		Gravel blue-green sandy w/some		120	70	
		ft. Size of gravel		clay blue loosely cemented	117	_130_	/U	
B) CASING	LINEK:	Gauge Steel Plastic	Walded Threeded	Gravel & clay brown soft w/	130	135		
Diameter	1 1 1	1	Weided Threaded	conbles Siltstone grayish brown	135	140		
smg.				BITESTONE GRAYISH DIOWN	1			
		·*						
			. 🗆 . 🗆		1			
er:		<u>∓</u> : □ □					<u> </u>	
-							ļ	
nal location of sho	e(s)	. +					<u> </u>	
7) PERFOR	ATIONS/SC	REENS:	•		1		-	
Perforation					 	<u> </u>		
Screens	Type	Materi	al			-	 	
	Slot	Tele/pipe	*				-	
From To		Diameter size	Casing Liner		 	-	+	
		1, 					+	
	-		. U U		 	-	+	
			Ц Ц 		+	-	 	
-:	 			Our level		 	ш	
				Date started Completed _				
	nama: :			(unbonded) Water Well Constructor Certifica				
8) WELL T		um testing time is	s 1 hour Flowing	I certify that the work I performed on the abandonment of this well is in compliance with	constructi Oregon	on, alter well con	ration, istructi	
☐ Pump	☐ Bailer	Air	Artesian	standards. Materials used and information reporte	d above a	re true t	o my b	
Yield gal/min	Drawdown	Drill stem at	Time	knowledge and belief.	13/13/C NT-	.mhe:		
			1 hr.		WWC No			
				Signed	Date			
	<u> </u>			(bonded) Water Well Constructor Certification	n;			
r		Depth Artesian Flo	w Found	I accept responsibility for the construction,	alteration	or abai	ndonm	
Temperature of water		By whom		work performed on this well during the constructive work performed during this time is in comp	oliance w	rith Ore	egon v	
Was a water analysis		for intended use?	Too little	construction standards. This report is true to the	best of n	ny know	dedge a	
no any strata conta	in water not suitable	lored Other		belief. MACK DRILLANG CO.	WWC N	ımber _	<u> 1394</u>	
				Signed brigane to March	Date	5/15/	92	
Depth of strata:				THE SOURCE OF STREET OF ST	TIOMONATI			