

GROUND WATER DELINEATION AND FOCUSED BENEFICIAL WATER USE DETERMINATION

INDUSTRIAL PROPERTY

10103 NE Marx Street Portland, Oregon

Prepared for:

Blackstone Consulting
Attn: Allan Coffee
Santa Ana, California
(714) 343-7014
acoffee@blackstoneconsulting.com

Issued on:

September 8, 2023 EVREN NORTHWEST, INC. Project No. 1460-23001-04

Offices in Portland and Bend, OR / San Rafael, CA P.O. Box 14488, Portland, Oregon 97293 T. 503-452-5561 / E. ENW@EVREN-NW.com

Ground Water Delineation and Focused beneficial Water Use Determination

Report for:

Industrial Property

10103 NE Marx Street Portland, Oregon

Has been prepared for the sole benefit and use of our Client:

Blackstone Consulting
Attn: Allan Coffee
Santa Ana, CA
(714) 343-7014
acoffee@blackstoneconsulting.com

and its assignees

Issued September 8, 2023 by:

EXP. 2/1/2024

Paul M. Trone, R.G.
Principal Geologist

Lynn D. Green, C.E.G.

Principal Engineering Geologist

1.0	Intro	duction	6
2.0	Salier	nt Background	6
	2.1	Historical Land Use	6
	2.2	Previous Environmental Investigations	7
4.0	Site S	Setting	9
	4.1	Description and Location	9
	4.2	Cultural Setting	10
	4.3	Climate	11
	4.4	Geographic Setting and Topography	11
	4.5	Regional Geologic Setting	12
	4.6	Site Geology	13
	4.7	Hydrogeology	13
		4.7.1 Surface Water	13
		4.7.2 Storm Water Drainage	13
		4.7.3 Site Hydrostratigraphic Units	14
		4.7.4 Ground Water: Flow, Recharge, and Discharge	16
		4.7.5 Summary – Conceptual Hydrogeologic Model	16
5.0	Meth	ods	17
	5.1	Objectives	17
	5.2	Preparation Activities	18
	5.3	Soil Boring and Sampling	18
		5.3.1 Reconnaissance Ground Water Sampling	18
		5.3.2 Sample Nomenclature	19
	5.4	Waste Management and Disposal	19
	5.5	Laboratory Sub-sampling, Compositing, and Analytical Methods	19
	5.6	Cleanup Standards and Other Numeric Criteria	20
6.0	Findir	ngs	21
	6.1	Soil and Ground Water Investigation	22
		6.1.1 Laboratory Results – Soil	
		6.1.2 Laboratory Results – Reconnaissance Ground Water	23
		6.1.3 Data Validation	24
7.0	Locali	ity of Facility	24
	7.1	Current Understanding of Extent of Ground Water Impacts	
		7.1.1 Dissolved Petroleum Hydrocarbon Plume	
		7.1.2 Dissolved Chlorinated VOC Plume	
	7.2	Potential for Impacts to Migrate	25
		7.2.1 Petroleum Hydrocarbon Plume	
		7.2.2 cVOC Plume	
	7.3	LOF Description	26

8.0	Wate	r Well Re	ecords	27
	8.1	Orego	n Water Resources Department GRID Database	27
		8.1.1	Water Wells Potentially in the LOF	28
		8.1.2	Down-Gradient Water Wells	28
		8.1.3	Upgradient Water Wells	28
9.0	Concl	usions ar	nd Recommendations	28
10.0	Limita	ations		30

List of Tables, Figures and Appendices

Tables

IN TEXT (labeled by Section – Number)

- 5-1 Analytical Plan
- 6-1 Summary of Sampling Locations Soil
- 6-2 Summary of Sampling Locations Reconnaissance Ground Water
- 6-3 Summary of Sampling Location Sub-Slab Vapor/Soil Gas

AFTER TEXT (following 'Tables' tab)

- 1 Summary of Analytical Data, Soil & Sediment
- 2 Summary of Analytical Data, Reconnaissance Ground Water

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Zoning Map
- 4 Temporary Soil Boring Location Diagram
- 5 LOF

Appendices

- A Site Photographs
- B Soil Boring Logs
- C Field Sampling Data Sheets
- D Laboratory Analytical Reports

ACM	asbestos-containing material	IG1	General Industrial 1
AST	above-ground storage tank	IG2	General Industrial 2
ASTM	American Society for Testing and	ITRC	Interstate Technology Regulatory
	Materials		Council
bgs	below ground surface	ISM	Incremental Sample Methodology
BWUD	Beneficial Water Use	LUST	Leaking Underground Storage
	Determination		Tank
CE	Commercial Employment	μg/L	micrograms per Liter
CFSLs	clean fill screening levels	mg/Kg	milligrams per Kilogram
Client	Blackstone Consulting, LLC	mg/L	milligrams per liter
	(Blackstone)	μg/m³	micrograms per cubic meter
CMMP	Contaminated Media	MRL	method reporting limit
	Management Plan	NBBS	n butyl benzenesulfonamide
CH ₄	methane	NFA	No Further Action
CO	carbon monoxide	O ₂	oxygen
CO ₂	carbon dioxide	O&M	operations and maintenance
COPCs	constituents of potential concern	OAR	Oregon Administrative Rules
COIs	constituents of interest	OB	Overbank (deposits)
CRSA	Columbia River Sand Aquifer	ODEQ	Oregon Department of
CSSWF	Columbia South Shore Well Field	ODLQ	Environmental Quality
CU1	Confining Unit 1	ODOT	Oregon Department of
CU2	Confining Unit 1	ODOT	Transportation
cVOC	chlorinated volatile organic	OSHA	Occupational Safety and Health
CVOC	constituents	ОЗПА	Administration
DOT	Department of Transportation	PAHs	polynuclear aromatic
DPT	direct-push technology	гАПЗ	hydrocarbons
DRO	·	Pal	recent alluvium
	diesel-range organics decision unit		
DU		PCBs	polychlorinated biphenyls
EAS	Environmental Analytical Service,	PCE	tetrachloroethylene
FCC!	Inc.	PDX	Portland International Airport
ECSI	Environmental Cleanup Site	PID	photoionization detector
563	Inventory	Ppm	parts per million
EG2	General Employment 2	Ppmv	parts per million by volume
ENW	EVREN Northwest, Inc.	Qa or Qal	Quaternary Alluvium
EPA	US Environmental Protection	RBCs	risk-based concentrations
	Agency	RBDM	ODEQ's Risk-Based Decision
ESA	Environmental Site Assessment		Making for the Remediation of
F&BI	Friedman and Bruya, Inc.		Contaminated Sites guidance
FSDS	Field Sampling Data Sheet		document
GPR	ground penetrating radar	RCRA	Resource Conservation and
GRO	gasoline-range organics		Recovery Act
GWD	Ground Water Delineation	REC	recognized environmental
HCID	hydrocarbon identification		condition
HREC	Historical Recognized	RMP	Residential Manufactured
	Environmental Condition		Dwelling Park
I-205	Interstate 205	ROW	right-of-way
IBC	Intermediate Bulk Container	RRO	residual (oil)-range organics

List of Acronyms and Abbreviations (cont.)

SAP Sampling and Analysis Plan
SGA Sand and Gravel Aquifer
SLR SLR International Corporation
SLRBCs screening-level risk-based

concentrations

SOW scope of work

SVOC semi-volatile organic constituent

SWI soil/water interface TCE trichloroethylene

TPH Total Petroleum Hydrocarbons UG/TGA Unconsolidated Gravel/ Troutdale

Gravel Aquifer

UIC Underground Injection Control
USCS Unified Soil Classification System

USGS U.S. Geological Survey
UST underground storage tank
VECs Vapor Encroachment Conditions
VISL Vapor Intrusion Screening Levels
VOCs volatile organic constituents

1.0 Introduction

At the request of Blackstone Consulting, LLC (Blackstone - Client), EVREN Northwest, Inc. (ENW) prepared this Ground Water Delineation and Focused Beneficial Water Use Determination (BWUD) report for the subject site (10103 NE Marx Street, Portland, Oregon; see Figures 1 and 2).

This additional evaluation was conducted to complete the delineation of ground water impacts identified in ENW's *Draft Phase II Environmental Site Assessments* (ESA)¹, which addressed environmental concerns identified by Blackstone, Consulting, LLC (Blackstone) in their *Phase I ESA (DRAFT)*.²

This report summarizes the background and purpose of the ground water delineation, field methods and observations, and the findings of laboratory analyses. The Focused BWUD portion of this report further evaluates ground-water use in the site vicinity and provides an assessment of potential impacts to beneficial uses, if any. This further investigation is photographically documented (Appendix A).

2.0 Salient Background

2.1 Historical Land Use

According to historical information provided by Blackstone, various business entities have occupied the subject property since the 1970s. Industrial activities on the subject property have included a drum reconditioning and intermediate bulk container (IBC) processing operation from approximately the 1970s until the site was reportedly vacated in 2022. Site operations included restoration of empty containers previously used for chemical and liquid storage by various industrial and agricultural operations whereby the containers were cleaned inside the warehouse building using a phosphate detergent and hot water and other cleaning solutions. The refurbished containers were sold to customers for re-use.

Surrounding properties began transitioning to industrial use in the 1950s. Several commercial/warehouse buildings and a lumber storage yard were initially present on the south and southwest adjoining properties beginning in the 1970s, with the lumber operation later becoming the current Oregon Department of Transportation (ODOT) East Portland Maintenance Yard. The east-adjoining property was operated as a salvage yard in the 1960s, and a commercial waste handling/recycling company occupied the southeast-adjacent property by the 1970s. The present-day multi-use public pathway and Interstate 205 (I-205) Sandy Boulevard onramp have bordered the site to the northwest since the 1980s. Current nearby businesses include an auto body shop, waste handling facility and storage yard to the east, and a paving contractor to the south.

¹ ENW, May 18, 2023. Focused Phase II Environmental Site Assessment, Industrial Property, 10103 NE Marx Street, Portland, Oregon (Draft): Prepared for: Blackstone Consulting, Attn: Allan Coffee, Santa Ana, California.

² Blackstone Consulting, LLC 2022. *Phase I Environmental Site Assessment Report, 5.3-Acre Industrial Property, 10103 Northeast Marx Street, Portland, Oregon*: Prepared for Crest Partners, dated January 15, 2023.

2.2 Previous Environmental Investigations

Blackstone prepared a Draft Phase I ESA (Draft for Discussion Purposes Only) of the 5.3-acre subject property in January 2023.² The stated purpose of Blackstone's Phase I ESA was to "investigate and identify *recognized environmental conditions* (RECs) in accordance with American Society for Testing and Materials (ASTM) Standard E1527-21. ENW understands the Phase I ESA was performed in anticipation of a potential property transaction. The findings of the Phase I ESA were as follows:

- Prior Use of Subject Property: The subject property is listed on various regulatory databases for the generation of hazardous wastes, including ignitable/corrosive wastes, chromium, lead, and solvents; and the Underground Injection Control (UIC) database for an unregistered storm water drainage UIC. The subject property was identified as a "significant noncomplier" between 2020 and 2022, with informal enforcement actions issued. Although previous environmental investigations have been completed at the subject property, the investigations were limited to surficial soil sampling, did not include characterization or investigation of groundwater, and did not address the prior operational areas within the warehouse building. Based on the long-term use of the subject property as a drum reconditioning and container processing facility (approximately 45 years), the limited data available regarding the prior operational areas and groundwater at the subject property, and the recent regulatory violations issued, the prior use of the subject property as a steel drum reconditioning and container processing facility is considered a REC.
- Current/Prior Use of Adjoining Properties: Industrial uses on adjoining properties to the east, southeast, and southwest date to the 1960s and 1970s and include an auto wrecking/salvage yard, vehicle maintenance, sandblasting, steam cleaning, engine rebuilding/repair, and recycling operations. Regulatory listings associated with the properties note the use of underground storage tanks (USTs), hazardous waste generation and management, and ODEQ involvement recommending further investigation. In addition, the industrial property uses in the subject property area commenced prior to the establishment of modern regulations regarding the handling of hazardous materials and waste. Blackstone encountered no evidence of comprehensive environmental investigations into historical adjoining property uses from ODEQ online resources; therefore, based on the inferred groundwater flow direction and close proximity to the subject property, the current and former industrial uses of adjoining properties are considered RECs and vapor encroachment concerns (VECs).
- Polychlorinated biphenyl (PCB)-Impacted Soil and Stormwater Runoff: The subject property (also known as the Former Myers Container Site) was identified as ECSI Site ID #2062 in association with the investigation and cleanup actions focused on PCB-contaminated soil in stormwater. According to ODEQ records, the subject property was previously owned by various entities and operated as a drum reconditioning and intermediate bulk container processing facility since 1977. In the late-1990s/early-2000s, the subject property was evaluated due to elevated levels of PCBs found in sediment in the nearby Johnson Lake to the west, which is the discharge point for the two stormwater runoff ponds located on the subject property. A potential source of the PCBs was attributed to historical container management operations at the subject property. Source control measures were conducted at the subject property in 2003, and later in 2012-2013. These cleanup measures included the excavation and removal of PCB contaminated shallow soil and sediment

from select surface areas, the on-site ponds, and the associated catch basin/pipeline/culvert. These source control measures adequately addressed PCB contamination along the stormwater migration pathway and residual PCB contamination identified in the subject property shallow soil. A No Further Action (NFA) determination was issued by ODEQ for the subject property on September 17, 2014. Based on the completed cleanup actions and the issuance of a NFA letter, the PCB contamination identified in near-surface soil resulting from historic container management operations at the subject property is considered a HREC.

- Former Underground Storage Tanks (USTs): Two former USTs were located on the subject property and removed in 1997. The locations and contents of the USTs were not reported. However, regulatory information indicated that confirmation soil sampling was performed, and up to 302 ppm diesel-range petroleum hydrocarbon contamination was discovered during the decommissioning, which was below the applicable 500 ppm cleanup level. Groundwater was reportedly not encountered during the UST removal activities. The ODEQ issued a NFA determination for the removal of the USTs on September 26, 2000. Based on the absence of significant contamination and issuance of a NFA letter, the former USTs are considered a HREC.
- Asbestos-Containing Materials (ACM): Based on the construction date of the subject property building (circa 1977-1978) and the limited nature of Blackstone's visual survey, Blackstone recommends preparing and implementing a subject property-specific Asbestos Operations and Maintenance (O&M) Program. In addition, Blackstone recommends compliance with Occupational Safety and Health Administration (OSHA) regulations requiring the identification of presumed ACM as well as training, notification, and labeling requirements in operational areas.

In February and April of 2023, Blackstone engaged ENW to conduct a *Focused Phase II*^{Errorl Bookmark not defined.} to further investigate possible environmental concerns associated with the historical uses of the subject property. The results of the Focused Phase II identified environmental impacts by hazardous substances and/or petroleum hydrocarbons in the following areas.

- Pond Sediments (DU01 and DU02). Elevated PCBs, total lead, and PAHs in pond sediments are potential sources of storm water pollutants that, if discharged offsite, could adversely impact nearby surface water bodies within the Columbia Slough Source Control Study Area.
- Sump Features Inside Warehouse (MA02 and MA03). Soils are impacted with DRO, RRO, PAHs, and VOCs, including chlorinated VOCs PCE and TCE and shallow ground water is impacted PCE/TCE, vinyl chloride, GRO, DRO, RRO, ethylbenzene, and naphthalene. Ground water impacts extend west to B17; however, have not been fully delineated at this time.
- Suspected UST (MA10). The abandoned UST near the southwest corner of the warehouse is a possible source of petroleum hydrocarbons in shallow ground water near B12 immediately north of the UST. Ground water impacts include moderate levels of GRO, DRO, RRO and naphthalene. Ground water impacts appear to increase to the north at B17 and northwest at B18 and may be comingling with ground water containing petroleum and chlorinated solvents beneath the warehouse building. The comingled ground water plumes appear to be delineated further to the north near B07 and to the northwest by B20, to the south by B06 and B19, and to the east by B16. The sandy fill material observed within the UST does not appear to be impacted with petroleum hydrocarbons or RCRA 8 metals above applicable screening levels.

- Vapor Intrusion Conditions Beneath On-site Warehouse Building. PCE and/or TCE are present at SUB01, SUB02, SUB04, SUB05, SUB06 and in soil gas sample SG01 at concentrations exceeding screening levels. The source of chlorinated compounds in sub-slab vapor and soil gas appears to be related to PCE/TCE and vinyl chloride impacts to soil and ground water beneath the southern portion of the warehouse building.
- West Yard and North Yard Areas. Soil impacts were generally absent in borings B07 and B20 in the West Yard and B08, B09, B10, and B11 in the North Yard. Reconnaissance ground water samples from these borings revealed only relatively low, laboratory-flagged detections of DRO and chloroform exceeding the SLRBCs. Chloroform is often detected in areas where chlorinated tap water from a municipal water source may have leaked from subsurface water lines. These findings suggest relatively little environmental impacts beneath the yard areas.

3.0 Scope of Work

ENW completed the following SOW for this project:

- Called One Call Utility Notification Service to identify and locate all public utilities near each of the proposed sampling locations.
- Performed a private utility locates at the site to clear proposed boring locations.
- Advanced five temporary soil borings and collected soil/water interface and reconnaissance ground water samples for laboratory analysis.
- Submitted soil and reconnaissance ground water samples to an independent laboratory for appropriate analysis.
- Evaluated analytical results with respect to Oregon Department of Environmental Quality (ODEQ)
 cleanup standards and risk-based guidance documents.
- Prepared this report documenting the work conducted with findings.

4.0 Site Setting

4.1 Description and Location

The 5.3-acre subject property is identified as Multnomah County parcel numbers R235909 and R235911. The subject address is 10103 NE Marx Street in northeast Portland, Oregon (Figures 1 and 2).

The property is located in an industrial district reclaimed from former wetlands within the alluvial flood plain of the Columbia River. At the time of this focused Phase II assessment, the subject property was noted to be developed with a single-story warehouse constructed in the 1970s. There is an excavated slope on the southern and western edges of the property and two retention ponds/bioswales in the central portion of the site. Except for the excavated slopes and drainage ponds, the site has been paved or covered with compacted gravel and dirt. A chain link and corrugated metal fence surrounded the site

perimeter. Land use in the vicinity includes a mix of industrial properties and I-205. The subject property was vacant and not in use.

The subject property is bounded to the northwest by I-205. Johnson Lake lies beyond I-205 right-of-way. Several industrial properties are found nearby, including an Auto body shop and Painting business, automobile salvage yard, and industrial warehouse buildings.

4.2 Cultural Setting

The subject site and adjacent properties are zoned General Industrial 2 (IG2), which tend to be located in industrial areas like the Columbia Corridor (see Figure 3). In comparison to General Industrial 1 (IG1)-zoned areas, IG2-zoned areas are less well developed, have larger-sized lots of irregular or large block pattern, and have medium and low building coverages usually set back from the street.³ Specific uses include manufacturing, warehouse and freight movement, wholesale sales, industrial service, railroad yards, parks and open spaces. Zoning overlays at the subject site include:

- Aircraft Landing (h): provides safer operating conditions for aircraft in the vicinity of Portland International Airport (PDX) by limiting the height of structures and vegetation.
- Portland International Airport Noise Impact (x): reduces the impact of aircraft noise on development within the noise impact area surrounding PDX by limiting residential densities and by requiring noise insulation, noise disclosure statement, and noise easements.
- Scenic Resource (s) intends to:
 - o Protect Portland's significant scenic resources as identified in the Scenic Resources Protection Plan:
 - Enhance the appearance of Portland to make it a better place to live and work;
 - Create attractive entrance ways to Portland and its districts;
 - Improve Portland's economic vitality by enhancing the City's attractiveness to its citizens and to visitors; and
 - Implement the scenic resource policies and objectives of Portland's Comprehensive Plan.
- Prime Industrial (k): limits new parks, open areas, and commercial outdoor recreation; prohibits self-service storage and major event entertainment uses; and prohibits future quasi-judicial Comprehensive Plan Map amendments. This overlay preserves Portland's limited supply of prime industrial land for industrial use.

Properties one block or more south of the subject site are zoned primarily Commercial Employment (CE), with lesser General Employment 2 (EG2) and Residential Manufactured Dwelling Park (RMP) mixed in.

Since current zoning restricts residential use on the subject property and properties to the immediate north, south, and east (I-205 to the west); therefore, occupational receptors should be used in evaluating onsite risk at the subject site and on those properties, as appliedable. Residential pathways are not applicable at the subject site.

_

³ Portland Zoning, General Industrial 2 (IG2); https://www.portlandmaps.com/bps/zoning/#/map/R235908

4.3 Climate

East Portland, Oregon has a temperate climate with dry warm summers and mild winters with moderate year-round temperatures, wet winters, dry summers, and transitional summer and fall seasons. The warmest months are between July through September, when the temperature averages between 56.0 °F and 80.8 °F. The coolest months are between November and February, when the average temperature is between 36.1 °F and 48.6 °F. The average low temperature in January is 34.9 °F. Annual rainfall in Portland is 41 inches, and average snow accumulation is 3 inches. 4 Precipitation primarily as rain falls 109 days per year on the average. 5

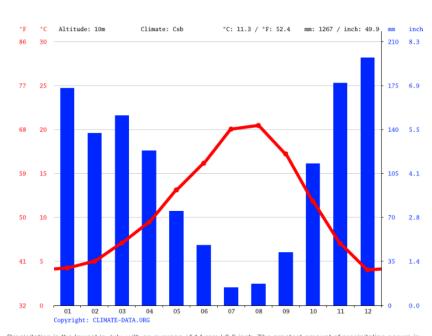


Table 4-1. Gresham Climate Data⁵
CLIMATE GRAPH // WEATHER BY MONTH PORTLAND

Precipitation is the lowest in July, with an average of 14 mm \mid 0.6 inch. The greatest amount of precipitation occurs in December, with an average of 197 mm \mid 7.8 inch.

4.4 Geographic Setting and Topography

The subject property and surrounding area lie within the historic flood plain of the Columbia River, between the Columbia River and the Columbia Slough in Northeast Portland, Oregon. Prior to 1917, the Columbia Slough mainstem channel was seasonally connected to the Columbia River, and part of the active floodplain of the Columbia River, seasonally inundated forming and re-forming side channels, wetlands, sloughs, and shallow lakes. Between 1917 and 1919, several levees were constructed along the Columbia River to control seasonal flooding and promote agricultural development of the area.

The natural topography of the slough mainstem channel and floodplain near the subject property has likely been significantly modified to accommodate agricultural and industrial development. According to

_

⁴ https://www.bestplaces.net/climate/city/oregon/portland

⁵ https://en.climate-data.org/north-america/united-states-of-america/oregon/portland-6342/

historical records, the original floodplain and former wetlands associated with Johnson Lake were filled in when the area was first reclaimed for agricultural use in the 1920s-30s. Subsequent industrial development resulted in a significant amount of material excavated from cut slopes at the southern and western portions of the subject property as well as an embankment along the shared boundary with the north-adjacent property. It was not determined if the excavated material was spread over other portions of the site or disposed of off-site. Currently, the modified surface topography of the site is generally level to slightly sloping toward the center of the site with up to 13-feet of relief across the site.

4.5 Regional Geologic Setting

The site is located south of the Columbia River in the east portion of the Portland Basin. The Portland Basin is part of the Puget-Willamette Lowland, a topographic and structural trough that separates the Coast Range to the west and the Cascade Mountains to the east. The Coast Range is composed of uplifted Tertiary marine sedimentary rocks and related volcanic and intrusive rocks. The Cascade Range is an accumulation of volcanic lavas and debris erupted from continental volcanoes. Tertiary marine strata and older Cascade volcanic rocks interfinger at depth and form the bedrock foundation beneath the Willamette Valley.

Oblique subduction of the Pacific Plate along the Cascadia Subduction Zone is believed to have created the regional transpression, transtension, and dextral shear forces that created two echelon, northweststriking right-lateral faults, the releasing stepover between which pulled apart the Portland Basin. As the basin gradually subsided during the late Miocene and Pliocene, it filled with fluvial and lacustrine sediments transported by the ancestral Columbia River from continental terrain to the east. Locally derived sediments shed from highlands and carried by tributaries combined with continental detritus to fill the Portland Basin. The fine-grained beds comprising the older part of this nonmarine section rest unconformably on Paleogene bedrock or flood lavas of the Miocene Columbia River Basalt Group. These older fine-grained sediments contrast with the overlying coarse-grained sandstone and conglomerate of the tertiary Troutdale Formation. This contrasting lithology prompted several authors^{8,9,10} to informally divide the Troutdale Formation into an upper coarse-grained member and a lower fine-grained member. Later, the lower fine-grained member was formally named the Sandy River Mudstone, while the designation Troutdale Formation was retained for the upper member. 11 Younger Pliocene to Pleistocene volcanic debris flow deposits with clasts derived from the Cascade Range rather than eastern continental terrain were observed unconformably overlying the Troutdale conglomerates south of the Columbia River. Given the differences in clast composition and unconformable contact, these deposits were

-

⁶ Evarts, R.C. and O'Connor, J.E., 2008. Geologic Map of the Camas Quadrangle, Clark County, Washington, and Multnomah County, Oregon: U.S. Geological Survey Scientific Investigations Map 3017, 1:24,000.

McFarland, William D., and David S. Morgan, 1996. Description of the Ground-Water Flow System in the Portland Basin, Oregon and Washington, US Geological Survey Water-Supply Paper 2470-A, 58 pgs., and plates.

⁸ Trimble, D.E., 1957. Geology of the Portland Quadrangle, Oregon-Washington: U.S. Geological Survey Geologic Quadrangle Map GQ-104, 1:62,500.

⁹ Mundorff, M.J., 1964. Geology and Ground-Water Conditions of Clark County, Washington, with a Description of a Major Alluvial Aquifer along the Columbia River: U.S. Geologic Survey Water-Supply Paper 1600, 268 p., 1:48,000.

¹⁰ Howard, K.A., 2002. Geologic map of the Battle Ground 7.5-minute Quadrangle, Clark County, Washington: U.S. Geological Survey Miscellaneous Field Studies Map MF-2395, 1:24,000, with 18-p. pamphlet. [http://geopubs.wr.usgs.gov/map-mf/mf2395/]

¹¹ Trimble, D.E., 1963. Geology of Portland, Oregon, and Adjacent Areas: U.S. Geological Survey Bulletin 1119, 119 p., 1:62,500.

separated from the Troutdale Formation and named the Springwater Formation.¹¹ The Springwater is overlain by mafic rocks of Boring Lava, which was erupted from scattered volcanic centers during the Quaternary.

A variety of geologic processes and events are recorded in the young geologic units in the basin, including cataclysmic glacial lake Missoula floods at the end of the Pleistocene, landslides, volcanic debris flows (lahars) and river aggradation triggered by eruptions of Mount Hood, and aggradation of the Columbia River flood plain in response to sea level rise, and deposition of wind-blown sediment (loess).⁶

4.6 Site Geology

The subject site is and surrounding properties are located on Quaternary (Holocene and Anthropocene) Alluvium (Qa or Qal) composed of stratified clay, silt, sand, and gravel of mixed lithologies deposited along channels and flood plains of major rivers and valley bottoms of tributary streams. These sediments locally includes organic-rich mud in valley bottoms. Soils encountered during this assessment included 9 to 13 feet of silt and fine sand overlying medium to coarse gravels, consistent with imported fill sands, alluvium, and Overbank (OB) Deposits.

4.7 Hydrogeology

4.7.1 Surface Water

Current nearby surface water bodies include Johnson Lake and the Columbia Slough, located within approximately one-quarter (0.25) mile of the property. The Columbia River is located approximately 1 mile north of the subject property.

4.7.2 Storm Water Drainage

Precipitation falling on the site's impervious surfaces, e.g., asphaltic concrete paved areas and the warehouse roof, is received by catch basins and directed to the east and west storm water retention ponds prior to discharging offsite towards Johnson Lake. The subject property was identified on ODEQ 's Environmental Cleanup Site Information (ECSI) database for storm water related issues in which the site was evaluated as a potential contributor of polychlorinated biphenyls (PCBs) in nearby Johnson Lake.² ODEQ collected sediment samples from two ponds at the subject property in early 2000s and found them to contain elevated PCBs along with petroleum hydrocarbons attributed to the site's history of drum/container management operations. Source control measures implemented at the site in 2003 included removal of PCB-impacted sediments from the two ponds and beneath a catch basin and a storm water pipeline. Additional soils testing in 2012 found contamination in the upper 1.5 feet of soil at the subject site. Further source control measures including additional contaminated soil and sediment

-

¹² Hogenson, G.M. and Foxworthy B.L., 1965. *Ground Water in the East Portland Area, Oregon:* U.S. Geological Survey Water Supply Paper 1793, 77 p., Map Scale 1:62,500.

¹³ Hartford, S.V. and McFarland, W.D., 1989. Lithology, Thickness, and Extent of Hydrogeologic Units Underlying the East Portland Area, Oregon: U.S. Geological Survey Water-Resources Investigations Report 88-4110, 20 p., Map Scale

¹⁴ Madin, I.P. (1990). *Earthquake-Hazard Geology Maps of the Portland Metropolitan Area, Oregon*: Text and Map Explanation, 21 p., Mt. Tabor Quadrangle, Map Scale 1:24,000.

¹⁵ Wells, R.E. and others, 2020. *Geologic Map of the Greater Portland Metropolitan Area and Surrounding Region, Oregon, and Washington*: U.S. Geological Survey Scientific Investigations Map 3443 and Pamphlet, 55 p., Map Scale 1:63,360.

removal were conducted under a Final Removal Action Work Plan prepared for the subject property in August 2013.2 ODEQ issued a No Further Action Memorandum in 2014, stating the source control measures adequately addressed the PCB impacts; however, ODEQ also stated that source control measures did not address all potential PCB impacts identified in shallow soils at the subject property. ENW in its May 2023 Draft Phase II ESA¹ recommended that an engineering evaluation of the existing storm water controls, including two retention ponds, should be performed to ensure impacted sediment is not discharged to receiving waters.

4.7.3 Site Hydrostratigraphic Units

Shallow, intermediate, and deep ground-water bearing units (aquifers) separated by lower permeability, less transmissive strata (confining units) are described for the west part of the Columbia South Shore Well Field (CSSWF) including the area of the subject site. 16 The aquifer units include from oldest to youngest: Sand and Gravel Aquifer (SGA), Confining Unit 2 (CU2), Troutdale Sandstone Aquifer (TSA), Confining Unit 1 (CU1), Unconsolidated Gravel (UG) / Troutdale Gravel Aquifer (TGA), Columbia River Sand Aquifer (CRSA), and Overbank (OB) deposits. 17 Municipal wells used as a domestic water backup supply by the City of Portland's Water Bureau generally derive ground water from deeper strata, including the TSA conglomerate and SGA. 16 Brief descriptions of these Hydrostratigraphic units as provided from Hartford and McFarland (1989)¹³ are provided below.

SGA. Consisting of a thick (>560 feet in SE part of CSSWF) section of sand, silt, gravel, and clay beds, the SGA is one of the more important aquifers in the CSSWF. The SGA is divided into a relatively coarse-grained upper unit and a predominately fine-grained lower unit.

- **Upper Unit.** In the western part of the CSSWF near the site, the upper unit is approximately 50 to 120-feet-thick, indurated, and consists primarily of fine to medium vitric (basaltic glass) - lithic (basalt and quartz sand) sand with minor amounts of gravel. Throughout the upper unit occur minor lenses of greenish-blue clay to gray-brown silt and minor clasts of basaltic composition. Transition from the upper relatively coarse-grained unit to the lower finer-grained unit is gradual. This unit is part of the informal upper member of the ancestral Columbia River facies of the Troutdale Formation based on correlation of basaltic glass (vitric material) in the SGA with basaltic glass clasts from outcrops in the Columbia River Gorge.
- Lower Unit. Predominately fine-grained sediment lenses inter-stratified with few coarse-grained lenses comprise the lower unit. Light blue-gray sandy to silty clay layers interbedded with layers of micaceous, quartzitic2, and basaltic sand. Less common in the lower unit are quartizitic and basaltic sand and gravel lenses.

The top of the SGA occurs at an altitude of approximately -450 feet, which is approximately 420 feet bgs at the subject site.

¹⁶ ODEQ, 1996. Remedial Action Record of Decision for the East Multnomah County Groundwater Contamination Site, Troutdale Sandstone Aquifer: Oregon Department of Environmental Quality Waste Management & Cleanup Division, dated

¹⁷ OWRD, not dated. West-to-East Conceptual Geologic Cross Section through the Columbia South Shore Wellfield, horizontal scale 1 inch = 9,000 feet, vertical scale 1-inch = 300 feet.

CU2. Interpreted as lacustrine sediments deposited in a closed-basin formed by local tectonic deformation, CU2 is described as grayish-olive clay with minor silt and thin lenses of fine- to medium-grained basaltic sand. A claystone occurs near the bottom of CU2 throughout most of the CSSWR. Gently dipping, CU2 is estimated to be less than 30-feet-thick near the site, though CU2 becomes more than 180-feet-thick in the more steeply dipping south-southeast part of the CSSWF. CU2 acts as a leaky confining layer between the upper unit of the SGA and the overlying TGA. The top of CU2 occurs at an altitude of approximately -400 feet, which is approximately 370 feet bgs at the subject site. CU2 is estimated to be approximately 50-feet-thick in the area of the subject site.

TSA. The most litholgically unique hydrostratigraphic unit in the CSSWF, and it consists of an upper (sandstone) unit and lower (conglomerate) unit an average of approximately 100-feet-thick.

- **Upper Unit.** Sand, sandstone, and minor thin silty-clay lenses comprise two-thirds the thickness of the TSA. Sand and sandstone are composed of relatively clean, moderate- to well-sorted, angular to sub-rounded black basaltic glass (sideromelane), which where locally altered to palagonite forms the cement to bind the sand grains in the upper unit. Blue to blue-green silty clay as thin lenses occur in the upper one-half of the upper unit.
- Lower Unit. A conglomerate chiefly composes of basaltic gravel comprises one-third the thickness of the TSA. The proportion of sand versus gravel becomes greater in the northwest corner of the CSSWF northwest of the site. The lower unit is composed of a quartzite-bearing basalt conglomerate with a silty to sandy matrix composed of vitric-lithic material. Cemented basalt clasts are well rounded and poorly sorted.

Based on lithological and geochemical similarity of well cuttings in the CSSWF with outcrop samples in the lower Columbia River Gorge, the TSA correlates with the upper member of the ancestral Columbia River facies of the Troutdale formation.

The top of the TSA occurs at an altitude of approximately -310 feet at the subject site. The TSA is estimated to be approximately 90-feet-thick in the area of the subject site.

CU1. Interpreted as lacustrine sediments deposited in a closed-basin that existed for a relatively short period of time, CU1 is described as olive-gray to gray-brown sand, silt, and clay with black vitric sand or sandstone beds (5 to 15-feet-thick) occurring near the top of this unit. A clay with high natural gamma activity occurs at the bottom of this unit. The estimated average thickness of CU1 is 100 feet in the portion of the CSSWF west of Blue Lake. CU1 acts as a confining unit between the TSA and the Unconsolidated Gravel / TGA. The top of the CU1 occurs at an altitude of approximately -240 feet at the subject site. CU1 is estimated to be approximately 70-feet-thick in the area of the subject site.

UG/TGA. Consists of gravels of the late Pliocene Troutdale Formation and younger undifferentiated Pleistocene gravels that are up to 580-feet-thick in the CSSWF. Upper Pliocene TGA gravels consist mainly of pebbly to cobbly clast-supported conglomerate with a silty to sandy matrix. Sixty to eighty percent of the clasts are sub- to well-rounded basalt derived locally, while the remaining 20 to 40% of the clasts are composed of quartzite and other foreign clasts derived from the Columbia Plateau. The matrix consists of olive-gray to brown sand, silt, and clay. Thin sand, silt, and clay lenses occur intermittently throughout the unit. Overlying Pleistocene UG gravels are composed of basaltic clasts derived locally. These gravels are generally uncemented, though cemented UG gravels also occur within the CSSWF. Therefore, the presence or absence of quartzite and other foreign clasts is a more reliable indicator than cementation

for distinguishing Pleistocene UG gravels from upper Pliocene Troutdale gravels. The UGA/TGA is estimated to be 250-feet-thick in the subject site area.

The top of the UG/TGA occurs at an altitude of approximately +10 feet at the subject site. The UG/TGA is estimated to be approximately 250-feet-thick in the area of the subject site. Medium to coarse gravels correlating with the UG were encountered at depths ranging from 9 to 13 feet bgs in soil borings drilled at the subject site.

CRSA. Fills the lower part of a Pleistocene channel segment of the ancestral Columbia River, which channel has a depth of more than 300 feet in the northwest part of the CSSWF north and west of the subject site. The CRSA is composed of gray to gray-brown, fine-grained, clean quartz-rich basaltic sand. Trace amounts of silt, siltstone fragments, sandstone fragments, muscovite flakes, wood fragments, shell fragments, and coarse sand and gravel occur throughout the aquifer. The CRSA generally becomes siltier with depth, but in some borehole logs the bottom 10 to 40 feet of the CRSA contains coarse sand and gravel layer with minor boulders. The CRSA occurs approximately 0.5-mile north to 1.0-mile northwest of the subject site at an altitude ranging from 0 to -40 feet and a thickness ranging from 140 to 280 feet. The CRSA is not likely present in the immediate area of the subject site.

OB. The uppermost unit on the Columbia River floodplain deposited as the result of intermittent flooding of the Columbia River. OB consists of light olive-brown to dusky yellow-brown silty clay and brown to gray-brown fine-grained sandy silt. The thickness of OB is greatest near the modern Columbia River shoreline and thins to zero at the southern limit of the floodplain. Based on borings drilled at the subject site, OB ranges from 9- to 13-feet-thick at the subject site. OB correlates with Qa (Quaternary alluvium) mapped at the site.

4.7.4 Ground Water: Flow, Recharge, and Discharge

Aquifers underlying the site are thought to be recharged from precipitation, surface drainage and upgradient ground water flow. For example, the TSA's primary sources of recharge are upgradient regional ground-water flow, ground-water flow from the SGA in areas where CU2 is more permeable and an upward gradient exists, spring flow and discharge from the TGA at the CU1 erosional truncation, and possibly irrigation. Most precipitation evaporates; however, smaller percentages either runoff to surface water (as storm water), are collected by vegetation and transpired back into the atmosphere (evapotranspiration), or percolates downward to the water table.

Discharge from the shallow aquifers eventually occurs to surface water bodies such as the Columbia Slough, Johnson Lake, and a myriad of other surface water bodies, which in turn discharge to the Willamette River or are pumped to the Columbia River.

4.7.5 Summary – Conceptual Hydrogeologic Model

The subject property is located in the east portion of the Portland Basin of the Puget-Willamette Lowland, a topographic and structural trough that separates the Coast Range to the west and Cascade Mountains to the east.⁶ The Columbia River is the major west-flowing drainage located north of the site and receives water from the Snake River and numerous smaller drainages of the Columbia Plateau, Cascadian highlands, Willamette Valley, and Coast Range. The Columbia Slough runs parallel to the Columbia River, receives surface runoff and aquifer discharge from the south shore of the Columbia, and either discharges

to the Willamette River (lower slough) or is pumped over a system of protective dikes into the Columbia River (middle and upper sloughs). A system of prolific sand and gravel aquifers such as the TGA, TSA and SGA separated by fine-grained, low conductivity confining units such as CU1 and CU2, make up an important ground water resource in the area. Public water supply wells in the CSSWF serving smaller communities also serve as a backup water supply for millions of City of Portland residents and businesses when Bull Run Reservoir water levels become turbid or are too low to withdraw. Numerous private wells completed in these aquifers serve neighborhoods, industry, agriculture, and individual homes. In the absence of pumping, these aquifers generally flow northward toward the Columbia Slough, Columbia River, and border lakes, e.g., Fairview and Blue Lake. Flow directions and vertical gradients can be reversed when wells are pumped.

OB deposits (correlates with Qa) are mapped at the surface of the site and composed of sand, silt, and clay with minor gravel. Shallow ground water in the OB deposits occur at depths ranging from 8 to 14 feet bgs, just above the UG gravel. Shallow ground water in the OB is recharged principally by precipitation. Although some of the precipitation evaporates, becomes storm water, or becomes biologic uptake and returns to the atmosphere by transpiration, some precipitation penetrates the ground surface where it eventually percolates down to shallow ground water in the OB which is expected to follow topography and flow northward to northwestward toward the Columbia Slough and Columbia River. Though evaluation of the hydraulic characteristics of the OB deposits was not included in the scope of work at the subject site, OB deposits are known to be much less prolific than the deeper TGA, TSA and SGA aquifers which produce most of the municipal water used by private residents, smaller communities as well as the entire City of Portland when a backup to the Bull Run Reservoir is needed. Occasionally the surface waters rise in response to high precipitation events and may recharge underlying sedimentary aquifers. Ground water in the OB deposits may also be recharged from the underlying UG/TGA in the presence of a vertical upward gradient.

5.0 Methods

5.1 Objectives

The objectives of this investigation were to:

 Complete the delineation of petroleum hydrocarbon-related volatile organic constituent (VOC) and chlorinated VOC (CVOC) plumes in shallow ground water underlying south Tax Lot 1N2E16D-02800-A1.

Additional objectives for the work included:

- To perform the work efficiently and cost-effectively, minimizing interference with any site operations.
- To perform the work in a safe manner for technical personnel and site residents.
- To document information and data generated in a professional manner that is valid for the intended use.

5.2 Preparation Activities

ENW performed or coordinated the following activities before commencing all field activities.

Plan Preparation. In-house Sampling and Analysis Plan (SAP) was prepared for the project.

One Call Notification. Prior to any subsurface site work, a call was placed with One Call Utility Notification Service to identify and locate all public utilities near each of the proposed sampling locations.

5.3 Soil Boring and Sampling

Using information in Blackstone's *Phase I ESA*² and results from ENW's Draft *Phase II ESA*, ^{Error! Bookmark not defined.} five (5) direct-push borings (B21 through B25) were advanced around the perimeter of the petroleum hydrocarbon-related VOC and CVOC plumes for the purposes of collecting SWI and reconnaissance ground water samples for laboratory analysis. ENW advanced the soil borings B21 through B25 using a percussive Direct Push Technology (DPT) drill rig operated by Cascade Drilling of Clackamas, Oregon under the direction of an ENW geologist. The locations of borings B21 through B25 are illustrated in Figure 4. Soil materials recovered from the DPT sleeves were inspected continuously for the presence of contamination by visual and olfactory inspection. In addition, semi-quantitative headspace screening was performed by placing selected soil samples in a plastic sealable bag, breaking the soil core to expose surface area inside the bag, and inserting a photoionization detector (PID) tip into the top of the bag. The cores were logged (Appendix B) with special attention to description of lithology, color, moisture, physical properties, and odor.

Soil borings intended for collection of reconnaissance ground water samples were completed to approximately five (5) feet below the first observed ground water table (i.e., approximately 10 to 15 feet below ground surface [bgs]). During each sampling interval, select portions of the soil core were retained for possible laboratory analysis. Soil samples were retained for possible laboratory analysis from zones where field screening identified evidence of possible impacts. If soil impacts were not indicated, at least one soil sample was collected from each boring from the soil/ water interface (SWI).

Soil samples were placed directly into labeled laboratory-prepared glass sample jars using clean Nitrile-gloved hands and sealed with a Teflon-lined lid. Samples for analysis of volatile constituents were additionally collected using sampling procedures prescribed by the Environmental Protection Agency (EPA) Method 5035. All samples were preserved on ice in a cooler pending transport to the laboratory following chain-of-custody protocols.

5.3.1 Reconnaissance Ground Water Sampling

Upon reaching total depth, the drill tooling was removed from the five borings, and a temporary well point was installed in select boreholes in preparation for reconnaissance ground water sampling. Approximately one (1) to three (3) liters of ground water were pumped from each boring using a low-flow peristaltic pump and dedicated polyethylene tubing to "purge" the standing water from the borehole and to draw representative ground water into the temporary well point. Following purging, a reconnaissance ground water sample was collected from clean, dedicated polyethylene tubing connected to a peristaltic pump set at a low rate to minimize off gassing of volatile contaminants. The sample was transferred into laboratory-supplied containers with appropriate preservative, uniquely labelled, documented on a chain-

of-custody record, and placed in a cooler on ice pending transport to the laboratory. Reconnaissance ground water field sampling data sheets (FSDS) are included in Appendix C.

5.3.2 Sample Nomenclature

Each boring was designated with a "B" prefix and a number (e.g., B21, B22, etc.). Individual soil samples were designated with the sample's depth appended to the boring number, e.g., B21-8 would indicate a sample collected at 8 feet bgs in boring B21. Additional qualifiers such as a sample collected at the soil/water interface (SWI) were appended to the boring number as appropriate (e.g., B21-8-SWI would indicate a soil/water interface sample collected from 8 feet bgs in boring B21). Reconnaissance ground water samples were labeled similarly (e.g., B21-GW-19 would indicate the sample was collected from boring B21 from within the temporary well screen at a depth of 19 feet bgs).

All sampling equipment was decontaminated before and after sampling by undergoing a wash sequence of Alconox® solution, tap water, and then deionized water final rinse. Clean Nitrile gloves were used during sample collection. Following sampling, temporary soil gas probes and Vapor Pins® were removed and properly abandoned in accordance with Oregon regulations and the pavement/asphalt surface restored, as applicable.

5.4 Waste Management and Disposal

Investigation-derived waste (soil and purge water) was contained inside labelled Department of Transportation (DOT)-certified 55-gallon drums and staged on-site pending appropriate disposal.

5.5 Laboratory Sub-sampling, Compositing, and Analytical Methods

Soil and reconnaissance ground water samples were delivered to Friedman & Bruya, Inc. (F&BI) of Seattle, Washington, for analysis under formal chain-of-custody protocol.

Samples were analyzed for select constituents using the analytical methods presented in Table 5-1. Copies of the F&BI and Fremont laboratory analytical reports and chain-of-custody documentation are provided in Appendix D.

Analytical **Reconnaissance Ground** Constituents Soil Method Water TPH as Gasoline-Range Organics All samples **NWTPH-Gx** All samples (GRO) TPH as Diesel- and Residual-range NWTPH-Dx organics (DRO and RRO, All samples All samples respectively) Environmental Protection Volatile organic compounds (VOCs) -**All Samples** All samples. Agency (EPA) **Full List** 8260D **EPA Method** Polynuclear Aromatic Hydrocarbons Select samples from the None 8270B (PAHs) west margin of site

Table 5-1. Analytical Plan

5.6 Cleanup Standards and Other Numeric Criteria

Oregon's environmental cleanup rules (Oregon Administrative Rules [OAR] 340-122) establish the standards and procedures for the protection of current and future public health, safety and welfare, and the environment in the event of a release or threat of a release of a hazardous substance. In the event of a release of a hazardous substance, remedial actions shall be implemented to achieve:

- Acceptable risk levels defined in OAR 340-122-0115, as demonstrated by a residual risk assessment; or
- Numeric cleanup standards developed as part of an approved generic remedy identified or developed by the Department under OAR 340-122-0047, if applicable; or
- For areas where hazardous substances occur naturally (e.g., metals, etc.), the background level of the hazardous substances, if higher than those levels specified above.

Acceptable risk levels may be evaluated through conducting a site-specific risk assessment that calculates exposure point concentrations for specific exposure pathway receptor-scenarios or use generic for hazardous substances under ODEQ's Risk-Based Decision Making (RBDM) guideline to streamline the risk assessment process (see below).

The assessment and remediation of hazardous substances in Oregon are conducted according to OAR 340, Division 122, *Hazardous Substance Remedial Action Rules*. The following cleanup standards and numeric criteria may be applied in evaluating site assessment results.

Soil Matrix. Under the Soil Matrix Cleanup Option Rules (OARs 340-122-0320 through 0360) cleanup standards are determined by assigning site-specific values to environmental parameters (e.g., soil type, depth to ground water, etc.). For purposes of risk-based evaluations of soil, Soil Matrix Cleanup Levels are often used for screening purposes, where potentially significant levels of petroleum contamination may be present if concentrations of total petroleum hydrocarbons in soil exceed their respective soil matrix cleanup level or soil matrix level I for conservative screening purposes and may require remedial action. Concentrations of total petroleum hydrocarbons lower than their corresponding Soil Matrix Cleanup Level or Soil Matrix Level I if a cleanup level has not been determined, usually do not require any additional cleanup or risk management.

ODEQ Risk-Based Concentrations. ODEQ has compiled default risk-based screening reference levels (RBDM guidance document) for common exposure-pathway receptor-scenarios that may be utilized in lieu of site-specific risk calculations (OAR 340-122-0115). In particular, the pre-calculated RBC represents the concentration of a constituent of interest (COI) in the impacted medium (e.g., soil, ground water, or air) that potentially represents an unacceptable risk level.

The published RBCs represent a conservative default concentration of a COI in an impacted medium (e.g., soil, ground water, soil gas, or air). When COI concentrations on a site exceed the RBC, unacceptable human health impacts are possible.

 For carcinogens, the regulatory standard is represented by an excess cancer risk of one in one million (1x10⁶), and

20

• For non-carcinogens, this is represented by a Hazard Index of 1.

RBC exceedances typically trigger further investigation and potentially a human health risk assessment. Therefore, RBCs can be applied at sites as generic, conservative cleanup standards and are routinely used by ODEQ to determine if a site requires additional action. Site-specific parameters used in the equations to develop the RBCs are often adjusted to match actual conditions in developing site-specific cleanup levels.

RBCs are generally used to evaluate sampling analytical results as follows:

- ODEQ's lowest RBC for all pathways for residential receptors is used as an initial 'conservative' screening of a constituent. If a constituent's concentration exceeds its screening level risk-based concentration (SLRBC), it requires further evaluation. Otherwise, the constituent is considered unlikely to pose unacceptable risk to any human receptor.
- Because ODEQ Generic RBCs are based on several conservative assumptions (e.g., duration and type of exposure), exceeding an SLRBC does not necessarily indicate that additional investigation or remediation is required. Rather, the exceedance of a SLRBC may indicate that additional investigation and evaluation, including consideration of site-specific information (e.g., current, and future land uses), may be necessary to determine if remediation or other actions are necessary. In many cases, it is not possible to determine whether unacceptable risks to human health and the environment are present, and require further action, until a risk assessment, including evaluation of current and reasonably likely land and water uses, is complete.
- In general, ODEQ considers chemical concentrations less than SLRBCs to be protective of human health.

Other Numeric Criteria. In addition to the above risk-based cleanup standards, concentrations were also compared to the following numeric criteria to determine if possible enrichment was occurring, and/or determine if there may be offsite soil disposal restrictions.

• Clean Fill Screening Levels. Analytical data for organics were compared to clean fill screening levels (CFSLs) for upland sites established by the ODEQ. [3] ODEQ does not require materials in which contaminant concentrations are less than or equal to CFSLs to be regulated as a solid waste. Rather, these materials may be placed at upland locations that are far enough away from a surface water body, or where there are sufficient controls to avoid erosion into surface water. CFSLs are used to determine if impacts to soil may require future management and are not used for risk screening.

6.0 Findings

The findings of this Focused Phase II ESA are presented in this section. Please reference:

- Figure 2 for the site layout.
- Figure 4 for temporary soil boring locations
- Appendix A for a photolog of site work.

21

^[3] ODEQ. July 2014. Clean Fill Determinations: Internal Management Directive, last updated February 21, 2019, by Heather Kuoppamaki.

- Appendix B for boring logs.
- Appendix C for reconnaissance ground water FSDS sheets.
- Appendix D for laboratory analytical reports.
- Tables 1 and 2 for a comprehensive summary of analytical results for soil and reconnaissance ground water, respectively.

Tables 6-1 present a list of soil and reconnaissance ground water sampling locations for this additional investigation.

Depth Borehole / Date Sampled Sampled By Location **Location ID** Sampled (feet) Soil B21 7/24/2023 ENW Western margin of site, west of boring B18, south of boring B22 B22 7/24/2023 10 **ENW** Western margin of site, west of boring B17, south of boring B20 B23 7/24/2023 12 **ENW** Northern part of south tax lot, north of boring B03, south of B08 B24 7/24/2023 14 **ENW** Eastern margin of site, east of boring B03, north of boring B25 10 B25 7/24/2023 **ENW** Eastern margin of site, east-southeast of boring B15, south of boring B24 **Reconnaissance Ground Water** 7/24/2023 19 Western margin of site, west of boring B18, south of boring B22 B21 **ENW** 7/24/2023 20 Western margin of site, west of boring B17, south of boring B20 B22 **ENW** 19 B23 7/24/2023 **ENW** Northern part of south tax lot, north of boring B03, south of B08 7/24/2023 20 Eastern margin of site, east of boring B03, north of boring B25 B24 **ENW** 7/24/2023 20 **ENW** Eastern margin of site, east-southeast of boring B15, south of boring B24 B25

Table 6-1. Summary of Sampling Locations – Soil and Reconnaissance Ground Water

6.1 Soil and Ground Water Investigation

Subsurface materials in borings generally consisted of approximately 0.5-feet of gravel fill, 9 to 11.5 feet of unconsolidated sand and silt underlain by gravel to the maximum depth explored of 20 feet bgs.

Fill Gravel. 0.5-feet of angular gravel surface fill was encountered in all borings.

Overlying Sand and Silt. Sandy sediments were characterized as poorly graded sand (SP), poorly graded sand with silt (SP-SM), silt with fine gravel (ML), silty sand with gravel (SM), and silt (ML). These sediments were brown to gray, loose to medium dense, medium-grained, micaceous, quartz-rich, and saturated at depths ranging from 8 to 11 feet bgs in B21, B22, B23, and B25. Silt beds encountered along with sand in B23 and B24 were dark brown to gray, moist, medium soft, micaceous, and mottled gray (in B23). These sand and silt sediments are believed to correlate with Qa (Quaternary alluvium) and OB (Overbank deposits).

Underlying Gravels. Gravelly sediments were characterized as poorly graded gravel with sand (GP), poorly graded gravel with/without sand and silt (GP-GM), and well-graded gravel with some sand and silt (GW-GM) to the maximum depth explored of 20 feet bgs. These coarse-grained sediments were brown and/or gray, medium dense to dense, sub-rounded, coarse-grained, saturated, and non-micaceous. A 1-foot-thick SP interbed was encountered from 15 to 16 feet bgs between GP and GW-GM in B-24. Less than 0.5-feet of gravel fill was encountered in all five borings. The underlying gravels and gravelly sediments are

believed to correlate with the upper part of the UG/TGA (Unconsolidated Gravel / Troutdale Gravel Aquifer).

The soil/water interface (SWI) was encountered in all borings at depths ranging from 8 to 14 feet bgs. Ground water stabilized at depths ranging from 9.84 to 11.92 feet bgs.

During drilling, no field evidence of impacts, as suggested by absence of olfactory indications and zero to low (\leq 0.2 parts per million by volume [ppmv]) soil vapor headspace readings, were observed by ENW.

6.1.1 Laboratory Results – Soil

The results of laboratory analysis of soil samples are summarized on Table 1, behind the Tables tab following text. The results on Table 1 are compared to ODEQs Soil Matrix cleanup levels, ODEQ SLRBCs, and ODEQ clean fill screening levels (CFSLs).

Petroleum Hydrocarbons. Laboratory analysis did not detect the presence of total petroleum hydrocarbons as GRO, DRO, or RRO above laboratory MRLs in any of the five SWI samples from B21, B22, B23, B24, or B25.

Volatile Organic Constituents (VOCs). Laboratory analysis by EPA Method 8260D for the full suite of volatiles did not detect any VOCs above laboratory MRLs in any of the five SWI samples analyzed.

6.1.2 Laboratory Results – Reconnaissance Ground Water

The results of laboratory analysis of reconnaissance ground water samples are summarized on Table 2, behind the Tables tab following text. Results in Table 2 are compared to ODEQs SLRBCs and ODEQ suggested default background concentrations for inorganic contaminants in fresh water.¹⁸

Petroleum Hydrocarbons. Laboratory analysis did not detect the presence of total petroleum hydrocarbons as GRO, DRO, or RRO above laboratory MRLs in any of the five reconnaissance ground water samples from B21, B22, B23, B24, or B25.

Volatile Organic Constituents (VOCs). Laboratory analysis by EPA Method 8260D for the full suite of volatiles did not detect any VOCs above laboratory MRLs in any of the five reconnaissance ground water samples analyzed.

Semi-Volatile Organic Constituents (SVOCs). Reconnaissance ground water samples from B21 and B22 were analyzed for PAHs using EPA Method 8270E. Results follow.

o Fluoranthene (0.036 micrograms per liter [μg/L]) and pyrene (.047 μg/L) were detected in the reconnaissance ground water sample collected from boring B21. However, PAH concentrations were very low (neither exceeded their respective solubility limits as published in ODEQ's RBDM guidance or their respective SLRBCs) and no evidence of impacts was noted at this location during drilling. The remaining PAHs in the sample from boring B21 were not detected above laboratory MRLs.

-

¹⁸ For reference only. ODEQ prefers a site-specific determination of background concentrations; however, the default values may be used during the screening phase of a site investigation to make an initial assessment of whether metals concentrations at that site exceed regional background concentrations.

 No PAHs were detected above laboratory MRLs in the sample of reconnaissance ground water collected from boring B22.

6.1.3 Data Validation

A review of the laboratory reports for soil and reconnaissance ground water samples suggest samples were generally analyzed within appropriate quality assurance/quality control procedures and specified holding times (see Appendix D for laboratory data validation form completed for this project).

7.0 Locality of Facility

The Locality of Facility (LOF) is defined as any point where a human or an ecological receptor is reasonably likely to come into contact with facility-related hazardous substances. The LOF considers the likelihood of the contamination migrating over time and may be larger than the subject site.

In developing a LOF for the subject property, ENW considered the conceptual hydrogeologic model discussed above, results of previous sampling investigations, cleanup activities, as well as the findings concerning beneficial uses of ground water described further in Section 8.0 (Water Well Records).

7.1Current Understanding of Extent of Ground Water Impacts

This section presents our current understanding of the extent of dissolved petroleum hydrocarbon and dissolved chlorinated volatile constituents impacting ground water at the subject site at concentrations greater than ODEQ's SLRBCs.

No evidence of light non-aqueous phase liquids (LNAPLs) associated with petroleum hydrocarbons or dense non-aqueous phase liquids (DNAPLs) associated with chlorinated solvents was detected at the site.

The following sections describe the dissolved constituents of potential concern (COPCs) and discuss the potential for contaminants to migrate with ground water. Figure 1 provides a location reference.

7.1.1 Dissolved Petroleum Hydrocarbon Plume

Petroleum hydrocarbons and related VOCs occurrence summarized below are described in detail in ENW's draft *Focused Phase II ESAs*. Error! Bookmark not defined. The estimated extent of petroleum hydrocarbons and related VOCs in ground water is shown in Figure 4.

GRO and **Related VOCs.** Dissolved GRO and related VOCs benzene, ethylbenzene, naphthalene, 1,2,4-trimethylbenzene (TMB), and total xylenes were previously detected at concentrations greater than SLRBCs in reconnaissance ground water samples collected in the south-central part of the site. The GRO plume is generally centered around B17 and is delineated by B07 to the north, B15 to the east, B04, B06, and B16 and B19 to the south, and B20 through B22 to the west. The GRO plume is entirely within the site boundaries.

DRO. Dissolved DRO was also previously detected in reconnaissance ground water at concentrations greater than ODEQ's SLRBCs; however, the chromatograms for DRO did not match the standard used for quantitation for any of the detections. Further evaluation by the laboratory revealed that a plasticizer (n butyl benzenesulfonamide [NBBS]) in the sample tubing used by the driller during reconnaissance ground

24

water sampling of B06 through B11 biased those samples high in DRO. Running these sample extracts through silica gel followed by re-analysis reduced the DRO concentration in these samples. However, the chromatograms still did not match the DRO standard used for quantitation, and DRO remained above ODEQ's SLRBC in B06 and B11. Since the DRO concentration was relatively low, and DRO was not caused by overlap from GRO or RRO (both not detected in B06 or B11), ENW concluded that a the DRO detections in B06 and B11 were due to non-petroleum interferences. A similar argument appears justified for the DRO detection in B19 to the south of B06, where the chromatogram does not match the DRO standard, the DRO concentration following silica gel cleanup is relatively low, and DRO does not appear to be caused by overlap from GRO or RRO, neither of which were detected in B19. The chromatograms for DRO in B12 through B14, B17, and B18 also do not match the DRO standard, however, GRO and RRO detections in these five samples lead to the possibility of overlap of those constituents in the diesel range.

RRO. Dissolved RRO was previously detected at concentrations exceeding ODEQ's RBCs in B12 through B14, B17, and B18.

7.1.2 Dissolved Chlorinated VOC Plume

The occurrence of chlorinated VOCs (cVOCs) summarized below are described in detail in ENW's draft *Focused Phase II ESAs*. Error! Bookmark not defined. The estimated extent of the cVOC plume is shown in Figure 4.

CVOCs. Dissolved tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride (VC) were previously detected at concentrations greater than ODEQ's SLRBCs in reconnaissance ground water samples collected in the south-central to eastern part of the site. The CVOC plume appears generally centered around B13 and B15 and is delineated by B17 to the west, B23 to the north, B24 and B25 to the east, and B05 and B16 to the south. The cVOC plume is entirely within the site boundaries.

7.2 Potential for Impacts to Migrate

7.2.1 Petroleum Hydrocarbon Plume

The petroleum hydrocarbon and related VOC-impacted ground water plume is restricted to the southcentral part of the site, suggesting a localized source or sources of primarily GRO and RRO, with the possibility of lesser DRO impacts. The two (2) 2,000-gal underground storage tanks (USTs) decommissioned by removal at the site in 1997, LUST Facility ID 26-97-0561, cannot be ruled out as the source of some petroleum hydrocarbon impacts given that the contents and locations of the USTs were not reported. However, historical UST decommissioning information² does not support these USTs as being a significant source of primarily GRO, GRO-related VOCs, and RRO dissolved in ground water at the site given the following: only DRO-impacted soil at concentrations less than the Soil Matrix Cleanup Level of 500 milligrams per kilogram (mg/Kg) were encountered during the decommissioning, no ground water was encountered during the tank removal, and the ODEQ issued a No Further Action (NFA) determination in September 2000 based on the absence of significant contamination. While the USTs may not be a significant source of petroleum hydrocarbon impacts, 45 years of drum reconditioning and IBC processing operations at the site may have contributed to the dissolved petroleum hydrocarbon plume. Drums and IBCs may have contained residual petrochemicals, e.g., fuels, oils, greases, and solvents, which may have splashed or spilled onto the ground surface and ultimately leached to ground water. In addition, residual petrochemicals may have been discharged with drum cleaning solutions to the septic system and released

25

to shallow ground water via the suspected septic tank at the south end of the site and upgradient (south) end of the petroleum hydrocarbon plume. Similarly, petrochemicals may have been discharged with drum cleaning solutions to the sanitary sewer and released to ground water through leaky sewer pipes.

Regardless of the source or release mechanism, the absence of LNAPL and localized distribution of the dissolved petroleum hydrocarbon plume suggests that the released volume was not large. Furthermore, the potential sources of petroleum hydrocarbons have been removed, i.e., the USTs were decommissioned by removal in 1997, and on-site drum reconditioning and IBC processing operations ceased in 2022. Therefore, ENW concludes that the dissolved petroleum hydrocarbon plume is unlikely to migrate with ground water beyond the site boundaries and will naturally attenuate over time.

7.2.2 cVOC Plume

The location of the cVOC plume entirely beneath and within the south warehouse building footprint suggests that the source of the cVOC plume may have been associated with drum reconditioning and IBC processing operations previously conducted inside the building. Blackstone's P1ESA noted that such operations included the receipt, storage, cleaning, and processing of previously used, empty, 5- to 550-gallon IBCs or "totes," plastic drums, and containers, which previously contained a variety of products used in the agricultural, industrial, and food and beverage industries. These drums, totes and containers were cleaned using hot water, Trisodium Phosphate, or other cleaning solutions. Similar to the petroleum hydrocarbon impacts, 45 years of drum reconditioning and IBC processing operations at the site may have contributed to the dissolved cVOC plume. Drums and IBCs may have contained residual chlorinated solvents, which may have been dissolved with drum cleaning solutions and released through cracks or joints in the warehouse slab floor, captured by floor drains, or discharged to the sanitary sewer system and released to ground water through leaky sewer pipes or released to shallow ground water via the suspected septic tank at the south end of the site and upgradient (south) end of the petroleum hydrocarbon plume.

Regardless of the source or release mechanism, the absence of DNAPL and localized distribution of the dissolved CVOC plume suggests that the released volume was not large. Furthermore, the potential cVOC source has been removed, i.e., the on-site drum reconditioning and IBC processing operations ceased in 2022. Therefore, ENW concludes that the dissolved CVOC plume is unlikely to migrate with ground water beyond the site boundaries or impact deeper ground water aquifers.

7.3 LOF Description

The following LOF is based on both the current known extent of impacts and the evaluation of the potential to migrate described above. All locations with GRO, DRO, RRO and related constituent concentrations have been included in this LOF.

The LOF is shown on Figure 5 and described as follows:

• **To the south:** Consistent with an east west line running through B05 to the east and B19 to the west, while intersecting the south ends of the west and east LOF boundaries. As previously explained in section 7.1.1, the low-level DRO detection in B19 is likely due to non-petroleum interferences.

- **To the west:** Consistent with a north-south best-fit line running through B21, B22, and B20, while intersecting the west end of the north and south LOF boundaries.
- **To the north:** Consistent with an east-west line running through B23 to the north and intersecting the north ends of the west and east LOF boundaries.
- To the east: Consistent with a north-south line running through B24 and B25, while intersecting the east ends of the north and south LOF boundaries.

8.0 Water Well Records

8.1 Oregon Water Resources Department GRID Database

The OWRD maintains the GRID (Ground Water Information Database) consisting of logs for borings and wells in the State. ENW searched all water wells within sections 15, 16, 21 and 22 in Township 1N, Range 2E of the Willamette Meridian using OWRD's GRID database. North Tax Lot 1600 at the subject site is located within the SW ¼ of the SW ¼ of section 15 and the SE ¼ of the southeast ¼ of section 16. South Tax Lot 2800 at the subject site is located within the NE ¼ of the NE ¼ of section 21 and the NW ¼ of the NW ¼ of section 22 near the intersecting corners of these four sections. Well records identified within this four-square mile area are summarized in Table 8-1 below.

Table 8-1. Water Well Record Summary Within Sections 19, 20, 29 and 30

		Totals			
	15	16	21	22	TOLAIS
Work New	37	138	3	6	184
Work Abandoned	22	129	3	6	160
Work Deepened	0	0	1	0	1
Work Alteration	5	1	1	1	8
Use Domestic	0	0	1	1	2
Use Irrigation	1	4	4	5	14
Use Community	9	0	0	1	10
Use Dewatering	8	257	0	0	265
Total # Wells	64	268	6	13	351

The following should be noted with regard to the logs within the database:

- 1. Over the years the well report form has changed several times, and the filing of well logs has only been required since 1955.
- 2. Older wells are frequently undocumented.
- 3. Well logs are completed and filed by well drillers and well locations are commonly poorly described.
- 4. Older wells have the names of the original property owners which are not updated with changes of title.

27

5. Drillers also have no training in materials descriptions, and the lithologies described in the well logs should be considered carefully during review.

8.1.1 Water Wells Potentially in the LOF

ENW was very conservative in considering database-listed water wells in proximity to the LOF. No records of water wells were identified at the subject site and potentially within the LOF.

8.1.2 Down-Gradient Water Wells

Wells in sections 15 and 16 are considered generally down- to cross-gradient (northeast to northwest) of the subject site. Of the 332 wells, 265 are used for dewatering, five are used for irrigation, and nine are used for community supply. The LOF does not extend offsite, so none of these wells are at risk of being impacted by the shallow dissolved phase petroleum hydrocarbon or CVOC plumes at the subject site. Furthermore, none of these wells, other than the dewatering wells, are shallow enough to have been completed in the OB deposits. Rather, the wells are 94 to 667 feet deep and completed in the CRSA, TGA, TSA, and SGA. For example, of the 11 Portland Water Bureau wells completed in the west part of the CSSWF, one is completed in the TGA, four are completed in the CRSA, four are completed in the TSA, and one is completed in the SGA.¹⁶

8.1.3 Upgradient Water Wells

Wells in sections 21 and 22 are considered generally up-gradient of the subject site. Of the 19 wells, two are domestic, nine are irrigation, and one is community use. The LOF does not extend offsite, so none of these wells are at risk of being impacted by the shallow dissolved phase petroleum hydrocarbon or CVOC plumes at the subject site. Furthermore, the wells in sections 21 and 22 are too deep (64 to 75 feet in depth) to have been completed in the OB deposits.

9.0 Conclusions and Recommendations

ENW completed the delineation of the dissolved petroleum hydrocarbon and cVOC plumes in the south part of the subject site. Analysis of soil and reconnaissance ground water samples from direct-push borings B21 through B25 completed in the OB deposits showed:

- Neither GRO, DRO, RRO, nor VOCs were detected in soil/water interface or reconnaissance ground water samples above laboratory MRLs.
- Only low concentrations of PAHs (specifically fluoranthene and pyrene) were detected in a sample
 of reconnaissance ground water sampled from boring B21. These PAH concentrations were very
 low, and no evidence of impacts was noted during drilling at this location.

Based on both the current known extent of impacts and the evaluation of the potential for dissolved contaminants to migrate in the OB deposits, all locations with GRO, DRO, RRO and related constituent concentrations have been included in a LOF defined as follows (see Figure 5):

• To the south: Consistent with an east west line running through B05 to the east and B19 to the west, while intersecting the south ends of the west and east LOF boundaries. As previously

28

explained in section 7.1.1, the low-level DRO detection in B19 is likely due to non-petroleum interferences.

- **To the west:** Consistent with a north-south best-fit line running through B21, B22, and B20, while intersecting the west end of the north and south LOF boundaries.
- **To the north:** Consistent with an east-west line running through B23 to the north and intersecting the north ends of the west and east LOF boundaries.
- **To the east:** Consistent with a north-south line running through B24 and B25, while intersecting the east ends of the north and south LOF boundaries.

ENW searched all water wells within sections 15, 16, 21 and 22 in Township 1N, Range 2E of the Willamette Meridian using OWRD's GRID database.

- No records of water wells were identified at the subject site and potentially within the LOF.
- Of the 332 down- to cross-gradient (northeast to northwest) wells in sections 15 and 16, 265 are used for dewatering, five are used for irrigation, and nine are used for community supply, i.e., Portland Water Bureau wells. The LOF does not extend offsite, so none of these wells are at risk of being impacted by the shallow dissolved phase petroleum hydrocarbon or CVOC plumes at the subject site. Furthermore, none of these wells, other than the dewatering wells, are shallow enough to have been completed in the OB deposits. Rather, the wells are 94 to 667 feet deep and completed in the CRSA, TGA, TSA, and SGA.
- Of the 19 up-gradient (southeast to southwest) wells in sections 21 and 22, two are domestic, nine are irrigation, and one is community use. The LOF does not extend offsite, so none of these wells are at risk of being impacted by the shallow dissolved phase petroleum hydrocarbon or CVOC plumes at the subject site. Furthermore, the wells in sections 21 and 22 are too deep (64 to 875 feet in depth) to have been completed in the OB deposits.

Based on the above findings, ENW recommends:

- Having completed the delineation of the dissolved petroleum hydrocarbons and CVOCs plumes, an assessment of risk should be conducted to further evaluate the ground water and vapor exposure pathways, which should include indoor air assessment of the onsite building once renovation work is completed.
- To ensure proper handing and management of residual impacts to soil and ground water, a
 Contaminated Media Management Plan (CMMP) should be prepared to ensure appropriate
 future management and handling of impacted soil and shallow ground water media.

10.0 Limitations

The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the work does not extend to the presence of the following conditions unless they were the express concerns of contacted personnel, report and literature authors or the work scope.

- 1. Naturally occurring toxic or hazardous substances in the subsurface soils, geology, and water,
- 2. Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- 3. Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards, and
- 4. Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.

There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW have endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. It is possible, despite the use of reasonable care and interpretation, that ENW may have failed to identify regulation violations related to the presence of hazardous substances other than those specifically mentioned at the closure site. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

30

L	DU01	DU02	B01	B02	В	03	B04	B05	
•	DU01-230214-0.5-IS	DU02-230214-0.5-IS	B01-2	B02-2	B03-5	B03-7	B04-9-SWI	B05-9-SWI	
Date	2/14/2023	2/14/2023	2/14/2023	2/14/2023	2/15/2023	2/15/2023	2/15/2023	2/16/2023	
Depth Sam	0.5	0.5	2	2	5	7	9	9	
	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	
-	ampled By	LIVV	LIVV	LIVV	LIVVV	LIVV	LIVV	LIVV	LIVV
	Location	West Retention Pond	East Retention Pond	MA01: Stained concrete floor of AST compound inside Warehouse	MA02/MA03: trench and sump feature	MA04: Potential Filled Sump	MA04: Potential Filled Sump	South of Suspected UST	MA13: Former ASTs South of Warehouse
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents	•							.	
Benzene	c, v	<0.03 (ND)	<0.03 (ND)	<0.03 (ND)	<0.03 (ND)			-	
Bromodichloromethane	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Bromoform Bromomethane	c, v nc, v	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)				
Carbon tetrachloride	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Chlorobenzene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Chlorodibromomethane (dibromochloromethane)	c, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Chloroethane (ethyl chloride)	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)				
Chloroform	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Chloromethane	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)				
1,2-Dichlorobenzene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.13				
1,4-Dichlorobenzene	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
1,1-Dichloroethane 1,1-Dichloroethene	c, v nc, v	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)				
cis-1.2-Dichloroethene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
trans-1,2-Dichloroethene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Dichloromethane	C, V	11 lc	6.8 lc	<0.5 (ND)	<0.5 (ND)				
EDB (1,2-dibromoethane)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
EDC (1,2-dichloroethane)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Ethylbenzene	c, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
MTBE (methyl t-butyl ether)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Naphthalene	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.16				
iso-Propylbenzene (cumene)	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Tetrachloroethene (PCE)	C, V	<0.025 (ND)	<0.025 (ND)	0.3	13				
Toluene 1,1,1-Trichloroethane	nc, v	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)				
1,1,2-Trichloroethane	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Trichloroethene	NA, v	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	0.056				
Trichlorofluoromethane (Freon 11)	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)				
1,2,4-Trimethylbenzene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.091				
1,3,5-Trimethylbenzene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.058				
Vinyl chloride	c, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Xylenes	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Metals	T	0.00	0.47	0.00	0.07	5.70	4.05	0.00	0.00
Arsenic Barium	c, nv nc, nv	2.66 140	3.47 147	2.89 90.1	2.27 95.5	5.73 135	4.05 148	3.23 103	3.92 108
Cadmium	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Chromium (III)	nc, nv	26.2	32.8	6.79	13.5	14	20	11.5	10.2
Lead	NA, nv	54.3	37.9	8.56	6.73	10.2	5.53	7.34	6.24
Mercury	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Silver	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Semivolatile Organic Constituents				1	2000	T	T		T
Polychlorinated biphenyls (Total PCBs)	C, V	0.3	0.51	0.035	<0.02 (ND)				
Polycyclic Aromatic Hydrocarbons		<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.05				
Acenaphthene Anthracene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND) <0.05 (ND)	0.25 0.18				
Anthracene Benz[a]anthracene	nc, v	<0.05 (ND) <0.05 (ND)	<0.05 (ND) 0.088	<0.05 (ND) <0.05 (ND)	0.18 <0.05 (ND)				
Benzo[a]pyrene (BaP equivalents)	c, nv	0.06	0.16	<0.05 (ND)	<0.05 (ND)				
Benzo[b]fluoranthene	c, nv	0.085	0.18	<0.05 (ND)	<0.05 (ND)				
Benzo[k]fluoranthene	c, nv	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Chrysene	c, nv	0.064	0.12	<0.05 (ND)	0.062				
Dibenz[a,h]anthracene	c, nv	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)				
Fluoranthene	nc, nv	0.058	0.16	<0.05 (ND)	0.083				
Fluorene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.43				
In description of the Control of the	c, nv	0.057	0.14	<0.05 (ND)	<0.05 (ND)				
Indeno[1,2,3-cd]pyrene	po ::	0.000	0.00	<0.0E (NID)	0.47				
Pyrene	nc, v	0.088	0.23	<0.05 (ND)	0.17				
Pyrene Fotal Petroleum Hydrocarbons		1							
	nc, v	0.088 <20 (NP) 35 x	0.23 <20 (NP) 41 x	<0.05 (ND) <20 (NP) <50 (ND)	0.17 <20 (NP) 1600	<20 (NP) <50 (NP)	<20 (NP) <50 (NP)	<20 (NP) <50 (NP)	<20 (NP) <50 (NP)

mg/Kg = milligram per kilogram or parts per million (ppm).
<# (ND) = not detected at or above the laboratory method reporting limit shown.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics. DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

screening concentration.
j = The result is below method reporting limits. The value reported is an estimate.

 \mathbf{x} = the pattern of peaks is not indicative of the fuel standard used for

ca = the calibration results for the analyte were outside of acceptance criteria, biased high. The value reported is an estimate.

Ic = The presence of the compound indicated is likely due to laboratory

BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

	В	06	B07	B08	B09	B10	B11	B12		
	B06-1	B06-9-SWI	B07-9-SWI	B08-9-SWI	B09-7-SWI	B10-9-SWI	B11-5-SWI	B12-9-SWI		
	2/46/2022	2/46/2022	2/46/2022	2/46/2022	2/46/2022	2/46/2022	2/46/2022	2/46/2022		
	ate Sampled ampled (feet)	2/16/2023	2/16/2023	2/16/2023	2/16/2023	2/16/2023	2/16/2023	2/16/2023	2/16/2023	
Беріп ә	1 ENW	9	9	9	7 ENW	9	5	9		
	Sampled By	ENVV	ENW	ENW	ENW	ENVV	ENW	ENW	ENW	
	Location	MA11: Suspecte	ed Septic Feature	West Yard	North Yard	North Yard	North Yard	North Yard	MA10: North of Suspected UST	
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	
Volatile Organic Constituents		.		, , , , , , , , , , , , , , , , , , ,						
Benzene	C, V	<0.03 (ND)								
Bromodichloromethane	C, V	<0.05 (ND)								
Bromoform Bromomethane	c, v nc, v	<0.05 (ND) <0.5 (ND)								
Carbon tetrachloride	C, V	<0.05 (ND)								
Chlorobenzene	nc, v	<0.05 (ND)								
Chlorodibromomethane (dibromochloromethane)	C, V	<0.05 (ND)								
Chloroethane (ethyl chloride)	nc, v	<0.5 (ND)								
Chloroform	C, V	<0.05 (ND)								
Chloromethane	nc, v	<0.5 (ND)								
1,2-Dichlorobenzene	nc, v	<0.05 (ND)								
1,4-Dichlorobenzene	C, V	<0.05 (ND)								
1,1-Dichloroethane 1,1-Dichloroethene	c, v nc, v	<0.05 (ND) <0.05 (ND)								
cis-1.2-Dichloroethene	nc, v	<0.05 (ND)								
trans-1,2-Dichloroethene	nc, v	<0.05 (ND)								
Dichloromethane	C, V	<0.5 (ND)								
EDB (1,2-dibromoethane)	C, V	<0.05 (ND)								
EDC (1,2-dichloroethane)	C, V	<0.05 (ND)								
Ethylbenzene	C, V	<0.05 (ND)								
MTBE (methyl t-butyl ether)	C, V	<0.05 (ND)								
Naphthalene iso-Propylbenzene (cumene)	c, v nc, v	<0.05 (ND) <0.05 (ND)								
Tetrachloroethene (PCE)	C, V	0.041								
Toluene	nc, v	<0.05 (ND)								
1,1,1-Trichloroethane	nc, v	<0.05 (ND)								
1,1,2-Trichloroethane	c, v	<0.05 (ND)								
Trichloroethene	NA, v	<0.02 (ND)								
Trichlorofluoromethane (Freon 11)	nc, v	<0.5 (ND)								
1,2,4-Trimethylbenzene	nc, v	<0.05 (ND)								
1,3,5-Trimethylbenzene Vinyl chloride	nc, v	<0.05 (ND) <0.05 (ND)								
Xylenes	c, v	<0.05 (ND)								
Metals	110, 1	-0.00 (ND)								
Arsenic	c, nv	3.23	2.67	4.12	6.92	5.23	5.91	2.65	2.02	
Barium	nc, nv	88.8	89.6	95.3	92.5	149	93.2	158	74.7	
Cadmium	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	
Chromium (III)	nc, nv	11.8	18.8	16.5	18.9	20.4	22.1	19	5.42	
Lead	NA, nv	34.4	4.06	4.76	5.93	6.62	5.91	8.62	2.72	
Mercury Silver	nc, nv nc, nv	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	
Semivolatile Organic Constituents	110, 117	~1 (ND)	*1 (ND)	~1 (IND)	~1 (ND)	~1 (ND)	*1 (ND)	>1 (ND)	>1 (ND)	
Polychlorinated biphenyls (Total PCBs)	C, V	0.34								
Polycyclic Aromatic Hydrocarbons						İ				
Acenaphthene	nc, v	<0.05 (ND)								
Anthracene	nc, v	<0.05 (ND)								
Benz[a]anthracene	c, v	<0.05 (ND)								
Benzo[a]pyrene (BaP equivalents)	c, nv	<0.05 (ND)								
Benzo[b]fluoranthene	c, nv	<0.05 (ND)								
Benzo[k]fluoranthene Chrysene	c, nv c, nv	<0.05 (ND) <0.05 (ND)								
Dibenz[a,h]anthracene	c, nv	<0.05 (ND)								
Fluoranthene	nc, nv	<0.05 (ND)								
Fluorene	nc, v	<0.05 (ND)								
Indeno[1,2,3-cd]pyrene	c, nv	<0.05 (ND)								
Pyrene	nc, v	0.061								
Total Petroleum Hydrocarbons									<u> </u>	
Generic Gasoline (GRO)	nc, v	<20 (NP)	<20 (NP)	<20 (NP)	<20 (NP)	<20 (NP)	<20 (NP)	<20 (NP)	<20 (NP)	
Generic Diesel / Heating Oil (DRO)	nc, v	2000 x	<50 (NP)	<50 (NP)	<50 (NP)	<50 (NP)	<50 (NP)	<50 (NP)	<50 (NP)	
Generic Mineral Insulating Oil (RRO)	nc, nv	7200	<250 (NP)	<250 (NP)	<250 (NP)	<250 (NP)	<250 (NP)	<250 (NP)	<250 (NP)	

mg/Kg = milligram per kilogram or parts per million (ppm).
<# (ND) = not detected at or above the laboratory method reporting limit shown.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics. DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

screening concentration.
j = The result is below method reporting limits. The value reported is an estimate.

 \mathbf{x} = the pattern of peaks is not indicative of the fuel standard used for

ca = the calibration results for the analyte were outside of acceptance criteria, biased high. The value reported is an estimate.

Ic = The presence of the compound indicated is likely due to laboratory

BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

		B13		B14	B15	B16	R	17	B18	
	Location ID Sample ID	B13-10.5	B13-12	B13-13.5-SWI	B14-12.5-SWI	B15-7.5-SWI	B16-14-SWI	B17-3	B17-14-SWI	B18-13-SWI
Da	te Sampled	4/21/2023	4/21/2023	4/21/2023	4/21/2023	4/21/2023	4/21/2023	4/21/2023	4/21/2023	4/21/2023
Depth Sar	npled (feet)	10.5	12	13.5	12.5	7.5	14	3	14	13
,	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Adjacent to B02			North of B02	East of B02	South of B02 42' East of UST	South of B02 30' North of LIST		36' west of UST	
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents		-0.00 (UD)	10.00 (UD)	0.00 (UD)		0.00 (UD)	-0.00 (NE)	-0.00 (LID)	-0.00 (UD)	-0.00 (AID)
Benzene Bromodichloromethane	C, V	<0.03 (ND) <0.05 (ND)	<0.03 (ND) <0.05 (ND)	<0.03 (ND) <0.05 (ND)	0.056 <0.05 (ND)	<0.03 (ND) <0.05 (ND)	<0.03 (ND) <0.05 (ND)	<0.03 (ND) <0.05 (ND)	<0.03 (ND) <0.05 (ND)	<0.03 (ND) <0.05 (ND)
Bromoform	c, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Bromomethane	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Carbon tetrachloride	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Chlorobenzene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Chlorodibromomethane (dibromochloromethane)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Chloroethane (ethyl chloride)	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Chloroform	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Chloromethane	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
1,2-Dichlorobenzene	nc, v	<0.05 (ND)	<0.05 (ND)	0.061	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.056	<0.05 (ND)
1,4-Dichlorobenzene	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
1,1-Dichloroethane 1,1-Dichloroethene	c, v nc, v	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)
cis-1,2-Dichloroethene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
trans-1,2-Dichloroethene	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Dichloromethane	c, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
EDB (1,2-dibromoethane)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
EDC (1,2-dichloroethane)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Ethylbenzene	C, V	<0.05 (ND)	<0.05 (ND)	0.075	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	2.9	0.3
MTBE (methyl t-butyl ether)	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Naphthalene	C, V	<0.05 (ND)	<0.05 (ND)	0.14	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.14	1.6	1.1
iso-Propylbenzene (cumene)	nc, v	<0.05 (ND)	<0.05 (ND)	0.22	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.5	0.27
Tetrachloroethene (PCE) Toluene	c, v nc, v	0.43 <0.05 (ND)	<0.025 (ND) <0.05 (ND)	<0.025 (ND) <0.05 (ND)	<0.025 (ND) <0.05 (ND)	0.1	<0.025 (ND) <0.05 (ND)	<0.025 (ND) <0.05 (ND)	<0.025 (ND) 0.089	<0.025 (ND) <0.05 (ND)
1,1,1-Trichloroethane	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
1,1,2-Trichloroethane	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Trichloroethene	NA, v	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)
Trichlorofluoromethane (Freon 11)	nc, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
1,2,4-Trimethylbenzene	nc, v	<0.05 (ND)	<0.05 (ND)	2.8	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.32	7.6	3.5
1,3,5-Trimethylbenzene	nc, v	<0.05 (ND)	<0.05 (ND)	0.56	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.11	2.5	0.22
Vinyl chloride	C, V	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)
Xylenes	nc, v	<0.15 (ND)	<0.15 (ND)	0.17	<0.15 (ND)	<0.15 (ND)	<0.15 (ND)	<0.15 (ND)	16	1.2
Metals	1		T	I	1	1				
Arsenic Barium	c, nv nc, nv									
Cadmium	nc, nv									
Chromium (III)	nc, nv									
Lead	NA, nv									
Mercury	nc, nv									
Silver	nc, nv									
Semivolatile Organic Constituents										
Polychlorinated biphenyls (Total PCBs)	C, V							0.075	<0.02 (ND)	<0.02 (ND)
Polycyclic Aromatic Hydrocarbons										
Acenaphthene	nc, v			<0.05 (ND)				0.027	<0.01 (ND)	<0.05 (ND)
Anthracene	nc, v			<0.05 (ND)				<0.01 (ND)	<0.01 (ND)	<0.05 (ND)
Benz[a]anthracene Benzo[a]pyrene (BaP equivalents)	c, v			<0.05 (ND) <0.05 (ND)				<0.01 (ND) <0.01 (ND)	<0.1 (ND) <0.1 (ND)	<0.05 (ND) <0.05 (ND)
Benzo[b]fluoranthene	c, nv			<0.05 (ND)				0.02	<0.1 (ND)	<0.05 (ND)
Benzo[k]fluoranthene	c, nv			<0.05 (ND)				<0.01 (ND)	<0.1 (ND)	<0.05 (ND)
Chrysene	c, nv			<0.05 (ND)				0.024	0.022	<0.05 (ND)
Dibenz[a,h]anthracene	c, nv			<0.05 (ND)				<0.01 (ND)	<0.1 (ND)	<0.05 (ND)
Fluoranthene	nc, nv			<0.05 (ND)				0.019	0.012	<0.05 (ND)
Fluorene	nc, v			0.087				0.043	0.15	0.21
Indeno[1,2,3-cd]pyrene	c, nv			<0.05 (ND)				<0.01 (ND)	<0.1 (ND)	<0.5 (ND)
Pyrene	nc, v			<0.05 (ND)				0.043	0.016	<0.5 (ND)
Total Petroleum Hydrocarbons		E (NID)	<00 (ND)	200	<00 (ND)	<00 (ND)	<00 (ND)	50	EFO	240
Generic Gasoline (GRO) Generic Diesel / Heating Oil (DRO)	nc, v	<5 (ND) <50 (NP)	<20 (NP) <50 (NP)	300 1600	<20 (NP) <50 (NP)	<20 (NP) <50 (NP)	<20 (NP) <50 (NP)	58 750	550 2000 x	310 2000 x
Generic Diesel / Reating Oil (DRO) Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (NP)	<250 (NP)	5500	<50 (NP)	<50 (NP)	<250 (NP)	2300	6600	7700
Solisho Milioral modiating Oil (NNO)	110, 110	-200 (INF)	-200 (INF)	5500	-200 (INF)	-200 (INF)	-200 (INF)	2000	0000	7700

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm). <# (ND) = not detected at or above the laboratory method reporting limit shown.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

screening concentration.
j = The result is below method reporting limits. The value reported is an estimate.

 \mathbf{x} = the pattern of peaks is not indicative of the fuel standard used for quantitation.

ca = the calibration results for the analyte were outside of acceptance criteria, biased high. The value reported is an

Ic = The presence of the compound indicated is likely due to laboratory

BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

	Location ID	B19	B20	B21	B22	B23	B24	B25		1	T
	Sample ID	B19-13-SWI	B20-13-SWI	B21-8-SWI 7/24/2023	B22-10-SWI	B23-12-SWI	B24-14-SWI	B25-10-SWI	1		
	Date Sampled	4/21/2023	4/21/2023		7/24/2023	7/24/2023	7/24/2023	7/24/2023	Mi 0-il		ODEQs Screening-
Dep	Depth Sampled (feet) Sampled By		13	8	10	12	14	10	Maximum Soil Concentration	Soil Matrix	Level Risk-Based Concentrations
Sampled By		ENW	ENW	ENW	ENW	ENW	ENW	ENW	(remaining soil)	Cleanup Level	SLRBCs ¹ (Soil)
	Location	58' south of UST	42' north and 54' west of B17	Western margin of site, west of boring B18, south of boring B22	Western margin of site, west of boring B17, south of boring B20	Northern part of south tax lot, north of boring B03, south of B08	Eastern margin of site, east of boring B03, north of boring B25	Eastern margin of site, east-southeast of boring B15, south of boring B24			
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)		•	mg/Kg (ppm)
Volatile Organic Constituents Benzene	C, V			<0.03 (ND)	<0.03 (ND)	<0.03 (ND)	<0.03 (ND)	<0.03 (ND)	0.056	NE	0.023
Bromodichloromethane	c, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.002
Bromoform	C, V			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.046
Bromomethane	nc, v			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	NE	0.083
Carbon tetrachloride	C, V			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.013
Chlorobenzene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	5.8
Chlorodibromomethane (dibromochloromethane)	C, V			<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND)	NE NE	0.0024 310
Chloroethane (ethyl chloride) Chloroform	nc, v			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND) <0.05 (ND)	NE NE	0.0034
Chloromethane	nc, v			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.05 (ND)	NE	2.2
1,2-Dichlorobenzene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.13	NE	36
1,4-Dichlorobenzene	c, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.057
1,1-Dichloroethane	C, V			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.044
1,1-Dichloroethene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	6.7
cis-1,2-Dichloroethene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE NE	0.63
trans-1,2-Dichloroethene Dichloromethane	nc, v			<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) <0.5 (ND)	<0.05 (ND) 11 lc	NE NE	7.0 0.14
EDB (1,2-dibromoethane)	C, V			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE NE	0.00012
EDC (1,2-dichloroethane)	c, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.0028
Ethylbenzene	c, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	2.9	NE	0.22
MTBE (methyl t-butyl ether)	c, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.11
Naphthalene	c, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	1.6	NE	0.077
iso-Propylbenzene (cumene)	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.5	NE	96
Tetrachloroethene (PCE)	C, V			<0.025 (ND)	<0.025 (ND)	<0.025 (ND)	<0.025 (ND)	<0.025 (ND)	13	NE	0.46
Toluene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.089	NE NE	83 190
1,1,1-Trichloroethane 1,1,2-Trichloroethane	nc, v c, v			<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	<0.05 (ND) <0.05 (ND)	NE NE	0.0063
Trichloroethene	NA, v			<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	<0.02 (ND)	0.056	NE	0.013
Trichlorofluoromethane (Freon 11)	nc, v			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	NE	61
1,2,4-Trimethylbenzene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	7.6	NE	10
1,3,5-Trimethylbenzene	nc, v			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	2.5	NE	11
Vinyl chloride	C, V			<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	NE	0.00057
Xylenes	nc, v			<0.15 (ND)	<0.15 (ND)	<0.15 (ND)	<0.15 (ND)	<0.15 (ND)	16	NE	23
Metals	0.04		I		I	<u> </u>			0.00	NE	0.43
Arsenic Barium	c, nv nc, nv								6.92 158	NE NE	15000
Cadmium	nc, nv								<1 (ND)	NE	78
Chromium (III)	nc, nv								32.8	NE	120000
Lead	NA, nv								54.3	NE	30
Mercury	nc, nv								<1 (ND)	NE	23
Silver	nc, nv								<1 (ND)	NE	390
Semivolatile Organic Constituents			ı		ı					NE	0.00
Polycyclic Aromatic Hydrocarbons	C, V								0.51	NE	0.23
Polycyclic Aromatic Hydrocarbons Acenaphthene	nc, v								0.25	NE	770
Anthracene	nc, v								0.25	NE	8200
Benz[a]anthracene	c, v								0.1	NE	1.1
Benzo[a]pyrene (BaP equivalents)	c, nv								0.16	NE	0.11
Benzo[b]fluoranthene	c, nv								0.18	NE	1.1
Benzo[k]fluoranthene	c, nv								<0.1 (ND)	NE	11
Chrysene	c, nv								0.12	NE	110
Dibenz[a,h]anthracene	c, nv								<0.1 (ND)	NE NE	0.11 2400
Fluoranthene Fluorene	nc, nv nc, v								0.16 0.43	NE NE	770
Indeno[1,2,3-cd]pyrene	c, nv								0.43	NE	1.1
Pyrene	nc, v								0.5	NE	1800
Total Petroleum Hydrocarbons											
Generic Gasoline (GRO)	nc, v	<20 (NP)	<20 (NP)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	550	80	31
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (NP)	<50 (NP)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	2000 x	500	1100
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (NP)	<250 (NP)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	11000		2800

Generic Mineral Insulating Oil (RRO)

mg/Kg = milligram per kilogram or parts per million (ppm). <# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.
NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

screening concentration.

j = The result is below method reporting limits. The value

reported is an estimate.

 \mathbf{x} = the pattern of peaks is not indicative of the fuel standard used for

ca = the calibration results for the analyte were outside of acceptance criteria, biased high. The value reported is an

Ic = The presence of the compound indicated is likely due to laboratory

BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

I	_ocation ID	Background		Exceeds ODEQs
Dat	Concentrations (Regional		Screening-Level SLRBCs (Soil) and/or	
	te Sampled npled (feet)	Default)	Clean Fill Screening Levels or Background	Soil Matrix Cleanup Level
\$	Sampled By		Concentrations (as applicable)	
	Location	Portland Basin		TRUE OR Y FALSE OR N
Constituent of Interest	Note			
Volatile Organic Constituents Benzene	C, V		0.023	Y
Bromodichloromethane	C, V		0.002	(Y)
Bromoform	C, V		0.046	(Y)
Bromomethane	nc, v		0.083	(Y)
Carbon tetrachloride	C, V		0.013	(Y)
Chlorodibromomethana (dibromombleromethana)	nc, v		2.4 0.0024	N (Y)
Chlorodibromomethane (dibromochloromethane) Chloroethane (ethyl chloride)	c, v nc, v		310	(Y) N
Chloroform	C, V		0.0034	(Y)
Chloromethane	nc, v		2.2	N N
1,2-Dichlorobenzene	nc, v		0.92	N
1,4-Dichlorobenzene	C, V		0.057	N
1,1-Dichloroethane	C, V		0.044	(Y)
1,1-Dichloroethene	nc, v		6.7	N
cis-1,2-Dichloroethene	nc, v		0.63	N
trans-1,2-Dichloroethene	nc, v		7	N
Dichloromethane	C, V		0.14	LC
EDB (1,2-dibromoethane) EDC (1,2-dichloroethane)	C, V		0.00012 0.0028	(Y) (Y)
Ethylbenzene	C, V		0.0028	Y
MTBE (methyl t-butyl ether)	c, v		0.11	N N
Naphthalene	c, v		0.077	Y
iso-Propylbenzene (cumene)	nc, v		96	N
Tetrachloroethene (PCE)	C, V		0.18	Υ
Toluene	nc, v		23	N
1,1,1-Trichloroethane	nc, v		190	N
1,1,2-Trichloroethane	C, V		0.0063	(Y)
Trichloroethene	NA, v		0.013	Y
Trichlorofluoromethane (Freon 11)	nc, v		52 10	N N
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	nc, v nc, v		11	N N
Vinyl chloride	C, V		0.00057	(Y)
Xylenes	nc, v		1.4	N
Metals			l	
Arsenic	c, nv	8.8	8.8	BKG
Barium	nc, nv	790	790	N
Cadmium	nc, nv	0.63	0.63	N
Chromium (III)	nc, nv	76	76	N
Lead	NA, nv	28	28	Y
Mercury Silver	nc, nv	0.23 0.82	0.23 0.82	N N
Semivolatile Organic Constituents	nc, nv	0.82	0.82	IN .
Polychlorinated biphenyls (Total PCBs)	C, V		0.23	Y
Polycyclic Aromatic Hydrocarbons	∪, v		0.20	
Acenaphthene	nc, v		0.25	N
Anthracene	nc, v		6.8	N
Benz[a]anthracene	C, V		0.73	N
Benzo[a]pyrene (BaP equivalents)	c, nv		0.11	Υ
Benzo[b]fluoranthene	c, nv	-	1.1	N
Benzo[k]fluoranthene	c, nv		11	N
Chrysene	c, nv		3.1	N
Dibenz[a,h]anthracene	c, nv		0.11	N N
Fluoranthene Fluorene	nc, nv nc, v		3.7	N N
Indeno[1,2,3-cd]pyrene	c, nv		1.1	N
Pyrene	nc, v		10	N
Total Petroleum Hydrocarbons				
Generic Gasoline (GRO)	nc, v		520	Υ
			90	Υ
Generic Diesel / Heating Oil (DRO)	nc, v		30	Y

mg/kg = milligram per kilogram or parts per million (ppm). <# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

c = carcinogenic nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics. DRO = diesel-range organics. RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable

¹ Lowest Risk-Based Concentration for soil (screening level assumes residential use, from ODEQ RBCs dated May 2018).

screening concentration.
j = The result is below method reporting limits. The value reported is an estimate.

x = the pattern of peaks is not indicative of the fuel standard used for quantitation.

ca = the calibration results for the analyte were outside of acceptance criteria, biased high. The value reported is an

Ic = The presence of the compound indicated is likely due to laboratory

BKG = constituent exceeded its SLRBC; however, was not detected above default backgound concentrations in soil

	Location ID	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13
	Sample ID	B04-GW-12.5	B05-GW-12.5	B06-GW-15	B07-GW-15	B08-GW-13	B09-GW-14.5	B10-GW-14.5	B11-GW-15	B12-GW-230216	B13-GW-14.5
	Date Sampled	2/16/23	2/16/23	2/16/23	2/16/23	2/16/23	2/16/23	2/16/23	2/16/23	2/16/23	4/21/23
Depth	Sampled (feet)	12.5	12.5	15	15	13	14.5	14.5	15	15	14.5
	Sampled By Location	South of Suspected	ENW MA13: Former ASTs South of Warehouse	ENW MA11: Suspected Septic Feature	ENW West Yard	ENW North Yard	ENW North Yard	ENW North Yard	ENW North Yard	ENW MA10: North of Suspected UST	ENW Adjacent to B02
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)
Volatile Organic Constituents Benzene	0.4	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)	<0.35 (ND)
Bromodichloromethane	C, V	<0.55 (ND)	<0.55 (ND)	<0.55 (ND)	<0.55 (ND)	<0.55 (ND)	<0.55 (ND)	<0.55 (ND)	<0.55 (ND)	<0.5 (ND)	<0.55 (ND)
Bromoform	C, V	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)
Bromomethane	nc, v	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)
Carbon tetrachloride	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Chlorobenzene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Chlorodibromomethane (dibromochloromethane)	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Chloroethane (ethyl chloride)	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Chloroform	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	1.1	1.0	1.0	<1 (ND)	<1 (ND)
Chloromethane	nc, v	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)	<10 (ND)
1,2-Dichlorobenzene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	2.5
1,4-Dichlorobenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
1,1-Dichloroethane	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
1,1-Dichloroethene cis-1,2-Dichloroethene	nc, v	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)
trans-1,2-Dichloroethene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Dichloromethane	C, V	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<1 (ND) <5 (ND)	<5 (ND)	<1 (ND)
EDB (1,2-dibromoethane)	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
EDC (1,2-dichloroethane)	C, V	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)	<0.2 (ND)
Ethylbenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	2.7
MTBE (methyl t-butyl ether)	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
Naphthalene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	1.1	3.2
iso-Propylbenzene (cumene)	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	3.1
Tetrachloroethene (PCE)	C, V	2.3	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	1.2	<1 (ND)	<1 (ND)	62
Toluene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
1,1,1-Trichloroethane	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
1,1,2-Trichloroethane	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Trichloroethene	NA, v	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	2.9
Trichlorofluoromethane (Freon 11)	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	nc, v	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND) <1 (ND)	<1 (ND)	<1 (ND) <1 (ND)	<1 (ND)	<1 (ND)	<1 (ND) <1 (ND)	1.3 <1 (ND)	37 7.6
Vinyl chloride	nc, v	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	>SLRBC	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	<0.05 (ND)	0.021	0.21
Xylenes	nc, v	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	<3 (ND)	2.1	8.2
Metals		, ,	, ,	· , ,	, ,	, ,		, ,		•	
Arsenic	c, nv	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<1 (ND)	<5 (ND)	
Barium	nc, nv	28.0	10.9	9.13	60.6	49.2	1870	20.3	13.9	21.4	
Cadmium	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	1.44	<1 (ND)	<1 (ND)	<1 (ND)	
Chromium (III)	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	32.2	<1 (ND)	<1 (ND)	<1 (ND)	
Lead	NA, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	8.81	<1 (ND)	<1 (ND)	<1 (ND)	
Mercury	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<5 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	
Silver Semivolatile Organic Constituents	nc, nv	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	<5 (ND)	<1 (ND)	<1 (ND)	<1 (ND)	
Polychlorinated biphenyls (Total PCBs)	c, v	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)	<0.1 (ND)
Polycyclic Aromatic Hydrocarbons	υ, ν	-V.1 (ND)	·•.1 (ND)	(ND)	(ND)	(ND)	(ND)	-V.1 (ND)	-9.1 (ND)	· · · · (ND)	(ND)
Acenaphthene	nc, v			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	0.051	0.21
Anthracene	nc, v			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Benz[a]anthracene	C, V			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Benzo[a]pyrene (BaP equivalents)	c, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Benzo[b]fluoranthene	c, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Benzo[k]fluoranthene	c, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Chrysene	c, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	0.047
Dibenz[a,h]anthracene	c, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Fluoranthene	nc, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	0.07
Fluorene	nc, v			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	0.32	1.3
Indeno[1,2,3-cd]pyrene	c, nv			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)
Pyrene Total Petroleum Hydrocarbons	nc, v			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	<0.04 (ND)	0.16
Generic Gasoline (GRO)	nc, v	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	<100 (ND)	120	1100
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	130 x *	65 x *	76 x *	<53 (ND) *	83 x *	240 x *	1100 x	3400 x *
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	<250 (ND)	<250 (ND) *	<250 (ND) *	<250 (ND) *	<250 (ND) *	<250 (ND) *	<250 (ND) *	6800	13000 *
Notes:				- \ /	- \ := /	- \ -= /	- \ := /	- \ := /	- (-= /		

ug/L = micrograms per Liter or parts per billion (ppb).

<# (ND) = not detected at or above the laboratory method reporting limit</p> shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

¹ Lowest Risk-Based Concentration for ground water (screening level assumes residential use, from ODEQ RBCs dated May 2018).

— = not analyzed or not applicable.

c = carcinogenic

nc = noncarcinogenic v = volatile

nv = nonvolatile GRO = gasoline-range organics.

DRO = diesel-range organics. RRO = residual-range organics.

BKG = constituent exceeded its SLRBC; however, was not detected

above default backgound concentrations in soil **Bolded** concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

¹ Lowest Risk-Based Concentration for ground water (screening level).

(Y) indicates analyte not detected, but detection limit is above screening

concentration. x = the pattern of peaks is not indicative of the fuel standard used for quantitation.

k = The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte

was not detected in the sample.

* = DRO result after extracts passed through silica gel column prior to analysis

>S = The groundwater RBC exceeds the solubility limit. Refer to Appendix D for the corresponding value of S. Groundwater concentrations in excess of S indicate that free product may be present.

	Location ID	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23
		B14-GW-15	B15-GW-14	B16-GW-13.5	B17-GW-14	B18-GW-15	B19-GW-15	B20-GW-15	B21-GW-19	B22-GW-20	B23-GW-19
	Sample ID Date Sampled	4/21/23	4/21/23	4/21/23	4/21/23	4/21/23	4/21/23	4/21/23	7/24/23	7/24/23	7/24/23
Depi	th Sampled (feet)	15	14	13.5	14	15	15	15	19	20	19
•	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	North of B02	East of B02	South of B02; 42' East of UST	30' North of UST	36' west of UST	58' south of UST	42' north and 54' west of B17	Western margin of site, west of boring B18, south of boring B22	Western margin of site, west of boring B17, south of boring B20	Northern part of south tax lot, north of boring B03, south of B08
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)	μg/L (ppb)
Volatile Organic Constituents				1				1			
Benzene	C, V	1.2	<0.35 (ND)	<0.35 (ND)	2.7 j	<0.35 (ND)			<0.35 (ND)	<0.35 (ND)	<0.35 (ND)
Bromodichloromethane	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<5 (ND)	<0.5 (ND)			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Bromoform	C, V	<5 (ND)	<5 (ND)	<5 (ND)	<50 (ND)	<5 (ND)			<5 (ND)	<5 (ND)	<5 (ND)
Bromomethane Carbon tetrachloride	nc, v	<5 (ND)	<5 (ND) <0.5 (ND)	<5 (ND) <0.5 (ND)	<50 (ND) <5 (ND)	<5 (ND)			<5 k <0.5 (ND)	<5 k <0.5 (ND)	<5 k <0.5 (ND)
Chlorobenzene	c, v nc, v	<0.5 (ND) 1.1	<0.5 (ND)	<1 (ND)	<10 (ND)	<0.5 (ND) <1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
Chlorodibromomethane (dibromochloromethane)	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<5 (ND)	<0.5 (ND)			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Chloroethane (ethyl chloride)	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
Chloroform	C, V	<1 (ND)	1.1	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
Chloromethane	nc, v	<10 (ND)	<10 (ND)	<10 (ND)	<100 (ND)	<10 (ND)			<10 (ND)	<10 (ND)	<10 (ND)
1,2-Dichlorobenzene	nc, v	3.5	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
1,4-Dichlorobenzene	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
1,1-Dichloroethane	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
1,1-Dichloroethene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
cis-1,2-Dichloroethene	nc, v	<1 (ND)	9	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
trans-1,2-Dichloroethene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
Dichloromethane	C, V	<5 (ND)	<5 (ND)	<5 (ND)	<50 (ND)	<5 (ND)			<5 (ND)	<5 (ND)	<5 (ND) <0.01 (ND)
EDB (1,2-dibromoethane) EDC (1,2-dichloroethane)	C, V C, V	<1 (ND) <0.2 (ND)	<1 (ND) <0.2 (ND)	<1 (ND) <0.2 (ND)	<10 (ND) <2 (ND)	<1 (ND) <0.2 (ND)			<0.01 (ND) <0.2 (ND)	<0.01 (ND) <0.2 (ND)	<0.01 (ND) <0.2 (ND)
Ethylbenzene	C, V	11	<0.2 (ND)	<1 (ND)	130	5.3			<1 (ND)	<1 (ND)	<1 (ND)
MTBE (methyl t-butyl ether)	C, V	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
Naphthalene	c, v	7.6	<1 (ND)	<1 (ND)	33	11			<0.2 (ND)	<0.2 (ND)	<1 (ND)
iso-Propylbenzene (cumene)	nc, v	3.2	<1 (ND)	<1 (ND)	<10 (ND)	3			<1 (ND)	<1 (ND)	<1 (ND)
Tetrachloroethene (PCE)	C, V	<1 (ND)	86	9.4	1.8 j	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
Toluene	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	13	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
1,1,1-Trichloroethane	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
1,1,2-Trichloroethane	C, V	<0.5 (ND)	<0.5 (ND)	<0.5 (ND)	<5 (ND)	<0.5 (ND)			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Trichloroethene	NA, v	<0.5 (ND)	9	<0.5 (ND)	<5 (ND)	<0.5 (ND)			<0.5 (ND)	<0.5 (ND)	<0.5 (ND)
Trichlorofluoromethane (Freon 11)	nc, v	<1 (ND)	<1 (ND)	<1 (ND)	<10 (ND)	<1 (ND)			<1 (ND)	<1 (ND)	<1 (ND)
1,2,4-Trimethylbenzene	nc, v	4.4	<1 (ND)	<1 (ND)	120	33			<1 (ND)	<1 (ND)	<1 (ND)
1,3,5-Trimethylbenzene Vinyl chloride	nc, v	<1 (ND) 0.24	<1 (ND) <0.02 (ND)	<1 (ND) <0.02 (ND)	35 <0.2 (ND)	1.9 <0.02 (ND)			<1 (ND) <0.02 (ND)	<1 (ND) <0.02 (ND)	<1 (ND) <0.02 (ND)
Xylenes	c, v nc, v	17	<3 (ND)	<3 (ND)	610	21			<3 (ND)	<3 (ND)	<3 (ND)
Metals	110, 7	17	10 (IVD)	10 (IVD)	010	21			10 (NB)	10 (ND)	10 (ND)
Arsenic	c, nv										
Barium	nc, nv										
Cadmium	nc, nv										
Chromium (III)	nc, nv										
Lead	NA, nv										
Mercury	nc, nv										
Silver	nc, nv										
Semivolatile Organic Constituents		-0.4 (NID)			40 42 (ND)	<0.4 (ND)	40.4 (ND)			1	
Polycyclic Aromatic Hydrocarbons	C, V	<0.1 (ND)			<0.13 (ND)	<0.1 (ND)	<0.1 (ND)				
Acenaphthene	nc, v	<0.04 (ND)			0.27	0.19	<0.04 (ND)		<0.02 (ND)	<0.02 (ND)	
Anthracene	nc, v	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.02 (ND)	
Benz[a]anthracene	C, V	<0.04 (ND)			0.082	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.02 (ND)	
Benzo[a]pyrene (BaP equivalents)	c, nv	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.4 (ND)	
Benzo[b]fluoranthene	c, nv	<0.04 (ND)			0.055	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.4 (ND)	
Benzo[k]fluoranthene	c, nv	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.4 (ND)	
Chrysene	c, nv	<0.04 (ND)			0.25	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.02 (ND)	
Dibenz[a,h]anthracene	c, nv	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.4 (ND)	
Fluoranthene	nc, nv	0.052			0.17	<0.04 (ND)	<0.04 (ND)		0.036	<0.02 (ND)	
Fluorene	nc, v	1			1.8	0.9	<0.04 (ND)		<0.02 (ND)	<0.02 (ND)	
Indeno[1,2,3-cd]pyrene	c, nv	<0.04 (ND)			<0.04 (ND)	<0.04 (ND)	<0.04 (ND)		<0.02 (ND)	<0.4 (ND)	
Pyrene	nc, v	0.12			0.54	0.053	<0.04 (ND)		0.047	<0.02 (ND)	
Total Petroleum Hydrocarbons		000	<400 (NID)	2400 (NID)	0700	770	2400 (NID)	<400 (ND)	<400 (NID)	<400 (NID)	<400 (ND)
Generic Diesel / Heating Oil (DRO)	nc, v	630	<100 (ND) *	<100 (ND) *	2700	770	<100 (ND)	<100 (ND) *	<100 (ND)	<100 (ND)	<100 (ND)
Generic Diesel / Heating Oil (DRO) Generic Mineral Insulating Oil (RRO)	nc, v	14000 x * 55000 *	<50 (ND) * <250 (ND) *	<50 (ND) * <250 (ND) *	12000 x * 44000 *	8900 x * 32000 *	200 x * <250 (ND) *	<50 (ND) * <250 (ND) *	<50 (ND) <250 (ND)	<50 (ND) <250 (ND)	<50 (ND)
Notes:	nc, nv	33000	יבטט (ואט)	~200 (ND)	77000	32000	*200 (ND)	~200 (ND)	~200 (ND)	-200 (ND)	<250 (ND)

ug/L = micrograms per Liter or parts per billion (ppb).

<# (ND) = not detected at or above the laboratory method reporting limit</p> shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

¹ Lowest Risk-Based Concentration for ground water (screening level assumes residential use, from ODEQ RBCs dated May 2018).

— = not analyzed or not applicable.

c = carcinogenic

nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics. DRO = diesel-range organics.

RRO = residual-range organics.

BKG = constituent exceeded its SLRBC; however, was not detected

above default backgound concentrations in soil **Bolded** concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

¹ Lowest Risk-Based Concentration for ground water (screening level).

(Y) indicates analyte not detected, but detection limit is above screening concentration.

x = the pattern of peaks is not indicative of the fuel standard used for quantitation.

k = The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

* = DRO result after extracts passed through silica gel column prior to analysis

>S = The groundwater RBC exceeds the solubility limit. Refer to Appendix D for the corresponding value of S. Groundwater concentrations in excess of S indicate that free product may be present.

	Location ID	B24	B25		<u> </u>		
	Location ID						
	Sample ID	B24-GW-20	B25-GW-20		ODEQs		COPC?
Da	ate Sampled		7/24/23	Maximum	Screening-level	Background	COPC?
Depth Sa	mpled (feet)	20	20	Ground Water Concentration	Risk-Based	Concentrations	
	Sampled By	ENW	ENW	Concentration	Concentrations	(metals)	
	Location	Eastern margin of site, east of boring B03, north of boring B25	Eastern margin of site, east-southeast of boring B15, south of boring B24		(SLRBCs) ¹		TRUE OR Y FALSE OR N
Constituent of Interest	Note	μg/L (ppb)	μg/L (ppb)		μg/L (ppb)		
Volatile Organic Constituents			1				
Benzene	C, V	<0.35 (ND)	<0.35 (ND)	2.7 j	0.46	NE	Y
Bromodichloromethane Bromoform	C, V	<0.5 (ND)	<0.5 (ND)	<5 (ND)	0.13 3.3	NE NE	(Y)
Bromomethane	c, v	<5 (ND) <5 k	<5 (ND) <5 k	<50 (ND) <50 (ND)	7.5	NE NE	(Y) (Y)
Carbon tetrachloride	C, V	<0.5 (ND)	<0.5 (ND)	<5 (ND)	0.46	NE NE	(Y)
Chlorobenzene	nc, v	<1 (ND)	<1 (ND)	1.1	77	NE	N N
Chlorodibromomethane (dibromochloromethane)	C, V	<0.5 (ND)	<0.5 (ND)	<5 (ND)	0.17	NE	(Y)
Chloroethane (ethyl chloride)	nc, v	<1 (ND)	<1 (ND)	<10 (ND)	21000	NE	N
Chloroform	C, V	<1 (ND)	<1 (ND)	1.1	0.22	NE	Υ
Chloromethane	nc, v	<10 (ND)	<10 (ND)	<100 (ND)	190	NE	N
1,2-Dichlorobenzene	nc, v	<1 (ND)	<1 (ND)	3.5	300	NE	N
1,4-Dichlorobenzene	C, V	<1 (ND)	<1 (ND)	<10 (ND)	0.48	NE	(Y)
1,1-Dichloroethane	C, V	<1 (ND)	<1 (ND)	<10 (ND)	2.8	NE NE	(Y)
1,1-Dichloroethene	nc, v	<1 (ND)	<1 (ND)	<10 (ND)	280	NE NE	N
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	nc, v	<1 (ND)	<1 (ND)	9 -10 (ND)	36 360	NE NE	N N
Dichloromethane	nc, v	<1 (ND) <5 (ND)	<1 (ND) <5 (ND)	<10 (ND) <50 (ND)	360	NE NE	(Y)
EDB (1,2-dibromoethane)	C, V	<0.01 (ND)	<0.01 (ND)	Ì	0.0075	NE NE	(Y)
EDC (1,2-dichloroethane)	C, V	<0.2 (ND)	<0.2 (ND)	<10 (ND) <2 (ND)	0.17	NE NE	(Y)
Ethylbenzene	c, v	<1 (ND)	<1 (ND)	130	1.5	NE	Y
MTBE (methyl t-butyl ether)	C, V	<1 (ND)	<1 (ND)	<10 (ND)	14	NE	N
Naphthalene	C, V	<1 (ND)	<1 (ND)	33	0.17	NE	Y
iso-Propylbenzene (cumene)	nc, v	<1 (ND)	<1 (ND)	3.2	440	NE	N
Tetrachloroethene (PCE)	C, V	<1 (ND)	<1 (ND)	86	12	NE	Y
Toluene	nc, v	<1 (ND)	<1 (ND)	13	1100	NE	N
1,1,1-Trichloroethane	nc, v	<1 (ND)	<1 (ND)	<10 (ND)	8000	NE	N
1,1,2-Trichloroethane	C, V	<0.5 (ND)	<0.5 (ND)	<5 (ND)	0.28	NE	(Y)
Trichloroethene	NA, v	<0.5 (ND)	<0.5 (ND)	9	0.49	NE	Y
Trichlorofluoromethane (Freon 11)	nc, v	<1 (ND)	<1 (ND)	<10 (ND)	1100	NE NE	N
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	nc, v	<1 (ND) <1 (ND)	<1 (ND)	120	54 59	NE NE	Y
Vinyl chloride	nc, v c, v	<0.02 (ND)	<1 (ND) <0.02 (ND)	35 0.24	0.027	NE NE	N Y
Xylenes	nc, v	<3 (ND)	<3 (ND)	610	190	NE NE	Y
Metals	110, 1	0 (112)	3 (112)	010	100	112	
Arsenic	c, nv			<5 (ND)	0.052	2	(Y)
Barium	nc, nv			1870	4000	NE	N
Cadmium	nc, nv			1.44	20	1	N
Chromium (III)	nc, nv			32.2	30000	1	N
Lead	NA, nv			8.81	15	13.3	N
Mercury	nc, nv			<5 (ND)	6	0.1	N
Silver	nc, nv			<5 (ND)	100	1	N
Semivolatile Organic Constituents	1		ı				0.0
Polychlorinated biphenyls (Total PCBs)	C, V			<0.13 (ND)	0.006	NE	(Y)
Polycyclic Aromatic Hydrocarbons Acenaphthene	ne v			0.07	510	NE	N
Acenaphinene Anthracene	nc, v			0.27 <0.04 (ND)	>S	NE NE	N N
Benz[a]anthracene	C, V			<0.04 (ND) 0.082	0.03	NE NE	Y
Benzo[a]pyrene (BaP equivalents)	c, nv			<0.4 (ND)	0.025	NE NE	(Y)
Benzo[b]fluoranthene	c, nv			0.055	0.25	NE	N
Benzo[k]fluoranthene	c, nv			<0.4 (ND)	2.5	NE	N
Chrysene	c, nv			0.25	>S	NE	N
Dibenz[a,h]anthracene	c, nv			<0.4 (ND)	0.025	NE	(Y)
Fluoranthene	nc, nv			0.17	800	NE	N
Fluorene	nc, v			1.8	280	NE	N
Indeno[1,2,3-cd]pyrene	c, nv			<0.4 (ND)	0.25	NE	(Y)
Pyrene	nc, v			0.54	110	NE	N
Total Petroleum Hydrocarbons							_
Generic Gasoline (GRO)	nc, v	<100 (ND)	<100 (ND)	2700	110	NE	Y
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	14000 x *	100	NE NE	Y
Generic Mineral Insulating Oil (RRO) Notes:	nc, nv	<250 (ND)	<250 (ND)	55000 *	300	NE	Y

ug/L = micrograms per Liter or parts per billion (ppb).

<# (ND) = not detected at or above the laboratory method reporting limit</p>

shown.

NE = not established. NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

¹ Lowest Risk-Based Concentration for ground water (screening level

assumes residential use, from ODEQ RBCs dated May 2018).

— = not analyzed or not applicable.

c = carcinogenic

nc = noncarcinogenic v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

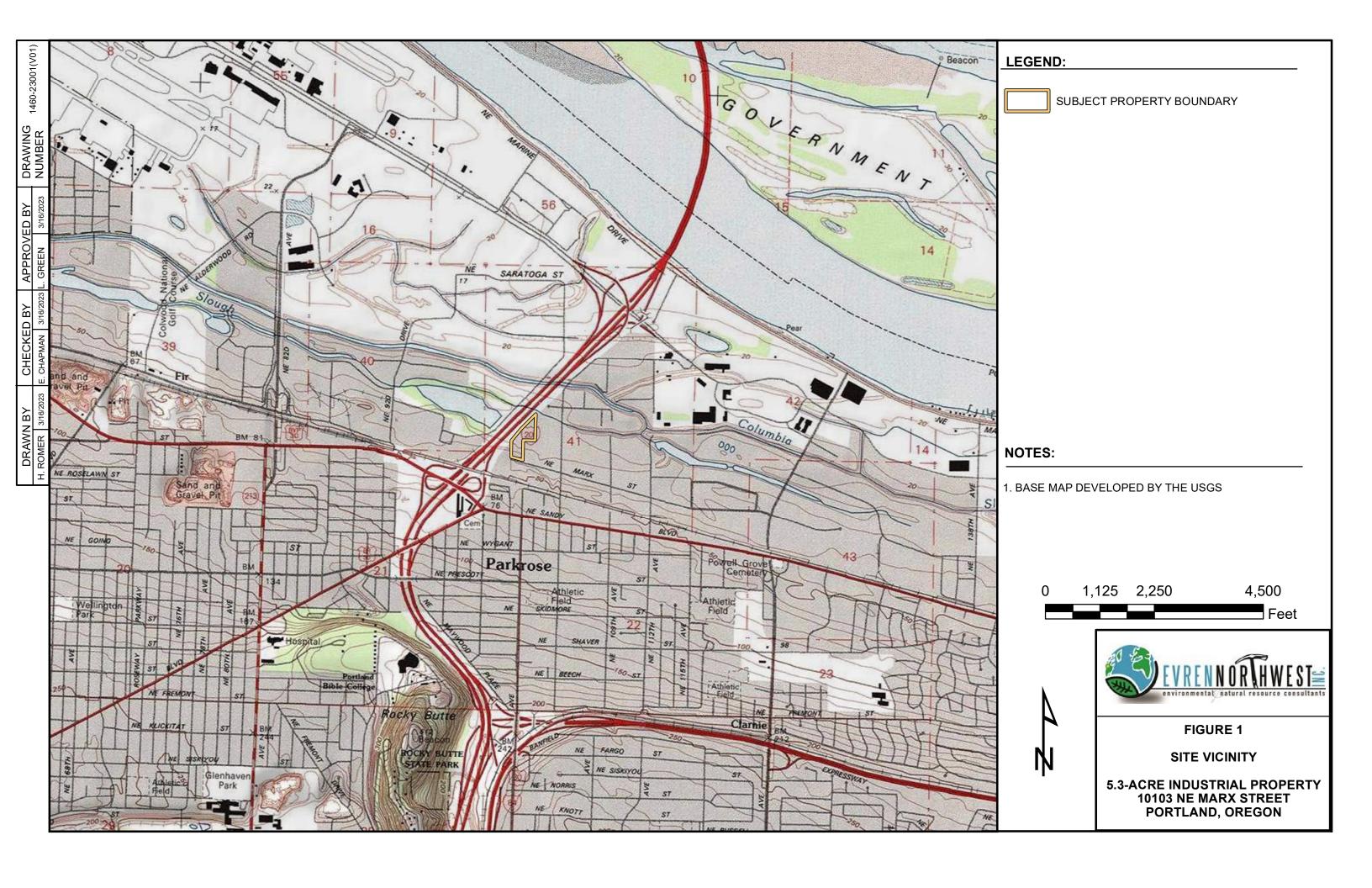
DRO = diesel-range organics. RRO = residual-range organics.

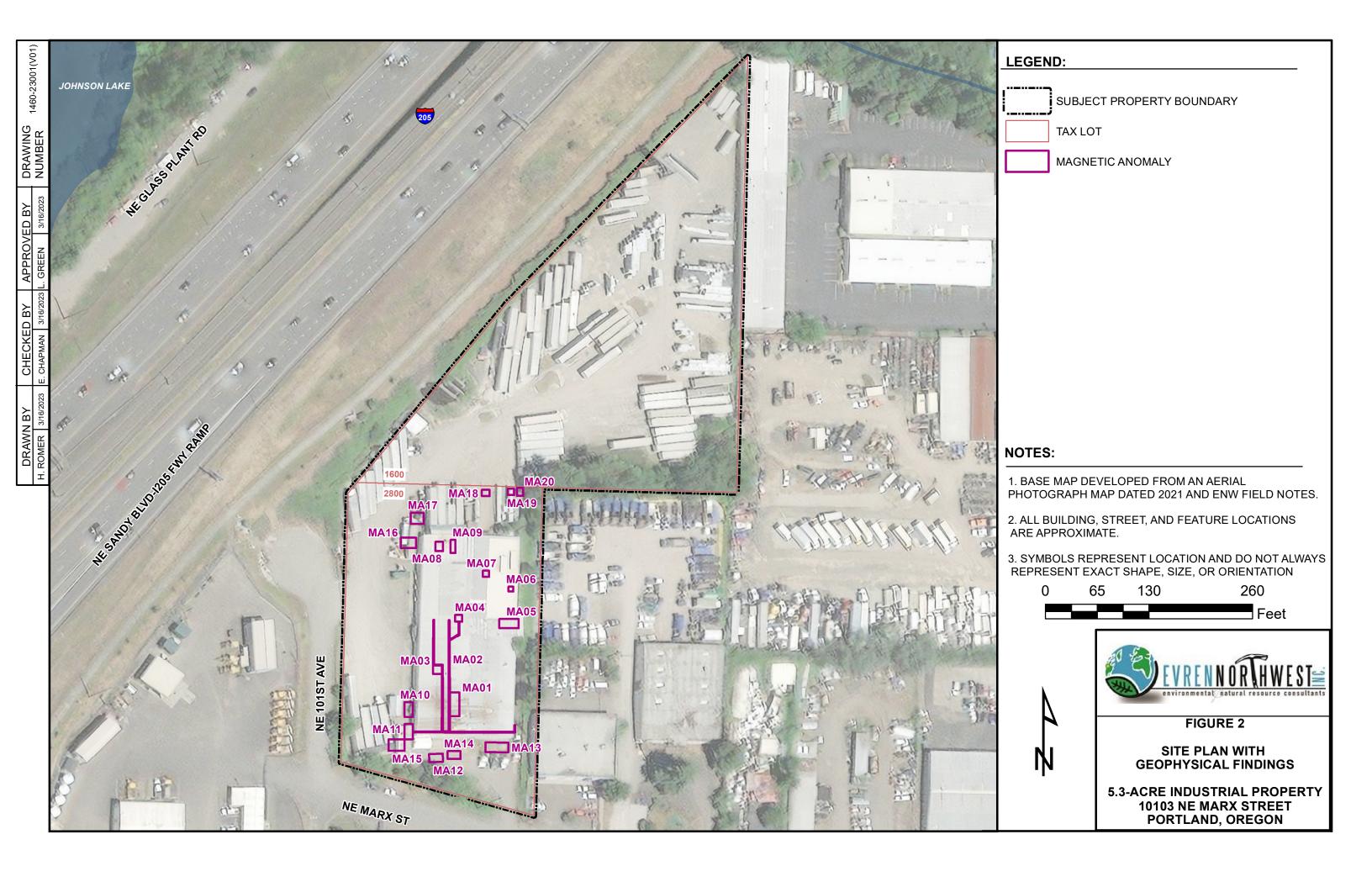
BKG = constituent exceeded its SLRBC; however, was not detected

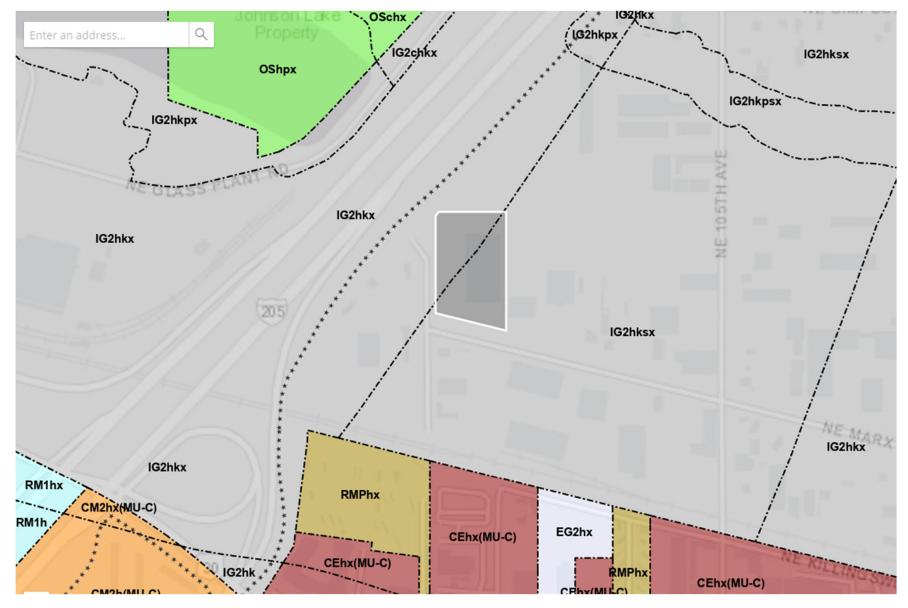
above default backgound concentrations in soil **Bolded** concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

¹ Lowest Risk-Based Concentration for ground water (screening level).

(Y) indicates analyte not detected, but detection limit is above screening

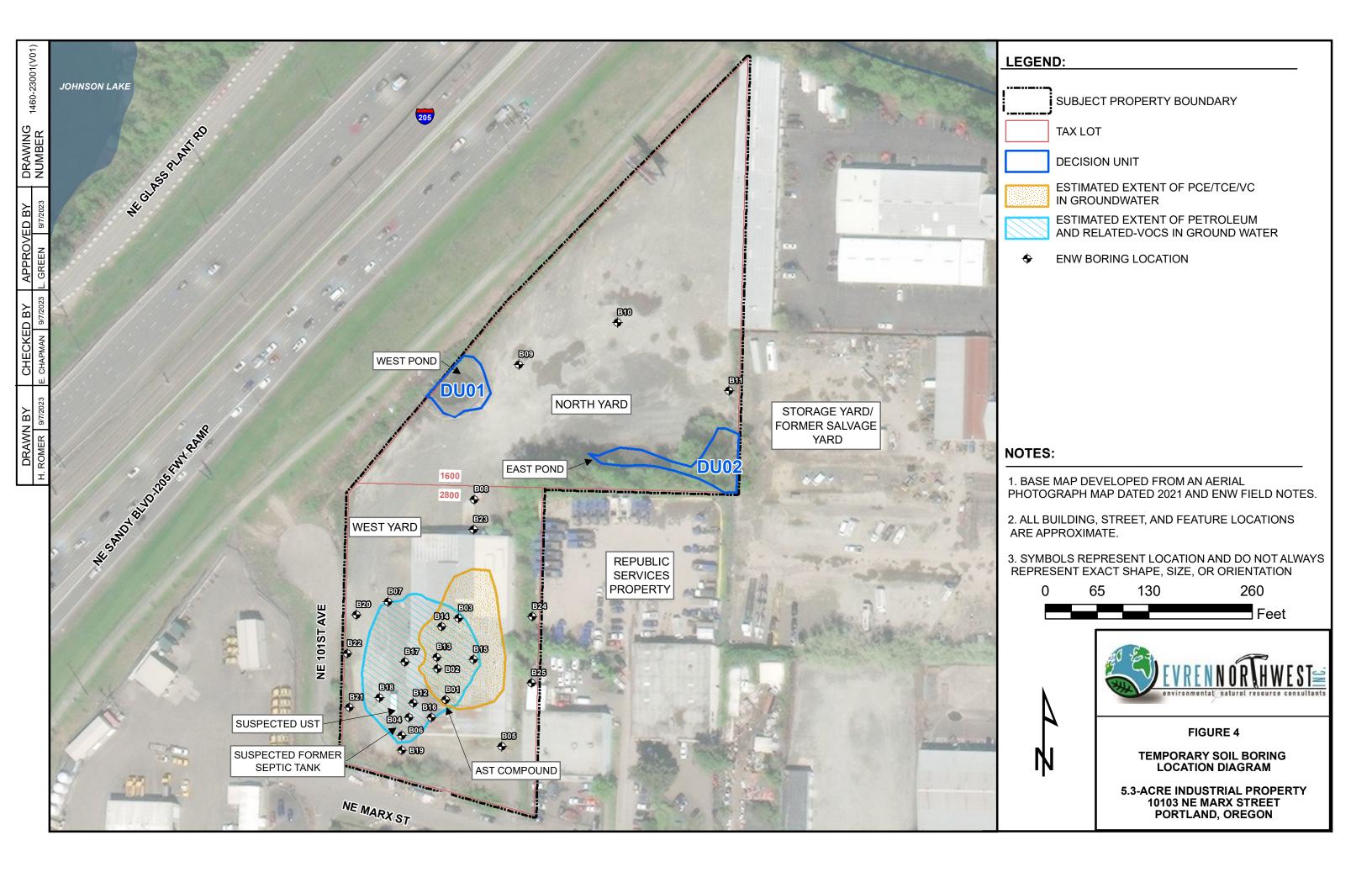

concentration. x = the pattern of peaks is not indicative of the fuel standard used for

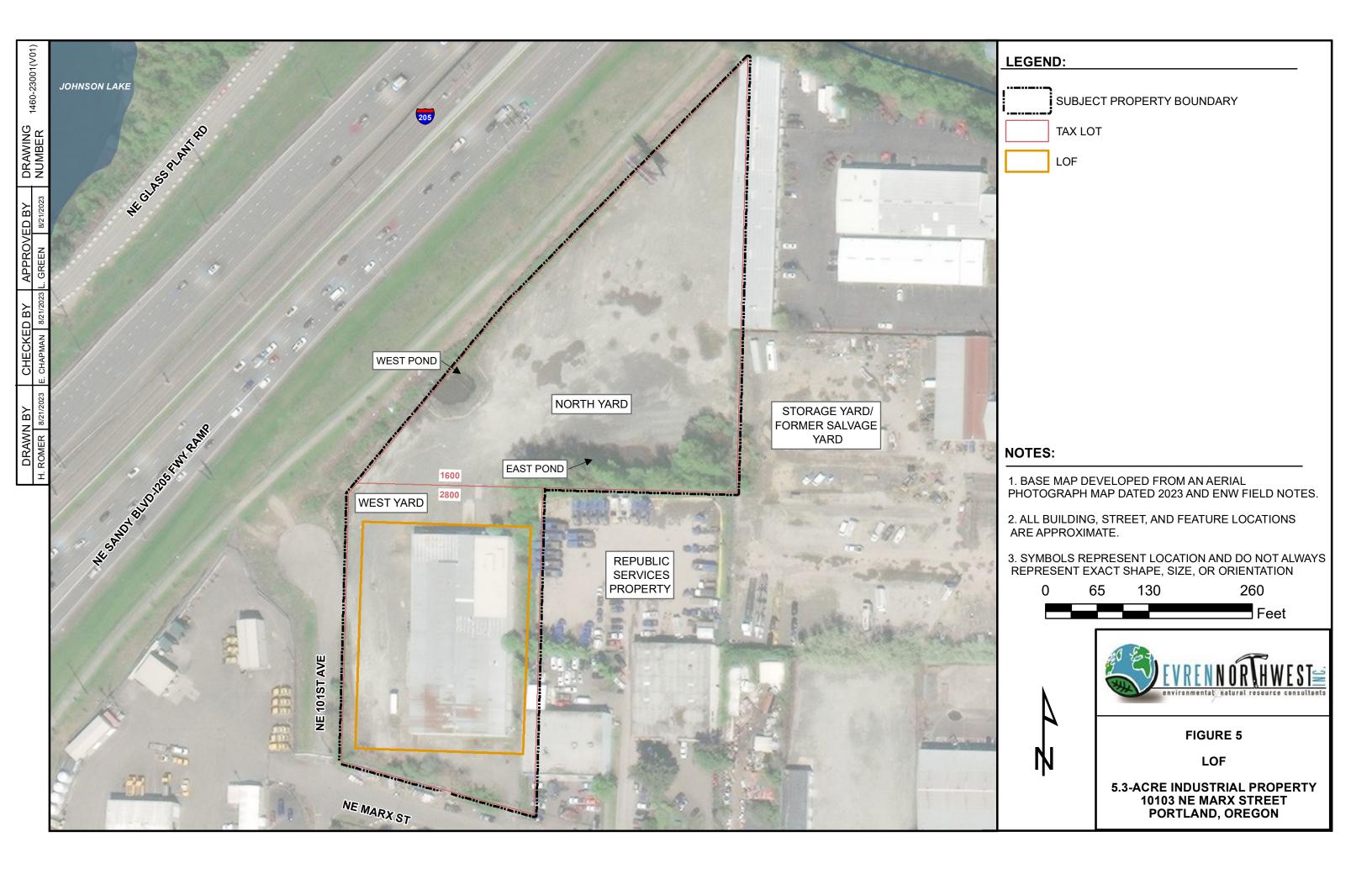

quantitation. k = The calibration results for the analyte were outside of


acceptance criteria, biased high, and the analyte was not detected in the sample.

* = DRO result after extracts passed through silica gel column prior to analysis

>S = The groundwater RBC exceeds the solubility limit. Refer to Appendix D for the corresponding value of S. Groundwater concentrations in excess of S indicate that free product may be present.





https://www.portlandmaps.com/bps/zoning/#/map/R235908

Zoning Map

Project No.	
1466-23001	

Appendix A Site Photographs

Private locator clearing boring locations of utilities.

Cleared boring location.

Direct-push drill rig set up at B24 on the east side of the warehouse.

Field headspace volatiles screening of soil core using a photoionization detector (PID).

10103 NE Marx St Portland, Oregon 97220

Site Photographs

Project No. 1460-23001-04 Appendix

Α

Reconnaissance ground water sample collection at B24 using a peristaltic pump.

View of soil cores from boring B23 at the soil-water interface.

Drill rig set up at B22 along the western property margin.

Brown and gray poorly graded sand underlain by poorly graded sand with silt in boring B21.

10103 NE Marx St Portland, Oregon 97220

Site Photographs

Project No. 1460-23001-04 Appendix

Α

Appendix B

Soil Boring Logs

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1460-23001-01 | HOLE SIZE B21
ANGLE FROM HORIZ. SITE BEGUN COMPLETED 7/24/23 STATIC LEVEL 2.25 FIRST WATER NE Marx St 7/24/23 DEPTH GROUND COORDINATES DATE SL GROUND ELEVATION 7/24/23 11.92 WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade 80 NA
DEPTH BOTTOM OF HOLE DRILL MAKE AND MODEL LOGGED BY: Jordan Morris SAMPLE DATA REMARKS: NOTES ON WATER STRATA ELEVATION/ DEPTH GRAPHICLOG CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 GRAVEL (FILL) dry, sub-rounded POORLY GRADED SAND (SP) loose, moist, medium-grained, quartz-rich, micaceous Gray, POORLY GRADED SAND (SP) loose, 0.0 medium-grained, quartz-rich, micaceous 60 8 B21-8-SWI Brown POORLY GRADED SAND WITH SILT (SP-SM) med. loose, wet to saturated, fine-grained sand, micaceous, SWI at 8' 0.0 Gray POORLY GRADED GRAVEL WITH SAND (GP) dense, wet, coarse grained, micaceous sand 12 100 0.0 As above 16 -60 20 0.0 As above. Total depth of boring 20 feet. 100 24

28

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1460-23001-01 | HOLE SIZE B22
ANGLE FROM HORIZ. SITE BEGUN COMPLETED 7/24/23 STATIC LEVEL NE Marx St DEPTH GROUND COORDINATES DATE SL FIRST WATER GROUND ELEVATION 7/24/23 WATER 11.5 10 DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade 80 NA
DEPTH BOTTOM OF HOLE LOGGED BY: DRILL MAKE AND MODEL Jordan Morris SAMPLE DATA REMARKS: NOTES ON WATER STRATA ELEVATION/ DEPTH GRAPHICLOG CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 GRAVEL FILL (FILL) dry, subangular Gray-brown POORLY GRADED GRAVEL WITH SAND (GP) dense, sub-rounded, no visible mica Gray POORLY GRADED SAND (SP) loose, moist, quartz-rich, micaceous 0.1 Same as above. 60 8 B22-10-0.2 Same as above. Soil water interface at 10' - saturated. SWI Gray POORLY GRADED GRAVEL WITH SAND AND SILT (GP-GM) dense, saturated, coarse-12 grained gravel, no visible mica 100 0.2 As above. 16 -60 20 0.2 As above. Total depth of boring = 20 feet. 100 24

28

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1460-23001-01 | HOLE SIZE B23
ANGLE FROM HORIZ. BEGUN SITE COMPLETED 7/24/23 STATIC LEVEL 2.25 FIRST WATER NE Marx St 7/24/23 DEPTH GROUND COORDINATES DATE SL GROUND ELEVATION 7/24/23 9.84 WATER DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK Cascade NA
DEPTH BOTTOM OF HOLE DRILL MAKE AND MODEL LOGGED BY: Jordan Morris SAMPLE DATA REMARKS: NOTES ON WATER STRATA ELEVATION/ DEPTH GRAPHICLOG CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 GRAVEL FILL (FILL) loose, dry Dark brown SILT WITH FINE GRAVEL (ML) moist, orange mottles, micaceous Gray mottles Gravel disappears 0.2 60 8 Brown POORLY GRADED SAND WITH SILT (SP-SM) med. dense, wet, fine-grained, micaceous Saturated; soil-water interface at 11 feet bgs 70 12 B23-12-POORLY GRADED GRAVEL WITH SILT (GP-SWI GM) subrounded 0.0 16 -60 20 As above. 24 28

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** B24
ANGLE FROM HORIZ. 1460-23001-01 BEGUN COMPLETED HOLE SIZE 7/24/23 STATIC LEVEL NE Marx St 7/24/23 COORDINATES DATE SL FIRST WATER DEPTH **GROUND ELEVATION** GROUND WATER CORE RECOVERY (%) DRILLER # SAMPLES # CORE BOXES DEPTH TOP OF ROCK LOGGED BY: Cascade NA
DEPTH BOTTOM OF HOLE DRILL MAKE AND MODEL Jordan Morris SAMPLE DATA REMARKS: NOTES ON WATER STRATA ELEVATION/ DEPTH GRAPHICLOG CORE RECOVERY MW Const./ Completion DEPTH PID/OVM SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 SANDY GRAVEL FILL (FILL) sub rounded Dark brown (4/4/10Y) SILTY SAND WITH GRAVEL (SM) med. dense, moist, no mica Brown (2/5/10YR) POORLY GRADED SAND (SP) med. loose, moist, micaceous Dark brown SILTY SAND WITH GRAVEL (SM) med. dense, moist, orange mottles Brown POORLY GRADED SAND (SP) med. loose, moist, micaceous Color changes to gray (2/3 1YR) and wood debris 0.2 appears. Dark gray (2/2/10YR) SILT (ML) med. soft, moist, 60 micaceous 8 Color grades to light gray (2/5/10YR), trace fine 0.1 As above, though wet B24-9 0.2 Gray (1/5/10YR) POORLY GRADED GRAVEL (GP) med. dense, wet, no visible mica 12 80 As above, though saturated; soil-water interface B24-14-SWI Brown and gray (2/5/10YR) POORLY GRADED 0.1 20 SAND WITH SILT (SP-SM) loose, saturated, 16 -Brown and gray WELL GRADED GRAVEL WITH SOME SAND AND SILT (GW-GM) med. dense, saturated, no visible mica 20 0.1 End of boring at 20 feet bgs. 70 24

28

EVREN Northwest, Inc. PROJECT NO. BORING NO. **DRILL LOG** 1460-23001-01 | HOLE SIZE B25
ANGLE FROM HORIZ. SITE BEGUN COMPLETED 7/24/23 STATIC LEVEL 2.25 FIRST WATER NE Marx St 7/24/23 DEPTH GROUND COORDINATES DATE SL GROUND ELEVATION 7/24/23 10.5 WATER 11.84 DRILLER CORE RECOVERY (%) # SAMPLES # CORE BOXES DEPTH TOP OF ROCK 55 LOGGED BY: NA
DEPTH BOTTOM OF HOLE Cascade DRILL MAKE AND MODEL Jordan Morris 15 SAMPLE DATA REMARKS: NOTES ON WATER STRATA ELEVATION/ DEPTH GRAPHICLOG CORE RECOVERY MW Const./ Completion PID/OVM DEPTH SAMPLE NO. SAMPLE TYPE LEVELS, LOSSES, DESCRIPTION CAVING, CASING, DEPTH & DRILLING CONDITIONS. 0 GRAVEL WITH SAND FILL (FILL) dry, sub-<u>roun</u>ded Brown (6/3/10YR) POORLY GRADED SAND WITH GRAVEL (SP) med. loose, moist, mediumgrained sub-angular clasts, no visible mica Orange-brown (8/5/10YR) POORLY GRADED SAND WITH SILT (SP-SM) med. dense, moist, fine-grained, micaceous Gray (2/4/10YR) POORLY GRADED SAND (SP)-50 med. loose, moist, medium-grained, quartz-rich, micaceous 8 0.0 As above AS above. B25-10.5-0.1 40 Saturated; soil-water interface at 10.5 feet bgs. SWI Gray POORLY GRADED GRAVEL WITH SAND 70 12 AND TRACE SILT (GP) dense, saturated, no visible mica 0.1 As above. 16 -60 20 24

28

Appendix C

Field Sampling Data Sheets

EVREN Nor PROJECT NAME: Event:		GRO	TAW DNUC	ER FIELD	SAMPLIN	F	FORM (FIE PROJECT NUMBE Date: 2/2		123001-0
	- Ju	40					112	4103	
Field Personnel:	٤		non .			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Monitoring Well I		}
Weather Condition		Movan	1 Wayn	703	, °C		Start Tim	e: 13 6	6
DTW (prior to pur	ging): /	1.92			the second of th				
			WI		G INFORMAT				
., Time	OTW During Purging (feet)	Pumping Rate (L/min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters)
1517		\$5 H	5 0,15	Ym				egray	0,1
1520		0.35 1		/			× .	gray	0.3
1522		205						Gray	815
								,	
							······		

								Total Purged	1,54
Purge Pumping Rat Decontamination m Well Conversion Fa	ethod:		5 , 7 5 - = 0.02 gal/foot	WELL CO	ONDITION		ell casing (in. diam Pump/Intake Dept		7
Recommended Wel	l Repairs/Add	litional Notes:			4			-	
QA/QC Sample:	☐ Dupl		Lab QA/QC	☐ Equipr		☐ None	· .		
Sampling Method:	☐ Grun	idfos Pump [Peristaltic Pun		er Pump	Valve .			
Analytic	al I	Destination	n	SAMPLE IN	Bottle	Number			71
Paramete		Laborator		servative	Size	of bottles	Samp	ole ID	Time Sampled
		VBII		Ð	1L AMI		B21-6a		15:20
***************************************		Λ		<i>b</i> -	DISL INV		. 1	·	1
			<i>}</i>	tci	HUMLVO	n 4			
				NO3	250ml ps		· V		
Method of Transport All samples were im			Courier	e or "blue Ice"		☐ Yes	No		
Field Observations					,				
		//	Ŋ					·	
Signature of Field I	Personnel:	41/	/					***	

EVREN No	orthwest	GR	OUND WA	TER FIELD	SAMPLIN	IG DATA I	FORM (FIE	,	
PROJECT NAM		· .					ROJECT NUMBE	R; 1468	-23001-0
Event:	<u>(</u> 500	<u>Veli</u>	neation				ate: 1	124/23	
Field Personne	l: ()an 5	ayko :			HIZING IMPROVED TO THE OWNER OF THE OWNER OWNER OF THE OWNER O	Monitoring Well I	D: B2-	7_
Weather Condit		cron		4°F		*******	Start Tim		:01
DTW (prior to p			50 60	<u> </u>					
				ELL PURGING	INFORMAT	ION			
	DTW During	Pumping		Specific	Dissolved	Water			Total Quantity
Time	Purging (feet)	Rate <(L/min)	Temperature (degree C)	Conductivity	Oxygen	pH	ORP (mV), , ±10 mV	Turbidity	Purged (gallons/liters)
(b'.or	(reet)	LSO	(degree C)			tu 5.0	(1110), , ±10 1110	(NTO), , ±10 %	
16:04		1.20			Showy	tu sia	J		ŽĄ
16:05		700	1	miky	Sugray		•		0.30
6:07		11		mospy	Cher	- (1)	ect 3an	Ala -	0.30
00.07				wosi 4	400	COVIL	- CI 3-9L	Als	
			· · · · · · · · · · · · · · · · · · ·						***************************************

				1					

	- 1	1						Total Purge	d:
Tubing:	3/81	' UDP	E,			•			
Purge Pumping	Rate (approx. L/i	ḿ):	150 ml/m	n		W	ell casing (in. dian	n):	PUC
Decontamination	n method:			•	+	Approx.	Pump/Intake Dept	th: ~ {	- (
Well Conversion	Factors: 2" = 0.	17 gal / foot; 5/8	" = 0.02 gal/foot						
				WELL CO	ONDITION				
Recommended \	Well Repairs/Add	ditional Notes:							
04/00 0	Пъ	l' (101 1	rat v	<u>*</u>		
QA/QC Sample:	☐ Dupl	licate	☐ Lab QA/QC		ment Blank	None Dual			
Sampling Metho	d: Grur	ndfos Pump	Peristaltic Pu	ımp 🗌 Bladde	er Pump	∐ Duai Valve			
				SAMPLE INI	FORMATION	vaivo		NAME OF THE PARTY	
Analy		Destinat			Bottle	Number		1	Time
Param		Laborato		reservative	Şize	of bottles	Sam	ple ID	Sampled
Cox,	0069	Tat	3	Hil	Hom	1 9		. 70	
	PANS			none	11,16		R72-(5w-20	16.18
	W.	1	,	None	500m		V		70
dissolu	ed nutrices	. V		HNON	7/50 W	~ \			
272		``				'			
Method of Trans			\						
			r and packed with	ice or "blue Ice"		Yes	No		
Field Observati	ons/Notes of sa	impling event:							
***************************************	,	***************************************	i			***************************************			• .
					••••••			,	
		-	\wedge	,				***************************************	***************************************
0' ' '		(A)	V	<u></u>	. H				
Signature of Fig	eia Personnel:	X / 4		ر					

ield Personne Veather Cond	el: 9	Chann	vaus				Monitoring Well I	D: 13Z	3
cathiri oona		Words	1 war	n 17	DOF S			e: 141	
TW (prior to)	ourging): 9	184							-t
			W	ELL PURGING	INFORMAT	ON			
Time	DTW During Purging (feet)	Pumping Rate (L/min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Total Quantit Purged (gallons/liters
1414		1.5 4/m						grey close	19 0.1
1420							gry	Less clay	0,2
1422							gry	less clay	0,5
1426								1+ grey	1,0
1430								opaque	1.5
				*					
*			· · · · · · · · · · · · · · · · · · ·						
thing	3/2		- * · · · · · · · · · · · · · · · · · ·				,	Total Purge	d: /,5
urge Pumping econtaminatio	Rate (approx. L/m n method: n Factors: 2" = 0.			5 L/m			ell casing (in. dian Pump/Intake Dept	1): 3/4	19
urge Pumping econtaminatio	Rate (approx. L/n method:	17 gal / foot; 5/8"			DNDITION			1): 3/4	d: 1,5 14
urge Pumping econtaminatio /ell Conversion ecommended	Rate (approx. L/n n method: n Factors: 2" = 0." Well Repairs/Add	17 gal / foot; 5/8" itional Notes:	= 0.02 gal/foot	WELL CO	DNDITION	Approx.		1): 3/4	d: 1,5 1,6 19
urge Pumping econtamination /ell Conversion ecommended	Rate (approx. L/n n method: n Factors: 2" = 0.0 Well Repairs/Add	17 gal / foot; 5/8" itional Notes:		WELL Co	DNDITION ment Blank er Pump			1): 3/4	d: 1,5 14 19
urge Pumping econtamination /ell Conversion ecommended A/QC Sample ampling Method	Rate (approx. L/n n method: n Factors: 2" = 0.0 Well Repairs/Add : Dupli bd: Grun	itional Notes: cate dfos Pump	= 0.02 gal/foot Lab QA/QC Peristaltic Pu	WELL Co	DNDITION ment Blank er Pump FORMATION	Approx. None Dual Valve		1): 3/4	19
econtamination Vell Conversion Recommended AA/QC Sample Rampling Methor	Rate (approx. L/n n method: n Factors: 2" = 0.0 Well Repairs/Add	17 gal / foot; 5/8" itional Notes:	= 0.02 gal/foot Lab QA/QC Peristaltic Pu	WELL Co	DNDITION ment Blank er Pump	Approx.	Pump/Intake Dept	1): 3/4	7 te 29
urge Pumping econtamination /ell Conversion /ecommended A/QC Sample ampling Method	Rate (approx. L/n n method: n Factors: 2" = 0.0 Well Repairs/Add Dupli d: Grun	17 gal / foot; 5/8" itional Notes: cate dfos Pump Destinatio	= 0.02 gal/foot Lab QA/QC Peristaltic Pu	WELL CO	ment Blank er Pump FORMATION Bottle Size LLAMB D.5LAM	Approx. None Dual Valve Number of bottles 2	Pump/Intake Dept	n): 3/4	Time Sampled
urge Pumping econtamination /ell Conversion ecommended A/QC Sample ampling Method	Rate (approx. L/n n method: n Factors: 2" = 0.0 Well Repairs/Add Dupli d: Grun	itional Notes: cate dfos Pump Destinatio Laborator	= 0.02 gal/foot Lab QA/QC Peristaltic Pu	WELL CO	ment Blank er Pump FORMATION Bottle Size	Approx. Approx. None Dual Valve Number of bottles 2 3 4 4 4	Pump/Intake Dept	n): 3/4	Time Sampled
urge Pumping econtaminatio /ell Conversion ecommended A/QC Sample ampling Methor Parar	Rate (approx. L/n n method: n Factors: 2" = 0.0 Well Repairs/Add Dupli d: Dupli d: Grun ytical neters sportation of samp	itional Notes: cate dfos Pump Destinatio Laborator	= 0.02 gal/foot Lab QA/QC Peristaltic Pu	WELL CO	ment Blank er Pump FORMATION Bottle Size ILAMB D.SLAM Home Vo	Approx. None Dual Valve Number of bottles	Sam B23-6W	n): 3/4	Time Sampled
urge Pumping econtaminatio 'ell Conversion ecommended A/QC Sample ampling Metho Anal Paran	Rate (approx. L/n n method: n Factors: 2" = 0.1 Well Repairs/Add : Dupli od: Grun ytical neters	itional Notes: cate dfos Pump Destinatio Laborator cles: FedEx ced into a cooler	= 0.02 gal/foot Lab QA/QC Peristaltic Pu	WELL CO	ment Blank er Pump FORMATION Bottle Size ILAMB D.SLAM Home Vo	Approx. Approx. None Dual Valve Number of bottles 2 3 4 4 4	Pump/Intake Dept	n): 3/4	Time Sampled

PROJECT NAM		GRO LX SITE	OUND WAT	TER FIELD	SAMPLIN	F	FORM (FIE PROJECT NUMBE	R: 1460-7	3001-04
Event:	DELI	NEATION					Date: 7-24-	2023	
Field Personn	el: Evwl	BRUGGEN	W				Monitoring Well I		
Weather Cond		: CLOUDY	68F			•••••	Start Tim	e: //://2	11:30
DTW (prior to	purging):		\\\	ELL PURGING	2 INICODINAT	ION			
	DTW During	Pumping	VV	Specific	Dissolved	Water			Total Quantity
Time	Purging (feet)	Rate M(L/min)	Temperature (degree C)	Conductivity	Oxygen	рН	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Purged
11:42		200 mc/min						REY/May	
11:45		317			,			GERY	0.6 L
11:50		"						GREY	1.66
12:00		. 4		1				(PART GREY	3.6L
	1							. /	,
,									
								,	
÷·····						,			
•••••••••••••••••••••••••••••••••••••••									
		<u> </u>			<u> </u>			Total Purge	d.
Tubing: 3	18" PE							rotar argo	<u> </u>
	Rate (approx. L/	m): 200 mL	lorin				ell casing (in. dian Pump/Intake Dept		C
		.17 gal / foot; 5/8"	= 0.02 gal/foot	andras directly deviloped by the first of the advance deviloped to the direct deviloped by the deviloped by the	e gana di 1904 kili sejandi di dia miniminanji kamba kengina kamba salamban kenahan kenahan kenahan kenahan kenah	трргох.	т аттрипако ворг	70 0	3
				WELL CO	ONDITION				
Recommended	Well Repairs/Add	ditional Notes:			and the second s				
				,					••••••
							1.		1 .
QA/QC Sample	e: Dup	licate	☐ Lab QA/QC	☐ Equip	ment Blank	☐ None		,	
Sampling Meth	od: Grui	ndfos Pump	Peristaltic Pu	mp 🔲 Bladd	er Pump	☐ Dual Valve		y . *	
		ETHERENCH ERICENSEN STREET		SAMPLE IN	FORMATION	vaive			
Ana	lytical	Destination	on		Bottle	Number			Time
	meters	Laborator		eservative	Size	of bottles		ple ID	Sampled
(7x + \	100	F4B		ICL	40arl	4	BZ4-FW	-50	12:20
DX		t _f	/	NOWE	SOML				
PAHS CHO				1,	10				
PCBs (Ho					10	1			
DIST. RCR				N03	Cont	()	The FILTER	4)	
	sportation of sam	ples: FedEx aced into a cooler	Courier	ico or "blue loo"		Yes	□ No		
	tions/Notes of sa		Filler	L Confa	C.		No No	Years Es	
			c/ear 50		vons	YOA W	A	L'are Co	
	,		700	/ FILLING	V. U/7J	V V V V	ic citivaly.	,	
Signature of F	ield Personnel:	- Sur	19,						

EVREN N PROJECT NAN Event:		GR	OUND WAT	EK FIELD	SAMPLIN	F	FORIM (FIE PROJECT NUMBE Date: 7~	R: 1460	
Field Personne		Chapi	nan				Monitoring Well I		
Weather Cond	itions:	700'5	nan F°	0/cas	it 6	Verry		: 132	
DTW (prior to	ourging):	11.84							
CONTRACTOR	DTW D	D '	. W	ELL PURGING		present the second			No. of the second secon
Time	DTW During Purging (feet)	Pumping Rate n(U min)	Temperature (degree C)	Specific Conductivity (mS/cm), ±3%	Dissolved Oxygen (mg/L), ±10%	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV		
1325		150						clear	1.5 L

,	·					***************************************			

					,				
				·					
									1.5 6
Decontaminatio	Rate (approx. L/n n method: n Factors: 2" = 0.	The same of the sa	150 м '= 0.02 gal/foot	WELL CO	ONDITION	Approx.	ell casing (in. diam Pump/Intake Deptl	7. 18	595
Recommended	Well Repairs/Add	itional Notes:	And And Andrews					-	
							1		
QA/QC Sample:			☐ Lab QA/QC		nent Blank	None			
Sampling Metho	od: Grun	dfos Pump	Peristaltic Pur	mp 🗌 Bladde	er Pump	☐ Dual Valve			
				SAMPLE IN	ORMATION				
Anal _y Paran		Destinatio Laborato		eservative	Bottle Size	Number of bottles	Samp	.l. ID	Time
T dt dii		FBI	iy (1)	D		mb 2		W-20	Sampled (335
		1 1/2	·	4	0,5 L A		0000		1 25
			ŀ	+61	40 ML	4			1. 1
			1		250 mL	. 1		V	(
-								V .	
All samples were	portation of samp e immediately plac ons/Notes of sar	ced into a cooler	Courier and packed with it	ce or "blue Ice"		☐ Yes	☐ No		·.
		<u> </u>	,		,				
	1,			***************************************					
)//					· · · · · · · · · · · · · · · · · · ·	
								***************************************	*************************
Signature of Fi			/						

Appendix D

Laboratory Analytical Reports

Summary: DATA VALID?

⊠YES

Analytical Laboratory Data Validation Check Sheet

Project Name: 10103 NE Marx, Portland

Project Number: 1460-23001-04

Date of Review: 8/3/23 Lab. Name: F&B Lab Batch ID #: 307298 amended

Chain of Custody		_	
	,	□no	
·	•	□no	
	□yes	⊠no	
4.) Field blank submitted?	□yes	⊠no	
Timing			
5.) Samples extracted within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
6.) Analysis performed within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
Quality Assurance/Quality Control			
7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs)	⊠yes	□no	
		□no	
	-	□no	\boxtimes NA
	□yes	⊠no	
	-	□no	\boxtimes NA
	-	□no	
	, □yes	⊠no	
f yes, indicate blank type, chemical(s) and concentration(s):	,		
13.) For inorganics and metals, is there one method blank for each analyte?	□yes	□no	⊠NA
· · · · · · · · · · · · · · · · · · ·	-	□no	
	-	□no	\square NA
	□yes	□no	
·	-	□no	\square NA
	-	□no	
Accuracy			
	⊠yes	□no	□NA
	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
17.) Is there a spike recovery for all Laboratory Control Samples?	⊠yes	□no	□NA
	-	□no	
•	-	□no	\boxtimes NA
•	•	□no	□NA
	-	□no	⊠NA
Precision			
19.) Are all matrix spike/matrix spike duplicate recoveries within			
	□yes	⊠no	\square NA
If not, are all discrepancies footnoted?	⊠yes	□no	\square NA

Dichlorodifluoromethane failed below the acceptance criteria in the 8260D matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect. (vo)

20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits? If not, are all discrepancies footnoted?21.) Do all RPD calculations for Field Duplicates meet accepted criteria?		⊠yes □yes □yes	□no □no □no	□NA ⊠NA ⊠NA
Comments:				
The 8260D soil calibration standard failed the acceptance criteria for 1 chloropropane. The data were flagged accordingly. (ca)	,2,3-trichloropro	pane an	d 1,2-dib	oromo-3-
The 8260D soil acetone and water acetone and bromomethane calibra criteria. The compounds were not detected, therefore this did not rep				•
An 8270E internal standard failed the acceptance criteria for sample B reanalyzed with acceptable results. Both data sets were reported. (J)	22-GW-20. The sa	ample w	as dilute	ed and
Sample B22-GW-20 was diluted for 8270E re-analysis. Detection limits be meaningful (d). The B22-GW-20 calibration results for 2,4,6-Tribron biased low; or, the calibration results for the analyte were outside of a detection for the analyte in the sample. The value reported is an estimate	nophenol were o acceptance criteri	utside o	f accepta	nce criteria,
Gasoline was not detected in one or more of the duplicate analyses. The applicable. (nm)	herefore, calculat	tion of t	he RPD is	s not
Initial Review By: AR	Final Review By:_			

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 3, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the amended results from the testing of material submitted on July 25, 2023 from the 1460-23001-01, F&BI 307298 project. The PAH sample IDs have been corrected.

We apologize for the inconvenience and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0802R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

August 2, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on July 25, 2023 from the 1460-23001-01, F&BI 307298 project. There are 31 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0802R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 25, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 1460-23001-01, F&BI 307298 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Evren Northwest
307298 -01	B21-8-SWI
307298 -02	B22-10-SWI
307298 -03	B23-12-SWI
307298 -04	B24-14-SWI
307298 -05	B25-10-SWI
307298 -06	B24-9
307298 -07	B21-GW-19
307298 -08	B22-GW-20
307298 -09	B23-GW-19
307298 -10	B24-GW-20
307298 -11	B25-GW-20

The 8260D soil calibration standard failed the acceptance criteria for 1,2,3-trichloropropane and 1,2-dibromo-3-chloropropane. The data were flagged accordingly.

The 8260D soil acetone and water acetone and bromomethane calibration standards exceeded the acceptance criteria. The compounds were not detected, therefore this did not represent an out of control condition.

Dichlorodifluoromethane failed below the acceptance criteria in the 8260D matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

An 8270E internal standard failed the acceptance criteria for sample B22-GW-20. The sample was diluted and reanalyzed with acceptable results. Both data sets were reported.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

Date Extracted: 07/26/23 Date Analyzed: 07/26/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
B21-8-SWI 307298-01	<5	118
B22-10-SWI 307298-02	<5	121
B23-12-SWI 307298-03	<5	115
B24-14-SWI 307298-04	<5	114
B25-10-SWI 307298-05	<5	113
Method Blank 03-1612 MB	<5	111

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

Date Extracted: 07/25/23 Date Analyzed: 07/26/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
B21-GW-19 307298-07	<100	100
B22-GW-20 307298-08	<100	94
B23-GW-19 307298-09	<100	100
B24-GW-20 307298-10	<100	100
B25-GW-20 307298-11	<100	100
Method Blank	<100	116

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

Date Extracted: 07/25/23 Date Analyzed: 07/25/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

			Surrogate
Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{\text{(C}_{10}\text{-C}_{25})}$	$\frac{\text{Residual Range}}{(\text{C}_{25}\text{-C}_{36})}$	(% Recovery) (Limit 50-150)
B21-8-SWI 307298-01	<50	<250	100
B22-10-SWI 307298-02	<50	<250	98
B23-12-SWI 307298-03	<50	<250	94
B24-14-SWI 307298-04	<50	<250	98
B25-10-SWI 307298-05	<50	<250	106
Method Blank 03-1770 MB	<50	<250	96

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

Date Extracted: 07/25/23 Date Analyzed: 07/25/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$\frac{\text{Residual Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
B21-GW-19 307298-07	<50	<250	114
B22-GW-20 307298-08	<50	<250	114
B23-GW-19 307298-09	<50	<250	127
B24-GW-20 307298-10	<50	<250	87
B25-GW-20 307298-11	<50	<250	109
Method Blank 03-1775 MB	<50	<250	123

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: B21-8-SWI Client: Evren Northwest

Date Received: 07/25/23 Project: 1460-23001-01, F&BI 307298

07/25/23 Lab ID: Date Extracted: 307298-01 Date Analyzed: 07/25/23 Data File: $072520.\mathrm{D}$ Matrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	79	128
Toluene-d8	98	84	121
4-Bromofluorobenzene	93	84	116

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5 k	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	<0.05 ca
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	<0.5 ca
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: B22-10-SWI Client: Evren Northwest

Date Received: 07/25/23 Project: 1460-23001-01, F&BI 307298

07/25/23 Lab ID: Date Extracted: 307298-02 Date Analyzed: 07/25/23 Data File: $072521.\mathrm{D}$ Matrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	79	128
Toluene-d8	103	84	121
4-Bromofluorobenzene	92	84	116

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5 k	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	<0.05 ca
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	<0.5 ca
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: B23-12-SWI Client: Evren Northwest

Date Received: 07/25/23 Project: 1460-23001-01, F&BI 307298

07/25/23 Lab ID: Date Extracted: 307298-03 Date Analyzed: 07/25/23 Data File: $072522.\mathrm{D}$ Matrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight Operator: MD

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	97	79	128
Toluene-d8	101	84	121
4-Bromofluorobenzene	92	84	116

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5 k	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	<0.05 ca
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	<0.5 ca
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: B24-14-SWI Client: Evren Northwest

Date Received: 07/25/23 Project: 1460-23001-01, F&BI 307298

07/25/23 Lab ID: Date Extracted: 307298-04 Date Analyzed: 07/25/23 Data File: 072523.DMatrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight Operator: MD

Q	0/ P	Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	79	128
Toluene-d8	101	84	121
4-Bromofluorobenzene	95	84	116

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5 k	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	<0.05 ca
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	<0.5 ca
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: B25-10-SWI Client: Evren Northwest

Date Received: 07/25/23 Project: 1460-23001-01, F&BI 307298

07/25/23 Lab ID: Date Extracted: 307298-05 Date Analyzed: 07/25/23 Data File: 072524.DMatrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	79	128
Toluene-d8	102	84	121
4-Bromofluorobenzene	94	84	116

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5 k	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	<0.05 ca
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	<0.5 ca
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1460-23001-01, F&BI 307298

Date Extracted: 07/25/23 Lab ID: 03-1722 mbDate Analyzed: 07/25/23 Data File: 072509.DMatrix: Soil Instrument: GCMS11 Units: mg/kg (ppm) Dry Weight Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 104 79 128 Toluene-d8 98 84 121 4-Bromofluorobenzene 91 84 116

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5 k	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	<0.05 ca
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	<0.5 ca
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	B21-GW-19	Client:	Evren Northwest
-------------------	-----------	---------	-----------------

 Date Received:
 07/25/23
 Project:
 1460-23001-01, F&BI 307298

 Date Extracted:
 07/26/23
 Lab ID:
 307298-07

Date Analyzed: 07/26/23 Data File: 072617.D

Matrix: Water Instrument: GCMS11

Units: ug/L (ppb) Operator: MD

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	110	78	126
Toluene-d8	100	84	115
4-Bromofluorobenzene	93	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 k	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	B22-GW-20	Client:	Evren Northwest
-------------------	-----------	---------	-----------------

 Date Received:
 07/25/23
 Project:
 1460-23001-01, F&BI 307298

 Date Extracted:
 07/26/23
 Lab ID:
 307298-08

 Date Analyzed:
 07/26/23
 Data File:
 072618.D

 Matrix:
 Water
 Instrument:
 GCMS11

Units: ug/L (ppb) Operator: MD

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	106	78	126
Toluene-d8	101	84	115
4-Bromofluorobenzene	95	72	130

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 k	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	B23-GW-19	Client:	Evren Northwest
-------------------	-----------	---------	-----------------

 Date Received:
 07/25/23
 Project:
 1460-23001-01, F&BI 307298

 Date Extracted:
 07/26/23
 Lab ID:
 307298-09

 Date Analyzed:
 07/26/23
 Data File:
 072619.D

 Matrix:
 Water
 Instrument:
 GCMS11

Matrix: Water Instrument: GCN Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	78	126
Toluene-d8	100	84	115
4-Bromofluorobenzene	93	72	130

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 k	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	B24-GW-20	Client:	Evren Northwest
-------------------	-----------	---------	-----------------

Date Received: 07/25/23 Project: 1460-23001-01, F&BI 307298 Date Extracted: 07/26/23 Lab ID: 307298-10

 Date Extracted:
 07/26/23
 Lab ID:
 307298-10

 Date Analyzed:
 07/26/23
 Data File:
 072620.D

 Matrix:
 Water
 Instrument:
 GCMS11

 Units:
 ug/L (ppb)
 Operator:
 MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	78	126
Toluene-d8	98	84	115
4-Bromofluorobenzene	90	72	130

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 k	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: B25-GW-20 Client: Evrer	n Northwest
---	-------------

Date Received: Project: 07/25/23 1460-23001-01, F&BI 307298 Lab ID: Date Extracted: 07/26/23 307298-11 Date Analyzed: 07/26/23 Data File: $072621.\mathrm{D}$ Matrix: Water Instrument: GCMS11

Units: ug/L (ppb) Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	107	78	126
Toluene-d8	100	84	115
4-Bromofluorobenzene	93	72	130

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 k	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 1460-23001-01, F&BI 307298

07/26/23 Lab ID: Date Extracted: 03-1728 mbDate Analyzed: 07/26/23 Data File: 072607.DMatrix: Water Instrument: GCMS13 Units: ug/L (ppb) Operator: MD

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	111	71	132
Toluene-d8	105	68	139
4-Bromofluorobenzene	101	62	136

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 k	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	< 0.2	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B21-GW-19	Client:	Evren Northwest
Date Received:	07/25/23	Project:	1460-23001-01, F&BI 307298
Date Extracted:	07/27/23	Lab ID:	307298-07
Date Analyzed:	07/27/23	Data File:	072708.D
	TTT .	- .	0.03.504.0

Matrix: Water Instrument: GCMS12
Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	70	11	173
2-Fluorobiphenyl	74	25	128
2,4,6-Tribromophenol	66	10	140
Terphenyl-d14	99	50	150

Terphenyl-d14	99	50
Compounds:	Concentration ug/L (ppb)	
Naphthalene	< 0.2	
2-Methylnaphthalene	< 0.2	
1-Methylnaphthalene	< 0.2	
Acenaphthylene	< 0.02	
Acenaphthene	< 0.02	
Fluorene	< 0.02	
Phenanthrene	0.068	
Anthracene	< 0.02	
Fluoranthene	0.036	
Pyrene	0.047	
Benz(a)anthracene	< 0.02	
Chrysene	< 0.02	
Benzo(a)pyrene	< 0.02	
Benzo(b)fluoranthene	< 0.02	
Benzo(k)fluoranthene	< 0.02	
Indeno(1,2,3-cd)pyrene	< 0.02	
Dibenz(a,h)anthracene	< 0.02	
Benzo(g,h,i)perylene	< 0.04	

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B22-GW-20	Client:	Evren Northwest
Date Received:	07/25/23	Project:	1460-23001-01, F&BI 307298
D + D + + 1	07/07/00	T 1 TD	007000 00

Date Extracted: 07/27/23 Lab ID: 307298-08 Date Analyzed: 07/27/23 Data File: 072709.DWater Matrix: Instrument: GCMS12 Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	78	11	173
2-Fluorobiphenyl	82	25	128
2,4,6-Tribromophenol	64	10	140
Terphenyl-d14	105	50	150

Concentration Compounds: ug/L (ppb) Naphthalene < 0.2 2-Methylnaphthalene < 0.2 1-Methylnaphthalene < 0.2 Acenaphthylene < 0.02 Acenaphthene < 0.02 Fluorene < 0.02 Phenanthrene < 0.02 Anthracene < 0.02 Fluoranthene < 0.02 Pyrene < 0.02 Benz(a)anthracene < 0.02 Chrysene < 0.02 Benzo(a)pyrene <0.02 J Benzo(b)fluoranthene <0.02 J Benzo(k)fluoranthene <0.02 J Indeno(1,2,3-cd)pyrene <0.02 J Dibenz(a,h)anthracene <0.02 J Benzo(g,h,i)perylene <0.04 J

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	B22-GW-20	Client:	Evren Northwest
Date Received:	07/25/23	Project:	1460-23001-01, F&BI 307298
Date Extracted:	07/27/23	Lab ID:	307298-08 1/20
Date Analyzed:	07/28/23	Data File:	072807.D
Matrix:	Water	Instrument:	GCMS12
Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	68 d	11	173
2-Fluorobiphenyl	70 d	25	128
2,4,6-Tribromophenol	75 d ca	10	140
Terphenyl-d14	74 d	50	150

Compounds:	Concentration ug/L (ppb)
Benzo(a)pyrene	< 0.4
Benzo(b)fluoranthene	< 0.4
Benzo(k)fluoranthene	< 0.4
Indeno(1,2,3-cd)pyrene	< 0.4
Dibenz(a,h)anthracene	< 0.4
Benzo(g,h,i)perylene	< 0.8

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest

Project: Date Received: Not Applicable 1460-23001-01, F&BI 307298 Lab ID: 07/27/23 Date Extracted: $03\text{-}1780~\mathrm{mb}$

Date Analyzed: 07/27/23 Data File: 072709.DMatrix: Water Instrument: GCMS9Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	86	15	144
2-Fluorobiphenyl	80	25	128
2,4,6-Tribromophenol	78	10	142
Terphenyl-d14	99	41	138

	Concentration
Compounds:	ug/L (ppb)
Naphthalene	< 0.2
2-Methylnaphthalene	< 0.2
1-Methylnaphthalene	< 0.2
Acenaphthylene	< 0.02
Acenaphthene	< 0.02
Fluorene	< 0.02
Phenanthrene	< 0.02
Anthracene	< 0.02
Fluoranthene	< 0.02
Pyrene	< 0.02
Benz(a)anthracene	< 0.02
Chrysene	< 0.02
Benzo(a)pyrene	< 0.02
Benzo(b)fluoranthene	< 0.02
Benzo(k)fluoranthene	< 0.02
Indeno(1,2,3-cd)pyrene	< 0.02
Dibenz(a,h)anthracene	< 0.02
Benzo(g,h,i)perylene	< 0.04

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 307298-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			1 ercent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	40	82	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 307271-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	91	70-130	•

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 307277-03 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	96	96	64-136	0

			rercent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	90	78-121

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	104	104	65-151	0

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 307277-03 (Matrix Spike)

nameratory code. co.z co (Sample	Percent	Percent		
	Reporting	Spike			Recovery	Acceptance	RPD
Analyte	Units	-	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	30 vo	31 vo	50-150	3
Chloromethane	mg/kg (ppm)	2	< 0.5	59	58	50-150	2
Vinyl chloride	mg/kg (ppm)	2	< 0.05	73	74	50-150	1
Bromomethane	mg/kg (ppm)	2	< 0.5	71	73	50-150	3
Chloroethane	mg/kg (ppm)	2	< 0.5	77	78	50-150	1
Trichlorofluoromethane Acetone	mg/kg (ppm)	2 10	<0.5 <5	74 118	$\frac{74}{117}$	50-150	0 1
1,1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	78	80	50-150 50-150	3
Hexane	mg/kg (ppm)	2	<0.05	55	59	50-150	3 7
Methylene chloride	mg/kg (ppm)	2	< 0.5	81	82	50-150	1
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	78	80	50-150	3
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	83	86	50-150	4
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	73	75	50-150	3
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	81	85	50-150	5
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	84	87	50-150	4
Chloroform	mg/kg (ppm)	2	< 0.05	76	78	50-150	3
2-Butanone (MEK)	mg/kg (ppm)	10 2	<1	87	80	50-150	8
1,2-Dichloroethane (EDC) 1,1.1-Trichloroethane	mg/kg (ppm)	2	<0.05 <0.05	75 77	77 79	50-150 50-150	3
1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2	< 0.05	74	79 77	50-150	о 4
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	82	82	50-150	0
Benzene	mg/kg (ppm)	2	< 0.03	80	82	50-150	2
Trichloroethene	mg/kg (ppm)	2	< 0.02	80	83	50-150	4
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	72	74	50-150	3
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	78	76	50-150	3
Dibromomethane	mg/kg (ppm)	2	< 0.05	79	82	50-150	4
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	89	87	50-150	2
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	80	81	50-150	1
Toluene	mg/kg (ppm)	2	< 0.05	79	82	50-150	4
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm)	$\frac{2}{2}$	<0.05 <0.05	73 77	74 80	50-150 50-150	1 4
2-Hexanone	mg/kg (ppm) mg/kg (ppm)	10	< 0.5	73	73	50-150	0
1.3-Dichloropropane	mg/kg (ppm)	2	< 0.05	73 73	75 75	50-150	3
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	87	91	50-150	4
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	82	86	50-150	5
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	81	83	50-150	2
Chlorobenzene	mg/kg (ppm)	2	< 0.05	81	84	50-150	4
Ethylbenzene	mg/kg (ppm)	2	< 0.05	80	83	50-150	4
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	82	85	50-150	4
m,p-Xylene	mg/kg (ppm)	4	<0.1	80	84	50-150	5
o-Xylene	mg/kg (ppm)	2 2	<0.05 <0.05	80	84 84	50-150	5 4
Styrene Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	81 85	84 90	50-150 50-150	6
Bromoform	mg/kg (ppm)	2	< 0.05	83	85	50-150	2
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	74	76	50-150	3
Bromobenzene	mg/kg (ppm)	2	< 0.05	81	82	50-150	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	78	80	50-150	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	75	74	50-150	1
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	68	69	50-150	1
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	72	74	50-150	3
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	72 79	74	50-150	3 1
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	79 76	80 79	50-150 50-150	4
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	76 79	80	50-150	1
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	83	85	50-150	2
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	79	82	50-150	4
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	80	83	50-150	4
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	81	84	50-150	4
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	64	65	50-150	2
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	79	83	50-150	5
Hexachlorobutadiene	mg/kg (ppm)	2	< 0.25	84	87	50-150	4
Naphthalene	mg/kg (ppm)	2	< 0.05	76	80	50-150	5
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	80	83	50-150	4

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	62	10-150
Chloromethane	mg/kg (ppm)	2	80	21-140
Vinyl chloride	mg/kg (ppm)	2	100	35-135
Bromomethane	mg/kg (ppm)	2	101	20-151
Chloroethane	mg/kg (ppm)	2	100	21-147
Trichlorofluoromethane	mg/kg (ppm)	2	102	47-143
Acetone	mg/kg (ppm)	10	141	13-169
1,1-Dichloroethene	mg/kg (ppm)	2	101	49-138
Hexane	mg/kg (ppm)	2	90	61-141
Methylene chloride	mg/kg (ppm)	2	101	25-146
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	91	65-129
trans-1,2-Dichloroethene 1.1-Dichloroethane	mg/kg (ppm)	$\frac{2}{2}$	105 90	62-126 64-131
,	mg/kg (ppm)	2	96	76-150
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	103	62-127
Chloroform	mg/kg (ppm)	2	94	67-129
2-Butanone (MEK)	mg/kg (ppm)	10	99	19-171
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	90	73-123
1,1,1-Trichloroethane	mg/kg (ppm)	2	95	66-125
1,1-Dichloropropene	mg/kg (ppm)	2	92	70-131
Carbon tetrachloride	mg/kg (ppm)	2	97	53-135
Benzene	mg/kg (ppm)	2	98	70-130
Trichloroethene	mg/kg (ppm)	2	97	62-116
1,2-Dichloropropane	mg/kg (ppm)	2	87	70-130
Bromodichloromethane	mg/kg (ppm)	2	93	70-130
Dibromomethane	mg/kg (ppm)	2	92	70-130
4-Methyl-2-pentanone	mg/kg (ppm)	10	97	64-137
cis-1,3-Dichloropropene	mg/kg (ppm)	2	95	68-137
Toluene	mg/kg (ppm)	$\frac{2}{2}$	95	70-130
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2	85 91	70-130 70-130
2-Hexanone	mg/kg (ppm)	10	80	55-145
1,3-Dichloropropane	mg/kg (ppm)	2	86	70-130
Tetrachloroethene	mg/kg (ppm)	2	106	69-131
Dibromochloromethane	mg/kg (ppm)	2	100	61-137
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	94	70-130
Chlorobenzene	mg/kg (ppm)	2	98	70-130
Ethylbenzene	mg/kg (ppm)	2	96	70-130
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	99	56-134
m,p-Xylene	mg/kg (ppm)	4	96	70-130
o-Xylene	mg/kg (ppm)	2	97	70-130
Styrene	mg/kg (ppm)	2	97	70-130
Isopropylbenzene	mg/kg (ppm)	$\frac{2}{2}$	103	67-131
Bromoform	mg/kg (ppm)	2	94 89	70-130 70-130
n-Propylbenzene Bromobenzene	mg/kg (ppm) mg/kg (ppm)	2	89 95	70-130 70-130
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	93	70-130
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	83	70-130
1,2,3-Trichloropropane	mg/kg (ppm)	2	76	70-130
2-Chlorotoluene	mg/kg (ppm)	2	87	70-130
4-Chlorotoluene	mg/kg (ppm)	2	88	70-130
tert-Butylbenzene	mg/kg (ppm)	2	96	70-130
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	94	70-130
sec-Butylbenzene	mg/kg (ppm)	2	93	68-131
p-Isopropyltoluene	mg/kg (ppm)	2	98	70-130
1,3-Dichlorobenzene	mg/kg (ppm)	2	97	70-130
1,4-Dichlorobenzene	mg/kg (ppm)	2	96	70-130
1,2-Dichlorobenzene	mg/kg (ppm)	2 2	98	70-130
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	$\frac{2}{2}$	73	70-130
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2	98 102	66-140 67-141
Naphthalene	mg/kg (ppm)	2	90	69-119
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	97	66-138
-,=,-	9,9 (PP)	-	٠.	00 100

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 307282-02 (Matrix Spike)

Laboratory Code. 507262-02 (Ma	ttrix spike)			Percent	
	ъ	G :1	Q 1		
	Reporting	Spike	_	Recovery	Acceptance
Analyte	\mathbf{Units}	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	99	27-164
Chloromethane	ug/L (ppb)	10	<10	91	34-141
Vinyl chloride	ug/L (ppb)	10	< 0.02	105	16-176
Bromomethane	ug/L (ppb)	10	<5	126	10-193
Chloroethane	ug/L (ppb)	10 10	<1 <1	119 99	50-150
Trichlorofluoromethane Acetone	ug/L (ppb) ug/L (ppb)	50	<50	59	50-150 15-179
1,1-Dichloroethene	ug/L (ppb)	10	<1	94	50-150
Hexane	ug/L (ppb)	10	<5	101	49-161
Methylene chloride	ug/L (ppb)	10	<5	84	40-143
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	85	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	98	50-150
1,1-Dichloroethane	ug/L (ppb)	10	<1	94	50-150
2,2-Dichloropropane	ug/L (ppb)	10	<1	84	62-152
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	96	50-150
Chloroform	ug/L (ppb)	10	<1	96	50-150
2-Butanone (MEK)	ug/L (ppb)	50	<20	72	34-168
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	101	50-150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	95	50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	100	50-150
Carbon tetrachloride Benzene	ug/L (ppb)	10 10	<0.5 <0.35	98 99	50-150 50-150
Trichloroethene	ug/L (ppb) ug/L (ppb)	10	< 0.55	99 95	43-133
1,2-Dichloropropane	ug/L (ppb) ug/L (ppb)	10	<0.5 <1	93 92	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	96	50-150
Dibromomethane	ug/L (ppb)	10	<1	97	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	94	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	93	48-145
Toluene	ug/L (ppb)	10	<1	113	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	103	37-152
1,1,2-Trichloroethane	ug/L (ppb)	10	< 0.5	111	50-150
2-Hexanone	ug/L (ppb)	50	<10	99	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	111	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	111	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	110	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	111	50-150
Chlorobenzene	ug/L (ppb)	10 10	<1 <1	107 106	50-150 50-150
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10	<1 <1	106	50-150 50-150
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	<2	116	50-150
o-Xylene	ug/L (ppb)	10	<1	110	50-150
Styrene	ug/L (ppb)	10	<1	106	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	103	50-150
Bromoform	ug/L (ppb)	10	<5	109	23-161
n-Propylbenzene	ug/L (ppb)	10	<1	114	50-150
Bromobenzene	ug/L (ppb)	10	<1	107	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	113	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	116	57-162
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	109	33-151
2-Chlorotoluene	ug/L (ppb)	10	<1	115	50-150
4-Chlorotoluene	ug/L (ppb)	10 10	<1 <1	113	50-150
tert-Butylbenzene 1,2,4-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	10	<1	107 116	50-150 50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	112	46-139
p-Isopropyltoluene	ug/L (ppb)	10	<1	111	46-140
1.3-Dichlorobenzene	ug/L (ppb)	10	<1	107	50-150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	107	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	105	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	101	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	104	50-150
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	98	42-150
Naphthalene	ug/L (ppb)	10	<1	102	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	99	44-155

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Edwords of Sales Edwords of	itioi adiipio		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	119	117	49-149	2
Chloromethane	ug/L (ppb)	10	105	105	34-143	0
Vinyl chloride	ug/L (ppb)	10	122	119	43-149	$\overset{\circ}{2}$
Bromomethane	ug/L (ppb)	10	149	128	28-182	15
Chloroethane	ug/L (ppb)	10	132	129	59-157	2
Trichlorofluoromethane	ug/L (ppb)	10	125	113	59-141	10
Acetone	ug/L (ppb)	50	84	85	20-139	1
1,1-Dichloroethene	ug/L (ppb)	10	119	115	67-138	3
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	10 10	116 121	109 110	50-161 $29-192$	6 10
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	112	110	70-130	2
trans-1,2-Dichloroethene	ug/L (ppb)	10	120	114	70-130	5
1,1-Dichloroethane	ug/L (ppb)	10	117	112	70-130	4
2,2-Dichloropropane	ug/L (ppb)	10	120	112	71-148	7
cis-1,2-Dichloroethene	ug/L (ppb)	10	113	109	70-130	4
Chloroform	ug/L (ppb)	10	121	115	70-130	5
2-Butanone (MEK)	ug/L (ppb)	50	110	98	50-157	12
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb)	10 10	$\frac{125}{117}$	121 113	70-130 70-130	3
1,1-1 richloropetnane 1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	117	115	70-130	2
Carbon tetrachloride	ug/L (ppb)	10	118	110	70-130	7
Benzene	ug/L (ppb)	10	121	116	70-130	4
Trichloroethene	ug/L (ppb)	10	118	113	70-130	4
1,2-Dichloropropane	ug/L (ppb)	10	118	113	70-130	4
Bromodichloromethane	ug/L (ppb)	10	122	117	70-130	4
Dibromomethane	ug/L (ppb)	10	120	115	70-130	4
4-Methyl-2-pentanone	ug/L (ppb)	50	122	114	70-130	7
cis-1,3-Dichloropropene Toluene	ug/L (ppb)	10 10	$\frac{115}{105}$	114 102	70-130 70-130	1 3
trans-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	97	95	70-130 70-130	2
1,1,2-Trichloroethane	ug/L (ppb)	10	106	103	70-130	3
2-Hexanone	ug/L (ppb)	50	99	95	66-132	4
1,3-Dichloropropane	ug/L (ppb)	10	102	101	70-130	1
Tetrachloroethene	ug/L (ppb)	10	102	100	70-130	2
Dibromochloromethane	ug/L (ppb)	10	104	105	63-142	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	105	104	70-130	1
Chlorobenzene	ug/L (ppb)	10	102	98	70-130	4
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	10 10	99 102	96 100	70-130 70-130	3 2
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	106	104	70-130	$\frac{2}{2}$
o-Xylene	ug/L (ppb)	10	103	102	70-130	1
Styrene	ug/L (ppb)	10	101	98	70-130	3
Isopropylbenzene	ug/L (ppb)	10	103	102	70-130	1
Bromoform	ug/L (ppb)	10	106	100	50-157	6
n-Propylbenzene	ug/L (ppb)	10	100	98	70-130	2
Bromobenzene	ug/L (ppb)	10	100	95	70-130	5
1,3,5-Trimethylbenzene	ug/L (ppb)	10	99 108	95 105	52-150	4 3
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10 10	99	97	75-140 $40-153$	2
2-Chlorotoluene	ug/L (ppb)	10	103	99	70-130	4
4-Chlorotoluene	ug/L (ppb)	10	103	101	70-130	2
tert-Butylbenzene	ug/L (ppb)	10	97	95	70-130	$\overline{2}$
1,2,4-Trimethylbenzene	ug/L (ppb)	10	104	99	70-130	5
sec-Butylbenzene	ug/L (ppb)	10	100	97	70-130	3
p-Isopropyltoluene	ug/L (ppb)	10	98	96	70-130	2
1,3-Dichlorobenzene	ug/L (ppb)	10	96	94	70-130	$\frac{2}{2}$
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	10 10	97 95	95 94	70-130 70-130	$\frac{2}{1}$
1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	10	99 99	101	70-130	$\frac{1}{2}$
1,2,4-Trichlorobenzene	ug/L (ppb)	10	92	95	70-130	3
Hexachlorobutadiene	ug/L (ppb)	10	89	88	70-130	1
Naphthalene	ug/L (ppb)	10	96	95	61-133	1
1,2,3-Trichlorobenzene	ug/L (ppb)	10	93	91	69-143	2

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/23 Date Received: 07/25/23

Project: 1460-23001-01, F&BI 307298

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Naphthalene	ug/L (ppb)	5	75	76	50-104	1
2-Methylnaphthalene	ug/L (ppb)	5	88	94	52-113	7
1-Methylnaphthalene	ug/L (ppb)	5	92	100	51-115	8
Acenaphthylene	ug/L (ppb)	5	85	88	60-114	3
Acenaphthene	ug/L (ppb)	5	83	86	57-110	4
Fluorene	ug/L (ppb)	5	92	96	61-115	4
Phenanthrene	ug/L (ppb)	5	89	90	63-113	1
Anthracene	ug/L (ppb)	5	90	94	65-117	4
Fluoranthene	ug/L (ppb)	5	96	95	68-121	1
Pyrene	ug/L (ppb)	5	102	99	62-133	3
Benz(a)anthracene	ug/L (ppb)	5	94	96	66-131	2
Chrysene	ug/L (ppb)	5	100	104	66-129	4
Benzo(a)pyrene	ug/L (ppb)	5	97	100	66-129	3
Benzo(b)fluoranthene	ug/L (ppb)	5	90	94	55-144	4
Benzo(k)fluoranthene	ug/L (ppb)	5	94	103	58-139	9
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	5	94	86	62-136	9
Dibenz(a,h)anthracene	ug/L (ppb)	5	94	86	55-146	9
Benzo(g,h,i)perylene	ug/L (ppb)	5	93	82	58-137	13

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

BU2-10-5WI B21-8-5WI Address 40 SE 24th Ave B24-14-5WI B13-12-5WI Phone 503-452-5561 City, State, ZIP Portland, Oregon 97214 Company EVREN-NW Report To Lynn Green 825 - 10-SWI Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. Sample IDEmail lynng@evren-nw.com Relinquished by: Received by: Received by: Relinquished by: 8 рa \approx 8 01 A.E 10724-13 14:20 90 Lab ID SIGNATURE 62.44.23 87:51 K2-17-20 97:51 /2-42-to K2-14-17 11 trh1+10 Sampled Date /hn SAMPLE CHAIN OF CUSTODY 2025 Sampled 1618 Time SAMPLERS (signature) PROJECT NAME Project Specific RLs - Yes / No REMARKS 1460-23001-0104 pues <u>.</u> 8 J. \$ 5 3, 50, Sample Type Ch an Jordan # of Jars 9 PRINT NAME NWTPH-Dx New NWTPH-Gx ph hu BTEX EPA 8021 VOCs EPA 8260 ANALYSES REQUESTED PAHs EPA 8270 INVOICE TO PCBs EPA 8082 P0# Ever FLBI o7/25/23 vm COMPANY Samples received at Standard Turnaround

RUSH Rev Clarat

Rush charges authorized by: Other_ forther to million Archive Samples Dispose after 30 days TURNAROUND TIME SAMPLE DISPOSAL SUP HESPES Add at lab DATE Notes TIME င္ပိ 18:0 1025 Hold per SW 4/15/13

City, State, ZIP Portland DR Address_ Company_ Report To_ Ph. (206) 285-8282 Friedman & Bruya, Inc. **579** B25-6W-20 323-6W-19 B22-6W-20 B21-6W-19 B24-6W-20 Sample ID Po Box 40 Lyan brew かとと Email / 4 Much @ evrem LL Project specific RLs? - Yes / No Relinquished by: Received by: Relinquished by: Received by: 8 #140 80 5 Lab ID SIGNATURE 7/2x hay 1335 7/24/23/12:20 7/24/23 1 7/24/25/14:30 7/24/23 16:18 Sampled Date SAMPLE CHAIN OF CUSTODY Sampled 15:20 Time PROJECT NAME SAMPLERS (Senature) REMARKS Sample ٤ 3 Man 3 Type ح Jordan 3 Jars # of OO \varnothing PRINT NAME 00 Man NWTPH-Dx No. NWTPH-Gx BTEX EPA 8021 1410-23001 ENW NWTPH-HCID INVOICE TO ANALYSES REQUESTED 17 /25/23 VW3/C4/JI/NW3
Page # J of 2
TURNAROUND TIME PO# PAHs EPA 8270 Samples received at 76 B.T Men PCBs EPA 8082 COMPANY RUSH Control Rush charges authorized by: □ Other SAMPLE DISPOSAL

Archive samples Default: Dispose after 30 days No. Annot 07-74-23 18:00

ME

A-Per EB 07/26/2

Notes

(1/24F

1025

DATE

TIME