State of Oregon

Department of Environmental Quality

Memorandum

Date: July 14, 2023

To: FILE

Through: Kevin Parrett, Manager

Jeff Schatz, Project Manager and Hydrogeologist

Northwest Region Cleanup Program

From: Rebecca Digiustino, Project Manager

Northwest Region

Subject: Hunt's Market, LUST # 04-16-0669; Staff Memorandum in support of a No

Further Action determination

This document presents the basis for the Oregon Department of Environmental Quality's (DEQ's) recommended Conditional No Further Action (CNFA) determination for Hunt's Market in Astoria, Oregon. As discussed in this report and conditional upon adherence to a contaminated media management plan (CMMP) and property use restrictions in an Easement and Equitable Servitudes (E&ES), residual contaminant in soil and groundwater do not pose unacceptable risk to human health and the environment.

The proposed NFA determination meets the requirements of Oregon Administrative Rules Chapter 340, Division 122, Sections 0205 to 360 and ORS 465.200 through 465.455.

The proposal is based on information documented in the administrative record for this site. A copy of the administrative record index is presented at the end of this report.

1. BACKGROUND

Site location.

The site's location (Figure 1) can be described as follows:

- Address: 40490 Old Highway 30, Astoria, Oregon 97103.
- Latitude 46.1654° North, longitude -123.6607° West
- Clatsop County Tax Lot 2200, Township 8 North, Range 8 West, Section 22B

Site setting.

The 0.84-acre site property is developed with an approximately 10,545 square foot building originally constructed in 1938 (Figure 2). The site property type is listed as improved commercial by Clatsop County and is currently occupied by a grocery store identified as the Country Market. Asphalt-paved parking areas are located on the north and east portions of the property.

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 2 of 15

During a Phase I Environmental Site Assessment (ESA), a fill port and vent line for a presumed tank were observed along the south side of the building with an additional vent line observed on the north side. A limited geophysical survey was conducted on June 30, 2015, and an underground storage tank (UST) was identified on the north side of the building. The geophysical survey did not identify any suspected objects in the vicinity of the fill port area located on the south side of the building.

The site property is located to the southwest of the intersection of Old Highway 30 and Svensen Market Road in Astoria, Oregon. According to Clatsop County, the surrounding properties include commercial retail, vacant, and residential uses. Properties adjacent to the site are occupied as follows:

North: Old US Highway 30, followed by vacant commercial land (Tax Lot 2300), followed by a 1.03-acre property with a residential dwelling (Tax Lot 2401)

Northeast: The intersection of Old US Highway 30 and Svensen Market Road, followed by vacant land with the Wickiup Grange Hall beyond

East: Svensen Market Road, followed by vacant commercial land

Southeast: Svensen Market Road, followed by a residential dwelling

South: Wickiup Water District, followed by a residential dwelling

West: Vacant forested land

Physical setting.

According to the United States Geological Survey (USGS) 7.5-minute topographic map for the Cathlamet Bay, Oregon quadrangle, the site is located approximately 95 feet above mean sea level. Topography in the area generally slopes towards Cathlamet Bay and the Columbia River located approximately 0.45 miles to the north-northwest.

The soil on the site property is reported as Walluski silt loam. Walluski soils are described as moderately well drained with a moderately low to moderately high capacity to transmit water through the least transmissive layer. During site investigations, the site stratigraphy was observed to be predominantly brown silty clay with increased gravel with depth.

The primary aquifers in the vicinity of the site are typically located within alluvial deposits of sand, gravel and silt associated with the flood and terrace deposits along the Columbia River. Within these deposits are localized areas or lenses of water-bearing sands and gravels that may result in a shallow, localized, perched water table. Lateral and vertical migration of shallow groundwater may be impeded by the relatively impermeable nature of underlying bedrock and by the discontinuous nature of the perched water-bearing sands and gravel. According to previous site investigations, groundwater has been encountered in the area at depths ranging from 4.5 to 17 feet below ground surface (bgs). Based on the general topography of the site property, the hydraulic gradient is assumed to the north-northwest, towards the Columbia River; however, quarterly groundwater isocontours indicate a hydraulic gradient that flows toward MW1 from across the site (Figure 3).

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 3 of 15

Site history.

The site property was developed by 1938 with the current building located in the eastern portion of the property. The building was expanded in 1988 and a loading dock and warehouse section was added between 1994 and 2000. Assessor records suggest that the original heat source for the building was an oil burning furnace. The identified UST was presumed to be associated with the former gasoline service station that was located on the property in the 1950s.

2. BENEFICIAL LAND AND WATER USE DETERMINATIONS

Land use.

Based on the information provided as part of the site investigations and groundwater monitoring, a Locality of Facility (LOF) was estimated for this site (Figure 4). The limits of the LOF include areas where site media have been impacted by petroleum hydrocarbons and associated constituents. The LOF encompasses the northern portion of the site, the adjacent Old U.S. Highway 30 right-of-way (ROW), and the two north adjacent properties (Tax Lots 2300 and 2401). In addition, the LOF extends north and east of the site to near the intersection with Svensen Market Road (Figure 4).

According to Clatsop County, the site property is listed for general commercial land use (GC). Based on the current zoning designation, the property is reasonably likely to remain as commercial use in the future. The surrounding properties include commercial retail, vacant, and residential uses. Tax Lot 2300 is vacant but zoned as GC and Tax Lot 2401 is zoned as Knappa-Svensen Rural Community Residential (KS-RCR). Tax Lots 2300 and 2401 are reasonably likely to remain as the current zoning, but additional buildings may be constructed on the properties in the future.

Groundwater use.

A Beneficial Water Use Determination (BWUD) was previously completed for the former Svensen Mobil (LUST No. 04-00-0856) site located adjacent to the east of the site. The BWUD findings were reviewed and updated as appropriate for purposes of preparing this Staff Memo. The shallow groundwater in the area is not used for drinking water purposes and is not a reasonably likely future water supply. A door-to-door survey of water supply wells was conducted on December 6 and 7, 2009, and the survey indicated that there are no groundwater supply wells in the vicinity of the site. Drinking water is supplied to the area by Wickiup Water District. The Wickiup Water District is supplied water by Little Creek, John Day Creek (locally known as Big Fat Buck Creek) and a small tributary to John Day Creek (locally known as Little Fat Buck Creek).

The Oregon Water Resources Department's (WRD) Well Log Query database was reviewed for the area within a 0.5-mile radius of the site. One domestic water well was identified 650 feet south of the site (presumed upgradient). The well was reportedly installed in the deep aquifer (70 feet bgs) in 1980. According to Clatsop County records, the property is currently hooked up to the municipal water supply. No other water wells were identified in the WRD database within the search radius. Based on the lack of water wells, and availability of municipal drinking water

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 4 of 15

sourced from surface water, groundwater within an approximate 0.5-mile radius of the site does not have a current or reasonably likely beneficial use as drinking water.

Surface water use.

No surface water body is located within the LOF. The closest surface water body is a vegetated swale located about 850 feet east of the site. The swale appears to connect to the Columbia River, located approximately 0.45 miles north of the site. The Columbia River has current and likely future beneficial uses including commercial shipping, fishing, recreation, and habitat for fish and benthic organisms. Additionally, a freshwater emergent wetland connected to Bear Creek was identified approximately 1,000-feet west of the property. The wetland has current and likely future beneficial use as habitat for local wildlife.

3. INVESTIGATION AND CLEANUP WORK

Following the Phase I ESA, a Phase II ESA was conducted on June 30, 2015, which included a geophysical survey and advancing four soil borings near the UST (S1 through S3) and in the vicinity of the fill port on the south side of the building (S4). Soil samples were collected at depths of 10 or 13 feet bgs. Groundwater was encountered in boring S1(2015) at 17 feet bgs and a groundwater sample was collected. Laboratory analysis identified gasoline range organics (GRO) and select volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, and total xylenes (BTEX) exceeded DEQ Risk-Based Concentrations (RBCs) in soil and/or groundwater samples collected near the UST. Diesel range organics (DRO) and oil range organics (ORO) were reportedly not detected in soil and groundwater.

On April 14, 2016, five soil borings were advanced on the site property (B1 through B5) and two of the borings were converted into permanent monitoring wells (B3 to MW1 and B4 to MW2). One soil sample was collected from each boring at depths ranging from 13.5 to 15 feet bgs and a groundwater sample was collected from each monitoring well. All five soil samples and both groundwater samples contained detectable concentrations of GRO and BTEX. The maximum detected concentration (MDC) of GRO in soil was detected in boring B1 at a concentration of 1,160 milligrams per kilogram (mg/kg) and the MDC of benzene in soil was detected in boring B3 at a concentration of 19.8 mg/kg. The MDC of GRO in groundwater was detected in boring B3 at 17,000 micrograms per liter (µg/L) and the MDC of benzene in groundwater was detected in boring B1 at a concentration of 1,170 µg/L.

On April 13 and 14, 2017, eight soil borings were advanced on the site property (B6 through B13). One soil sample was collected from each boring at depths of 12.5 to 17 feet bgs. Ten groundwater samples were collected from three existing groundwater monitoring wells (MW1, MW2, and SM-MW9. Monitoring well SM-MW9 was associated with the former Svensen Mobil site (LUST No. 04-00-0856) and was installed on June 23, 2011. Six of eight soil samples and all of the groundwater samples contained concentrations of one or more petroleum constituents that exceeded their respective RBC. The MDC of GRO and benzene in soil was detected in boring B7 at concentrations of 6,280 mg/kg and 246 mg/kg, respectively. GRO concentrations in the groundwater samples ranged from 10,700 µg/L to 126,000 µg/L, with the MDC detected in boring B6. Total lead concentrations in groundwater samples ranged from 17 µg/L to 89.6 µg/L,

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 5 of 15

with the MDC detected in B12. Additionally, the MDCs of benzene, ethylbenzene, and total xylenes were detected in boring B6 at concentrations of 17,300 μ g/L, 13,800 μ g/L, and 14,881 μ g/L, respectively.

On March 29, 2018, the 1,000-gallon, single-wall steel UST was decommissioned and removed from the site property. The tank was approximately 4 feet in diameter by 10 feet in length and located approximately 2 to 3 feet bgs. No staining, sheen, or soil discoloration was observed during the UST closure activities. The limits of the excavation were approximately 8 feet by 12 feet and a total depth of approximately 7 feet bgs. Eight soil samples were collected from the floor and sidewalls of the excavation (S1 through S5) and from the excavated soil stockpile (S6 through S8) following removal of the UST. The excavated soil stockpile samples were composited and analyzed as soil sample S9-Composite. Groundwater was not encountered during the UST decommissioning activities. Soil samples were analyzed for GRO and BTEX. Concentrations of the analyzed constituents in the soil samples were below the laboratory reporting limits, except for the GRO concentrations in three of the soil samples (S1, S3, and S4). GRO concentrations ranged in the three samples from 15.7 to 26.7 mg/kg. The stockpiled soil from the excavation was subsequently used to backfill the excavation.

In January 2019, three groundwater monitoring wells were installed on the site property (MW3 through MW5). One soil sample was collected from each boring during advancement. Soil samples were analyzed for GRO and BTEX analytes. Soil collected from MW3 contained concentrations of GRO, benzene, and ethylbenzene that exceeded the occupational RBC for soil leaching to groundwater at respective concentrations of 170 mg/kg, 0.15 mg/kg, and 1.30 mg/kg. Additionally, two sub-slab samples, one soil vapor sample, two ambient indoor air samples, and one exterior ambient air sample were collected from around and within the Country Market building. Soil gas and ambient air samples were analyzed for GRO and VOCs. GRO was not detected in the ambient air samples but was detected in the sub-slab and soil vapor samples in concentrations ranging from 1,300 to 1,800 micrograms per cubic meter (μ g/m³). Naphthalene was detected in five of the six samples ranging in concentration from 0.26 to 0.71 μ g/m³. Naphthalene concentrations in the indoor air sample collected near the cashier's area (0.71 μ g/m³) and the exterior ambient air sample (0.51 μ g/m³) exceeded the occupational RBC for inhalation (0.36 μ g/m³).

On March 12, 2019, groundwater samples were collected from monitoring wells MW1 through MW5 and SM-MW9. The six groundwater samples were analyzed for GRO and BTEX analytes. Groundwater collected from MW1 through MW4 contained detectable concentrations of GRO, benzene, ethylbenzene, and/or total xylenes. The MDC of GRO, benzene, ethylbenzene, and total xylenes were detected in MW1 at 5,900 µg/L, 40 µg/L, 530 µg/L, and 250 µg/L, respectively.

On September 24, 2019, groundwater samples were collected from monitoring wells MW1 through MW5 and SM-MW9. The six groundwater samples were analyzed for GRO and BTEX analytes. Groundwater collected from MW1 through MW4 contained one or more detectable concentrations of GRO and/or BTEX constituents. The MDC of GRO, benzene, ethylbenzene, and total xylenes were detected in MW1 at 5,000 μ g/L, 16 μ g/L, 320 μ g/L, and 190 μ g/L, respectively.

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 6 of 15

On February 5, 2020, two groundwater monitoring wells (MW6 and MW7) were installed on the site property. The wells were located near the former UST on the north side of the building. During soil boring advancement, staining was apparent and field screening evidence indicated evidence of contamination from approximately 8 feet to 14 feet bgs in the borings. Sheen was also observed in the groundwater removed from the borings. Two soil samples were collected from each boring at depths of 8 or 10 feet bgs and 14 or 15 feet bgs. On February 6, 2020, groundwater samples were collected from all eight monitoring wells (MW1 through MW7 and SM-MW9). Soil and groundwater samples were analyzed for GRO, DRO, RRO, BTEX, and lead. Elevated concentrations of GRO, benzene, ethylbenzene, and total xylenes were detected in MW6 and MW7, with the MDC for the analytes being detected in MW7 at concentrations of 52,000 µg/L; 2,700 µg/L; 2,700 µg/L; and 5,800 µg/L, respectively.

On July 12, 2021, three soil borings (S1 through S3) were advanced on the north adjacent property (Tax Lot 2300) and a soil sample was collected at a depth of approximately 15 feet bgs from each boring. Groundwater was encountered in each boring at approximately 17 feet bgs and grab groundwater samples were collected. Soil and groundwater samples were analyzed for GRO, DRO, RRO, and VOCs. The MDC of GRO in soil was detected in S2(2021) and S3(2021) at 1,300 mg/kg. Naphthalene was detected in soil collected from S1(2021) and S2(2021) at 0.8 mg/kg and 10 mg/kg, respectively. GRO concentrations in groundwater ranged from 170,000 to 520,000 μ g/L, with the MDC detected in groundwater collected from S1(2021). The MDC of naphthalene in groundwater was detected in groundwater collected from S1(2021) at a concentration of 1,400 μ g/L. DRO was detected in soil and groundwater samples; however, the DRO sample chromatographs did not resemble the fuel standard used for quantitation.

On September 30, 2021, three additional soil borings (S4 through S6) were advanced on Tax Lot 2401, approximately 100 feet north-northwest of the July 2021 borings. Soil samples were collected from the three soil borings at depths of 14 to 16 feet bgs or 15 to 17 feet bgs. Groundwater was only encountered in boring S5(2021) at approximately 15 feet bgs and a grab groundwater sample was collected. Soil and groundwater samples were analyzed for GRO, DRO, and RRO, and soil samples were also analyzed for VOCs. No detectable concentrations of the analytes were detected in the soil or groundwater samples, except for a DRO concentration of 580 μ g/L detected in the groundwater sample.

On November 15 and 16, 2022, two soil borings (S7 and S8) were advanced at Tax Lot 2401 to a depth of 16 feet bgs. Groundwater was encountered in both borings at approximately 12 feet bgs and a grab groundwater sample was collected from each boring. Additionally, two soil gas samples (SV9 and SV10) were collected along the south side of the residence located on Tax Lot 2401 (92694 Svenson Market Road). The soil gas samples were collected at depths of approximately 5 feet bgs. The soil samples were analyzed for GRO, DRO, RRO, and VOCs. The soil gas samples were analyzed for GRO and VOCs. No detectable concentrations of the analytes were detected in the soil or groundwater samples. The MDC of benzene, m,p-xylene, and o-xylene were detected in SV9 at concentrations of 2.1 μ g/m³, 8.5 μ g/m³, and 3.9 μ g/m³, respectively.

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 7 of 15

Locations of historical sample locations are shown on Figure 5. Analytical results for soil, groundwater, and soil vapor samples are shown on Tables 1 through 4, 5 through 10, and 11 through 12, respectively.

4. RISK EVALUATION

Conceptual site model.

To evaluate human exposure to residual chemical contamination requires an assessment of the type and extent of that exposure. This is based on current and reasonably likely future site use. DEQ publishes RBCs for contaminants commonly encountered, for different types of exposure scenarios. These RBCs are conservative estimates of protective levels of contaminants in soil, groundwater and air. In-text Table A (below) shows potential exposure pathways and receptors for this site. Based on this, applicable RBCs are identified and used for risk screening.

Table A. Identification of applicable RBCs, based on pertinent pathways and receptors

Pathway	Receptor	Applicable RBC?	Basis for selection/exclusion
	SC	IL	
Ingestion, dermal	Residential	Yes	See Note 1.
contact, and	Urban residential	Yes	
inhalation	Occupational	Yes	
	Construction worker	Yes	
	Excavation worker	Yes	
Volatilization to	Residential	Yes	See Note 1.
outdoor air	Urban residential	Yes	1
	Occupational	Yes	
Vapor intrusion into	Residential	Yes	See Note 1.
buildings	Urban residential	Yes	
	Occupational	Yes	
Leaching to	Residential	No	See Note 2.
groundwater	Urban residential	No	
	Occupational	No	
	GROUNI	OWATER	
Ingestion and	Residential	No	See Note 3.
inhalation from tap	Urban residential	No	
water	Occupational	No	
Volatilization to	Residential	Yes	See Note 1.
outdoor air	Urban residential	Yes	
	Occupational	Yes	
Vapor intrusion into	Residential	Yes	See Note 1.
buildings	Urban residential	Yes	
	Occupational	Yes	
Groundwater in excavation	Construction and excavation worker	Yes	See Note 4.

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 8 of 15

Notes:

- 1. Although the site is a non-residential facility, there is a residential building adjacent to the site. Although multi-use residential/commercial properties are allowed based on county zoning, residential exposure RBCs are used for comparison rather than urban residential exposure RBCs because single-family residences are more likely in a rural setting and residential RBCs are more stringent.
- 2. Groundwater is not used for drinking. This pathway is therefore not considered, in accordance with Section B.3.2.4 of DEQ's RBDM guidance.
- 3. City water is provided. Local groundwater is not currently used for drinking water and is not likely to be used for this purpose in the future.
- 4. Construction and excavation work are generally limited to a depth of approximately 15 feet. Groundwater has been encountered at the site as shallow as 4.5 feet bgs; therefore, the groundwater in excavation pathway is considered.

Contaminant concentrations.

Maximum Contaminant Concentrations – Soil

To evaluate human health risks posed by contaminants in soil under various exposure scenarios, the highest detected concentrations of GRO, VOCs, and lead from the on-site investigations were utilized for comparison to occupational RBCs and from the off-site investigations at Tax Lots 2300 and 2401 were utilized for comparison to residential RBCs.

Soil Ingestion, Dermal Contact and Inhalation Pathway

Constituent of Interest	MDC in Soil mg/kg	Residential (RBC _{ss})	Occupational Worker (RBC _{ss})	Construction Worker (RBC _{ss})	COPC? (Yes/No)
	0 0	mg/kg	mg/kg	mg/kg	` ,
GRO	6,280	1,200	20,000	9,700	Y
DRO	780 x	1,100	14,000	4,600	N
benzene	246	8.2	37	380	Y
toluene	253	5,800	88,000	28,000	N
ethylbenzene	138	34	150	1,700	Y
total xylenes	218.8	1,400	25,000	20,000	N
naphthalene	10	5.3	23	580	Y
lead	26.4	400	800	800	N

Yellow highlighted RBCs were exceeded in samples collected from one or more locations.

COPC = constituent of potential concern

x = the sample chromatograph did not resemble the fuel standard used for quantitation

Concentrations of GRO, benzene, ethylbenzene, and naphthalene exceed the residential RBCs for the soil ingestion, dermal contact and inhalation exposure pathway in soil collected from borings located on-site and on Tax Lot 2300. The MDCs of GRO and benzene were detected in boring B7 located along the southern boundary of Tax Lot 2300. Additionally, borings S1(2021), S2(2021), and S3(2021) exhibited exceedances of the RBC and are located along the north and west property boundaries of Tax Lot 2300, suggesting contamination is also present on Tax Lot 2401. Additional borings (S4[2021] through S8[2021]) were advanced on Tax Lot 2401 approximately 50 feet from the property boundary of Tax Lot 2300. Soil collected from these borings did not contain detectable concentrations of GRO, DRO, RRO, BTEX, or naphthalene, indicating soil contamination on Tax Lot 2401 is limited to about 20 feet from the property

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 9 of 15

boundaries of Tax Lot 2300. The impacted areas of Tax Lot 2401 and Tax Lot 2300 are currently covered only by grass or gravel; however, the soil was collected from approximately 13.5 to 15 feet bgs which is greater than the depth at which DEQ considers residential occupants or occupational workers would likely encounter contamination (3 feet bgs).

Soil Vapor Intrusion into Building

zen vaper morasten n				
Constituent of Interest	MDC in Soil mg/kg	Residential (RBC _{si}) mg/kg	Occupational Worker (RBC _{si}) mg/kg	COPC? (Yes/No)
GRO	6,280	94	>Max	Y
DRO	780 x	>Max	>Max	N
DRU	/80 X	/Iviax	/Iviax	IN
benzene	246	0.16	2.1	Y
toluene	253	>Csat	>Csat	N
ethylbenzene	138	1.3	17	Y
total xylenes	350	160	>Csat	Y
naphthalene	10	6.4	83	Y

Yellow-shaded RBCs were exceeded in samples collected from one or more locations.

GRO concentrations exceed the residential RBC for soil vapor intrusion into the building in soil collected from borings B1 through B7, B9 through B11, B13, MW3, MW6, MW7, and S1(2021) through S3(2021). Benzene concentrations exceeded the residential RBCs for soil vapor intrusion into the building in soil collected from borings MW3, MW6, S1(2021), and S2(2021) and exceeded the residential and occupational worker RBCs for soil vapor intrusion into the building in soil collected from borings B1 through B7, B9 through B11, B13, and MW7. Additionally, other petroleum constituents such as ethylbenzene, total xylenes and naphthalene were detected at similar extents to the GRO and benzene exceedances. It should be noted that naphthalene was not analyzed in soil samples collected prior to 2021. Based on the elevated concentrations detected in the soil, potential risks to occupants of nearby residential and commercial buildings within 100 feet of site contamination could not be ruled out.

As discussed in a subsequent section of this Staff Memo, soil gas data were collected from temporary sampling points installed at the site and adjacent to the residential dwelling on Tax Lot 2401 to further evaluate risks from this pathway.

Maximum Contaminant Concentrations – Groundwater

To evaluate human health risks from contamination in groundwater under various exposure scenarios, the highest detected concentrations of GRO, VOCs, and lead from the on-site investigations were utilized for comparison to occupational RBCs and from the off-site investigations at Tax Lots 2300 and 2401 were utilized for comparison to residential RBCs.

Groundwater Vapor Intrusion into Building

Constituent of	MDC in	Residential	Occupational	COPC?
Interest	Groundwater	(RBC_{wi})	Worker (RBCwi)	(Yes/No)

>Csat = Soil concentrations in excess of Csat indicate free product may be present.

>Max = The constituent RBC for this pathway is greater than 1,000,000 mg/kg or 1,000,000 mg/L. Therefore, these substances are not expected to pose risks in the scenario shown.

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 10 of 15

	μg/l	μg/l	μg/l	
GRO	520,000	22,000	>S	Y
DRO	90,000	>S	>S	N
RRO	560	>S	>S	N
benzene	17,300	210	2,800	Y
toluene	991	>S	>S	N
ethylbenzene	13,800	620	8,200	Y
total xylenes	14,881	86,000	>S	N
naphthalene	1,400	840	11,000	Y

>S = Groundwater RBC exceeds the solubility limit, which indicates light nonaqueous phase liquids (LNAPL) may be present. Based on historical groundwater observations, measurable LNAPL is not present at the site.

GRO concentrations exceed the residential RBC for groundwater vapor intrusion into the building in groundwater collected from borings B6, B9, B11, B12, and S1(2021) through S3(2021). Benzene concentrations exceed the residential RBC for groundwater vapor intrusion into the building in groundwater collected from borings B1, B2, B7, B11, B12 and S1(2021). Ethylbenzene concentrations exceed the residential RBC for groundwater vapor intrusion into the building in groundwater collected from borings B3, B9, B12, S1(2021), and S3(2021). Benzene and ethylbenzene exceeded both the residential and occupational worker RBCs for groundwater vapor intrusion into the building in groundwater collected from boring B6. Naphthalene concentrations exceed the residential RBC for groundwater vapor intrusion into the building in groundwater collected from borings S1(2021) and S3(2021). It should be noted that naphthalene was not analyzed in groundwater samples collected prior to 2021. Additionally, concentrations of GRO, benzene, and ethylbenzene in groundwater collected during the 2019-2020 quarterly monitoring events at monitoring wells MW1 through MW5 were less than the residential RBC for groundwater vapor intrusion into the building. It should also be noted that, based on the high concentrations of petroleum constituents and the lack of measurable LNAPL at the site, the reported concentrations may be biased high due to increased turbidity that can occur in grab groundwater samples collected from temporary wells.

As discussed in a subsequent section of this Staff Memo, soil gas data were collected from temporary sampling points installed at the site and adjacent to the residential dwelling on Tax Lot 2401 to further evaluate risks from this pathway.

Groundwater in Excavation

Groundwater in Executat		1	
Constituent of	MDC in	Construction/Excavation	COPC?
Interest	Groundwater	Worker	(Yes/No)
	μg/l	(RBC _{we})	
	, 0	μg/l	
GRO	520,000	14,000	Y
DRO	90,000	>S	N
RRO	560	>S	N
benzene	17,300	1,800	Y
toluene	991	220,000	N
ethylbenzene	13,800	4,500	Y
total xylenes	14,881	23,000	N

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 11 of 15

naphthalene	1,400	500	Y

Yellow highlighted RBCs were exceeded in samples collected from one or more locations.

GRO concentrations exceed the construction and excavation worker RBC for groundwater in excavations in groundwater collected from borings B3, B6, B7, B9, B11, B12, and S1(2021) through S3(2021). Benzene concentrations exceed the construction and excavation worker RBC for groundwater in excavations in groundwater collected from borings B6, B7, B11, and B12. Ethylbenzene concentrations exceed the construction and excavation worker RBC for groundwater in excavations in groundwater collected from boring B6. Naphthalene concentrations exceed the construction and excavation worker RBC for groundwater in excavations in groundwater collected from boring S1(2021). It should be noted that naphthalene was not analyzed in groundwater samples collected prior to 2021. Additionally, concentrations of GRO, benzene, and ethylbenzene in groundwater collected during the 2019-2020 quarterly monitoring events at monitoring wells MW1 through MW5 were less than the construction and excavation worker RBC for groundwater in excavations. It should also be noted that, based on the high concentrations of petroleum constituents and the lack of measurable LNAPL at the site, the reported concentrations may be biased high due to increased turbidity that can occur in grab groundwater samples collected from temporary wells.

Borings with elevated concentrations of petroleum constituents that exceed the construction and excavation worker RBC for groundwater in excavations are located on the site or on Tax Lot 2300 near the intersection of Old US Highway 30 and Svensen Market Road. Although future development is not anticipated at this time, any potentially impacted groundwater encountered during future redevelopment would be managed through implementation of a DEQ-approved CMMP.

Additional Evaluation of Soil Gas.

Two soil gas investigations were conducted to evaluate possible vapor intrusion risks to the onsite building and the residential dwelling located on Tax Lot 2401. It should be noted that soil gas data were not collected from Tax Lot 2300. This property is currently vacant but based on known petroleum hydrocarbon contamination concentrations in soil and groundwater on the Tax Lot 2300, DEQ presumes that contamination poses unacceptable vapor intrusion risks to occupants of *future* buildings constructed at that property.

In 2019, two sub-slab vapor samples, one soil vapor sample, two indoor air samples, and one exterior ambient air sample were collected from inside Hunt's Market. The sub-slab vapor samples and soil vapor sample results were compared to the occupational worker RBCs for soil gas inhalation and the indoor air and exterior ambient air sample were compared to the occupational worker RBCs for air inhalation. All analyzed petroleum constituents in the samples were below the applicable RBCs with the exception of naphthalene in one indoor air sample (0.71 $\mu g/m^3$) and the exterior ambient air sample (0.52 $\mu g/m^3$) which exceeded the respective occupational worker RBC for air inhalation (0.36 $\mu g/m^3$). The indoor air sample was collected near the cashier area located in the northeastern portion of the building and the exterior air sample was collected along the north exterior side of the northeast corner of the building (Figure

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 12 of 15

6). Based on the exterior ambient air data, sample Indoor Air 1 may have been influenced by other sources.

In 2022, two soil gas samples were collected along the south side of the residential dwelling on Tax Lot 2401. The samples were compared to the residential RBCs for soil gas inhalation. All detected concentrations were below respective RBCs.

Human health risk.

GRO and VOCs including benzene, ethylbenzene, total xylenes, and naphthalene were detected in soil and groundwater at concentrations exceeding generic RBCs for one or more exposure pathways and exposure scenarios and therefore screened in as COPCs. However, based on the following, risks to human receptors are limited (i.e., or nonexistent) for selected exposure pathways and these COPCs were not carried forward as COCs:

- Soil contamination at the site, Tax Lot 2300, Tax Lot 2401, and in the ROW of Old US
 Highway 30 and Svensen Market Road exceeding generic RBCs for the soil ingestion,
 dermal contact, and inhalation exposure pathway for residential or occupational worker
 scenarios is present at depths of at least 13 feet bgs. Based on the depth of the detections,
 the contamination does not pose unacceptable risks under residential or occupational
 worker exposure scenarios.
- Soil and groundwater contamination exceeding generic RBCs for the vapor intrusion into building exposure pathways under residential and/or occupational worker scenarios is present at the site, Tax Lot 2300, and the southeastern (unoccupied) portion of Tax Lot 2401. However, soil gas data collected from the site and near the residence at Tax Lot 2401 in 2019 and 2022, respectively, indicate that as currently developed, soil and groundwater contamination does not appear to pose unacceptable vapor intrusion risks to building occupants. Likewise, Tax Lot 2300 is currently vacant and, as it is currently utilized, soil and groundwater contamination at that property does not pose unacceptable vapor intrusion risks.

Exposure pathways and scenarios carried forward as COCs due to unacceptable human health risks include:

- Excavation workers contacting contaminated groundwater in sufficiently deep excavations at the site, in the ROW of Old US Highway 30 or Svensen Road north and east of the site, and at Tax Lot 2300; and
- Soil and groundwater contamination exceeding generic RBCs for the vapor intrusion into building exposure pathways under residential and/or occupational worker scenarios is present at the site, Tax Lot 2300, and the southeastern portion of Tax Lot 2401. Soil gas data have not been collected from Tax 2300 to date and based on known petroleum hydrocarbon contamination concentrations in soil and groundwater on the Tax Lot 2300, DEQ presumes that contamination poses unacceptable vapor intrusion risks to occupants of *future* buildings constructed at that property. Additionally, the vapor intrusion data collected at the current buildings located at the site and Tax Lot 2401 does not rule out risks to occupants of future buildings constructed at those properties. As a result, a

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 13 of 15

remedy is necessary to mitigate vapor intrusion risks to occupants of future buildings constructed at those properties.

The general extent of the area with concentrations of GRO and VOCs exceeding RBCs protective of excavation workers in deep excavations is shown in Figure 4.

Ecological risk.

The site and north adjacent properties are devoid of habitat. The closest surface water body is a vegetated swale located about 850 feet east of the site. The swale appears to connect to the Columbia River, located approximately 0.45 miles north of the site. Analytical data from former on-site and off-site monitoring wells and grab samples from borings advanced on Tax Lots 2300 and 2401 indicate that the plume is largely restricted to the right-of-way for Old US Highway 30 and Tax Lot 2300. Based on the known extent of the groundwater contamination, groundwater flow and distance, ecological receptors are unlikely to be impacted.

5. RECOMMENDATION

Unacceptable risks to construction and excavation workers from contact with groundwater in deep excavations should be mitigated through implementation of the DEQ-approved CMMP. The CMMP establishes procedures for evacuation, characterization, and management of groundwater in excavations exhibiting characteristics of impact by petroleum hydrocarbons which is exposed during future construction and/or utility work. The CMMP should be maintained at the site and all off-site properties impacted by petroleum hydrocarbons for future implementation as needed.

Barring further cleanup, an E&ES that prohibits the construction of any new buildings for human occupation without DEQ's prior written approval would be needed to mitigate unacceptable vapor intrusion risks to the occupants of future buildings constructed at the site, Tax Lot 2300, and Tax Lot 2401. Prior to such construction, development plans would have to be submitted to DEQ for approval. If further cleanup and/or soil gas sampling is not performed, the development plans would have to include engineering controls incorporated into the design of future buildings constructed for human occupation to mitigate unacceptable vapor intrusion risks to occupants. Proposed property use restrictions described above would be memorialized in E&ES documents executed for the site, Tax Lot 2300, and Tax Lot 2401 and recorded on the corresponding property deeds on file with Clatsop County. DEQ is currently in discussions with the impacted properties regarding the implications of this closure approach.

Provided that future deep excavations in the ROW of Old US Highway 30 or Svensen Road north and east of the site and Tax Lot 2300 incorporate the above-described protocols and the site, Tax Lot 2300, and Tax Lot 2401 agree to the terms outlined in the proposed E&ES, a conditional No Further Action determination is possible for this site. The No Further Action determination should be recorded in DEQ's LUST database (LUST No. 04-16-0669).

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 14 of 15

6. ADMINISTRATIVE RECORD

Phase II Environmental Site Assessment: Country Market, 40490 Old Hwy 30, Astoria, OR 97103. Envitech. July 20, 2015.

Focused Subsurface Investigation: 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Services. September 12, 2016.

Supplemental Focused Subsurface Investigation: 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Services. May 22, 2017.

Underground Storage Tank Closure & Site Assessment Report: 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Services. May 17, 2018.

Soil Vapor Investigation – Hunt's Market: 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Services. June 12, 2019.

Groundwater Monitoring Well Installation & Sampling Report: Hunt's Market, 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Consulting. May 23, 2019.

Groundwater Monitoring Report – Second Quarter: Hunt's Market, 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Consulting. August 27, 2019.

Groundwater Monitoring Report – Third Quarter: Hunt's Market, 40490 Old Hwy 30, Astoria, OR 97103. DEQ Site ID 04-16-0669. ECI Environmental Consulting. October 17, 2019.

Groundwater Monitoring Well Installation & Sampling Report: Country Market, 40490 Old Hwy 30, Astoria, OR 97103. ECI Environmental Consulting. April 17, 2020.

Re: Environmental Investigation Work Plan 40490 Old Highway 30, Astoria, Oregon 97103, DEQ File #04-16-0669. Soil Solutions Environmental Services. August 6, 2021.

Re: Environmental Investigation Work Plan 40490 Old Highway 30, Astoria, Oregon 97103, DEQ File #04-16-0669. Soil Solutions Environmental Services. November 11, 2021.

Additional Environmental Investigation: 40490 Old Highway 30, Astoria, Oregon 97103, DEQ File #04-16-0669. Soil Solutions Environmental Services. December 15, 2022.

7. ATTACHMENTS

Figure 1. Vicinity Map

Figure 2. Site Plan

Figure 3. Groundwater Contour Map

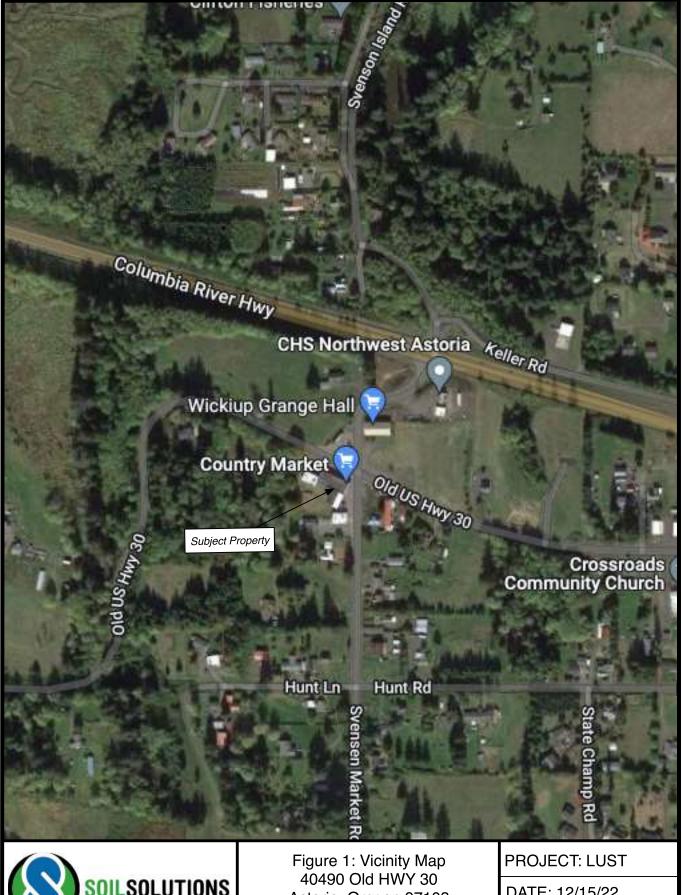

Figure 4. Site Map with Estimated Extent of Contamination

Figure 5. Sample Locations

Hunt's Market, LUST #04-16-0669 Staff Memorandum July 14, 2023 Page 15 of 15

Figure 6. Air Sample Location Map

- Table 1. Summary of Soil Analytical Results (2015)
- Table 2. Summary of Soil Analytical Results (2016-2020)
- Table 3. Summary of Soil Analytical Results (2021-2022) Petroleum Hydrocarbons
- Table 4. Summary of Soil Analytical Results (2021-2022) VOCs
- Table 5. Summary of Groundwater Analytical Results (2015)
- Table 6. Summary of Groundwater Analytical Results (2016-2020)
- Table 7. Summary of Groundwater Analytical Results (2021-2022) Petroleum Hydrocarbons
- Table 8. Summary of Groundwater Analytical Results (2021-2022) VOCs
- Table 9. Summary of Monitoring Well Groundwater Analytical Results
- Table 10. Summary of Groundwater Elevations
- Table 11. Summary Soil Vapor and Ambient Air Analytical Results (2019)
- Table 12. Soil Gas Sample Analytical Results (2022)

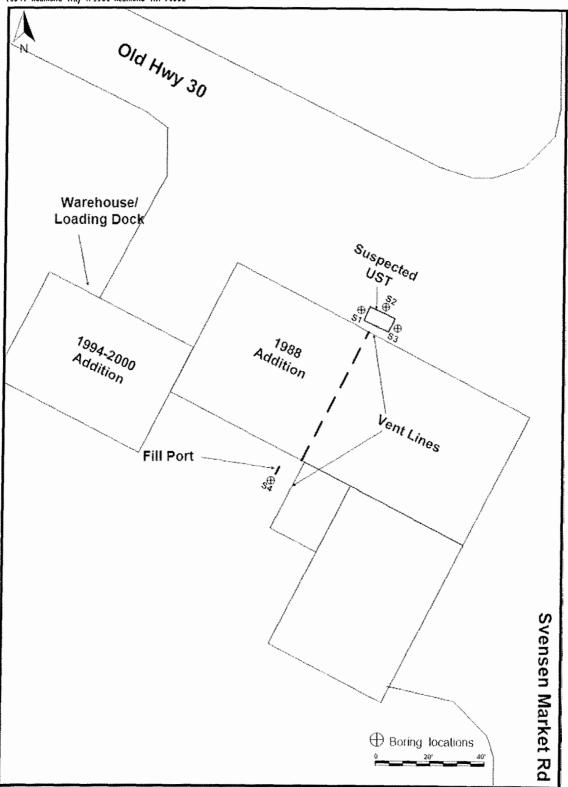
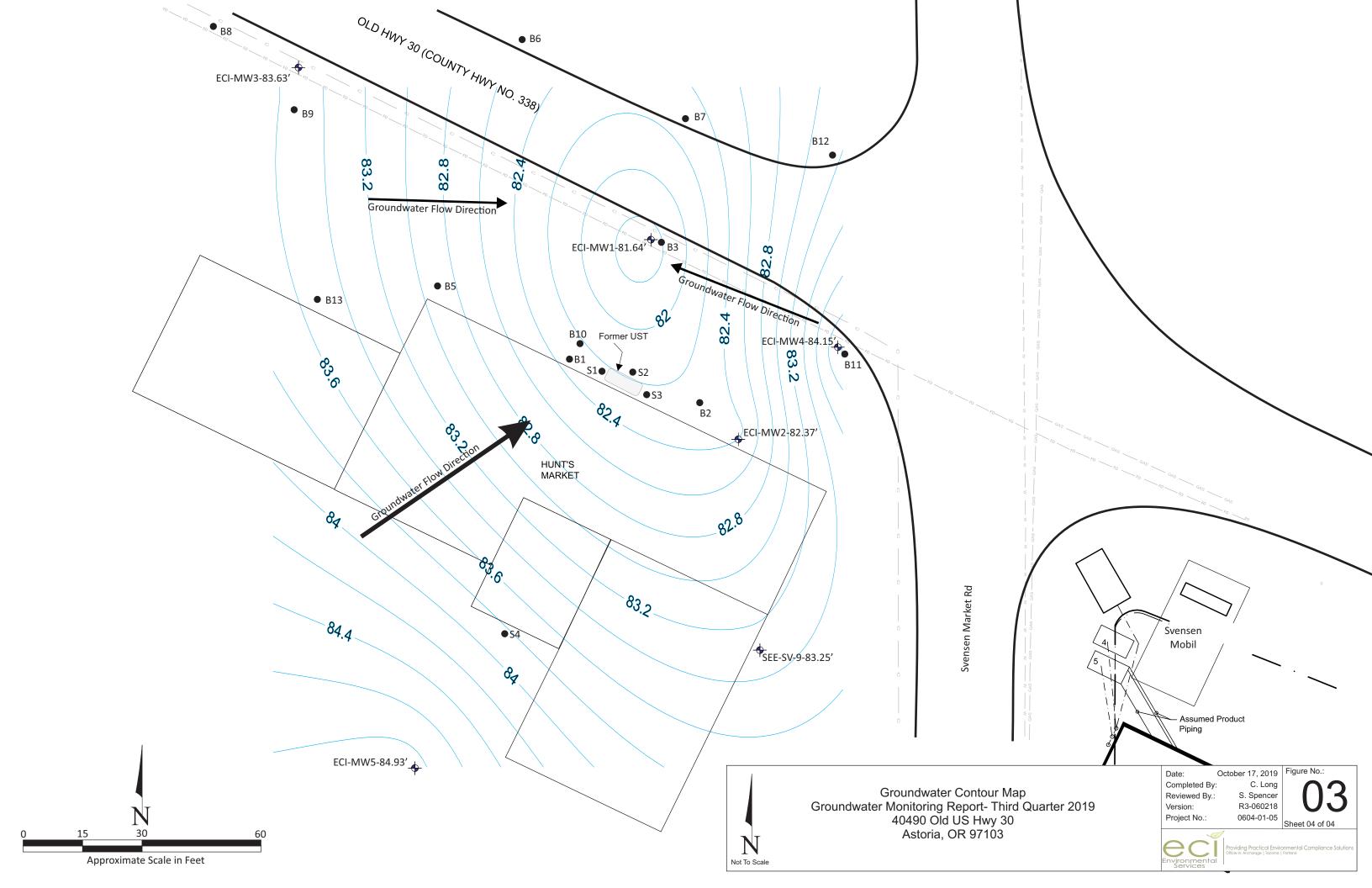
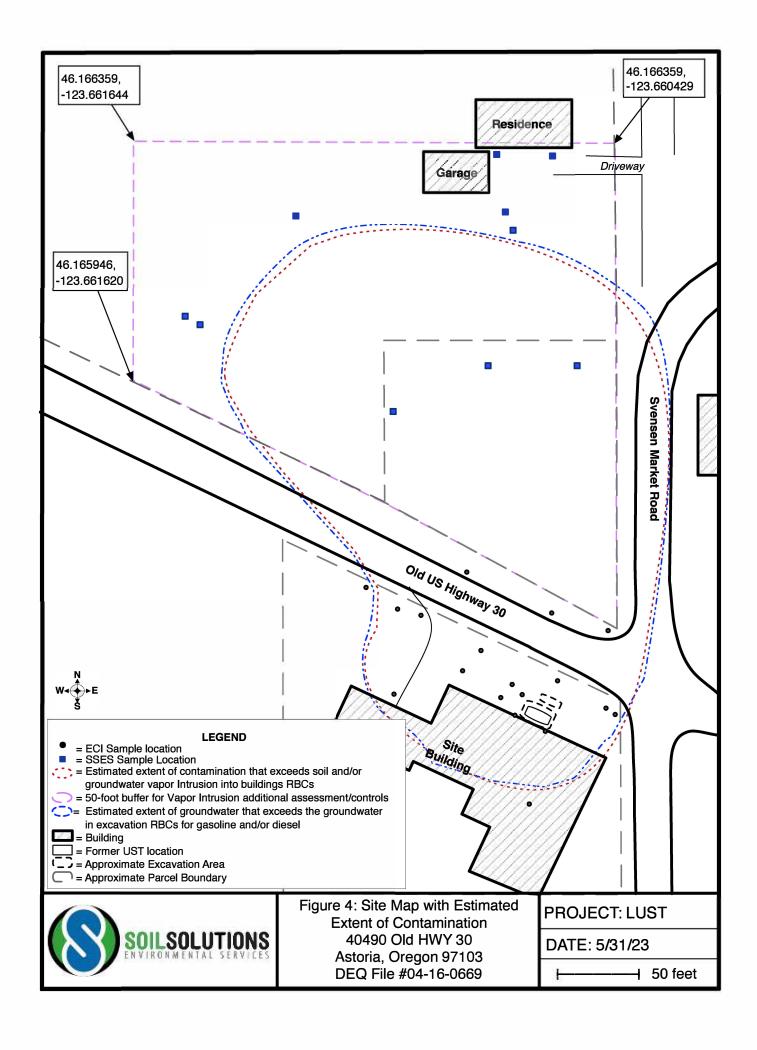
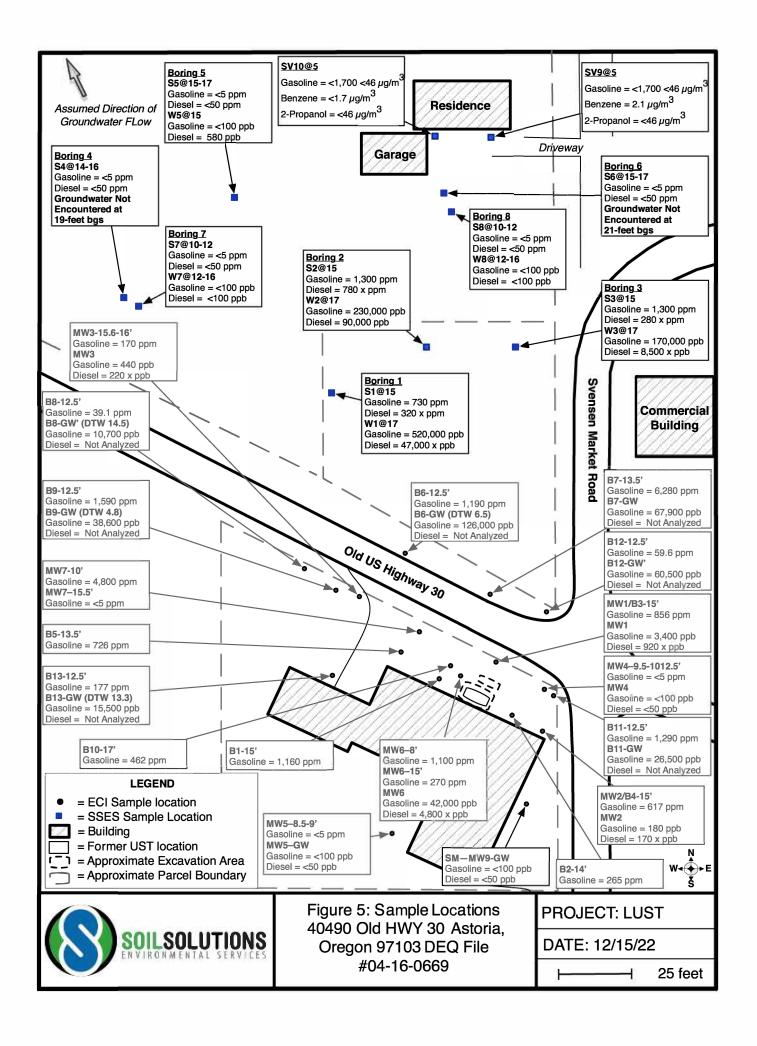
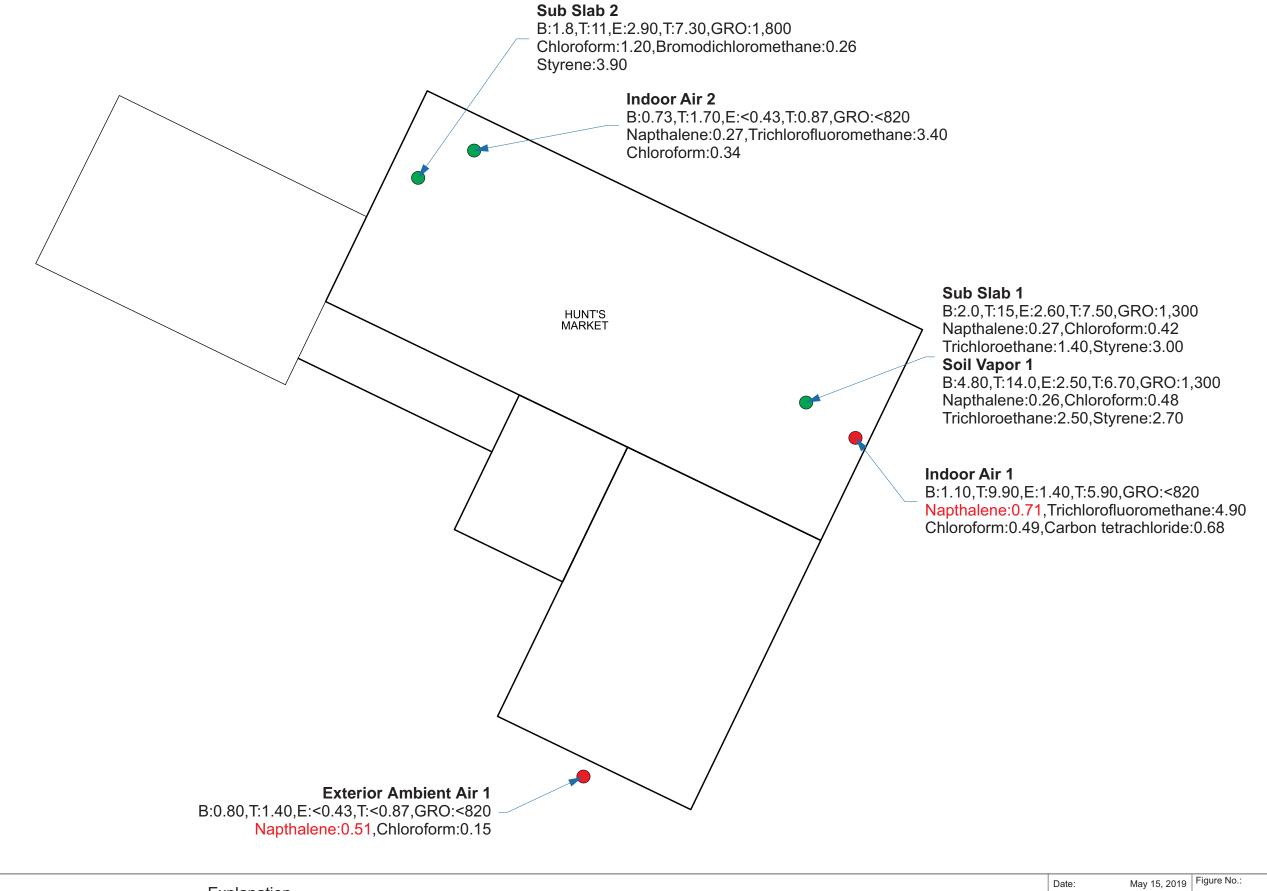
Astoria, Oregon 97103 DEQ File #04-16-0669

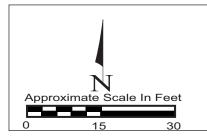
DATE: 12/15/22

500 feet

ENVITECH
www.envitechnology.com
support@envitechnology.com
Tel 425.890.3517 Fax 425.310.6600

Tel 425.890.3517 Fax 425.310.6600 16541 Redmond Way #358C Redmond WA 98052


Figure 2. Site Plan

Explanation

Air Sample Locations < ODEQ
Risk-Based Concentrations

Air Sample Locations >ODEQ Risk-Based Concentrations

Oregon DEQ RBC for Air
Inhalation for Naphthalene: 0.36

Air Sample Location Map Soil Vapor Intrusion and Air Investigation 40490 Old US Hwy 30 Astoria, OR 97103 Date:
Completed By:
Reviewed By:
Version:
Project No.:

K. Spencer S. Spencer R4-051019 0604-01-05

06 Sheet 03 of 03

roviding Practical Environmental Compliance Solution (ffices In: Anchorage | Tacoma | Partland

Table 1: Summary of Soil Analytical Results (2015) (mg/kg)

Samples	Dates	В	Т	E	Х	Tph-Gas	Tph-Diesel	Tph-Oil	VOCs	Semi-VOCs	PCBs
S1-10	6/30/2015	ND	11	57	240	3,300	ND	ND	S	ND	ND
S2-10	6/30/2015	ND	ND	5.9	8.2	2,100	ND	ND	-	-	-
S3-13	6/30/2015	ND	ND	7.4	11	3,700	ND	ND	-	-	-
S4-10	6/30/2015	-	-	-	-	-	ND	ND	-	-	-
S	TD	0.0093	140	0.16	25	31	9,500	N/A	V	V	V

ND: Not detected at PQL (Practical Quantitation Limit)

STD: DEQ Risk-based screening level (Soil leaching to groundwater)

B: benzene

T: toluene

E: ethylbenzene

X: xylene

-: not tested

V: Cleanup levels are various.

S: Several VOCs were detected at various concentrations

 $\label{lem:numbers} \mbox{Numbers in bold red indicate concentrations above the screening levels.}$

Hunt's Market

40490 Old US Highway 30, Astoria, Oregon 97103

			Total Petro	oleum Hydrocarb	ons (mg/kg)		Select V	olatile Organio			7.5.6.1.4, 6.1.	Metals (mg/kg)	
Sample ID	Sample Depth (ft)	Date Sampled	Diesel	Oil	Gasoline (mg/kg)	Benzene	Toluene	Ethylbenzene	M&p Xylene	o-Xylene	Total Xylenes	Lead	
	•				201	6 FSI (ECI)			•	•		•	
B1-15	15	4/14/2016			1,160	16.8	38.3	30.7	30.7 48.9 44.9				
B2-14	14	4/14/2016			265	2.1	2.1	3.7	6.0	5.2	11.2		
B3-15	15	4/14/2016			856	19.8	14.6	16.7	19.2	7.9	27.1		
B4-15	15	4/14/2016			617	7.0	14.3	9.9	12.9	10.8	23.7		
B5-13.5	13.5	4/14/2016			726	19.1	16.9	10.3	9.9	0.88	10.78		
					201	7 SFSI (ECI)							
B6-12.5'	12.5	4/14/2017			1,190	33.1	31.1	44.4	19.3	36.8	56.1	11.5	
B7-13.5'	13.5	4/14/2017			6,280	246	253	138	136	82.8	218.8	26.4	
B8-12.5'	12.5	4/14/2017			39.1	<2.2	4.7	<1.5	<3.9	<2.5	<3.9	15.9	
B9-12.5'	12.5	4/14/2017			1,590	79.5	46.9	4.1	15.2	9.2	24.4	12.2	
B10-17'	17.0	4/14/2017			462	11.2	4.2	15.1	12.4	6.3	18.7	16.4	
B11-12.5'	12.5	4/14/2017			1,290	11	25.2	20.3	53	48.2	101.2	25.9	
B12-12.5'	12.5	4/14/2017			59.6	<2.2	3.8	<1.5	1.6	1.9	3.5	10.8	
B13-12.5'	12.5	4/14/2017			177	4.9	3.4	0.65	4.3	1.3	5.6	11.4	
				201	8 UST Closure	& Site Asses	sment (ECI)						
S1-NSW-5'	5.0	3/29/2018			15.7	<0.010	<0.010 <0.10 <0.10 <0.10 <0.10 <0.10						
S2-ESW-5'	5.0	3/29/2018			<5.0	<0.010	<0.10	<0.10	<0.10	<0.10	<0.10		
S3-SSW-5'	5.0	3/29/2018			24.3	<0.010	<0.10	<0.10	<0.10	<0.10	<0.10		
S4-WSW-5'	5.0	3/29/2018			26.7	<0.010	<0.10	<0.10	<0.10	<0.10	<0.10		
S5-ExF-7'	7.0	3/29/2018			<5.0	<0.010	<0.10	<0.10	<0.10	<0.10	<0.10		
S9-Composite		3/29/2018			<5.0	<0.010	<0.10	<0.10	<0.10	<0.10	<0.10		
					2019 Well	Installation (ECI)						
MW3-15.5-16	15.5-16	1/31/2019			170	0.15	0.61	1.3			2.1		
MW4-9.5-10	9.5-10	1/31/2019			<5	<0.02	<0.02	<0.02			<0.06		
MW5-8.5-9	8.5-9	1/31/2019			<5	<0.02	<0.02	<0.02			<0.06		
					2020 Well	Installation (ECI)						
MW6-8	8	2/7/2020	570x	<250	1100	0.34	2.50	25			52	7.39	
MW6-15	15	2/7/2020	<50	<250	270	<0.02	0.10	<0.02			0.85	26.6	
MW7-10	10	2/7/2020	400x	<250	4,800	4.80	10	98			350	10.3	
MW7-15	15	2/7/2020	<50	<250	<5	<0.02	 		<0.02		<0.06	9.56	
	Reporting		50	250	5.0	0.02	0.02	0.02	0.10	0.10	0.06	0.05	
ODEQ RBC Soil Lea	aching to G upational)	roundwater	>Max	>Max	130	0.10	490	0.90	100	100	100	30	

Notes:

*Select Volatile Organic Compounds. Analyzed by EPA Method 8021B.

mg/kg = Milligrams per kilogram

RBC = Risk-Based Concentrations

< = not detected above laboratory detection limits

Bold indicates a detected concentration that is below ODEQ Risk-Based Concentrations

Bold and Shaded indicates the detected concentration exceeds ODEQ Risk-Based Concentrations

>Max=The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg or 1,000,000 mg/L. Therefore, this substance is deemed bot to psoe risks in this scenario $x = The \ sample \ chromatographic \ pattern \ does \ not \ resemble \ the \ fuel \ standard \ used \ for \ quantitation.$

Table 3 Summary of Soil Analytical Results (2021-2022) - Petroleum Hydrocarbons

Se@15-17 15-17 9/30/21 <5 <50 <250 <0.03 <0.05 <0.05 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05							Analytica	l Results (r	ng/kg)				
S1@15				Total Petro		ocarbons	Volatile	Organic Ca			A Method	8260C or	
S2@15 15 7/12/21 1,300 780 x <250 0.21 j <0.5 21 4.4 <0.5 10		Depth ¹		_	Diesel Range (C ₁₀ -C ₂₅) by NWTPH-Dx	Residual Range (C ₂₅ -C ₃₆) by NWTPH-Dx	Benzene	Toluene	Ethyl-benzene	m,p-Xylene	o-Xylene	Naphthalene	
S3⊕15 15 7/12/21 1,300 280 x < 250				730	320 x	<250						9.8	
S4@14-16				1,300		<250							
SS@15-17												<0.25	
Seg 15-17 15-17 9/30/21 < 5 < 50 < 250 < 0.03 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <					<50 <50							<0.05	
57@10-12 10-12 11/15/22 <5 <50 <250 <0.03 <0.05 <0.05 <0.1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
S8@10-12													
DEQ Risk-Based Concentrations Reciptor Residential 1,200 1,100 8.2 5,800 34 1,400 1,400 5,3													
Residential				<5	<50	<250	<0.03	<0.05	<0.05	<0.1	<0.05	<0.05	
Residential 1,200 1,100 8.2 5,800 34 1,400 1,400 5.3		Concentration											
Soil Ingestion, Dermal Contact, and Inhalation (RBC ₃₅)	Pathway												
Occupational 20,000			Residential	1,200 1,10		.00	8.2	5,800	34	1,400	1,400	5.3	
and Inhalation (RBC _{ss})	Soil Ingestion Der	mal Contact	Urban Residential	2,500	2,2	.00	24	12,000	110	2,900	2,900	25	
Construction Worker 9700 4,600 380 28,000 1,700 20,000 20,000 560,000			Occupational	20,000	1,4	100	37	88,000	150	25,000	25,000	23	
Volatilization to Outdoor Air (RBC₂₀)	and minalation (KE	, C ₃₅ /	Construction Worker	9700	4,6	500	380	28,000	1,700	20,000	20,000	580	
Volatilization to Outdoor Air (RBC ₂₅) Residential 5,900 >Max 11 >Csat 36 >Csat >Csat 6.4 Urban Residential 5,900 >Max 27 >Csat 85 >Csat >Csat 15 Occupational 69,000 >Max 50 >Csat 160 >Csat >Csat 83 Vapor Intrusion into Buildings (RBC ₂₁) Residential 94 >Max 0.16 >Csat 1.3 160 160 6.4 Urban Residential 94 >Max 0.38 >Csat 3.0 160 160 160 160 Occupational >Max >Max >Max >Csat >Csat	1		Excavation Worker	>Max	>N	lax	11,000	770,000	49,000	560,000	560,000	16,000	
	Volatilization to O	utdoor Air	Residential	5,900	>N	lax	11	>Csat	36	>Csat	>Csat		
	l	utuoor Alf	Urban Residential	5,900	>N	lax	27	>Csat	85	>Csat	>Csat		
Vapor Intrusion into Buildings (RBC _{s.i.}) Residential 94 >Max 0.16 >Csat 1.3 160 160 6.4 Urban Residential 94 >Max 0.38 >Csat 3.0 160 150 15 Occupational >Max >Max 2.1 >Csat 17 >Csat 83 Leaching to Groundwater (RBC.) Residential 31 9,500 0.023 83 0.22 23 23 0.077 Urban Residential 31 9,500 0.10 340 0.94 87 87 0.37	(KBC ^{so})		Occupational	69,000	>N	lax	50	>Csat	160	>Csat	>Csat		
Vapor Intrusion into Buildings (RBC _{x1}) Urban Residential 94 >Max 0.38 >Csat 3.0 160 160 15 Occupational >Max >Max 2.1 >Csat 17 >Csat >Csat 83 Leaching to Groundwater (RBC_x) Residential 31 9,500 0.023 83 0.22 23 23 0.077 Urban Residential 31 9,500 0.10 340 0.94 87 87 0.37	Maria Internal and Internal Politica				>N	lax	0.16		1.3				
(RBC,) Occupational >Max >Max 2.1 >Csat 17 >Csat >Scst 83 Leaching to Groundwater (RBC,) Residential 31 9,500 0.023 83 0.22 23 23 0.077 (RBC,) Urban Residential 31 9,500 0.10 340 0.94 87 87 0.37	l '	to Buildings	Urban Residential	94			0.38		3.0	160	160		
Leaching to Groundwater (RBC.) Residential Urban Residential 31 9,500 0.023 83 0.22 23 23 0.077 Urban Residential 31 9,500 0.10 340 0.94 87 87 0.37	(RBC _{si})												
Leaching to Groundwater Urban Residential 31 9,500 0.10 340 0.94 87 87 0.37													
I(RBC)	_	dwater					_						
Occupational 130 >Max 0.10 490 0.90 100 100 0.34	(RBC _{sw})		Occupational										

Highlighted cells indicate that detected value remaining on site exceeds one or more of the referenced RBCs.

Gray Italics Indicate Sample Location has been Removed

Bold indicates a detection

RBCs for Diesel Range and Residual Range Organics are given as Generic Diesel/Heating Oil.

- 1 Depth in feet below ground surface
- -- Not analyzed
- >Max The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg.
- >Csat The soil RBC exceeds the three-phase equilibrium partitioning for this compound
- NV Compound is considered non-volatile for purposes of exposure calculations
- NA Not Applicable
- x Sample chromatograph does not resemble fuel standard used for quantitation

Table4

Summary of	f Soil Analy	tical Results	(2021-2022)	- VOCs
------------	--------------	---------------	-------------	--------

,		Suits (2021-2022) - VOCS												Labo	ratory Ana	lytical Re	sults (mg	/kg)												
													Volatile	e Organic Ca	rbons (VC	Cs) by EP	A Method	d 8260C o	r 8021B											
Sample Identification	Depth ¹	Date Collected	Dichlor odifluor omethane	Chlor omethane	Vinyl chloride	Bromomethane	Chloroethane (ethyl chloride)	Trichlorofluoromethane (Freon 11)	Acetone	1,1-Dichlor oethene (DCE, 1,1-Dichlor oethylene)	Hexane (n-hexane)	Methylene chloride (Dichloromethane)	Methyl t-butyl ether (MTBE)	trans-1, 2-Dichloroethene (trans-1, 2- Dichlor oethylene)	1,1-Dichlor oethane	2,2-Dichloropropane	cis-1, 2-Dichloroethene (cis- 1, 2-Dichloroethylene)	Chlor of orm	2-Butanone (MEK, methyl ethyl ketone)	1, 2-Dichlor oethane (EDC)	1,1,1-Trichloroethane	1,1-Dichloropropene	Carbon tetrachloride	Berzene	Trichloroethene (TCE, Trichloroethylene)	1, 2-Dichloropropane	Bromodichloromethane	Dibromomethane (methylene bromide)	4-Methyl-2-pentanone (Methyl isobutyl ketone)	cis-1, 3-Dichlor opropene
S1@15	15	7/12/21	<5	<5	<0.5	<5	<5	<5	<50	<0.5	6.8	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5	<0.5		0.18 j	<0.2	<0.5	<0.5	<0.5	<10	<0.5
S2@15	15	7/12/21	<5	<5	<0.5	<5	<5	<5	<50	<0.5	14	<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<10	<0.5	<0.5	<0.5	_	0.21 j	<0.2	<0.5	<0.5	<0.5	<10	<0.5
S3@15	15	7/12/21	<2.5	<2.5	<0.25	<2.5	<2.5	<2.5	<25	<0.25	3.9	<2.5	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<5	<0.25	<0.25	<0.25	_	<0.03 j	<0.1	<0.25	<0.25	<0.25	<5	<0.25
S4@14-16	14-16	9/30/21	<0.5	<0.5	<0.05	<0.5	<0.5	<0.5	<0.5	<0.05	<0.25	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.03	<0.02	<0.05	<0.05	<0.05	<0.5	<0.05
S5@15-17	15-17	9/30/21	<0.5	<0.5	<0.05	<0.5	<0.5	<0.5	<0.5	<0.05	<0.25	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.03	<0.02	<0.05		<0.05	<0.5	<0.05
S6@15-17	15-17	9/30/21	<0.5	<0.5	<0.05	<0.5	<0.5	<0.5	<0.5	<0.05	<0.25	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.5	<0.05	<0.05	<0.05	<0.05	<0.03	<0.02	<0.05		<0.05	<0.5	<0.05
S7@10-12	10-12	11/15/22	<0.5	<0.5	<0.05	<0.5	<0.5	<0.5	<5	<0.05	<0.25	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05	<0.03	<0.02	<0.05		<0.05	<1	<0.05
S8@10-12	10-12	11/15/22	<0.5	<0.5	<0.05	<0.5	<0.5	<0.5	<5	<0.05	<0.25	<0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.05	<0.05	<0.05	<0.05	<0.03	<0.02	<0.05	<0.05	<0.05	<1	<0.05
DEQ Risk-Based O	oncentration:																													
Pathway			RBCs																											
-		Residential	NE	1,400	0.36	3.7	160,000	7,600	NE	1,800	NE	76	250	1,600	58	NE	160	5.8	NE	3.6	53,000	NE	7.5	8.2	6.7	NE	3.4	3.7	NE	NE
Soil Ingestion, Der	mal Contact,	Urban Residential	NE	2,900	0.80	12	320,000	15,000	NE	3,500	NE	170	730	3,100	190	NE	310	22	NE	12	110,000	. NE	21	24	17	NE	12	12	NE	NE
and Inhalation (RE	(C.,)	Occupational	NE	25,000	4.4	17	>Max	130,000	NE	29000	NE	1,600	1,100	23,000	260	NE	2,300	26	NE	16	870,000	NE	34	37	51	NE	15	17	NE	NE
,	327	Construction Worker	NE	25,000	34	210	>Max	69,000	NE	13,000	NE	12,000	12,000	7,100	3,200	NE	710	410	NE	200	470,000	NE	320	380	470	NE	230	210	NE	NE
-	-	Excavation Worker	NE	700,000	950	5,800	>Max	>Max	-	370,000	NE	340,000	320,000	200,000	89,000	NE	20,000		NE	5,600	>Max	NE	_	11,000	_	NE		5,800	NE	NE
Volatilization to O	utdoor Air	Residential	NE	>Csat	5.3	3.3	>Max	>Csat	NE	>Csat	NE	>Csat	340	>Max	56	NE	>Max	3.9	NE	3.4	>Csat	NE	15	11	15	NE	_	3.3	NE	NE
(RBC _{so})		Urban Residential	NE	>Csat	6.5	7.8	>Max	>Csat	NE	>Csat	NE	>Csat	810	>Max	130	NE	>Max	9.2	NE	8.1	>Csat	NE	35	27	33	NE	5.7	7.8	NE	NE
		Occupational	NE	>Csat	89	14	>Max	>Csat	NE	>Csat	NE	>Csat	1,500	>Max	240	NE	>Max	17	NE	15	>Csat	NE	65	50	96	NE	11	14	NE	NE
Vapor Intrusion in	to Buildings	Residential	NE	24	0.043	0.22	>Csat	190	NE	54	NE	26	8.5	>Max	0.45	NE	>Max		NE	0.077	>Csat	NE	0.12	0.16	0.12	NE		0.22	. NE	NE
(RBC _{si})		Urban Residential	NE	24	0.053	0.53	>Csat	190	NE	54	NE	51	20	>Max	1.1	NE	>Max	_	NE	0.18	>Csat	NE	0.28	0.38	0.26	NE	_	0.53	NE	NE
		Occupational	NE	300	2.2	2.9	>Csat	>Csat	NE	680	NE	950	110	>Max	5.9	NE	>Max	0.72	NE	1.0	>Csat	NE	1.6	2.1	2.3	NE	0.53	2.9	NE	NE
Leaching to Groun	dwater	Residential	NE	2.2	0.00057	0.0024	310	61	NE	6.7	NE	0.14	0.11	7.0	0.044	NE	_	0.0034	NE	0.0028	190	NE	_		0.013	NE	0.0020	=	NE	NE
(RBC _{sw})		Urban Residential	NE	7.9	0.0014	0.011	1,100	230	NE	25	NE	0.44	0.50	27	0.20	NE	2.4	0.016	NE	0.013	710	NE	0.055	0.10	0.053	NE		0.011	NE	NE
		Occupational	NE	9.1	0.010	0.011	1,300	280	NE	32	NE	2.4	0.54	51	0.20	NE	4.5	0.015	NE	0.013	880	NE	0.058	0.10	0.087	NE	0.0088	0.011	NE	NE

Highlighted cells indicate that detected value remaining on site exceeds one or more of the referenced RBCs.

Bold indicates a detection

RBCs for m,p-Xylenes and o-Xylenes are given as a total

of all Xylenes.

1 - Depth in feet below ground surface

>Csat - The soil RBC exceeds the three-phase equilibrium partitioning forthis compound >Max-The constituent RBC forthis pathway is calculated as greater than 1,000,000 mg/kg.

NE - An RBC has not been established for this compound NV - Compound is considered non-volatile for purposes of exposure calculations

Table4

Summary	of Soil Analy	ytical Results	2021-2022	- VOCs
---------	---------------	----------------	-----------	--------

,,	.,	Julis (2021-2022) - VOCS													Laborat	ory Analy	tical Resul	ts (mg/kg)													
														Volatile	Organic	Carbons (VOCs) by I	EPA Method	18260C												
Sample Identification	Depth ¹	Date Collected	Toluene	trans-1, 3-Dichloropropene	1, 1, 2-Trichloroethane	2-Hexanone	1,3-Dichloropropane	Tetrachloroethene (PCE, perchloroethylene, tetrachloroethylene)	Dibromochloromethane	1,2-Dibromoethane (EDB, ethylene dibromide)	Chlorobenzene	Ethylbenzene	1,1,1,2-Tetrachloroethane	m, p-Xylene	o-Xylene	Styrene	Isopropylbenzene (Cumene)	Bromoform	n-Propylbenzene	Bromoberzene	1,3,5-Trimethylberzene	1, 1, 2, 2-Tetrachlor oethane	1,2,3-Trichloropropane	2-Chlorotoluene (o- Chlorotoluene)	4-Chlorotoluene (p,a,a,a,- tetrachlorotoluene)	tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylberzene	p-i sopropyitoluene (p- cymene)	1,3-Dichlorobenzene	1, 4-Dichlorobenzene
	15	7/12/21	<0.5	<0.5	<0.5	<5	<0.5	<0.25	<0.5	<0.5	<0.5	21	<0.5	5.2	<0.5	<0.5	3.5	<0.5	13	<0.5	1.5	<0.5	<0.5	<0.5	<0.5	<0.5	16	1.5	0.82	<0.5	<0.5
_	15	7/12/21	<0.5	<0.5	<0.5	<5	<0.5	<0.25	<0.5	<0.5	<0.5	21	<0.5	4.4	<0.5	<0.5	3.9	<0.5	15	<0.5	1.5	<0.5	<0.5	<0.5	<0.5	0.59	13	2.0	0.92	<0.5	<0.5
	15	7/12/21	<0.25	<0.25	<0.25	<2.5	<0.25	<0.12	<0.25	<0.25	<0.25	0.48	<0.25	<0.5	<0.25	<0.5	2.0	<0.25	5.1	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	0.31	<0.25	1.3	0.27	<0.25
	14-16	9/30/21	<0.05	<0.05	<0.05	<0.5	<0.05	<0.025	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05
_	15-17	9/30/21	<0.05	<0.05		<0.5	<0.05	<0.025	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	<0.05			<0.05
	15-17	9/30/21	<0.05	<0.05	<0.05	<0.5	<0.05	<0.025	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05
	10-12	11/15/22	<0.05	<0.05	<0.05	<0.5	<0.05	<0.025	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05			<0.05
-	10-12	11/15/22	<0.05	<0.05	<0.05	<0.5	<0.05	<0.025	<0.05	<0.05	<0.05	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
DEQ Risk-Based Co	oncentration																														
Pathway			RBCs																										_		
		Residential	5,800	NE	5.8	NE	NE	220	3.7	0.16	530	34	NE		100	7,900	NE	57	NE	NE	780	NE	NE	NE	NE	NE	110	NE	NE	NE	14
Soil Ingestion, Derr	nal Contact.	Urban Residential	12,000	NE	19	NE	NE	650	12	0.53	1,100	110	NE	2,9		16,000	NE	170	NE	NE .	1,600	NE	NE	NE	NE	NE	220	NE	NE	NE .	62
and Inhalation (RBC	C)	Occupational	88,000	NE	26	NE	NE	1,000	17	0.73	8,700	150	NE	25,		130000	NE	260	NE		12,000	NE	NE	NE	NE	NE	2,000	NE	NE	NE	64
	-227	Construction Worker	28,000	NE	320	NE	NE .	10,000	210	9.0	4,700	1,700	NE	20,		56,000	NE	2,700	NE	NE	3,500	NE :	NE	NE	NE	NE	2,000	NE	NE		1,300
		Excavation Worker	770,000	NE	8,900	NE	NE	280,000	5,800	250	130,000	49,000	NE	560		>Max	NE	74,000	NE	-	98,000	NE	NE	NE	NE	-	54,000	NE	NE		36,000
Volatilization to Ou	tdoor Air	Residential	>Csat	NE	5.6	NE	NE	>Csat	3.3	0.15	>Csat	36	NE		sat	>Csat	NE	81	NE	NE	>Max	NE	NE	NE	NE	NE	230	NE	NE	NE	8.1
(RBC _{so})		Urban Residential	>Csat	NE	13	NE	NE	>Csat	7.8	0.35	>Csat	85	NE		sat	>Csat	NE	190	NE	NE	>Max	NE	NE	NE	NE	NE	230	NE	NE	NE	19
1 507		Occupational	>Csat	NE	24	NE	NE	>Csat	14	0.65	>Csat	160	NE		sat	>Csat	NE	360	NE	NE	>Max	NE	NE	NE	NE	NE	980	NE	NE	NE	36
Vapor Intrusion into	o Buildings	Residential	>Csat	NE	0.32	NE	NE .	2.8	0.22	0.012	77	1.3	NE	10		>Csat	NE	8.2	NE .	NE	>Max	NE	NE	NE	NE	NE	16	NE	NE	NE .	0.99
(RBC _{si})		Urban Residential	>Csat	NE	0.75	NE	NE	6.6	0.53	0.028	77	3.0	NE	10	_	>Csat	NE	19	NE	NE	>Max	NE	NE	NE	NE	NE	16	NE	NE	NE	2.3
517		Occupational	>Csat	NE	4.2	NE	NE	36	2.9	0.16	>Csat	17	NE		sat	>Csat	NE	110	NE	NE	>Max	NE	NE	NE	NE	NE	210	NE	NE	NE	13
Leaching to Ground	lwater	Residential	83		0.0063	NE	NE	0.46		0.00012	5.8	0.22	NE	2		170	NE	0.046	NE	NE	21	NE	NE	NE	NE	NE	2.8	NE	NE		0.057
(RBC _{sw})		Urban Residential	340	NE	0.029	NE	NE	1.9	0.011	0.00056	22	0.94	NE	8	_	640	NE	0.20	NE	NE	94	NE	NE	NE	NE .	NE	10	NE	NE	NE .	0.27
, sw,		Occupational	490	NE	0.029	NE	NE	1.9	0.011	0.00056	27	0.90	NE	10	00	800	NE	0.22	NE	NE	110	NE	NE	NE	NE	NE	12	NE	NE	NE	0.25

Highlighted cells indicate that detected value remaining on site exceeds one or more of the referenced RBCs.

Bold indicates a detection

RBCs for m,p-Xylenes and o-Xylenes are given as a total

of all Xylenes.

1 - Depth in feet below ground surface

>Csat - The soil RBC exceeds the three-phase equilibrium partitioning forthis compound >Max-The constituent RBC forthis pathway is calculated as greater than 1,000,000 mg/kg.

NE - An RBC has not been established for this compound NV - Compound is considered non-volatile for purposes of exposure calculations

Table4 Summary of Soil Analytical Results (2021-2022) - VOCs

				Laborato	ry Analyti	ical Results	(mg/kg)	
	ermal Contact RBCss) Outdoor Air		Volatil	e Organic (Carbons (V	OCs) by E	PA Method	18260C
Sample Identification	Depth ¹	Date Collected	1, 2-Dichlorobenzene	1,2-Dibramo-3- chlor opropane (DBCP, dibromochlor opropane)	1,2,4-Trichlorobenzene	Hexachlor obutadiene	Naphthalene	1, 2, 3-Trichlorobenzene
S1@15	15	7/12/21	<0.5	<5	<2.5	<2.5	9.8	<2.5
S2@15	15	7/12/21	<0.5	<5	<2.5	<2.5	10	<2.5
S3@15	15	7/12/21	<0.25	<0.25	<1.2	<1.2	<0.25	<1.2
S4@14-16	14-16	9/30/21	<0.05	<0.5	<0.25	<0.25	<0.05	<0.25
S5@15-17	15-17	9/30/21	<0.05	<0.5	<0.25	<0.25	<0.05	<0.25
S6@15-17	15-17	9/30/21	<0.05	<0.5	<0.25	<0.25	<0.05	<0.25
S7@10-12	10-12	11/15/22	<0.05	<0.5	<0.25	<0.25	<0.05	<0.25
S8@10-12	10-12	11/15/22	<0.05	<0.5	<0.25	<0.25	<0.05	<0.25
DEQ Risk-Based (Concentration	s						
Pathway		Receptor	RBCs					
	Ŧ	Residential	2,200	NE	NE	NE	5.3	NE
Sail Ingastion Day	mal Contact	Urban Residential	4,400	NE	NE	NE	25	NE
and Inhalation (RE		Occupational	36,000	NE	NE	NE	23	NE
and initialation (No	الروع	Construction Worker	20,000	NE .	NE	NE	580	NE
		Excavation Worker	560,000	NE	NE	NE	16,000	NE
Volatilization to O	utdoor Air	Residential	>Csat	NE	NE	NE	6.4	NE
(RBC _{so})	utuooi Aii	Urban Residential	>Csat	NE	NE	NE	15	NE
(NDC ₅₀)		Occupational	>Csat	NE	NE	NE	83	NE
Vapor Intrusion in	to Buildings	Residential	>Csat	NE	NE	NE	6.4	NE
(RBC.:)	to buildings	Urban Residential	>Csat	NE	NE	NE	15	NE
(NDC ₃)		Occupational	>Csat	NE	NE	NE	83	NE
Leaching to Groun	dwater	Residential	36	NE	NE	NE	0.077	NE
_	uwatei	Urban Residential	140	NE	, NE	NE	0.37	NE
(RBC _{sw})		Occupational	160	NE	NE	NE	0.34	NE

Highlighted cells indicate that detected value remaining on site exceeds one or more of the referenced RBCs.

Bold indicates a detection

RBCs for m,p-Xylenes and o-Xylenes are given as a total of all Xylenes.

1 - Depth in feet below ground surface

>Csat- The soil RBC exceeds the three-phase equilibrium

partitioning forthis compound >Max-The constituent RBC forthis pathway is calculated

as greater than 1,000,000 mg/kg.

NE - An RBC has not been established for this compound NV - Compound is considered non-volatile for purposes of exposure calculations

Table 5: Summary of Groundwater Analytical Results (2015) (μg/L)

Samples	Dates	В	T	E	Х	Tph-Gas	Tph-Diesel	Tph-Oil
W-1	6/30/2015	870	3,500	500	2,600	12,000	ND	ND
ST	ΓD1	2.2	92,000	7.8	850	450	430	430

ND: Not detected at PQL (Practical Quantitation Limit)

STD1: DEQ Risk-based screening level (Ingestion/inhalation from tab water)

B: benzene T: toluene

E: ethylbenzene

X: xylene

Numbers in bold red indicate concentrations above the screening levels.

Practical Environmental Compliance Solutions

Table 6: Summary of Groundwater Analytical Results (2016-2020)

Hunt's Market

40490 Old US Highway 30, Astoria, Oregon 97103

Offices In: Anchorage | Tacoma | Portland

Sample ID	Date	Total Petroleum Hydrocarbons (mg/kg)		Selec	ct Volatile Organio	c Constituents (m	g/kg)		Metals (mg/kg)
	Sampled	Gasoline	Benzene	Toluene	Ethyl benzene	m&p Xylene	o-Xylene	Total Xylenes	Lead (Total)
		•		2016	FSI (ECI)	<u> </u>			
B1-GW-19'	4/14/2016	10,100	1,170	597	531	1,300	469	1,769	
B3-GW-10'	4/14/2016	17,000	631	65.6	788	822	68.3	890	
				2017	SFSI (ECI)				
B6-GW	4/14/2017	126,000	17,300	<1.4	13,800	14,600	281	14,881	47.4
B7-GW	4/14/2017	67,900	2,050	991	<1.5	<3.9	<2.5		39.8
B8-GW	4/14/2017	10,700	<2.2	<1.4	466	143	<2.5	143	17.4
B9-GW	4/14/2017	38,600	<2.2	<1.4	2,980	1,860	<2.5	1,860	65
B11-GW	4/14/2017	26,500	2,640	724	482	415	<2.5	415	43.9
B12-GW	4/14/2017	30,500	2,730	584	801	176	<2.5	176	89.6
B13-GW	4/14/2017	12,500	389	<1.4	275	157	<2.5	157	17
Method Rep	porting Limit	5.0	0.01	0.10	0.10	0.10	0.10		0.050
ODEQ RBC (0	Occupational)	450	2.1	6,300	6.4	830	830	830	15.0

Notes:

(μg/I) = micrograms per liter

RBC = Risk-Based Concentrations

< Not detected above the laboratory reporting limit

Bold indicates a detected concentration that is below ODEQ Risk-Based Concentrations

Bold and Shaded indicates the detected concentration exceeds ODEQ Risk-Based Concentrations

Table 7
Summary of Groundwater Analytical Results (2021-2022) - Petroleum Hydrocarbons

					-	Analytical Re	sul ts (ug/l) ²			
			Total Petroleu	m Hydrocar	bons (TPH)	Volatile C	•	ons (VOCs) b 260D, or 802	•	d 8260C,
Sample Identification	Depth ¹	Date	Gasoline Range (C2-C5) by NWTPH-Gx	Diesel Range (C ₁₀ -C ₂₃) by NWTPH-Dx	Residual Range (C ₂₅ -C ₃₆) by NWTPH-Dx	Benzene ⁽⁵⁾	. Toluene ⁽⁵⁾	Ethyl-benzene ⁽⁵⁾	Total Xylenes ⁽⁵⁾	Naphthalene
W1@17	17	7/12/21	520,000	47,000 x	<250	430	<200	3,700	2,000	1,400
W2@17	17	7/12/21	230,000	90,000	560	<0.35	<10	45	<30	<10
W3@17	17	7/12/21	170,000	8,500 x	<500	13	<200	1,100	<600	400
W5@15	15	10/6/21	<100	580	<750				1	
W7@12-16	12-16	11/15/22	<100	<100	<250	<0.35	<1	<1	<3	<1
W8@12-16	12-16	11/15/22	<100	<100	<250	<0.35	<1	<1	<3	<1
DEQ Risk-Based	Concentrations	2) ()	70	1				27/	7	
Pathway		Receptor								
Ingestion & Inhal	ation from Tapwater	Residential	110	100	100	0.46	1,100	1.5	190	0.17
(R	BCt _w)	Urban	110	100	100	2.0	4,400	6.7	710	0.78
		Occupational	450	430	430	2.1	6,300	6.4	830	0.72
		Residential	>S	>S	>S	3,100	>S	9,900	>S	3,600
Volatilization to	Outdoor Air (RBC _{wo})	Urban	>S	>S	>S	7400	>S	2,300	>S	8,500
		Occupational	>S	>S	>S	1400	> S	4300	>S	16000
		Residential	22000	>S	>S	210	> S	620	86,000	840
Vapor Intrusion i	nto Buildings (RBC _{wi})	Urban	22000	> S	>S	510	> S	1,500.00	8600	2,000
		Occupational	>S	>S	>S	2800	> S	8200	>S	11000
Groundwater in	Excavation (RBC _{we})	Construction & Excavation	14,000	> S	> S	1,800	220,000	4,500	23000	500

Grey highlighted cells indicate that detected value exceeds one or more of the referenced RBCs.

Gray Italics Indicate Sample Location has been Removed

Bold indicates a detection

- 1 Depth in feet below ground surface
- -- Not analyzed
- * sample passed through silica gel cleanup
- >S The groundwater RBC exceeeds the solubility limit for this compound
- NE An RBC has not been established for this compound
- NV Compound is considered non-volatile for purposes of exposure calculations
- \boldsymbol{x} Sample chromatograph does not resemble fuel standard used for quantitation
- ve Estimated concentration calculated for an analyte response is outside of instrument calibration range
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

Table 8 Summary of Groundwater Analytical Results (2021-2022) - VOCs

													Labo	ratory Ana	lytical Re	esults (ı	ug/L)													
												Volatile Orga	nic Carbons (VOCs) by E	PA Met	hod 826	OC or EF	A Metho	od 8021B											
Sample Identification	Depth ¹	Date	Dichlor odifluor omethane	Chlor omethane	Vinyl chloride	Bromomethane	Chloroethane (ethyl chloride)	Trichlor ofluor omethane (Freon 11)	Acetone	1,1-Dichloroethene (DCE, 1,1-Dichloroethylene)	Hexane (n-hexane)	Methylene chloride (Dichloromethane)	Methyl t-butyl ether (MTBE)	trans-1,2-Dichloroethene (trans-1,2- Dichloroethylene)	1,1-Dichlor oethane	2,2-Dichlor opropane	cis-1,2-Dichloroethene (cis-1,2-Dichloroethylene)	Chloroform	2-Butanone (MEK, methyl ethyl ketone)	1,2-Dichloroethane (EDC)	1,1,1-Trichloroethane	1,1-Dichloropropene	Carbon tetrachloride	Benzene	Trichloroethene (TCE, Trichloroethylene)	1,2-Dichlor opropane	Bromodichloromethane	Dibromomethane (methylene bromide)	4-Methyl-2-pentanone (Methyl isobutyl ketone)	cis-1, 3-Dichloropropene
W1@17	17	7/12/21	<200	<2,000	<40	<1,000	<200	<200	<10,000	<200	3,100	<1,000	<200	<200	<200	<200	<200	<200	<4,000	<200	<200	<200	<200	430	<200	<200	<200	<200	<2,000	<2,000
W2@17	17	7/12/21	<10	<100	<2	<50	<10	<10	<500	<10	180	<50	<10	<10	<10	<10	<10	<10	<200	<10	<10	<10	<10	<0.35	<10	<10	<10	<10	<100	<10
W3@17	17	7/12/21	<200	<2,000	<40	<1,000	<200	<200	<10,000	<200	7,300	<1,000	<200	<200	<200	<200	<200	<200	<4,000	<200	<200	<200	<200	13	<200	<200	<200	<200	<2,000	<2,000
W7@12-16	12-16	11/15/22	<1	<10	<0.02	<5	<1	<1	<50	<1	<5	<5	<1	<1	<1	<1	<1	<1	<20	<0.2	<1	<1	<0.5	<0.35	<0.5	<1	<0.5	<1	<10	<0.4
W8@12-16	12-16	11/15/22	<1	<10	<0.02	<5	<1	<1	<50	<1	< 5	<5	<1	<1	<1	<1	<1	<1	<20	<0.2	<1	<1	<0.5	<0.35	<0.5	<1	<0.5	<1	<10	<0.4
DEQ Risk-Based	Concentrations																													
Pathway			RBCs																											
Ingestion & Inhal	lation from	Residential	NE	190	0.027	0.17	21,000	1,100	NE	280	NE	11	14	360	2.8	NE	36	0.22	NE	0.17	8,000	NE	0.46	0.46	0.49	NE	0.13	0.17	NE	NE
Tapwater (RBCtw		Urban Residential	NE	690	0.066	0.77	76,000	4,200	NE	1,100	NE	37	64	1,400	13	NE	140	1.0	NE	0.78	30,000	NE	2.0	2.0	2.0	NE	0.62	0.77	NE	NE
rapwater (ribetii	<u>′</u>	Occupational	NE	790	0.49	0.77	88,000	5,200	NE	1,400	NE	200	68	2,600	13	NE	260	0.98	NE	0.78	37,000	NE	2.1	2.1	3.3	NE	0.60	0.77	NE	NE
Volatilization to C	Outdoor Air	Residential	NE	440,000	350	3,900	>S	780,000	NE	570,000	NE	1,000,000	350,000	>S	16,000	NE	>S	1,400	NE	2,100	>\$	NE	1,800	3,100	3,300	NE	1,400	3,900	NE	NE
(RBCwo)		Urban Residential	NE	440,000	430	9,300	>S	780,000	NE	570,000	NE	2,000,000	830,000	>S	37,000	NE	>S	3,400	NE	4,900	>S	NE	4,200		6,900	NE	3,200	9,300	NE	NE
(Occupational		1,800,000	5,900	17,000	>\$	>\$	NE	2,400,000	NE	12,581,128	1,500,000	>\$	68,000	NE	>\$	6,300		9,000	>\$		_	_	20,000	NE	6,000	17,000	NE	NE
Vapor Intrusion in	nto Buildings	Residential	NE	26,000	17	980	2,800,000	36,000	NE	29,000	NE	90,000	67,000	>S	1,100	NE	>S	120	NE	300	>S	NE	92	210	200	NE	180	980	NE	NE
(RBCwi)		Urban Residential	NE	26,000	21	2,300	2,800,000	36,000	NE	29,000	NE	170,000	160,000	>S	2,600	NE	>S	290	NE	700	>S	NE	220	510	430	NE	420	2,300	NE NE	NE
		Occupational	NE	330,000	880	13,000	>S	460,000	NE	360,000	NE	3,300,000	870,000	>\$	14,000	NE	>\$	1,600	NE	3,900	>S	NE	1,200	2,800	3,700	NE	2,300	13,000	NE	NE
Groundwater in E	xcavation (RBCwe)	Construction and Excavation Worker	NE	22,000	960	610	2,400,000	160,000	NE	44,000	NE	640,000	63,000	180,000	10,000	NE	18,000	720	NE	630	1,100,000	NE	1,800	1,800	3,000	NE	450	610	NE	NE

Grey highlighted cells indicate that detected value exceeds one or more of the referenced RBCs.

Gray Italics Indicate Sample Location has been Removed

Bold indicates a detection

- 1 Depth in feet below ground surface
- -- Not analyzed
- * sample passed through silica gel cleanup
- >S The groundwater RBC exceeds the solubility limit for
- NE An RBC has not been established for this compound
- NV Compound is considered non-volatile for purposes of exposure calculations
- x Sample chromatograph does not resemble fuel standard used for quantitation
- ve Estimated concentration calculated for an analyte
- response is outside of instrument calibration range jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

Table 8 Summary of Groundwater Analytical Results (2021-2022) - VOCs

														Labora	itory An	alytical Re	sults (m	ng/kg)													
												Volatile Org	anic C	arbons (\	/OCs) by	EPA Meti	hod 826	OC or EPA M	ethod 80	21B											
Sample Identification	Depth ¹	Date	Toluene	trans-1, 3-Dichlor opropene	1,1,2-Trichloroethane	2-Hexanone	1,3-Dichloropropane	Tetrachlor oethene (PCE, perchlor oethylene, tetrachlor oethylene)	Dibromochloromethane	1,2-Dibromoethane (EDB, ethylene dibromide)	Chlorobenzene	Ethylbenzene	1,1,1,2-Tetrachloroethane	m,p-Xylene	o-Xylene	Styrene	Isopropylbenzene (Cumene)	Bromoform	n-Propylbenzene	Bromobenzene	1,3,5-Trimethylbenzene	1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	2-Chlor otoluene (o- Chlor otoluene)	4-Chlorotoluene (p,a,a,a,- tetrachlorotoluene)	tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylbenzene	p-IsopropyItoluene (p- cymene)	1,3-Dichlorobenzene	1, 4-Dichlor obenzene
W1@17	17	7/12/21	<200	<200	<200	<2,000	<200	<200	<200	<200	<200	3,700	<200	2,000	<200	<200	260	<1,000	900	<200	290	<200	<200	<200	<200	<200	2,400	<200	<200	<200	<200
W2@17	17	7/12/21	<10	<10	<10	<100	<10	<10	<10	<10	<10	45	<10	<20	<10	<10	73	<50	140	<10	<10	<10	<10	<10	⊲10	⊲10	<10	18	<10	<10	<10
W3@17	17	7/12/21	<200	<200	<200	<2,000	<200	<200	<200	<200	<200	1,100	<200	<400	<200	<200	540	<1,000	1,000	<200	<200	<200	<200	<200	<200	<200	<200	300	<200	<200	<200
W7@12-16	12-16	11/15/22	<1	<0.4	<0.5	<10	<1	<1	<0.5	<1	<1	<1	<1	<2	<1	<1	<1	<5	<1	<1	<0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
W8@12-16	12-16	11/15/22	<1	<0.4	<0.5	<10	<1	<1	<0.5	<1	<1	<1	<1	<2	<1	<1	<1	<5	<1	<1	<0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
DEQ Risk-Based	Concentrations																														
Pathway			RBCs																												
Ingestion & Inhal	lation from	Residential	1,100	NE	0.28	NE	NE	12	0.17	0.0075	77	1.5	NE	19		1,200	NE	3.3	110	NE	110	NE	NE	NE	NE	NE	15	NE	NE	NE	0.48
Tapwater (RBCtw		Urban Residential	4,400	NE	1.3	NE	NE	49	0.77	0.034	290	6.7	NE	71		4,600	NE	15	500	NE	500	NE	NE	NE	NE	NE	54	NE	NE	NE	2.3
rapwater (ribetti	·'·	Occupational	6,300	NE	1.3	NE	NE	48	0.77	0.034	350	6.4	NE	83		5,700	NE	16	600	NE	600	NE	NE	NE	NE	NE	61	NE	NE	NE	2.1
Volatilization to C	Outdoor Air	Residential	>\$	NE	4,700	NE	NE	64,000	3,900	180	>S	9,900	NE	>	_	>S	NE	130,000	>S	NE	>\$	NE	NE	NE	NE	NE	>\$	NE	NE	NE	4,900
(RBCwo)		Urban Residential	>S	NE	11,000	NE	NE	150,000	9,300	430	>S	23,000	NE	>		>S	NE	300,000	>S	NE	>S	NE	NE	NE	NE	NE	>S	NE	NE		12,000
		Occupational	>S	NE	21,000	NE	NE	>\$	17,000	790	>\$	43,000	NE	>		>\$	NE	550,000	>S	NE	>S	NE	NE	NE	NE	NE	>S	NE	NE		21,000
Vapor Intrusion in	nto Buildings	Residential	>S	NE	870	NE	NE	3,700	980	45	67,000	620	NE	86,0		>S	NE	36,000	>S	NE	>S	NE	NE	NE	NE	NE	5,800	NE	NE	NE	540
(RBCwi)	-	Urban Residential	>S	NE	2,100	NE	NE	8,700	2,300	110	67,000	1,500	NE	86,0		>S	NE	85,000	>S	NE	>\$	NE	NE	NE	NE	NE	5,800	NE	NE	NE	1,300
<u> </u>		Occupational	>\$	NE	11,000	NE	NE	48,000	13,000	590	>S	8,200	NE	>	5	>S	NE	470,000	>\$	NE	>\$	NE	NE	NE	NE	NE	>S	NE	NE	NE	7,100
Groundwater in E	excavation (RBCwe)	Construction and Excavation Worker	######	NE	1,000	NE	NE	34,000	610	27	10,000	4,500	NE	23,0	000	170,000	NE	14,000	15,000	NE	15,000	NE	NE	NE	NE	NE	1,700	NE	NE	NE	1,500

Grey highlighted cells indicate that detected value exceeds one or more of the referenced RBCs.

Gray Italics Indicate Sample Location has been Removed

Bold indicates a detection

- 1 Depth in feet below ground surface
- -- Not analyzed
- * sample passed through silica gel cleanup
- >S The groundwater RBC exceeds the solubility limit for
- NE An RBC has not been established for this compound
- NV Compound is considered non-volatile for purposes of exposure calculations
- x Sample chromatograph does not resemble fuel standard used for quantitation
- ve Estimated concentration calculated for an analyte response is outside of instrument calibration range
- response is outside of instrument calibration range ji-The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

Table 8 Summary of Groundwater Analytical Results (2021-2022) - VOCs

				Laboratory	Analytic	al Resu	lts (mg/kg)	
			Volatile	e Organic Car	bons (V	OCs) by	EPA Method	8260C
Sample Identification	Depth ¹	Date	1,2-Dichlor obenzene	1,2-Dibromo-3- chloropropane (DB.CP, dibromochloropropane)	1, 2, 4-Trichlor obenzene	Hexachlorobutadiene	Naphthalene	1, 2, 3-Trichlor obenzene
W1@17	17	7/12/21	<200	<2,000	<200	<200	1,400	<200
W2@17	17	7/12/21	<10	<100	<10	<10	<10	<10
W3@17	17	7/12/21	<200	<2,000	<200	<200	400	<200
W7@12-16	12-16	11/15/22	<1	<10	<1	< 0.5	<1	<1
W8@12-16	12-16	11/15/22	<1	<10	<1	<0.5	<1	<1
DEQ Risk-Based (Concentrations							
Pathway		Receptor	RBCs					
Ingestion & Inhala	ation from	Residential	300	NE	NE	NE	0.17	NE
Tapwater (RBCtw)		Urban Residential	1,200	NE	NE	NE	0.78	NE
rapwater (noctw	,	Occupational	1,400	NE	NE	NE	0.72	NE
Volatilization to O	utdoor Air	Residential	>\$	NE	NE	NE	3,600	NE
(RBCwo)	ataoor All	Urban Residential	>S	NE	NE	NE	8,500	NE
(NBCWO)		Occupational	>\$	NE	NE	NE	16,000	NE
Vapor Intrusion in	ito Buildings	Residential	>S	NE	NE	NE	840	NE
(RBCwi)	ito bananiga	Urban Residential	>S	NE	NE	NE	2,000	NE
(INDCWI)		Occupational	>\$	NE	NE	NE	11,000	NE
Groundwater in E	xcavation (RBCwe)	Construction and Excavation Worker	37,000	NE	NE	NE	500	NE

Grey highlighted cells indicate that detected value exceeds one or more of the referenced RBCs.

Gray Italics Indicate Sample Location has been Removed

Bold indicates a detection

- 1 Depth in feet below ground surface
- -- Not analyzed
- * sample passed through silica gel cleanup
- >S The groundwater RBC exceeds the solubility limit for
- NE An RBC has not been established for this compound
- NV Compound is considered non-volatile for purposes of exposure calculations
- x Sample chromatograph does not resemble fuel standard used for quantitation
- ve Estimated concentration calculated for an analyte response is outside of instrument calibration range
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

Table 9: Summary of Monitoring Well Analytical Results

40490 Old US Highway 30, Astoria, Oregon 97103

5/23/2019

Sample ID	Date Sampled	Total Petroleum Hydrocarbons (μg/l)			Select Volatile Organ	ic Constituents (μg/l)			Metals
		Gasoline	Benzene	Toluene	Ethylbenzene	m&p Xylene	o-Xylene	Total Xylenes	Lead (Total)
				Monito	ring Well 1 (MW1)				
MW1	4/13/2017	36,500	1,290	<1.4	6,620	4,870	<2.5	4,870	0.93
101001	3/12/19	5,900	40	<1.0	530	250		250	
				Monito	ring Well 2 (MW2)				
MW2	4/13/17	12,700	695	<1.4	268	232	<2.5	232	0.19
14144.2	3/12/19	1,900	<1.0	<1.0	9.6			14	
				Monito	ring Well 3 (MW3)				
MW3	3/12/19	2,200	6.7	<1.0	69			73	
		,		Monito	ring Well 4 (MW4)				
MW4	3/12/19	400	<1.0	<1.0	3.0			5.8	
		,		Monito	ring Well 5 (MW5)				
MW5	3/12/19	<100	<1.0	<1.0	<1.0			<3.0	
		,		Monitorin	g Well 9 (MW9/SV9)				
	6/23/2011*	<100	<0.25	<1.0	<0.5			<1.5	
	10/27/2011*	<100	<0.25	<1.0	<0.5			<1.5	
	2/8/2012*	<100	<0.25	<1.0	<0.5			<1.5	
	5/30/2013*	<100	<0.25	<1.0	<0.5			<1.5	
	4/13/17	9,230	<2.2	<1.4	<1.5	<3.9	<2.5	<3.9	2.6
	3/12/19	<100	<1.0	<1.0	<1.0		-	<3.0	
ODEQ RBC (Occupational)	450	2.1	6,300	6.4			830	15

Notes:

(μg/I) = micrograms per liter

RBC = Risk-Based Concentrations

Bold indicates a detected concentration that is below ODEQ Risk-Based Concentrations

Bold and Shaded indicates the detected concentration exceeds ODEQ Risk-Based Concentrations

 $^{\ ^* = \}mathsf{sampled} \ \mathsf{by} \ \mathsf{Saga} \ \mathsf{Environmental} \ \& \ \mathsf{Engineering}, \ \mathsf{Inc.} \ \mathsf{as} \ \mathsf{part} \ \mathsf{of} \ \mathsf{the} \ \mathsf{investigation} \ \mathsf{of} \ \mathsf{the} \ \mathsf{Svensen} \ \mathsf{Mobil} \ \mathsf{site}$

< Not detected above the laboratory reporting limit

Table 10: Summary of Groundwater Elevations Hunt's Market

40490 Old US Highway 30, Astoria, Oregon 97103

Well Number	Latitude	Longitude	Elevation Top of Casing (feet)	Date of Measurement	Depth to Water (feet)	Depth to Free Product (feet)	Free Product Thickness (feet)	Groundwater Elevation (feet)	Change in Elevation (feet)
				4/13/2017	5.60			87.36	
				3/12/2019	8.45			84.51	-2.85
MW1	46.165458	-123.660614	92.96	7/10/2019	11.33			81.63	-2.88
				9/24/2019	11.32			81.64	0.01
				2/6/2020	2.31			90.65	9.01
				4/13/2017	6.72			87.03	
				3/12/2019	7.35			86.40	-0.63
MW2	46.165331	-123.660525	93.75	7/10/2019	12.10			81.65	-4.75
				9/24/2019	11.38			82.37	0.72
				2/6/2020	4.24			89.51	7.14
				3/12/2019	8.90			81.50	
MW3	46.165572	-123.660950	90.40	7/10/2019	7.33			83.07	1.57
IVIVV3	40.105572	-123.000950	90.40	9/24/2019	6.77			83.63	0.56
				2/6/2020	4.22			86.18	2.55
				3/12/2019	8.69			85.67	
MW4	46.165386	-123.660433	94.36	7/10/2019	13.38			80.98	-4.69
101004	40.105560	-123.000433	94.56	9/24/2019	10.21			84.15	3.17
				2/6/2020	5.24			89.12	4.97
				7/10/2019	8.99			83.86	
MW5	46.165094	-123.660831	92.85	9/24/2019	7.92			84.93	1.07
				2/6/2020	4.82			88.03	3.10
MW6				2/6/2020	4.26				
MW7				2/6/2020	4.13				
				Svensen	Wells				
				4/13/2017	6.62			88.12	
				3/12/2019	7.50			87.24	-0.88
MW9 (SV9)	46.165186	-123.660503	94.74	7/10/2019	11.68			83.06	-4.18
	(SV9) 46.165186			9/24/2019	11.49			83.25	0.19
				2/6/2020	4.11			90.63	7.38

Notes:

Location and top of casing surveyed by Parametrix 3/11/2019

-- = Not measured, not available, or not applicable

Blue cells indicate quarter 3 results

Environmental Services	tical Environr		Compliance																			Table	e 11: Sun	nmary	Soil V	apor ar	nd Aml	oient /	Air An		esults (unt's IV toria, O	/larket
services		Cincos	, i vi ici iorogo i ro	20110111011	0.10										Volatile Org	ganic Co	mpoun	ds in Aiı	r by Meth	nod TO-15											,	
Sample ID	Date Sampled	Benzene	Toluene	Ethylbenzene	Total Xylenes	Gasoline Range Organics	Naphthalene	1,4-Dioxane	Chloromethane	Vinyl chloride	Trichloroethene	Bromomethane	Chloroethane	1,1,2-Trichloroethane	Trichlorofluoromethane (CFC-11)	Tetrachloroethene (PCE)	Dibromochloromethane	1,2-Dibromoethane (EDB)	Chlorobenzene	Isopropylbenzene (Cumene)	CFC-113	Methyl t-butyl ether (MTBE)	Styrene	Bromoform	Chloroform	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	1,2-Dichloroethane (EDC)	1,4-Dichlorobenzene	1,1,1-Trichloroethane	1,2-Dichlorobenzene	Carbon tetrachloride
	Soil Gas Samples (µg/m³)																															
Sub Slab 1	1/30/2019	2.0	15	2.6	9.8	1,300	0.27	<0.54	<3.1	<0.38	6.4	<2.3	<4	<0.16	<3.4	<10	<13 ca	<0.12	<0.69	<3.7	<1.1	<2.7	3.0	<3.1 ca	0.42	<3.7	<3.7	0.12	<0.36	1.4	<0.9	<0.94
Soil Vapor 1	1/30/2019	4.8	14	2.5	9.2	1,300	0.26	<0.54	<3.1	<0.38	2.2	<2.3	<4	<0.16	<3.4	<10	<13 ca	<0.12	<0.69	<3.7	<1.1	<2.7	2.7	<3.1 ca	0.48	<3.7	<3.7	0.073	<0.36	2.5	<0.9	<0.94
Sub Slab 2	1/30/2019	1.8	11	2.9	9.8	1,800	<0.79	<0.54	<3.1	<0.38	0.52	<2.3	<4	<0.16	<3.4	88	<13 ca	<0.12	<0.69	<3.7	<1.1	<2.7	3.9	<3.1 ca	1.2	<3.7	<3.7	<0.061	<0.36	<0.82	<0.9	<0.94
ODEQ RBC Vapor In (Occupational		1,600	21,900,000	4,900	440,000	1,700,000	360	2,500	390,000	2,800	2,900	22,000	43,800,000	770	3,100,000	47,000	450	20	220,000	1,800,000	131,400,000	47,000	4,400,000	11,000	530	260,000	260,000	470	1,100	21,900,000	880,000	2,000
													А	mbien	t Air Sample	s (μg/m	³)															
Indoor Air 1	1/30/2019	1.1	9.9	1.4	8.1	<820	0.71	<0.36	<2.1	<0.26	<0.27	<1.6	<2.6	<0.11	4.9	<6.8	<8.5	<0.077	<0.46	<2.5	<0.77	<1.8	<0.85	<2.1	0.49	<2.5	<2.5	0.19	<0.24	<0.55	<0.6	0.68
Indoor Air 2	1/30/2019	0.73	1.7	<0.43	0.87	<820	0.27	<0.36	<2.1	<0.26	<0.27	<1.6	<2.6	<0.11	3.4	<6.8	<8.5	<0.077	<0.46	<2.5	<0.77	<1.8	<0.85	<2.1	0.34	<2.5	<2.5	0.13	<0.24	<0.55	<0.6	<0.63
Exterior Ambient Air 1	1/30/2019	0.8	1.4	<0.43	<0.87	<820	0.51	<0.36	<2.1	<0.26	<0.27	<1.6	<2.6	<0.11	<2.2	<6.8	<8.5	<0.077	<0.46	<2.5	<0.77	<1.8	<0.85	<2.1	0.15	<2.5	<2.5	0.12	<0.24	<0.55	<0.6	<0.63
ODEQ RBC Air Inha (Occupational		1.6	22,000	4.9	440	1,700	0.36	2.5	390	2.8	2.9	22	44,000	0.77	3,100	47	0.45	0.02	220	1,800	130,000	47	4,400	11	0.53	260	260	0.47	1.1	22,000	880	2

Notes:

μg/m³ = microgram per cubic meter

-- Not a regulated substance

Bold indicates a detected concentration that is below ODEQ Risk-Based Concentrations

Bold and Shaded indicates the detected concentration exceeds ODEQ Risk-Based Concentrations

Table 12

Soil Gas Sample Analytical Results (2022)

Sample Identification	Depth ¹	Date	Analytical Results (ug/m³) ⁽²⁾							
			Analyzed by EPA Method TO-17							
			Gasoline	Benzene	Ethylbenzene	Touene	m,p-Xylene	o-Xylene	Naphthalene	2-Propanol
SV9@5	5	11/16/22	<1,700	2.1	<2.3	<100	8.5	3.9	<1.4	<46
SV10@5	5	11/16/22	<1,700	<1.7	<2.3	<100	4.6	<2.3	<1.4	<46
DEQ Risk-Based Concentrations										
Pathway	Receptor			RBCs						
Vapor Intrusion into Buildings (RBC _{sv})	Residential		79,000	72	220	1,000,000	21,000		17	NE
	Occupational		1,700,000	1,600	4,900	21,900,000	440,000		360	NE

Notes:

Highlighted cells indicate that detected value remaining on site exceeds one or more of the referenced RBCs.

Bold indicates a detection

 ${\it RBCs for Diesel Range and Residual Range Organics are given as Generic Diesel/Heating Oil.}\\$

- 1 depth in feet below ground surface
- 2 Results reported in micrograms per cubic meter (ug/m³)
- j The analyte concentration is reported below the lowest calibration standard. The value reported is anestimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is anestimate.