Stantec Consulting Services Inc. 601 SW Second Avenue Suite 1400, Portland OR 97204-3128

October 13, 2023 File: 185750980

Attention: Colin Polk Prosper Portland 222 NW 5th Avenue, Portland, Oregon 97207

Dear Mr. Polk,

Reference: Former USPS P&DC Property, 715 NW Hoyt Street, Portland, Oregon
Addendum to UST Decommissioning Report - DEQ ECSI #2183 and LUST File 26-93-6059

Stantec Consulting Services Inc. (Stantec) appreciates the opportunity to provide you with this report documenting the completion of underground storage tank (UST) decommissioning and soil cleanup at the above-referenced property (Property) in Portland, Oregon.

PROPERTY DESCRIPTION AND HISTORY

The Property is an approximately 13.4-acre, rectangular-shaped parcel located within the Pearl District in Portland, Oregon. The Property is comprised of tax lots 100 and 200 on Multnomah County tax map 1N 1E 34BC and is bounded by the Lovejoy Street Ramp to the Broadway Bridge to the north, by the NW Broadway Ramp to the Broadway Bridge to the east, NW Hoyt Street to the south, and NW 9th Avenue to the west.

The Property previously included a United States Postal Service (USPS) facility that processed all outgoing mail for the state of Oregon. This included a 398,000-square-foot Processing and Distribution Center (P&DC) Building, a 10,025-square-foot Vehicle Maintenance Facility (VMF) with a fuel island and 10,000-gallon diesel UST, a 157,400-square-foot multi-story parking structure, and surface parking and maneuvering areas for postal vehicles. The Property is in the process of being redeveloped and has been in active demolition and cleanup since 2020. The former P&DC Building was being demolished during cleanup activities described herein. Currently, the southwest portion of the Property is leased by the USPS and is primarily used as a retail post office.

A Property Location Map is provided as **Figure 1**. A Property layout map illustrating the area investigated is provided as **Figure 2**.

PROPERTY HISTORY AND PRIOR ENVIRONMENTAL ASSESSMENT ACTIVITIES

The former P&DC Building was heated with bunker C fuel from a 25,000-gallon heating oil tank (HOT). This report describes cleanup activities associated with this HOT. The 25,000-gallon Bunker C UST was formerly located near the southwest corner of the former P&DC Building. The UST was decommissioned in 1993 and was listed in Oregon Department of Environmental Quality's (DEQ's) leaking underground storage tank (LUST) database as #26-93-6059 and was administratively closed in November 1995. As

Page 2 of 6

Former Processing and Distribution Center Property, 715 NW Hoyt Street, Portland, Oregon – Addendum to UST Decommissioning Report - DEQ ECSI #2183 and LUST File 26-93-6059

noted in the LUST file closure documents, during removal, contamination was observed in the area of the product lines, which had been damaged during shoring activities while decommissioning of the UST. Results from the investigation and confirmatory sampling are documented in *Geotechnical Investigation*, 25,000 Gallon UST Removal (June 8, 1993) and UST Decommissioning & Soil Investigation Report (February 10, 1994) prepared by Dames & Moore (Dames & Moore, 1993 and 1994, respectively). Approximately 321 tons of Impacted soil was removed from this location and transported to Oregon Hydrocarbon for disposal. Following UST removal, three confirmation soil samples were collected from soil below the former UST. Soil sample analytical results ranged from "Non detect" to 33 milligrams per kilograms (mg/kg) of diesel-range hydrocarbons by Oregon Department of Environmental Quality (DEQ) analytical method TPH-418.1 modified. However, a pocket of residual soil contamination with diesel concentrations up to 770 mg/kg was left in place adjacent to the P&DC Building foundation as noted in DEQ's June 13,1997 no further action (NFA) letter.

In 1993, Dames & Moore installed monitoring well B-1-93 near the southeast corner of the P&DC building, north of the former UST location. A groundwater sample collected from well B-1-93 was analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX). No BTEX was detected in groundwater. On September 4, 2020 monitoring well B-1-93 was decommissioned by Cascade Drilling by overdrilling using a sonic drilling rig.

EXPANDED CONTAMINATED MEDIA MANAGEMENT PLAN REMEDIAL ACTION OBJECTIVES

Stantec prepared an Expanded Contaminated Media Management Plan (ECMMP) to facilitate phased Property cleanup activities which included the excavation and disposal of the reported pocket of residual contamination as noted in DEQ's NFA letter. The ECMMP was approved by the DEQ on July 2, 2020. The ECMMP established excavation limits and confirmation sampling procedures to remediate and manage predetermined areas including the residual pocket of contamination associated with the South P&DC Building Area HOT. The ECMMP established remedial action objectives for the excavation that would be achieved once all collected confirmation sample results and a calculated toxic equivalency quotient (TEQ) for carcinogenic polycyclic aromatic hydrocarbons (PAHs) were at or below DEQ direct contact risk-based concentrations (RBCs) for urban residential receptors.

FIELD ACTVITIES

Stantec was present on September 8, 2023, to provide professional oversight during excavation of the South P&DC Building Area HOT product lines and impacted soil, and to collect confirmation soil samples in accordance with the procedures described in the ECMMP. A track-mounted excavator operated by Raimore Construction (Raimore) of Portland, Oregon was used to excavate soil and expose the product lines. The HOT product lines were located between the former tank nest and the remaining P&DC Building foundation. Once exposed, the product lines were removed. Raimore continued to excavate soil beneath and on both sides of the product lines to a depth of approximately 8 feet below ground surface (bgs), to evaluate the nature and extent of any remaining contamination. Soil contamination was not observed in the excavation floor or sidewalls. A volume of less than a cubic yard of soil was not excavated near the former tank nest due to sluffing pea gravel from the former tank nest (directly south adjacent from the excavation). A Stantec daily field report describing excavation and oversight activities is included in **Attachment 1**.

Once the excavation was completed, a total of four confirmation soil samples (Ex6-South wall-8', Ex6-North

Page 3 of 6

Former Processing and Distribution Center Property, 715 NW Hoyt Street, Portland, Oregon – Addendum to UST Decommissioning Report - DEQ ECSI #2183 and LUST File 26-93-6059

wall-8', Ex6-West wall-8', and Ex6-East wall-8') were collected, one from the base of each of the excavation sidewalls at an approximate depth of 8 feet bgs as shown on **Figure 3**. Each soil sample was collected from the excavator bucket with disposable gloves and placed in laboratory supplied jars. Collected confirmation soil samples were submitted for the following analyses:

- Gasoline-range organics (GRO) by United States Environmental Protection Agency (USEPA) Method 5035 (field methanol preservation) and USEPA Method NWTPH-Gx.
- Diesel-range organics (DRO) and oil-range organics (ORO) by Method NWTPH-Dx.
- Volatile organic compounds (VOCs) by USEPA Methods 5035A and 8260D.
- Resource conservation and recovery act (RCRA) eight metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver) by USEPA 6020B.
- PAHs by USEPA Method 8270E SIM.

Following confirmation soil sampling the excavation was backfilled with clean excavated soil that was determined to be suitable for fill, based on visual moisture content. Soils unsuitable for use as backfill due to excessive moisture content were placed within existing construction soil stockpiles located on Property. Potentially contaminated soil, totaling 24.96 tons was delivered to the Waste Management Hillsboro Landfill for disposal. Waste tickets are included in **Attachment 2.**

SOIL SAMPLING RESULTS

A summary of detected concentrations in collected soil samples is presented in **Table 1** and a copy of the laboratory analytical report is included in **Attachment 3**.

As summarized in **Table 1**, GRO and ORO were not detected at a concentration above the reporting limit (RL) in the four soil samples. DRO was detected in one soil sample Ex6-North-8' at 33.2 mg/kg.

No VOCs were detected above the RL in collected soil samples.

PAHs were detected in the four soil samples above the RL for one or more of the following analytes:

- 1-Methylnaphthalene.
- 2-Methylnaphthalene.
- Benz(a)anthracene.
- Benza(a)pyrene.
- Benzo(b)fluoranthene.
- Benzo(g,h,i)perylene.
- Benzo(k)fluoranthene.
- Chrysene.
- Dibenz(a,h)anthracene.
- Dibenzofuran.
- Fluoranthene.
- Fluorene.
- Indeno(1,2,3-cd)pyrene.
- Naphthalene.
- Phenanthrene.
- Pyrene.

Page 4 of 6

Former Processing and Distribution Center Property, 715 NW Hoyt Street, Portland, Oregon – Addendum to UST Decommissioning Report - DEQ ECSI #2183 and LUST File 26-93-6059

Total arsenic was detected in all four of the soil samples ranging from 3.74 mg/kg to 12.8 mg/kg, total barium was detected in all four soil samples ranging from 139 mg/kg to 187 mg/kg, total chromium was detected in all four soil samples ranging from 12.4 mg/kg to 25.5 mg/kg and total lead was detected in all four soil samples ranging from 22.9 mg/kg to 48.4 mg/kg. Total mercury was detected in two soil samples at 0.121 mg/kg and 0.203 mg/kg and total silver was detected in one soil sample at 0.270 mg/kg. Cadmium and selenium were not detected in any of the four soil samples.

CONFIRMATION SOIL SAMPLING FINDINGS

Soil sample results were compared to DEQ's clean fill criteria (DEQ, 2019), DEQ background metals concentrations in soil for the Portland Basin (DEQ, 2018a), and DEQ RBCs (DEQ, 2018b and DEQ, 2023) for direct contact by urban residential, occupational, construction worker, and excavation worker receptors. The maximum DRO concentration (33.2 mg/kg in the sample collected in Ex6-North Wall-8') was below applicable DEQ RBCs.

Select PAHs (1-methylnaphthalene, dibenzofuran, and naphthalene) were detected in soil sample Ex6-South Wall-8' at concentrations that exceed DEQ's clean fill criteria, but do not exceed applicable RBCs. 1-Methylnaphthalene was found at a concentration of 1.03 mg/kg, dibenzofuran was found at a concentration of 0.0719, and naphthalene was found at a concentration of 0.117 mg/kg. Confirmation soil sample results from the other three locations did not exceed DEQ's clean fill criteria.

Total barium, total chromium, total silver, and total mercury concentrations detected in one or more of the four soil samples were reported below applicable DEQ RBCs. Total lead exceeded DEQ's clean fill criteria of 28 mg/kg in the samples collected from Ex6-North Wall-8' (32.6 mg/kg) and Ex6-West Wall-8' (48.4 mg/kg). Soil sample Ex6-South Wall-8', contained a total arsenic concentration of 12.8 mg/kg, which slightly exceeded the clean fill/background concentration for arsenic at 8.8 mg/kg and exceeds the occupational and urban residential direct contact RBCs of 1.0 mg/kg and 1.9 mg/kg. However, these RBCs are below the background concentration. Based on other arsenic results and regional concentrations of arsenic, these concentrations are not considered to pose a risk to Property receptors.

CLOSING

Stantec completed a subsurface investigation in the area of the South P&DC Building Area HOT that included excavating the pocket-in-place residual contamination associated with the product lines from the former HOT and collect confirmation soil samples from the excavation (**Figure 3**). Soil sampling results indicate that there has not been a significant contaminant release from the HOT product lines. Select concentrations of PAHs exceed DEQ clean fill criteria and Property soils will continue to be managed according to the ECMMP.

Therefore, Stantec does not recommend additional assessment or cleanup activities related to the South P&DC Building Area HOT. Although the LUST file was administratively closed in November 1995 (DEQ, 1995), this report should be included in DEQ's file to record that Prosper Portland thoroughly removed product lines and cleaned up residual soil contamination associated with this UST.

Page 5 of 6

Former Processing and Distribution Center Property, 715 NW Hoyt Street, Portland, Oregon – Addendum to UST Decommissioning Report - DEQ ECSI #2183 and LUST File 26-93-6059

Regards,

Attachment:

Stantec Consulting Services Inc.

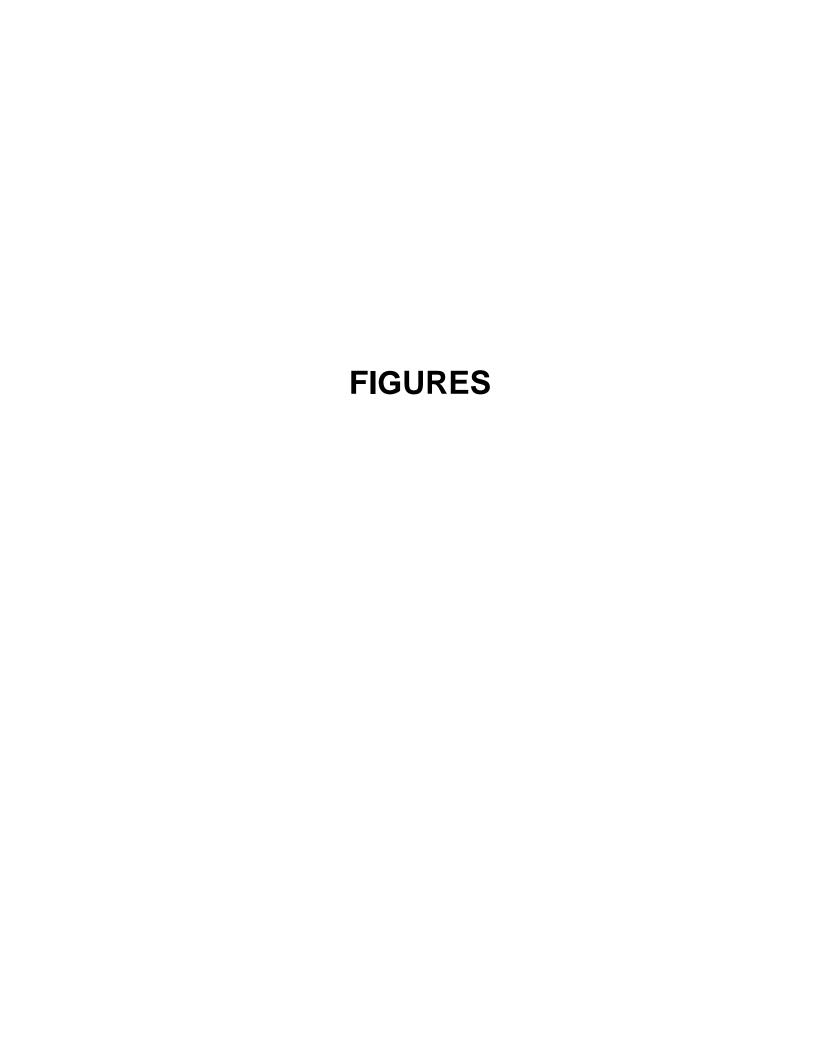
Kirk Warner RG, LEG, LHG

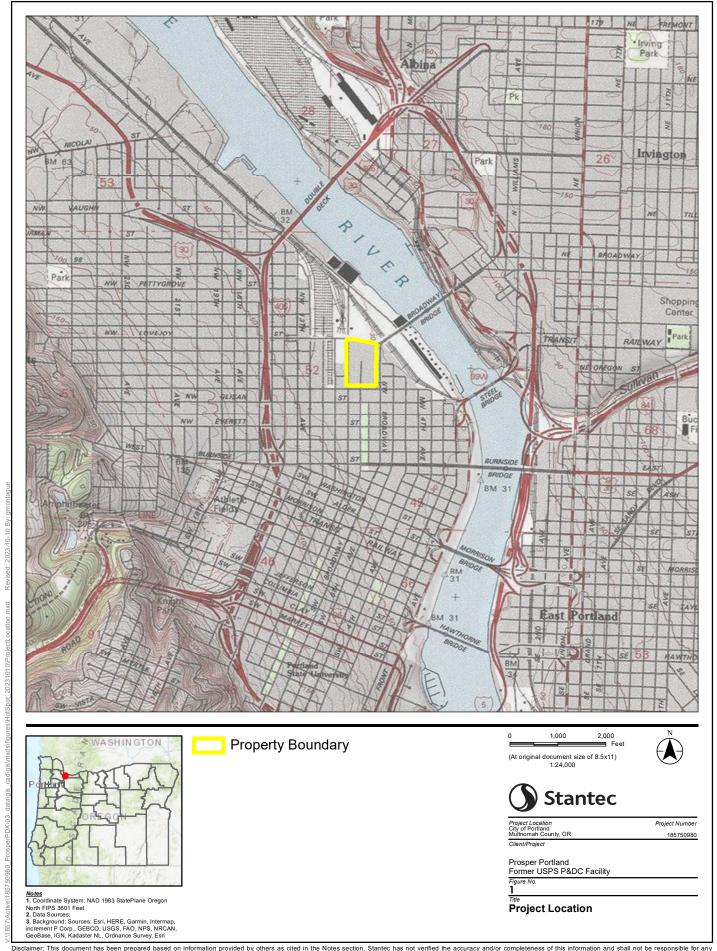
Project Geologist Phone: 503 310 5272 Bob.McAlister@stantec.com

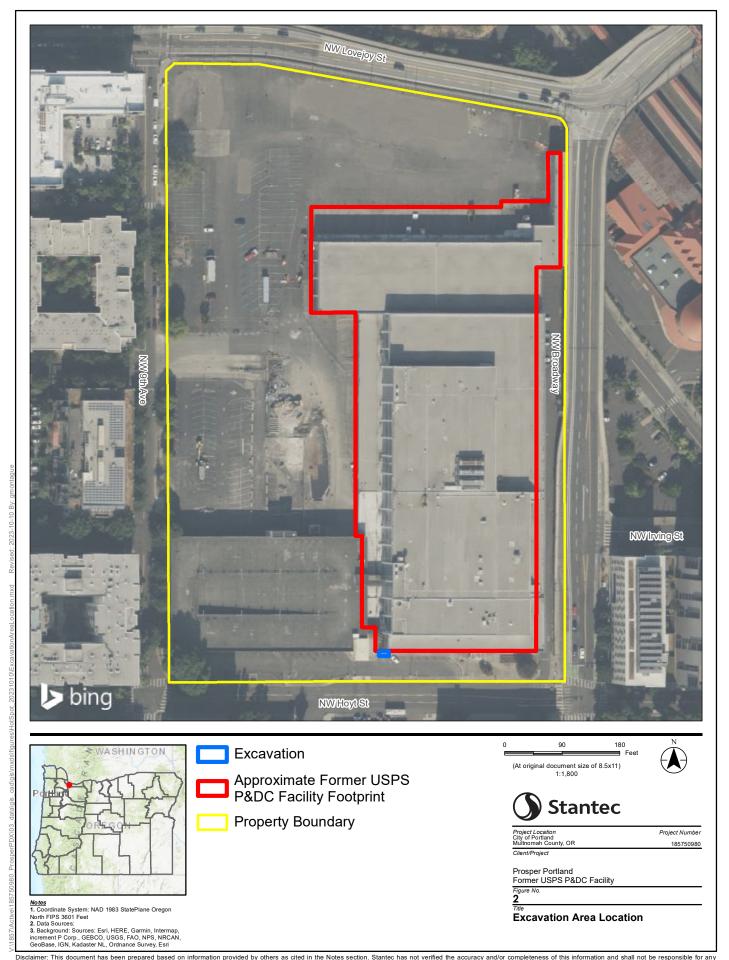
Figure 1 - Property Location Map

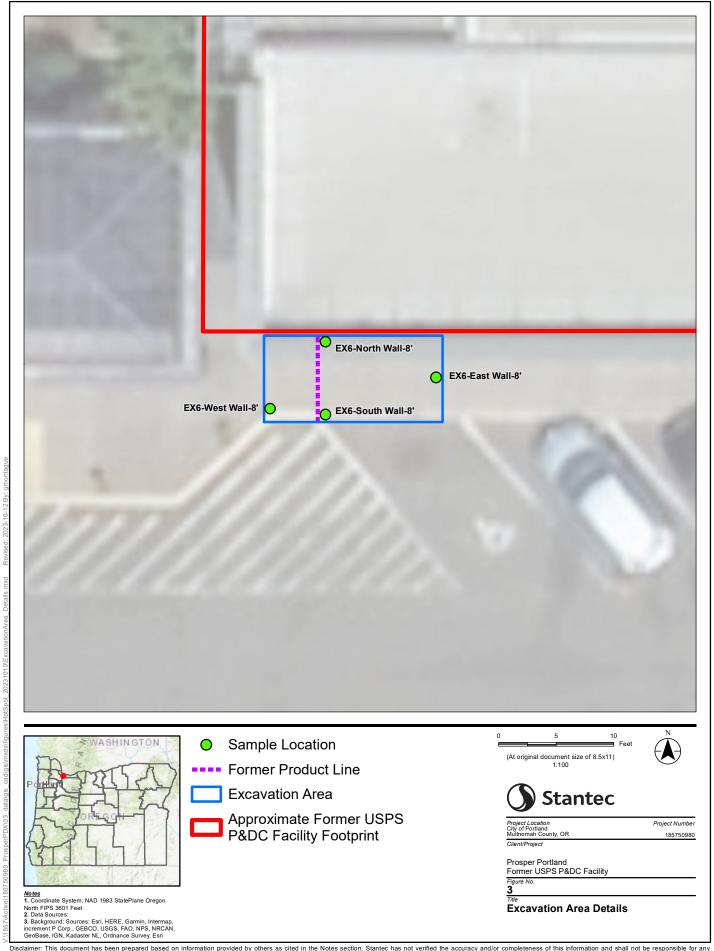
Figure 2 - Property Area Map
Figure 3 – Excavation Area Details
Table 1 – Soil Sampling Analytical Results
Attachment 1 – Waste Material Records
Attachment 2 – Daily Field Report

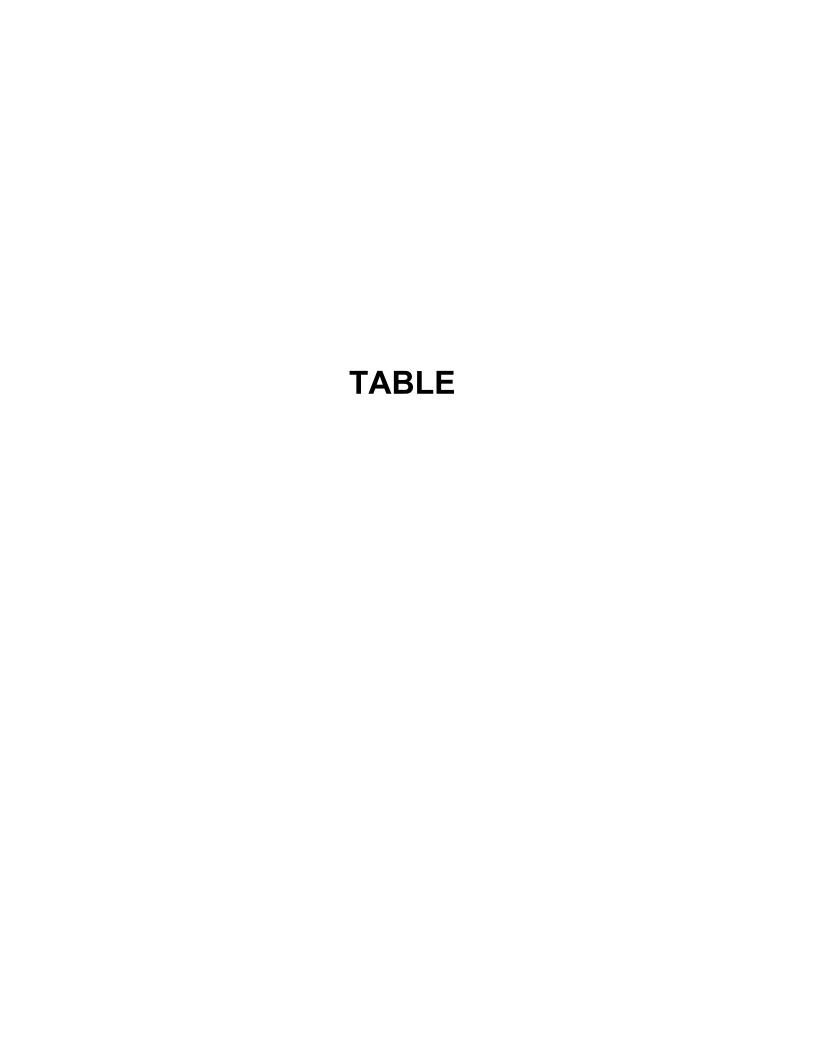
Attachment 3 - Laboratory Analytical Report


Graeme Taylor


Project Manager Phone: 503 310 5272 Kirk.Warner@stantec.com Page 6 of 6


Former Processing and Distribution Center Property, 715 NW Hoyt Street, Portland, Oregon – Addendum to UST Decommissioning Report - DEQ ECSI #2183 and LUST File 26-93-6059


REFERENCES


- Dames & Moore, 1993. Geotechnical Investigation, 25,000 Gallon UST Removal, USPS General Mail Facility, Portland, Oregon. June 8, 1993.
- Dames & Moore, 1994. UST Decommissioning & Soil Investigation Report, Portland General Mail Facility, Portland, Oregon. ODEQ File No. 26-93-6059, USPS: 549986-91-4240. February 10, 1994.
- DEQ, 1995. Administrative Closure Memorandum. November 24, 1995.
- DEQ, 2018a. Background Levels of Metals in Soils for Cleanups. Updated January 2018.
- DEQ, 2018b. Risk-Based Decision Making for the Remediation of Contaminated Sites. Table of generic Risk-Based Concentrations. Updated May 2018.
- DEQ, 2019. Clean Fill Determinations. February 21, 2019.
- DEQ, 2023. Risk-Based Concentrations for Individual Chemicals, April 2023 revision.

			Urban	Occupational	Construction	Excavation				
Analytical Group	Analyte	Clean Fill / Background	Residential RBC	RBC	Worker RBC	Worker RBC	Ex6-South Wall-8'	Ex6-North Wall-8'	Ex6-West Wall-8'	Ex6-East Wall-8'
TPH	NWTPH-Gx (Gasoline)	31	2500	20000	9700	>Max	6.59 U	7.06 U	5.35 U	6.53 U
	NWTPH-Dx (Diesel)	1100	2200	14000	4600	>Max	25.7 U	33.2	24.4 U	24.2 U
	NWTPH-Dx (Motor Oil)						51.4 U	51.0 U	48.8 U	48.4 U
VOCs	Acetone	1.2					1.32 U	1.41 U	1.07 U	1.31 U
	Acrylonitrile	0.00036	2.5	4.0	40	1100	0.132 U	0.141 U	0.107 U	0.131 U
	Benzene	0.023	24	37	380	11000	0.0132 U	0.0141 U	0.0107 U	0.0131 U
	Bromobenzene	2.5					0.0329 U	0.0353 U	0.0268 U	0.0326 U
	Bromochloromethane	1.3					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Bromodichloromethane	0.002	12	15	230	6300	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Bromoform	0.046	170	260	2700	74000	0.132 U	0.141 U	0.107 U	0.131 U
	Bromomethane	0.083	92	750	370	10000	0.659 U	0.706 U	0.535 U	0.653 U
	2-Butanone (MEK)	72					0.659 U	0.706 U	0.535 U	0.653 U
	n-Butylbenzene	190					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	sec-Butylbenzene	350					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	tert-Butylbenzene	96					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Carbon disulfide	0.81					0.659 U	0.706 U	0.535 U	0.653 U
				34	320		0.059 U	0.0706 U	0.0535 U	0.0653 U
	Carbon tetrachloride	0.013	21			8900	0.0329 U	0.0353 U	0.0333 U	0.0336 U
	Chlorobenzene	2.4	1100	8700	4700	130000	0.0329 U	0.0353 U 0.706 U		0.0326 U
	Chloroethane	310	320000	>Max	>Max	>Max			0.535 U	
	Chloroform	0.0034	22	26	410	11000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Chloromethane	2.2	2900	25000	25000	700000	0.329 U	0.353 U	0.268 U	0.326 U
	2-Chlorotoluene	14					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	4-Chlorotoluene	14					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Dibromochloromethane	0.0024	12	17	210	5800	0.132 U	0.141 U	0.107 U	0.131 U
	1,2-Dibromo-3-chloropropane	0.0000084					0.329 U	0.353 U	0.268 U	0.326 U
	1,2-Dibromoethane (EDB)	0.00012	0.53	0.73	9	250	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Dibromomethane	0.13					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	1,2-Dichlorobenzene	0.92	4400	36000	20000	560000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,3-Dichlorobenzene	0.74					0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,4-Dichlorobenzene	0.057	62	64	1300	36000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	Dichlorodifluoromethane	18					0.132 U	0.141 U	0.107 U	0.131 U
	1,1-Dichloroethane	0.044	190	260	3200	89000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,2-Dichloroethane (EDC)	0.0028	12	16	200	5600	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,1-Dichloroethene	6.7	3500	29000	13000	370000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	cis-1,2-Dichloroethene	0.63	310	2300	710	20000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,2-Dichloropropane	0.017					0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,3-Dichloropropane	7.8					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	2,2-Dichloropropane						0.0659 U	0.0706 U	0.0535 U	0.0653 U
	1,1-Dichloropropene						0.0659 U	0.0706 U	0.0535 U	0.0653 U
	cis-1,3-Dichloropropene	0.01					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	trans-1,3-Dichloropropene	0.01					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Ethylbenzene	0.22	110	150	1700	49000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	Hexachlorobutadiene	0.016				49000	0.132 U	0.141 U	0.107 U	0.131 U
	2-Hexanone	0.36					0.659 U	0.706 U	0.535 U	0.653 U
		+	7000	 57000	27000	750000	0.059 U	0.0706 U	0.0535 U	0.0653 U
	Isopropylbenzene	96	7000	57000	27000	750000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	4-Isopropyltoluene									0.0653 U
	Methylene chloride		170	1600	2100	58000	0.659 U	0.706 U	0.535 U	
	4-Methyl-2-pentanone (MiBK)	9.7					0.659 U	0.706 U	0.535 U	0.653 U
	Methyl tert-butyl ether (MTBE)	0.11	730	1100	12000	320000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Naphthalene	0.077	25	23	580	16000	0.132 U	0.141 U	0.107 U	0.131 U

Table 1 - Soil Analytical Results
UST Decommissioning and Soil Cleanup
Former USPS Processing Distribution Center Property
715 NW Hoyt Street
Portland, Oregon

Analytical Group	Analyte	Clean Fill / Background	Urban Residential RBC	Occupational RBC	Construction Worker RBC	Excavation Worker RBC	Ex6-South Wall-8'	Ex6-North Wall-8'	Ex6-West Wall-8'	Ex6-East Wall-8'
VOCs,	n-Propylbenzene	72					0.0329 U	0.0353 U	0.0268 U	0.0326 U
continued	Styrene	1.2	16000	130000	56000	>Max	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	1,1,1,2-Tetrachloroethane	0.013					0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,1,2,2-Tetrachloroethane	0.0018					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	Tetrachloroethene (PCE)	0.18	540	1000	1800	50000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	Toluene	23	12000	88000	28000	770000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	1,2,3-Trichlorobenzene	1.3					0.329 U	0.353 U	0.268 U	0.326 U
	1,2,4-Trichlorobenzene	0.2					0.329 U	0.353 U	0.268 U	0.326 U
	1,1,1-Trichloroethane	190	110000	870000	470000	>Max	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,1,2-Trichloroethane	0.0063	6.3	26	54	1500	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	1,2,3-Trichloropropane	0.000019					0.0659 U	0.0706 U	0.0535 U	0.0653 U
	1,2,4-Trimethylbenzene	10	860	6900	2900	81000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	1,3,5-Trimethylbenzene	11	860	6900	2900	81000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	m,p-Xylene	11	2900	25000	20000	560000	0.0659 U	0.0706 U	0.0535 U	0.0653 U
	o-Xylene	1	2900	25000	20000	560000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	trans-1,2-Dichloroethene	7	3100	23000	7100	200000	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	Trichloroethene	0.013	17	51	130	3700	0.0329 U	0.0353 U	0.0268 U	0.0326 U
	Trichlorofluoromethane	52	15000	130000	69000	>Max	0.132 U	0.141 U	0.107 U	0.131 U
	Vinyl chloride	0.00057	0.8	4.4	34	950	0.0329 U	0.0353 U	0.0268 U	0.0326 U
PAHs	1-Methylnaphthalene	0.36					1.03	0.0128 U	0.0125 U	0.0119 U
	2-Methylnaphthalene	11					1.56	0.0128 U	0.0125 U	0.0119 U
	Acenaphthene	0.25	9400	70000	21000	590000	0.103 U	0.0128 U	0.0125 U	0.0119 U
	Acenaphthylene	120					0.0263 U	0.0128 U	0.0125 U	0.0119 U
	Anthracene	6.8	47000	350000	110000	>Max	0.0338 U	0.0128 U	0.0125 U	0.0119 U
	Benz[a]anthracene	0.73	2.5	21	170	4800	0.0626	0.0221	0.0127	0.0119 U
	Benzo[a]pyrene	0.11	0.25	2.1	17	490	0.0687	0.0302	0.0146	0.0119 U
	Benzo[a]pyrene (BaP equivalents)	0.11	0.25	2.1	17	490	0.096	0.040	0.020	0.0
	Benzo[b]fluoranthene	1.1	2.5	21	170	4900	0.0401	0.0378	0.0215	0.0119 U
	Benzo[k]fluoranthene	11	25	210	1700	49000	0.0125 U	0.0166	0.0125 U	0.0119 U
	Benzo(g,h,i)perylene	25					0.0296	0.0895	0.0128	0.0119 U
	Chrysene	3.1	250	2100	17000	490000	0.207	0.033	0.0209	0.0119 U
	Dibenz[a,h]anthracene	0.11	0.25	2.1	17	490	0.0154	0.0128 U	0.0125 U	0.0119 U
	Dibenzofuran	0.002					0.0719	0.0128 U	0.0125 U	0.0119 U
	Fluoranthene	10	4800	30000	10000	280000	0.0282	0.0527	0.0275	0.0119 U
	Fluorene	3.7	6300	47000	14000	390000	0.132	0.0128 U	0.0125 U	0.0119 U
	Indeno[1,2,3-cd]pyrene	1.1	2.5	21	170	4900	0.0161	0.0332	0.016	0.0119 U
	Naphthalene	0.077	15	23	580	16000	0.117	0.0128 U	0.0125 U	0.0119 U
	Phenanthrene						0.368	0.0245	0.0201	0.0119 U
	Pyrene	10	3600	23000	7500	210000	0.103	0.051	0.0272	0.0137

Table 1 - Soil Analytical Results
UST Decommissioning and Soil Cleanup
Former USPS Processing Distribution Center Property
715 NW Hoyt Street
Portland, Oregon

Analytical Group	Analyte	Clean Fill / Background	Urban Residential RBC	Occupational RBC	Construction Worker RBC	Excavation Worker RBC	Ex6-South Wall-8'	Ex6-North Wall-8'	Ex6-West Wall-8'	Ex6-East Wall-8'
Metals	Arsenic	8.8	1.0	1.9	15	420	12.8	3.74	7.82	8.02
	Barium	790	31000	220000	69000	>Max	187	139	180	160
	Cadmium	0.63	160	1100	350	9700	0.265 U	0.252 U	0.249 U	0.256 U
	Chromium	76	NV	>Max	530000	>Max	25.5	12.4	22.2	19.3
	Lead	28	400	800	800	800	22.9	32.6	48.4	25.2
	Mercury	0.23	47	350	110	2900	0.203	0.101 U	0.121	0.102 U
	Selenium	0.71					1.33 U	1.26 U	1.24 U	1.28 U
	Silver		780	5800	1800	49000	0.265 U	0.252 U	0.270	0.256 U

Notes:

All results expressed as milligrams per kilogram

bold = indicates concentrations detected above method detection limits

- = Result exceeds clean fill/background value.
- = Result exceeds background and one or more direct contact RBC
- -- = no screening value is listed for this analyte.

>Max = Substance is deemed not to pose a risk at any concentration

Clean Fill/Background Screening Values (Portland Basin), Oregon DEQ April 2019 revision

mg/kg = milligrams per kilogram

NV = Indicates chemcial is non-volatile

PAH = polycyclic aromatic hydrocarbons

RBCs = Oregon DEQ Risk-Based Concentrations; May 2018, amended June 2023

TEQ = Toxic Equivalency Quotient

TPH = total petroleum hydrocarbons

VOCs = volatile organic compounds

Data Qualifier Codes:

U = The analyte was not detected at or above the reported value

Attachment 1 Waste Material Records

Hillsboro Landfill, Inc 3205 SE Minter Bridge Hillsboro, OR, 97123 Ph: (503)-640-9427

Reprint

Volume

Ticket# 1695663

Customer Name RAIMORE CONSTRUCTION RAIMORE Carrier CUTTER Vehicle# 22

Ticket Date 09/08/2023
Payment Type Credit Account

Manual Ticket#

Hauling Ticket#

Route

State Waste Code

Manifest Destination

PΟ 21010

PO 21010
Profile 1407550R (DIESEL FUEL FUEL OIL CONTAMINATED SOIL)
Generator 168-PROSPER PORTLAND 715 NW PROSPER PORTLAND_715 NW HOYT ST, PORTLAND OR 972

Scale Operator Inbound Gross 72580 lb 09/08/2023 09:27:43 Inbound 1 ECOBB Tare 29480 lb In Out 09/08/2023 09:27:43 43100 lb **ECOBB** Net 21.55 Tons

Container

JERRY

Billing # 0003125

Gen EPA ID N/A

Driver

Check#

Grid

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1 2	ENVCLEANUP RGCPCS- ENERGY-Energy Surc		21.55	Tons				MULT-IN

Total Tax Total Ticket

Driver`s Signature

Hillsboro Landfill, Inc 3205 SE Minter Bridge Hillsboro, OR, 97123 Ph: (503)-640-9427

Reprint Ticket# 1695702

Volume

Customer Name RAIMORE CONSTRUCTION RAIMORE Carrier CUTTER Vehicle# 22

Ticket Date 09/08/2023
Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route

State Waste Code Manifest

Destination

PΟ 21010

PO 21010
Profile 140755OR (DIESEL FUEL FUEL OIL CONTAMINATED SOIL)
Generator 168-PROSPER PORTLAND 715 NW PROSPER PORTLAND_715 NW HOYT ST, PORTLAND OR 972

Scale Operator Inbound Gross 36300 lb 09/08/2023 11:33:31 Inbound 2 ECOBB Tare 29480 lb In Out 09/08/2023 11:33:31 **ECOBB** Net 6820 lb 3.41 Tons

Container

JERRY

Billing # 0003125

Gen EPA ID N/A

Driver

Check#

Grid

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1 2	ENVCLEANUP RGCPCS- ENERGY-Energy Surc		3.41	Tons				MULT-IN MULT-IN

Total Tax Total Ticket

Driver`s Signature

Attachment 2 Daily Field Report

	DAILY FIELD REPORT
PROJECT:	Prosper Portland – Former USPS P&DC Facility
LOCATION:	715 NW Hoyt Street, Portland Oregon
DATE:	9/8/2023
WEATHER:	70 F, Clear, 4.7mph (N)
PROJECT NUMBER:	185750980

Stantec

601 SW 2nd Ave. Suite 1400 Portland, OR

PERSONNEL - Name, affiliation, and purpose of visit

Stantec: Kirk Warner - Project Geologist - Heating oil release cleanup

SITE CLEANUP ACTIVITIES

- Raimore Construction, and Stantec onsite today
- Truck in rotation today.
 - Two trucks.
- Raimore excavated the product lines, moved the product lines out of the way and continued to excavate soil below and on both sides of the product lines, to evaluate the nature and extent of any remaining contamination.
- Soil contamination was not observed in the excavation, however an area consisting of less that a cubic yard of soil
 was unable to be exposed due to sluffing pea gravel from the former tank pit into the new excavation. Prosper
 Portland determined that the risk of undermining the area below the UST tank pit by allowing the fill gravel to flow
 out was not worth it to collect a sample from a relatively small area of potentially contaminated soil.
- Raimore hauled off any soil that was unsuitable for fill, due to moisture content.
- Following excavation and soil sampling the excavation was backfilled with the remaining excavated soil. Future
 site development include the removal of the excavation area and surrounding soil for construction, so it was
 determined by the contractor that it was unnecessary to backfill the excavation to the existing ground surface with
 imported fill.

SITE SPECIFIC ITEMS

EROSION SEDIMENT CONTROL MEASURES - Dust, Track-Off, Inlet Protection, Fences/Berms, Soil Piles, etc.

Area around excavation was cleaned up and washed down by the contractor prior to leaving the site.

TRUCK LOG - Track record of truck hauling (import and export):

• Single Truck – Hauled a truckload of unsuitable excavated soil with a high moisture content to another location of the site. Second truck was not used.

CONTAMINATED SOIL EXCAVATION – Progress, sampling, unanticipated contamination, etc.

• No contaminated soil was observed, however confirmation soil samples were collected from the sidewalls and base of the excavation for analytical testing.

DEMOLITION AND REDEVELOPMENT PROGRESS - Structure/Utility demo, backfill, Well abandonment, etc.

NΑ

PLANNED ACTIVITIES FOR FOLLOWING WEEK

NA

OTHER OBSERVATIONS

NA

SIGNATURE[S] 1/4 / War

PROJECT NAME	PROJECT NO.	FIELD REPORT NO.
Prosper Portland - USPS	185750980	1
ADDRESS	DATE	PAGE
715 NW Hoyt Street	9/8/2023	Page 1 of 5

Photo 1: Exposed product lines in excavation.

PROJECT NAME	PROJECT NO.	FIELD REPORT NO.
Prosper Portland - USPS	185750980	1
ADDRESS	DATE	PAGE
715 NW Hoyt Street	9/8/2023	Page 2 of 5

Photo 2: Removal of exposed product lines.

PROJECT NAME	PROJECT NO.	FIELD REPORT NO.
Prosper Portland - USPS	185750980	1
ADDRESS	DATE	PAGE
715 NW Hoyt Street	9/8/2023	Page 3 of 5

Photo 4: Excavation extended below the product lines and sluffing pea gravel from the tank nest.

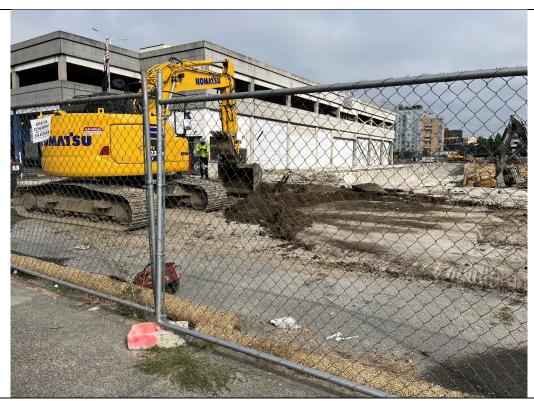


Photo 5: Backfilling of the excavation with removed soil.

PROJECT NAME	PROJECT NO.	FIELD REPORT NO.
Prosper Portland - USPS	185750980	1
ADDRESS	DATE	PAGE
715 NW Hoyt Street	9/8/2023	Page 4 of 5

Attachment 3 Laboratory Analytical Report

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, September 22, 2023 Graeme Taylor Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

RE: A3I0916 - USPS - Prosper PDX - 185750980

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3I0916, which was received by the laboratory on 9/8/2023 at 11:25:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 3.0 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION							
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
Ex6-South Wall-8'	A3I0916-01	Soil	09/08/23 08:50	09/08/23 11:25				
Ex6-North Wall-8'	A3I0916-02	Soil	09/08/23 09:15	09/08/23 11:25				
Ex6-West Wall-8'	A310916-03	Soil	09/08/23 09:00	09/08/23 11:25				
Ex6-East Wall-8'	A3I0916-04	Soil	09/08/23 09:40	09/08/23 11:25				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soil		Batch:	2310606			
Diesel	ND		25.7	mg/kg dry	1	09/20/23 21:06	NWTPH-Dx			
Oil	ND		51.4	mg/kg dry	1	09/20/23 21:06	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Reco	very: 61 %	Limits: 50-150 %	1	09/20/23 21:06	NWTPH-Dx			
Ex6-North Wall-8' (A3l0916-02)			Matrix: Soil		Batch: 2310606					
Diesel	33.2		25.5	mg/kg dry	1	09/20/23 21:52	NWTPH-Dx	F-11		
Oil	ND		51.0	mg/kg dry	1	09/20/23 21:52	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	1	09/20/23 21:52	NWTPH-Dx			
Ex6-West Wall-8' (A3l0916-03)				Matrix: Soil		Batch:	2310606			
Diesel	ND		24.4	mg/kg dry	1	09/20/23 22:39	NWTPH-Dx			
Oil	ND		48.8	mg/kg dry	1	09/20/23 22:39	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Reco	very: 58 %	Limits: 50-150 %	1	09/20/23 22:39	NWTPH-Dx			
Ex6-East Wall-8' (A3I0916-04)				Matrix: Soil		Batch:	2310606			
Diesel	ND		24.2	mg/kg dry	1	09/20/23 23:02	NWTPH-Dx			
Oil	ND		48.4	mg/kg dry	1	09/20/23 23:02	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Reco	very: 64 %	Limits: 50-150 %	1	09/20/23 23:02	NWTPH-Dx			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (E	Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soil		Batch	: 2310382	
Gasoline Range Organics	ND		6.59	mg/kg dry	50	09/13/23 18:56	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	1	09/13/23 18:56	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	1	09/13/23 18:56	NWTPH-Gx (MS)	
Ex6-North Wall-8' (A3I0916-02)				Matrix: Soil		Batch	: 2310382	
Gasoline Range Organics	ND		7.06	mg/kg dry	50	09/13/23 19:22	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	1	09/13/23 19:22	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-150 %	1	09/13/23 19:22	NWTPH-Gx (MS)	
Ex6-West Wall-8' (A3I0916-03)				Matrix: Soil		Batch	: 2310382	
Gasoline Range Organics	ND		5.35	mg/kg dry	50	09/13/23 19:48	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 100 %	Limits: 50-150 %	1	09/13/23 19:48	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-150 %	1	09/13/23 19:48	NWTPH-Gx (MS)	
Ex6-East Wall-8' (A3l0916-04)				Matrix: Soil	Batch: 2310382		: 2310382	
Gasoline Range Organics	ND		6.53	mg/kg dry	50	09/13/23 20:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 98 %	Limits: 50-150 %	1	09/13/23 20:13	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-150 %	1	09/13/23 20:13	NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soi	l	Batch:	2310382	
Acetone	ND		1320	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Acrylonitrile	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Benzene	ND		13.2	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Bromobenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Bromochloromethane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Bromodichloromethane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Bromoform	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Bromomethane	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
2-Butanone (MEK)	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
n-Butylbenzene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
sec-Butylbenzene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
tert-Butylbenzene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Carbon disulfide	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Carbon tetrachloride	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Chlorobenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Chloroethane	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Chloroform	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Chloromethane	ND		329	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
2-Chlorotoluene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
4-Chlorotoluene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Dibromochloromethane	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		329	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Dibromomethane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2-Dichlorobenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,3-Dichlorobenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,4-Dichlorobenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Dichlorodifluoromethane	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1-Dichloroethane	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1-Dichloroethene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
cis-1,2-Dichloroethene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
trans-1,2-Dichloroethene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

			•	ds by EPA 82		D-4-		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soil	1	Batch:	: 2310382	
1,2-Dichloropropane	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,3-Dichloropropane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
2,2-Dichloropropane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1-Dichloropropene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
cis-1,3-Dichloropropene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
trans-1,3-Dichloropropene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Ethylbenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Hexachlorobutadiene	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
2-Hexanone	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Isopropylbenzene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
4-Isopropyltoluene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Methylene chloride	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		659	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Naphthalene	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
n-Propylbenzene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Styrene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Tetrachloroethene (PCE)	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Toluene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2,3-Trichlorobenzene	ND		329	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2,4-Trichlorobenzene	ND		329	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1,1-Trichloroethane	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,1,2-Trichloroethane	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Trichloroethene (TCE)	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Trichlorofluoromethane	ND		132	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2,3-Trichloropropane	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,2,4-Trimethylbenzene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
1,3,5-Trimethylbenzene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
Vinyl chloride	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
n,p-Xylene	ND		65.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	
o-Xylene	ND		32.9	ug/kg dry	50	09/13/23 18:56	5035A/8260D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soil		Batch:	2310382	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	I	09/13/23 18:56	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/13/23 18:56	5035A/8260D	
4-Bromofluorobenzene (Surr)			96 %	79-120 %	1	09/13/23 18:56	5035A/8260D	
Ex6-North Wall-8' (A3l0916-02)				Matrix: Soil		Batch:	2310382	
Acetone	ND		1410	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Acrylonitrile	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Benzene	ND		14.1	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Bromobenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Bromochloromethane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Bromodichloromethane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Bromoform	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Bromomethane	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
2-Butanone (MEK)	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
n-Butylbenzene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
sec-Butylbenzene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
tert-Butylbenzene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Carbon disulfide	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Carbon tetrachloride	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Chlorobenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Chloroethane	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Chloroform	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Chloromethane	ND		353	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
2-Chlorotoluene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
4-Chlorotoluene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Dibromochloromethane	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		353	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Dibromomethane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,2-Dichlorobenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,3-Dichlorobenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
1,4-Dichlorobenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Dichlorodifluoromethane	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1-Dichloroethane	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
1,1-Diemorochiane	אט		33.3	ug/kg ui y	50	07110120 17.22	20221 1 0200D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
Ex6-North Wall-8' (A3l0916-02)				Matrix: Soi	I	Batch:	2310382	
,2-Dichloroethane (EDC)	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1-Dichloroethene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
sis-1,2-Dichloroethene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
rans-1,2-Dichloroethene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,2-Dichloropropane	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,3-Dichloropropane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
2,2-Dichloropropane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1-Dichloropropene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
eis-1,3-Dichloropropene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
rans-1,3-Dichloropropene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Ethylbenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Hexachlorobutadiene	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
2-Hexanone	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
sopropylbenzene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
l-Isopropyltoluene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Methylene chloride	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
l-Methyl-2-pentanone (MiBK)	ND		706	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Naphthalene	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
n-Propylbenzene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Styrene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1,1,2-Tetrachloroethane	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Tetrachloroethene (PCE)	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Toluene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,2,3-Trichlorobenzene	ND		353	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,2,4-Trichlorobenzene	ND		353	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1,1-Trichloroethane	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,1,2-Trichloroethane	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
richloroethene (TCE)	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
richlorofluoromethane	ND		141	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,2,3-Trichloropropane	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
,2,4-Trimethylbenzene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Ex6-North Wall-8' (A3l0916-02)				Matrix: Soil		Batch:	2310382	
1,3,5-Trimethylbenzene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Vinyl chloride	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
m,p-Xylene	ND		70.6	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
o-Xylene	ND		35.3	ug/kg dry	50	09/13/23 19:22	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	I	09/13/23 19:22	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/13/23 19:22	5035A/8260D	
4-Bromofluorobenzene (Surr)			96 %	79-120 %	I	09/13/23 19:22	5035A/8260D	
Ex6-West Wall-8' (A3l0916-03)		Mat		Matrix: Soil		Batch:	2310382	
Acetone	ND		1070	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Acrylonitrile	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Benzene	ND		10.7	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Bromobenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Bromochloromethane	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Bromodichloromethane	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Bromoform	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Bromomethane	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
2-Butanone (MEK)	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
n-Butylbenzene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
sec-Butylbenzene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
tert-Butylbenzene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Carbon disulfide	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Carbon tetrachloride	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Chlorobenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Chloroethane	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Chloroform	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Chloromethane	ND		268	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
2-Chlorotoluene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
4-Chlorotoluene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Dibromochloromethane	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		268	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Dibromomethane	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Sample							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-West Wall-8' (A3I0916-03)				Matrix: Soil			2310382	
	3775		26.0					
1,2-Dichlorobenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,3-Dichlorobenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,4-Dichlorobenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Dichlorodifluoromethane	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,1-Dichloroethane	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,1-Dichloroethene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
cis-1,2-Dichloroethene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
trans-1,2-Dichloroethene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,2-Dichloropropane	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,3-Dichloropropane	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
2,2-Dichloropropane	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,1-Dichloropropene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
cis-1,3-Dichloropropene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
trans-1,3-Dichloropropene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Ethylbenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Hexachlorobutadiene	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
2-Hexanone	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Isopropylbenzene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
4-Isopropyltoluene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Methylene chloride	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		535	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Naphthalene	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
n-Propylbenzene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Styrene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		53.5	ug/kg dry ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Tetrachloroethene (PCE)	ND ND		26.8	ug/kg dry ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Foluene	ND ND		53.5	ug/kg dry ug/kg dry	50	09/13/23 19:48	5035A/8260D 5035A/8260D	
,2,3-Trichlorobenzene	ND ND		268	ug/kg dry ug/kg dry	50	09/13/23 19:48	5035A/8260D	
,2,3-Trichlorobenzene	ND ND		268 268		50 50	09/13/23 19:48	5035A/8260D 5035A/8260D	
, ,				ug/kg dry				
1,1,1-Trichloroethane	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
Ex6-West Wall-8' (A3l0916-03)				Matrix: Soil		Batch: 2310382		
1,1,2-Trichloroethane	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Trichloroethene (TCE)	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Trichlorofluoromethane	ND		107	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,2,3-Trichloropropane	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,2,4-Trimethylbenzene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
1,3,5-Trimethylbenzene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Vinyl chloride	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
m,p-Xylene	ND		53.5	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
o-Xylene	ND		26.8	ug/kg dry	50	09/13/23 19:48	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	1	09/13/23 19:48	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/13/23 19:48	5035A/8260D	
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	09/13/23 19:48	5035A/8260D	
Ex6-East Wall-8' (A3l0916-04)	Matrix: Soil Batch: 2310382				2310382			
Acetone	ND		1310	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Acrylonitrile	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Benzene	ND		13.1	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Bromobenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Bromochloromethane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Bromodichloromethane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Bromoform	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Bromomethane	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
2-Butanone (MEK)	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
n-Butylbenzene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
sec-Butylbenzene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
ert-Butylbenzene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Carbon disulfide	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Carbon tetrachloride	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Chlorobenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Chloroethane	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Chloroform	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Chloromethane	ND		326	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
-Chlorotoluene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	:60D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Ex6-East Wall-8' (A3l0916-04)				Matrix: Soi	1	Batch:	2310382	
4-Chlorotoluene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Dibromochloromethane	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		326	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Dibromomethane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2-Dichlorobenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,3-Dichlorobenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,4-Dichlorobenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Dichlorodifluoromethane	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1-Dichloroethane	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1-Dichloroethene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
cis-1,2-Dichloroethene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
trans-1,2-Dichloroethene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2-Dichloropropane	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,3-Dichloropropane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
2,2-Dichloropropane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1-Dichloropropene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
cis-1,3-Dichloropropene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
trans-1,3-Dichloropropene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Ethylbenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Hexachlorobutadiene	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
2-Hexanone	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Isopropylbenzene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
4-Isopropyltoluene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Methylene chloride	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		653	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Naphthalene	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
n-Propylbenzene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Styrene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
-,-,-,-	.,,,		00.0	-6 -6 -1	50			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 12 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-East Wall-8' (A3l0916-04)				Matrix: Soil		Batch: 2310382		
Tetrachloroethene (PCE)	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Toluene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2,3-Trichlorobenzene	ND		326	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2,4-Trichlorobenzene	ND		326	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1,1-Trichloroethane	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,1,2-Trichloroethane	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Trichloroethene (TCE)	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Trichlorofluoromethane	ND		131	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2,3-Trichloropropane	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,2,4-Trimethylbenzene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
1,3,5-Trimethylbenzene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Vinyl chloride	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
m,p-Xylene	ND		65.3	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
o-Xylene	ND		32.6	ug/kg dry	50	09/13/23 20:13	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	1	09/13/23 20:13	5035A/8260D	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/13/23 20:13	5035A/8260D	
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	09/13/23 20:13	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	Hs) by EPA 827	70E (SIM)		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soil		Batch:	2310325	
Acenaphthene	ND		103	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	R-02
Acenaphthylene	ND		26.3	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	R-02
Anthracene	ND		33.8	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	R-02
Benz(a)anthracene	62.6		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	M-05
Benzo(a)pyrene	68.7		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Benzo(b)fluoranthene	40.1		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Benzo(g,h,i)perylene	29.6		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Chrysene	207		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Dibenz(a,h)anthracene	15.4		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Fluoranthene	28.2		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Fluorene	132		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	16.1		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
l-Methylnaphthalene	1030		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
2-Methylnaphthalene	1560		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Naphthalene	117		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Phenanthrene	368		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Pyrene	103		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Dibenzofuran	71.9		12.5	ug/kg dry	1	09/13/23 12:22	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 71 %	Limits: 44-120 %	1	09/13/23 12:22	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			70 %	54-127 %	1	09/13/23 12:22	EPA 8270E SIM	
Ex6-North Wall-8' (A3l0916-02)				Matrix: Soil		Batch:	2310325	
Acenaphthene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Acenaphthylene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Anthracene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Benz(a)anthracene	22.1		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Benzo(a)pyrene	30.2		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Benzo(b)fluoranthene	37.8		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	M-05
Benzo(k)fluoranthene	16.6		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	M-05
Benzo(g,h,i)perylene	89.5		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
				S -8 J	-			
Chrysene	33.0		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-North Wall-8' (A3l0916-02)				Matrix: Soil		Batch:	2310325	
Fluoranthene	52.7		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Fluorene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	33.2		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
l-Methylnaphthalene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
2-Methylnaphthalene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Naphthalene	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Phenanthrene	24.5		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Pyrene	51.0		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Dibenzofuran	ND		12.8	ug/kg dry	1	09/13/23 12:47	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 82 %	Limits: 44-120 %	1	09/13/23 12:47	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			80 %	54-127 %	1	09/13/23 12:47	EPA 8270E SIM	
Ex6-West Wall-8' (A3l0916-03)				Matrix: Soil		Batch:	: 2310325	
Acenaphthene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Acenaphthylene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Anthracene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Benz(a)anthracene	12.7		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Benzo(a)pyrene	14.6		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Benzo(b)fluoranthene	21.5		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Benzo(g,h,i)perylene	12.8		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Chrysene	20.9		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Fluoranthene	27.5		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Fluorene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	16.0		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
-Methylnaphthalene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
2-Methylnaphthalene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Naphthalene	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Phenanthrene	20.1		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Pyrene	27.2		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Dibenzofuran	ND		12.5	ug/kg dry	1	09/13/23 13:12	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 73 %	Limits: 44-120 %	1	09/13/23 13:12	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	AHs) by EPA 827	70E (SIM)		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-West Wall-8' (A3I0916-03)				Matrix: Soil		Batch:	2310325	
Surrogate: p-Terphenyl-d14 (Surr)		Reco	very: 72 %	Limits: 54-127 %	1	09/13/23 13:12	EPA 8270E SIM	
Ex6-East Wall-8' (A3l0916-04)				Matrix: Soil		Batch:	2310325	
Acenaphthene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Acenaphthylene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Anthracene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Benz(a)anthracene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Benzo(a)pyrene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Chrysene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Fluoranthene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Fluorene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
1-Methylnaphthalene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
2-Methylnaphthalene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Naphthalene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Phenanthrene	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Pyrene	13.7		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Dibenzofuran	ND		11.9	ug/kg dry	1	09/13/23 13:38	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 77 %	Limits: 44-120 %	1	09/13/23 13:38	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			75 %	54-127 %	1	09/13/23 13:38	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Ex6-South Wall-8' (A3l0916-01)				Matrix: Soi	I			
Batch: 23I0542								
Arsenic	12.8		1.33	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Barium	187		1.33	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Cadmium	ND		0.265	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Chromium	25.5		1.33	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Lead	22.9		0.265	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Mercury	0.203		0.106	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Selenium	ND		1.33	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Silver	ND		0.265	mg/kg dry	10	09/18/23 20:59	EPA 6020B	
Ex6-North Wall-8' (A3l0916-02)				Matrix: Soi	I			
Batch: 23I0542								
Arsenic	3.74		1.26	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
3arium -	139		1.26	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Cadmium	ND		0.252	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Chromium	12.4		1.26	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Lead	32.6		0.252	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Mercury	ND		0.101	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Selenium	ND		1.26	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Silver	ND		0.252	mg/kg dry	10	09/18/23 21:14	EPA 6020B	
Ex6-West Wall-8' (A3l0916-03)				Matrix: Soi	I			
Batch: 23I0542								
Arsenic	7.82		1.24	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
Barium	180		1.24	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
Cadmium	ND		0.249	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
Chromium	22.2		1.24	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
Lead	48.4		0.249	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
Aercury	0.121		0.0996	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
Selenium	ND		1.24	mg/kg dry	10	09/18/23 21:20	EPA 6020B	
	0.270		0.249	mg/kg dry	10	09/18/23 21:20	EPA 6020B	

Batch: 23I0542

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Ex6-East Wall-8' (A3l0916-04)				Matrix: Soi			11201100 1001	7,000
Arsenic	8.02		1.28	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Barium	160		1.28	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Cadmium	ND		0.256	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Chromium	19.3		1.28	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Lead	25.2		0.256	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Mercury	ND		0.102	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Selenium	ND		1.28	mg/kg dry	10	09/18/23 21:25	EPA 6020B	
Silver	ND		0.256	mg/kg dry	10	09/18/23 21:25	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 18 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

ANALYTICAL SAMPLE RESULTS

	Percent Dry Weight													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes						
Ex6-South Wall-8' (A3l0916-01)				Matrix: So	oil	Batch:	2310284							
% Solids	76.7		1.00	%	1	09/12/23 06:49	EPA 8000D							
Ex6-North Wall-8' (A3l0916-02)				Matrix: So	oil	Batch:	2310284							
% Solids	73.8		1.00	%	1	09/12/23 06:49	EPA 8000D							
Ex6-West Wall-8' (A3l0916-03)				Matrix: So	oil	Batch:	2310284							
% Solids	79.6		1.00	%	1	09/12/23 06:49	EPA 8000D							
Ex6-East Wall-8' (A3l0916-04)				Matrix: So	oil	Batch:	2310284							
% Solids	77.8		1.00	%	1	09/12/23 06:49	EPA 8000D							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 19 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hydi	ocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0606 - EPA 3546 (Fu	iels)						So	il				
Blank (23I0606-BLK1)			Prepared	d: 09/20/23 0	4:41 Ana	lyzed: 09/20	/23 20:19					
NWTPH-Dx												
Diesel	ND		20.0	mg/kg we	t 1							
Oil	ND		40.0	mg/kg we	t 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 79 %	Limits: 50-	150 %	Dil	ution: 1x					
LCS (23I0606-BS1)			Prepared	d: 09/20/23 0	4:41 Ana	lyzed: 09/20	/23 20:42					
NWTPH-Dx												
Diesel	106		20.0	mg/kg we	t 1	125		85	38-132%			
Surr: o-Terphenyl (Surr)		Rece	overy: 83 %	Limits: 50-	150 %	Dil	ution: 1x					
Duplicate (23I0606-DUP1)			Prepared	1: 09/20/23 0	4:41 Ana	lyzed: 09/20	/23 21:29					
QC Source Sample: Ex6-South W	all-8' (A3I0	916-01)										
NWTPH-Dx												
Diesel	ND		25.1	mg/kg dr	y 1		ND				30%	
Oil	ND		50.2	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 64 %	Limits: 50-	150 %	Dil	ution: 1x					
Duplicate (2310606-DUP2)			Prepared	1: 09/20/23 0	4:41 Ana	lyzed: 09/21	/23 07:33					
QC Source Sample: Non-SDG (A3	311230-05)											
Diesel	ND		23.5	mg/kg dr	y 1		ND				30%	
Oil	ND		46.9	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 80 %	Limits: 50-	150 %	Dil	ution: 1x					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0382 - EPA 5035A							Soi	I				
Blank (23I0382-BLK1)			Prepared	d: 09/13/23	12:20 Ana	lyzed: 09/13	/23 15:32					
NWTPH-Gx (MS) Gasoline Range Organics	ND		5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 95 % 111 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: Ix			·		
LCS (23I0382-BS2)			Prepared	1: 09/13/23	12:20 Ana	lyzed: 09/13	/23 15:02					
NWTPH-Gx (MS) Gasoline Range Organics	27.2		5.00	mg/kg v	vet 50	25.0		109	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 95 % 110 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x "					
Duplicate (23I0382-DUP1)			Prepared	1: 09/08/23	10:44 Ana	lyzed: 09/13	/23 21:55					
QC Source Sample: Non-SDG (A3	<u>310996-01)</u>											
Gasoline Range Organics	ND		6.48	mg/kg o	dry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 96 % 111 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: 1x					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23I0382 - EPA 5035A Soil Blank (23I0382-BLK1) Prepared: 09/13/23 12:20 Analyzed: 09/13/23 15:32 5035A/8260D ND 1000 ug/kg wet 50 Acetone ND 100 50 Acrylonitrile ug/kg wet Benzene ND 10.0 ug/kg wet 50 Bromobenzene ND 25.0 ug/kg wet 50 Bromochloromethane ND 50.0 ug/kg wet 50 Bromodichloromethane ND 50.0 ug/kg wet 50 Bromoform ND 100 ug/kg wet 50 Bromomethane ND 500 ug/kg wet 50 2-Butanone (MEK) ND 500 ug/kg wet 50 n-Butylbenzene ND 50.0 50 ug/kg wet sec-Butylbenzene ND 50.0 ug/kg wet 50 ND tert-Butylbenzene 50.0 50 ug/kg wet ---Carbon disulfide ND 500 ug/kg wet 50 Carbon tetrachloride ND 50.0 ug/kg wet 50 Chlorobenzene ND 25.0 ug/kg wet 50 Chloroethane ND 500 ug/kg wet 50 ---Chloroform ND 50.0 ug/kg wet 50 250 Chloromethane ND ug/kg wet 50 ---2-Chlorotoluene ND 50.0 ug/kg wet 50 4-Chlorotoluene ND 50.0 ug/kg wet 50 Dibromochloromethane ND 100 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 250 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 50.0 ug/kg wet 50 Dibromomethane ND 50.0 ug/kg wet 50 25.0 1,2-Dichlorobenzene ND ug/kg wet 50 1,3-Dichlorobenzene ND 25.0 ug/kg wet 50 1,4-Dichlorobenzene ND 25.0 ug/kg wet 50 Dichlorodifluoromethane ND 100 ug/kg wet 50 ---ND 25.0 1,1-Dichloroethane ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 25.0 50 1,1-Dichloroethene ND 50 25.0 ug/kg wet cis-1,2-Dichloroethene ND 25.0 ug/kg wet 50

Apex Laboratories

Philip Merenberg

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 44

50

25.0

ug/kg wet

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0382 - EPA 5035A							Soi	l				
Blank (23I0382-BLK1)			Prepared	: 09/13/23 12	:20 Ana	lyzed: 09/13/	/23 15:32					
1,2-Dichloropropane	ND		25.0	ug/kg wet	50							
1,3-Dichloropropane	ND		50.0	ug/kg wet	50							
2,2-Dichloropropane	ND		50.0	ug/kg wet	50							
1,1-Dichloropropene	ND		50.0	ug/kg wet	50							
cis-1,3-Dichloropropene	ND		50.0	ug/kg wet	50							
rans-1,3-Dichloropropene	ND		50.0	ug/kg wet	50							
Ethylbenzene	ND		25.0	ug/kg wet	50							
Hexachlorobutadiene	ND		100	ug/kg wet	50							
2-Hexanone	ND		500	ug/kg wet	50							
Isopropylbenzene	ND		50.0	ug/kg wet	50							
4-Isopropyltoluene	ND		50.0	ug/kg wet	50							
Methylene chloride	ND		500	ug/kg wet	50							
1-Methyl-2-pentanone (MiBK)	ND		500	ug/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND		50.0	ug/kg wet	50							
Naphthalene	ND		100	ug/kg wet	50							
n-Propylbenzene	ND		25.0	ug/kg wet	50							
Styrene	ND		50.0	ug/kg wet	50							
1,1,2-Tetrachloroethane	ND		25.0	ug/kg wet	50							
1,1,2,2-Tetrachloroethane	ND		50.0	ug/kg wet	50							
Tetrachloroethene (PCE)	ND		25.0	ug/kg wet	50							
Гoluene	ND		50.0	ug/kg wet	50							
1,2,3-Trichlorobenzene	ND		250	ug/kg wet	50							
1,2,4-Trichlorobenzene	ND		250	ug/kg wet	50							
1.1.1-Trichloroethane	ND		25.0	ug/kg wet	50							
1,1,2-Trichloroethane	ND		25.0	ug/kg wet	50							
Γrichloroethene (TCE)	ND		25.0	ug/kg wet	50							
Frichlorofluoromethane	ND		100	ug/kg wet	50							
1,2,3-Trichloropropane	ND		50.0	ug/kg wet	50							
1,2,4-Trimethylbenzene	ND		50.0	ug/kg wet	50							
1,3,5-Trimethylbenzene	ND		50.0	ug/kg wet	50							
Vinyl chloride	ND		25.0	ug/kg wet	50							
n,p-Xylene	ND		50.0	ug/kg wet	50							
o-Xylene	ND		25.0	ug/kg wet	50							
Surr: 1,4-Difluorobenzene (Surr)	-	Reco	very: 103 %	Limits: 80-1.		Dilu	ution: 1x					

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0382 - EPA 5035A							So	il				
Blank (23I0382-BLK1)			Prepared	1: 09/13/23 1	2:20 Ana	lyzed: 09/13	/23 15:32					
Surr: Toluene-d8 (Surr)		Reco	very: 105 %	Limits: 80-	120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			94 %	79-	120 %		"					
LCS (23I0382-BS1)			Prepared	1: 09/13/23 1	2:20 Ana	lyzed: 09/13	/23 14:11					
5035A/8260D												
Acetone	2140		1000	ug/kg we		2000		107	80-120%			
Acrylonitrile	1090		100	ug/kg we	t 50	1000		109	80-120%			
Benzene	1090		10.0	ug/kg we	t 50	1000		109	80-120%			
Bromobenzene	958		25.0	ug/kg we		1000		96	80-120%			
Bromochloromethane	1180		50.0	ug/kg we	t 50	1000		118	80-120%			
Bromodichloromethane	1200		50.0	ug/kg we	t 50	1000		120	80-120%			
Bromoform	992		100	ug/kg we	t 50	1000		99	80-120%			
Bromomethane	1880		500	ug/kg we	t 50	1000		188	80-120%			Q-5
2-Butanone (MEK)	2110		500	ug/kg we	t 50	2000		105	80-120%			
n-Butylbenzene	977		50.0	ug/kg we	t 50	1000		98	80-120%			
sec-Butylbenzene	997		50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	914		50.0	ug/kg we	t 50	1000		91	80-120%			
Carbon disulfide	1220		500	ug/kg we	t 50	1000		122	80-120%			Q-5
Carbon tetrachloride	1170		50.0	ug/kg we	t 50	1000		117	80-120%			
Chlorobenzene	1060		25.0	ug/kg we	t 50	1000		106	80-120%			
Chloroethane	1550		500	ug/kg we	t 50	1000		155	80-120%			Q-5
Chloroform	1160		50.0	ug/kg we	t 50	1000		116	80-120%			
Chloromethane	880		250	ug/kg we	t 50	1000		88	80-120%			
2-Chlorotoluene	942		50.0	ug/kg we	t 50	1000		94	80-120%			
4-Chlorotoluene	980		50.0	ug/kg we	t 50	1000		98	80-120%			
Dibromochloromethane	1050		100	ug/kg we	t 50	1000		105	80-120%			
1,2-Dibromo-3-chloropropane	862		250	ug/kg we	t 50	1000		86	80-120%			
1,2-Dibromoethane (EDB)	1040		50.0	ug/kg we	t 50	1000		104	80-120%			
Dibromomethane	1150		50.0	ug/kg we	t 50	1000		115	80-120%			
1,2-Dichlorobenzene	976		25.0	ug/kg we		1000		98	80-120%			
1,3-Dichlorobenzene	994		25.0	ug/kg we		1000		99	80-120%			
1,4-Dichlorobenzene	1000		25.0	ug/kg we		1000		100	80-120%			
Dichlorodifluoromethane	883		100	ug/kg we		1000		88	80-120%			
1,1-Dichloroethane	1180		25.0	ug/kg we		1000		118	80-120%			

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0382 - EPA 5035A							Soi	il				
LCS (23I0382-BS1)			Prepared	1: 09/13/23 1	2:20 Ana	lyzed: 09/13/	/23 14:11					
1,2-Dichloroethane (EDC)	1240		25.0	ug/kg we	et 50	1000		124	80-120%			Q-56
1,1-Dichloroethene	1200		25.0	ug/kg we	et 50	1000		120	80-120%			
cis-1,2-Dichloroethene	1100		25.0	ug/kg we	et 50	1000		110	80-120%			
trans-1,2-Dichloroethene	1150		25.0	ug/kg we	et 50	1000		115	80-120%			
1,2-Dichloropropane	1140		25.0	ug/kg we	et 50	1000		114	80-120%			
1,3-Dichloropropane	1060		50.0	ug/kg we	et 50	1000		106	80-120%			
2,2-Dichloropropane	1240		50.0	ug/kg we	et 50	1000		124	80-120%			Q-56
1,1-Dichloropropene	1120		50.0	ug/kg we		1000		112	80-120%			
cis-1,3-Dichloropropene	1010		50.0	ug/kg we	et 50	1000		101	80-120%			
trans-1,3-Dichloropropene	1150		50.0	ug/kg we	et 50	1000		115	80-120%			
Ethylbenzene	1040		25.0	ug/kg we	et 50	1000		104	80-120%			
Hexachlorobutadiene	942		100	ug/kg we	et 50	1000		94	80-120%			
2-Hexanone	1710		500	ug/kg we		2000		85	80-120%			
Isopropylbenzene	929		50.0	ug/kg we		1000		93	80-120%			
4-Isopropyltoluene	950		50.0	ug/kg we		1000		95	80-120%			
Methylene chloride	1200		500	ug/kg we		1000		120	80-120%			
4-Methyl-2-pentanone (MiBK)	1740		500	ug/kg we		2000		87	80-120%			
Methyl tert-butyl ether (MTBE)	990		50.0	ug/kg we	et 50	1000		99	80-120%			
Naphthalene	779		100	ug/kg we	et 50	1000		78	80-120%			Q-55
n-Propylbenzene	1020		25.0	ug/kg we	et 50	1000		102	80-120%			
Styrene	934		50.0	ug/kg we	et 50	1000		93	80-120%			
1,1,1,2-Tetrachloroethane	1090		25.0	ug/kg we		1000		109	80-120%			
1,1,2,2-Tetrachloroethane	1020		50.0	ug/kg we	et 50	1000		102	80-120%			
Tetrachloroethene (PCE)	1080		25.0	ug/kg we	et 50	1000		108	80-120%			
Toluene	1070		50.0	ug/kg we	et 50	1000		107	80-120%			
1,2,3-Trichlorobenzene	884		250	ug/kg we	et 50	1000		88	80-120%			
1,2,4-Trichlorobenzene	810		250	ug/kg we		1000		81	80-120%			
1,1,1-Trichloroethane	1200		25.0	ug/kg we		1000		120	80-120%			
1,1,2-Trichloroethane	1110		25.0	ug/kg we		1000		111	80-120%			
Trichloroethene (TCE)	1090		25.0	ug/kg we		1000		109	80-120%			
Trichlorofluoromethane	416		100	ug/kg we		1000		42	80-120%			Q-55
1,2,3-Trichloropropane	1100		50.0	ug/kg we		1000		110	80-120%			
1,2,4-Trimethylbenzene	976		50.0	ug/kg we		1000		98	80-120%			
1,3,5-Trimethylbenzene	997		50.0	ug/kg we		1000		100	80-120%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0382 - EPA 5035A							So	il				
LCS (23I0382-BS1)			Prepared	1: 09/13/23 1	2:20 Ana	lyzed: 09/13	/23 14:11					
Vinyl chloride	1300		25.0	ug/kg we	t 50	1000		130	80-120%			Q-:
n,p-Xylene	2080		50.0	ug/kg we	t 50	2000		104	80-120%			
o-Xylene	904		25.0	ug/kg we	t 50	1000		90	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			104 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			88 %	79-	120 %		"					
Duplicate (2310382-DUP1)			Prepared	l: 09/08/23 1	0:44 Ana	lyzed: 09/13	/23 21:55					
OC Source Sample: Non-SDG (A3	10996-01)											
Acetone	ND		1300	ug/kg dry	y 50		ND				30%	
Acrylonitrile	ND		130	ug/kg dry	y 50		ND				30%	
Benzene	ND		13.0	ug/kg dry	y 50		ND				30%	
Bromobenzene	ND		32.4	ug/kg dry			ND				30%	
Bromochloromethane	ND		64.8	ug/kg dry	y 50		ND				30%	
Bromodichloromethane	ND		64.8	ug/kg dry	y 50		ND				30%	
Bromoform	ND		130	ug/kg dry	y 50		ND				30%	
Bromomethane	ND		648	ug/kg dry	y 50		ND				30%	
2-Butanone (MEK)	ND		648	ug/kg dry	y 50		ND				30%	
n-Butylbenzene	ND		64.8	ug/kg dry	y 50		ND				30%	
sec-Butylbenzene	ND		64.8	ug/kg dry	y 50		ND				30%	
ert-Butylbenzene	ND		64.8	ug/kg dry	y 50		ND				30%	
Carbon disulfide	ND		648	ug/kg dry	y 50		ND				30%	
Carbon tetrachloride	ND		64.8	ug/kg dry	y 50		ND				30%	
Chlorobenzene	ND		32.4	ug/kg dry	y 50		ND				30%	
Chloroethane	ND		648	ug/kg dry			ND				30%	
Chloroform	ND		64.8	ug/kg dry			ND				30%	
Chloromethane	ND		324	ug/kg dry			ND				30%	
2-Chlorotoluene	ND		64.8	ug/kg dry			ND				30%	
1-Chlorotoluene	ND		64.8	ug/kg dry			ND				30%	
Dibromochloromethane	ND		130	ug/kg dry			ND				30%	
1,2-Dibromo-3-chloropropane	ND		324	ug/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND		64.8	ug/kg dry			ND				30%	
Dibromomethane	ND		64.8	ug/kg dry			ND				30%	
1,2-Dichlorobenzene	ND		32.4	ug/kg dry			ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23I0382 - EPA 5035A Soil Duplicate (23I0382-DUP1) Prepared: 09/08/23 10:44 Analyzed: 09/13/23 21:55 QC Source Sample: Non-SDG (A3I0996-01) 1,3-Dichlorobenzene ND 32.4 50 ND 30% ug/kg dry ND 1,4-Dichlorobenzene 32.4 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 130 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 32.4 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 32.4 ug/kg dry 50 ND 30% ------1,1-Dichloroethene ND 32.4 ug/kg dry 50 ND 30% cis-1,2-Dichloroethene ND 32.4 50 ND 30% ug/kg dry trans-1,2-Dichloroethene 30% ND 32.4 ug/kg dry 50 ND 1,2-Dichloropropane ND 32.4 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 64.8 ug/kg dry 50 ND 30% 2,2-Dichloropropane ND 64.8 ug/kg dry 50 ND 30% 64.8 1,1-Dichloropropene ND ug/kg dry 50 ND 30% cis-1,3-Dichloropropene ND 64.8 ug/kg dry 50 ND 30% 30% trans-1,3-Dichloropropene ND 64.8 ug/kg dry 50 ND Ethylbenzene ND 32.4 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 130 ug/kg dry 50 ND ___ 30% 2-Hexanone ND 648 ug/kg dry 50 ND 30% ND 30% Isopropylbenzene 64.8 50 ND ug/kg dry 4-Isopropyltoluene ND 64.8 ug/kg dry 50 ND 30% Methylene chloride ND 648 ND 30% ug/kg dry 50 4-Methyl-2-pentanone (MiBK) 648 ND ug/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND ---64.8 ug/kg dry 50 ND ---30% Naphthalene ND 130 ug/kg dry 50 ND 30% 30% n-Propylbenzene ND 32.4 50 ND ug/kg dry 64.8 30% Styrene ND ug/kg dry 50 ND ND 32.4 ND 30% 1.1.1.2-Tetrachloroethane ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 64.8 ND 30% ug/kg dry 50 Tetrachloroethene (PCE) ND 32.4 ug/kg dry 50 ND ------30% ND 64.8 ug/kg dry 50 ND 30% ND 324 30% 1.2.3-Trichlorobenzene ug/kg dry 50 ND ---1,2,4-Trichlorobenzene ND 324 ug/kg dry 50 ND 30% 32.4 1,1,1-Trichloroethane ND 50 ND 30% ug/kg dry ---1,1,2-Trichloroethane ND 32.4 ug/kg dry 50 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Coı	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0382 - EPA 5035A							Soi	I				
Duplicate (23I0382-DUP1)			Prepared	1: 09/08/23	0:44 Ana	yzed: 09/13	/23 21:55					
QC Source Sample: Non-SDG (A3	10996-01)											
Trichloroethene (TCE)	ND		32.4	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		130	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND		64.8	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		64.8	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		64.8	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND		32.4	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND		64.8	ug/kg dr	y 50		ND				30%	
o-Xylene	ND		32.4	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	79	-120 %		"					
QC Source Sample: Ex6-East Wall 5035A/8260D	l-8' (A3I091	<u>16-04)</u>										
Acetone	2900		1310	ug/kg dr	y 50	2610	ND	111	36-164%			
Acrylonitrile	1380		1310	ug/kg dr	•	1300	ND	105	65-134%			
Benzene	1420		13.1	ug/kg dr	•	1300	ND	109	77-121%			
Bromobenzene	1270		32.6	ug/kg dr	•	1300	ND	97	78-121%			
Bromochloromethane	1510		65.3	ug/kg dr		1300	ND	115	78-121% 78-125%			
Bromodichloromethane	1500		65.3	ug/kg dr	•	1300	ND	115	75-127%			
Bromoform	1280		131	ug/kg dr		1300	ND	98	67-132%			
Bromomethane	2370		653	ug/kg dr	•	1300	ND	182	53-143%			Q-54
2-Butanone (MEK)	2800		653	ug/kg dr	-	2610	ND	107	51-148%			
n-Butylbenzene	1350		65.3	ug/kg dr		1300	ND	103	70-128%			
sec-Butylbenzene	1390		65.3	ug/kg dr	•	1300	ND	107	73-126%			
tert-Butylbenzene	1290		65.3	ug/kg dr	-	1300	ND	99	73-125%			
Carbon disulfide	1580		653	ug/kg dr	•	1300	ND	121	63-132%			Q-54
Carbon tetrachloride	1540		65.3	ug/kg dr		1300	ND	118	70-135%			
Chlorobenzene	1380		32.6	ug/kg dr	•	1300	ND	106	79-120%			
Chloroethane	1880		653	ug/kg dr	•	1300	ND	144	59-139%			Q-54
Chloroform	1490		65.3	ug/kg dr		1300	ND	114	78-123%			
Chloromethane	1140		326	ug/kg dr	y 50	1300	ND	87	50-136%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23I0382 - EPA 5035A Soil Matrix Spike (23I0382-MS1) Prepared: 09/08/23 09:40 Analyzed: 09/13/23 20:38 QC Source Sample: Ex6-East Wall-8' (A3I0916-04) 2-Chlorotoluene 1290 65.3 50 1300 ND 99 75-122% ug/kg dry 1300 4-Chlorotoluene 1340 65.3 ug/kg dry 50 ND 103 72-124% ug/kg dry Dibromochloromethane 1330 131 50 1300 ND 102 74-126% 1,2-Dibromo-3-chloropropane 1070 326 ug/kg dry 50 1300 ND 82 61-132% 1,2-Dibromoethane (EDB) 1350 65.3 50 1300 ND 103 78-122% ug/kg dry 1300 Dibromomethane 1450 65.3 ug/kg dry 50 ND 111 78-125% 1,2-Dichlorobenzene 1290 32.6 50 1300 ND 99 78-121% ug/kg dry 100 1,3-Dichlorobenzene 1300 32.6 ug/kg dry 50 1300 ND 77-121% 1,4-Dichlorobenzene 1320 32.6 ug/kg dry 50 1300 ND 101 75-120% Dichlorodifluoromethane 1220 131 ug/kg dry 50 1300 ND 93 29-149% 1,1-Dichloroethane 1520 32.6 ug/kg dry 50 1300 ND 117 76-125% O-54c 1,2-Dichloroethane (EDC) 32.650 1300 ND 73-128% 1570 ug/kg dry 121 1,1-Dichloroethene 1640 32.6 ug/kg dry 50 1300 ND 126 70-131% 32.6 1300 ND cis-1,2-Dichloroethene 1480 ug/kg dry 50 113 77-123% trans-1,2-Dichloroethene 1520 32.6 ug/kg dry 50 1300 ND 117 74-125% 1,2-Dichloropropane 1450 32.6 ug/kg dry 50 1300 ND 112 76-123% ___ 1,3-Dichloropropane 1400 65.3 ug/kg dry 50 1300 ND 107 77-121% 65.3 1300 O-54c 2,2-Dichloropropane 1480 50 ND 114 67-133% ug/kg dry 76-125% 1,1-Dichloropropene 1510 65.3 ug/kg dry 50 1300 ND 116 cis-1,3-Dichloropropene 65.3 50 1300 ND 101 74-126% 1320 ug/kg dry 1300 ND 71-130% trans-1,3-Dichloropropene 1460 65.3 ug/kg dry 50 112 Ethylbenzene 1370 ---32.6 ug/kg dry 50 1300 ND 105 76-122% Hexachlorobutadiene 1230 131 ug/kg dry 50 1300 ND 94 61-135% 653 90 2-Hexanone 2350 50 2610 ND 53-145% ug/kg dry 65.3 1300 99 Isopropylbenzene 1290 ug/kg dry 50 ND 68-134% 1320 65.3 1300 ND 101 73-127% 4-Isopropyltoluene ug/kg dry 50 653 1300 ND 70-128% Methylene chloride 1500 ug/kg dry 50 115 4-Methyl-2-pentanone (MiBK) 2420 653 ug/kg dry 50 2610 ND 93 65-135% Methyl tert-butyl ether (MTBE) 1310 65.3 ug/kg dry 50 1300 ND 100 73-125% 1080 131 1300 ND 83 Q-54e Naphthalene ug/kg dry 50 62-129% n-Propylbenzene 1380 32.6 50 1300 ND 106 73-125% ug/kg dry 65.3 97 Styrene 1270 50 1300 ND 76-124% ug/kg dry ---

Apex Laboratories

Philip Manherz

1,1,1,2-Tetrachloroethane

1380

32.6

ug/kg dry

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

106

78-125%

Philip Nerenberg, Lab Director

Page 29 of 44

50

1300

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23I0382 - EPA 5035A Soil Matrix Spike (23I0382-MS1) Prepared: 09/08/23 09:40 Analyzed: 09/13/23 20:38 QC Source Sample: Ex6-East Wall-8' (A3I0916-04) 1,1,2,2-Tetrachloroethane 1310 65.3 ug/kg dry 50 1300 ND 101 70-124% 1410 1300 Tetrachloroethene (PCE) 32.6 ug/kg dry 50 ND 108 73-128% Toluene 1400 65.3 ug/kg dry 50 1300 ND 108 77-121% 1,2,3-Trichlorobenzene 1180 326 ug/kg dry 50 1300 ND 91 66-130% 1,2,4-Trichlorobenzene 1090 326 ug/kg dry 50 1300 ND 84 67-129% 1,1,1-Trichloroethane 1300 1570 32.6 ug/kg dry 50 ND 121 73-130% 1,1,2-Trichloroethane 1430 32.6 ug/kg dry 50 1300 ND 110 78-121% Trichloroethene (TCE) 32.6 1300 77-123% 1440 ug/kg dry 50 ND 110 Q-54f Trichlorofluoromethane 1910 131 ug/kg dry 50 1300 ND 146 62-140% 1,2,3-Trichloropropane 1440 65.3 ug/kg dry 50 1300 ND 110 73-125% 1,2,4-Trimethylbenzene 1300 65.3 ug/kg dry 50 1300 ND 100 75-123% 1,3,5-Trimethylbenzene 65.3 1300 ND 104 73-124% 1350 ug/kg dry 50 1300 Q-54 Vinyl chloride 1740 32.6 ug/kg dry 50 ND 133 56-135% 2610 m,p-Xylene 2790 65.3 ND 107 77-124% ug/kg dry 50 32.6 77-123% o-Xylene 1250 ug/kg dry 50 ND 96 Surr: 1,4-Difluorobenzene (Surr) 100 % Limits: 80-120 % Dilution: 1x Recovery: 101 % Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 91 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarbo	ıs (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23l0325 - EPA 3546							So	il				
Blank (23I0325-BLK1)			Prepared	d: 09/12/23 1	0:03 Ana	yzed: 09/12	/23 18:44					
EPA 8270E SIM												
Acenaphthene	ND		2.67	ug/kg we	t 1							
Acenaphthylene	ND		2.67	ug/kg we	t 1							
Anthracene	ND		2.67	ug/kg we	t 1							
Benz(a)anthracene	ND		2.67	ug/kg we	t 1							
Benzo(a)pyrene	ND		2.67	ug/kg we								
Benzo(b)fluoranthene	ND		2.67	ug/kg we								
Benzo(k)fluoranthene	ND		2.67	ug/kg we								
Benzo(g,h,i)perylene	ND		2.67	ug/kg we								
Chrysene	ND		2.67	ug/kg we								
Dibenz(a,h)anthracene	ND		2.67	ug/kg we								
Fluoranthene	ND		2.67	ug/kg we								
Fluorene	ND		2.67	ug/kg we								
Indeno(1,2,3-cd)pyrene	ND		2.67	ug/kg we								
1-Methylnaphthalene	ND		2.67	ug/kg we								
2-Methylnaphthalene	ND		2.67	ug/kg we								
Naphthalene	ND		2.67	ug/kg we								
Phenanthrene	ND		2.67	ug/kg we								
Pyrene	ND		2.67	ug/kg we								
Dibenzofuran	ND		2.67	ug/kg we								
Surr: 2-Fluorobiphenyl (Surr)		Roce	overy: 87 %	Limits: 44-		Dila	ution: 1x					
p-Terphenyl-d14 (Surr)		Reco	90 %		127 %	Diii	uton. 1x					
LCS (23I0325-BS1)			Drange	d: 09/12/23 1	0:03 Ana	wzed: 00/12	/23 10:00					
EPA 8270E SIM			Перагес	u. 07/12/23 1	O.O. Alla	yzcu. 09/12	123 17.07					
Acenaphthene	530		2.67	ug/kg we	t 1	533		99	40-123%			
Acenaphthylene	541		2.67	ug/kg we		533		101	32-132%			
Acenaphinylene Anthracene	499		2.67			533		94	47-123%			
Anthracene Benz(a)anthracene	499		2.67	ug/kg we		533		9 4 91	47-125%			
· · ·				ug/kg we								
Benzo(a)pyrene	548		2.67	ug/kg we		533		103	45-129%			
Benzo(b)fluoranthene	502		2.67	ug/kg we		533		94	45-132%			
Benzo(k)fluoranthene	516		2.67	ug/kg we		533		97	47-132%			
Benzo(g,h,i)perylene	458		2.67	ug/kg we		533		86	43-134%			
Chrysene	518		2.67	ug/kg we	t 1	533		97	50-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	urocarbo	ns (PAHS) DY EPA	ŏ∠/UE (S	OIIVI)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0325 - EPA 3546							So	il				
LCS (23I0325-BS1)			Prepared	d: 09/12/23	10:03 Ana	lyzed: 09/12	/23 19:09					
Dibenz(a,h)anthracene	530		2.67	ug/kg we	et 1	533		99	45-134%			
Fluoranthene	533		2.67	ug/kg we	et 1	533		100	50-127%			
Fluorene	519		2.67	ug/kg we	et 1	533		97	43-125%			
Indeno(1,2,3-cd)pyrene	515		2.67	ug/kg we	et 1	533		97	45-133%			
1-Methylnaphthalene	495		2.67	ug/kg we	et 1	533		93	40-120%			
2-Methylnaphthalene	495		2.67	ug/kg we	et 1	533		93	38-122%			
Naphthalene	478		2.67	ug/kg we	et 1	533		90	35-123%			
Phenanthrene	496		2.67	ug/kg we	et 1	533		93	50-121%			
Pyrene	531		2.67	ug/kg we	et 1	533		100	47-127%			
Dibenzofuran	514		2.67	ug/kg we	et 1	533		96	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 88 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			87 %	54-	-127 %		"					
Duplicate (23I0325-DUP1) OC Source Sample: Non-SDG (A	A310846-01)			d: 09/12/23 1		<u> </u>						
Acenaphthene	ND		11.8	ug/kg dr	y 4		ND				30%	
Acenaphthylene	ND		11.8	ug/kg dr	y 4		ND				30%	
Anthracene	ND		11.8	ug/kg dr	y 4		ND				30%	
Benz(a)anthracene	ND		11.8	ug/kg dr	y 4		10.4			***	30%	
Benzo(a)pyrene	18.1		11.8	ug/kg dr	y 4		15.0			19	30%	
Benzo(b)fluoranthene	18.8		11.8	ug/kg dr	y 4		15.3			21	30%	M-
Benzo(k)fluoranthene	ND		11.8	ug/kg dr	y 4		6.10			***	30%	Q-
Benzo(g,h,i)perylene	22.6		11.8	ug/kg dr	y 4		18.8			18	30%	
Chrysene	15.9		11.8	ug/kg dr	y 4		13.3			18	30%	
Dibenz(a,h)anthracene	ND		11.8	ug/kg dr	y 4		ND				30%	
Fluoranthene	19.2		11.8	ug/kg dr	y 4		18.3			4	30%	
Fluorene	ND		11.8	ug/kg dr	y 4		ND				30%	
Indeno(1,2,3-cd)pyrene	17.8		11.8	ug/kg dr	y 4		16.1			10	30%	
1-Methylnaphthalene	ND		11.8	ug/kg dr	y 4		ND				30%	
2-Methylnaphthalene	ND		11.8	ug/kg dr	y 4		ND				30%	
Naphthalene	ND		11.8	ug/kg dr	y 4		ND				30%	
Phenanthrene	ND		11.8	ug/kg dr	-		11.2			***	30%	
Pyrene	26.3		11.8	ug/kg dr	y 4		24.5			7	30%	

Apex Laboratories

Philip Nevenberg

Dibenzofuran

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ND

30%

Philip Nerenberg, Lab Director

4

11.8

ug/kg dry

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarbon	s (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0325 - EPA 3546							So	il				
Duplicate (23I0325-DUP1)			Prepared	1: 09/12/23 10	0:03 Ana	lyzed: 09/12	/23 20:00					
QC Source Sample: Non-SDG (A3	10846-01)											
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 84 %	Limits: 44-	120 %	Dilı	ıtion: 4x					
p-Terphenyl-d14 (Surr)			80 %	54	127 %		"					
Matrix Spike (23I0325-MS1)			Prepared	1: 09/12/23 10	0:03 Anal	lyzed: 09/12	/23 20:26					
QC Source Sample: Non-SDG (A3	10846-01)											
EPA 8270E SIM												
Acenaphthene	536		11.9	ug/kg dry	4	596	ND	90	40-123%			
Acenaphthylene	536		11.9	ug/kg dry	4	596	ND	90	32-132%			
Anthracene	504		11.9	ug/kg dry	4	596	ND	85	47-123%			
Benz(a)anthracene	503		11.9	ug/kg dry	4	596	10.4	83	49-126%			
Benzo(a)pyrene	537		11.9	ug/kg dry	4	596	15.0	88	45-129%			
Benzo(b)fluoranthene	484		11.9	ug/kg dry	4	596	15.3	79	45-132%			
Benzo(k)fluoranthene	527		11.9	ug/kg dry	4	596	6.10	87	47-132%			
Benzo(g,h,i)perylene	456		11.9	ug/kg dry	4	596	18.8	73	43-134%			
Chrysene	532		11.9	ug/kg dry	4	596	13.3	87	50-124%			
Dibenz(a,h)anthracene	513		11.9	ug/kg dry	4	596	ND	86	45-134%			
Fluoranthene	546		11.9	ug/kg dry		596	18.3	89	50-127%			
Fluorene	518		11.9	ug/kg dry		596	ND	87	43-125%			
ndeno(1,2,3-cd)pyrene	506		11.9	ug/kg dry	4	596	16.1	82	45-133%			
-Methylnaphthalene	498		11.9	ug/kg dry	4	596	ND	83	40-120%			
-Methylnaphthalene	510		11.9	ug/kg dry	4	596	ND	86	38-122%			
Naphthalene	587		11.9	ug/kg dry	4	596	ND	98	35-123%			
Phenanthrene	516		11.9	ug/kg dry	4	596	11.2	85	50-121%			
yrene	558		11.9	ug/kg dry	4	596	24.5	89	47-127%			
Dibenzofuran	516		11.9	ug/kg dry	4	596	ND	87	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 82 %	Limits: 44-	120 %	Dilı	ıtion: 4x					
p-Terphenyl-d14 (Surr)			80 %	54-	127 %		"					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Result ND ND	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
		Prepared									
		Prepared				Soi	I				
			: 09/18/23 1	2:38 Anal	yzed: 09/18	/23 20:49					
ND		1.00	mg/kg we	et 10							
		1.00	mg/kg we	et 10							
ND		0.200	mg/kg we	et 10							
ND		1.00	mg/kg we	et 10							
ND		0.200	mg/kg we	et 10							
ND		0.0800	mg/kg we	et 10							
ND		1.00	mg/kg we	et 10							
ND		0.200	mg/kg we	et 10							
		Prepared	: 09/18/23 1	2:38 Anal	yzed: 09/18	/23 20:54					
50.6		1.00	mg/kg we	et 10	50.0		101	80-120%			
53.3		1.00	mg/kg we	et 10	50.0		107	80-120%			
49.4		0.200	mg/kg we	et 10	50.0		99	80-120%			
52.9		1.00	mg/kg we	et 10	50.0		106	80-120%			
51.1		0.200	mg/kg we	et 10	50.0		102	80-120%			
0.975		0.0800	mg/kg we	et 10	1.00		98	80-120%			
24.8		1.00	mg/kg we	et 10	25.0		99	80-120%			
27.7		0.200	mg/kg we	et 10	25.0		111	80-120%			
		Prepared	: 09/18/23 1	2:38 Anal	yzed: 09/18	/23 21:35					
0937-02)											
5.99		1.23	mg/kg dr	y 10		5.87			2	20%	
113		1.23				83.6			30	20%	Q-(
ND		0.247				ND				20%	
20.4		1.23	mg/kg dr	y 10		14.1			37	20%	Q-(
9.24		0.247				7.52			21	20%	Q-(
ND		0.0986				ND				20%	
ND		1.23		-		ND				20%	
ND		0.247				ND				20%	
	ND ND ND ND 50.6 53.3 49.4 52.9 51.1 0.975 24.8 27.7 5.99 113 ND 20.4 9.24 ND ND	ND ND ND ND ND Solution	ND 0.200 ND 0.0800 ND 1.00 ND 0.200 Prepared 50.6 1.00 53.3 1.00 52.9 1.00 51.1 0.200 0.975 0.0800 24.8 1.00 27.7 0.200 Prepared 113 1.23 ND 0.247 ND 0.986 ND 0.986 ND 0.986 ND 0.986 ND 0.247 ND 0.986 ND 0.247	ND 0.200 mg/kg we ND 1.00 mg/kg we ND 0.200 mg/kg we ND 0.200 mg/kg we ND 0.200 mg/kg we ND 1.00 mg/kg we ND 1.00 mg/kg we ND 1.00 mg/kg we ND 1.23 mg/kg dr ND 0.247 mg/kg dr	ND 0.200 mg/kg wet 10 ND 0.0800 mg/kg wet 10 ND 1.00 mg/kg wet 10 ND 0.200 mg/kg wet 10 Prepared: 09/18/23 12:38 Anal 50.6 1.00 mg/kg wet 10 53.3 1.00 mg/kg wet 10 52.9 1.00 mg/kg wet 10 51.1 0.200 mg/kg wet 10 51.1 0.200 mg/kg wet 10 0.975 0.0800 mg/kg wet 10 24.8 1.00 mg/kg wet 10 27.7 0.200 mg/kg wet 10 Prepared: 09/18/23 12:38 Anal 1.00 mg/kg wet 10 27.7 0.200 mg/kg wet 10 20.4 1.23 mg/kg dry 10 ND 0.247 mg/kg dry 10 ND 0.247 mg/kg dry 10 ND 0.0986 mg/kg dry 10 ND 0.0986 mg/kg dry 10 ND 0.247 mg/kg dry 10	ND 0.200 mg/kg wet 10 ND 1.00 mg/kg wet 10 ND 0.200 mg/kg wet 10 50.0 53.3 1.00 mg/kg wet 10 50.0 52.9 1.00 mg/kg wet 10 50.0 51.1 0.200 mg/kg wet 10 50.0 0.975 0.0800 mg/kg wet 10 50.0 0.975 0.0800 mg/kg wet 10 25.0 24.8 1.00 mg/kg wet 10 25.0 27.7 0.200 mg/kg wet 10 25.0 27.7 0.200 mg/kg wet 10 25.0 27.7 0.200 mg/kg wet 10 0.200 mg/kg wet 10 25.0 25.0 27.7 0.200 mg/kg dry 10 0.247 mg/kg dry 10 ND 0.247 mg/kg dry 10 ND 0.247 mg/kg dry 10 ND 0.0986 mg/kg dry 10 ND 0.0986 mg/kg dry 10 ND 0.247 mg/kg dry 10 ND ND 0.247 mg/kg dry 10 ND	ND 0.200 mg/kg wet 10 ND ND 1.00 mg/kg wet 10 ND ND 0.200 mg/kg wet 10 ND ND ND 1.23 mg/kg dry 10 83.6 ND 0.247 mg/kg dry 10 ND ND ND	ND 0.200 mg/kg wet 10 ND 0.0800 mg/kg wet 10 ND ND 0.200 mg/kg wet 10 50.0 101 53.3 1.00 mg/kg wet 10 50.0 107 49.4 0.200 mg/kg wet 10 50.0 107 49.4 0.200 mg/kg wet 10 50.0 106 51.1 0.200 mg/kg wet 10 50.0 102 0.975 0.0800 mg/kg wet 10 50.0 102 0.975 0.0800 mg/kg wet 10 1.00 98 24.8 1.00 mg/kg wet 10 25.0 99 27.7 0.200 mg/kg wet 10 25.0 99 27.7 0.200 mg/kg wet 10 25.0 111 Prepared: 09/18/23 12:38 Analyzed: 09/18/23 21:35 133 1.23 mg/kg dry 10 83.6 ND 0.247 mg/kg dry 10 ND 20.4 1.23 mg/kg dry 10 ND	ND 0.200 mg/kg wet 10 ND 0.0800 mg/kg wet 10 ND 0.200 mg/kg wet 10 ND 0.200 mg/kg wet 10	ND 0.200 mg/kg wet 10 ND 0.0800 mg/kg wet 10 ND 0.200 mg/kg wet 10 ND 0.200 mg/kg wet 10	ND 0.200 mg/kg wet 10

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike % REC **RPD** Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Amount Limit Notes Batch 23I0542 - EPA 3051A Soil Matrix Spike (23I0542-MS1) Prepared: 09/18/23 12:38 Analyzed: 09/18/23 21:40 QC Source Sample: Non-SDG (A3I0937-02) EPA 6020B 59.9 1.29 mg/kg dry 10 64.3 84 75-125% Arsenic 5.87 Barium 171 1.29 mg/kg dry 10 64.3 83.6 75-125% Q-04 136 Cadmium 0.257 54.6 mg/kg dry 10 64.3 ND 85 75-125% Chromium 73.2 1.29 mg/kg dry 10 64.3 14.1 92 75-125% Lead 62.9 0.257 64.3 7.52 mg/kg dry 10 86 75-125% 1.18 0.103 mg/kg dry 10 1.29 ND 92 75-125% Mercury 32.2 Selenium 30.6 1.29 10 ND 95 75-125% mg/kg dry ---Silver 33.3 ---0.257 mg/kg dry 10 32.2 ND 104 75-125%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23l0284 - Total Solids (Dry	Weigh	t) - 2022					Soil					
Duplicate (23I0284-DUP1)			Prepared	: 09/11/23	10:25 Anal	yzed: 09/12/	/23 06:49					
QC Source Sample: Non-SDG (A3109	<u>007-01)</u>											
% Solids	78.1		1.00	%	1		78.3			0.2	10%	
Duplicate (23I0284-DUP2)			Prepared	: 09/11/23	10:25 Anal	yzed: 09/12/	/23 06:49					
QC Source Sample: Non-SDG (A3109	<u>907-02)</u>											
% Solids	77.6		1.00	%	1		78.6			1	10%	
Duplicate (23I0284-DUP3)			Prepared	: 09/11/23	10:25 Anal	yzed: 09/12/	/23 06:49					
QC Source Sample: Non-SDG (A3109	007-03)											
% Solids	81.9		1.00	%	1		81.9			0.04	10%	
Duplicate (23I0284-DUP4)			Prepared	: 09/11/23	10:25 Anal	yzed: 09/12/	23 06:49					
QC Source Sample: Non-SDG (A3109	007-04)											
% Solids	67.5		1.00	%	1		67.4			0.2	10%	
Duplicate (23I0284-DUP5)			Prepared	: 09/11/23	10:25 Anal	yzed: 09/12/	/23 06:49					
QC Source Sample: Non-SDG (A3109	<u>007-05)</u>											
% Solids	77.5		1.00	%	1		76.6			1	10%	
Duplicate (23I0284-DUP6)			Prepared	: 09/11/23	18:49 Anal	yzed: 09/12/	/23 06:49					
QC Source Sample: Non-SDG (A3109	049-01)											
% Solids	69.4		1.00	%	1		69.9			0.6	10%	
Duplicate (23I0284-DUP7)			Prepared	: 09/11/23	18:49 Anal	yzed: 09/12/	23 06:49					
QC Source Sample: Non-SDG (A3109	062-02)											
% Solids	92.5		1.00	%	1		93.6			1	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3546 (Fu	<u>iels)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0606							
A3I0916-01	Soil	NWTPH-Dx	09/08/23 08:50	09/20/23 04:41	10.15g/5mL	10g/5mL	0.99
A3I0916-02	Soil	NWTPH-Dx	09/08/23 09:15	09/20/23 04:41	10.62g/5mL	10g/5mL	0.94
A3I0916-03	Soil	NWTPH-Dx	09/08/23 09:00	09/20/23 04:41	10.3g/5mL	10g/5mL	0.97
A3I0916-04	Soil	NWTPH-Dx	09/08/23 09:40	09/20/23 04:41	10.64g/5mL	10g/5mL	0.94

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0382							
A3I0916-01	Soil	NWTPH-Gx (MS)	09/08/23 08:50	09/08/23 08:50	6.43g/5mL	5g/5mL	0.78
A3I0916-02	Soil	NWTPH-Gx (MS)	09/08/23 09:15	09/08/23 09:15	6.41g/5mL	5g/5mL	0.78
A3I0916-03	Soil	NWTPH-Gx (MS)	09/08/23 09:00	09/08/23 09:00	7.73g/5mL	5g/5mL	0.65
A3I0916-04	Soil	NWTPH-Gx (MS)	09/08/23 09:40	09/08/23 09:40	6.31g/5mL	5g/5mL	0.79

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0382							
A3I0916-01	Soil	5035A/8260D	09/08/23 08:50	09/08/23 08:50	6.43g/5mL	5g/5mL	0.78
A3I0916-02	Soil	5035A/8260D	09/08/23 09:15	09/08/23 09:15	6.41g/5mL	5g/5mL	0.78
A3I0916-03	Soil	5035A/8260D	09/08/23 09:00	09/08/23 09:00	7.73g/5mL	5g/5mL	0.65
A3I0916-04	Soil	5035A/8260D	09/08/23 09:40	09/08/23 09:40	6.31g/5mL	5g/5mL	0.79

		Polyaromatic H	lydrocarbons (PAHs) by EPA 8270E (SI	M)		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0325							
A3I0916-01	Soil	EPA 8270E SIM	09/08/23 08:50	09/12/23 10:04	10.41g/5mL	10g/5mL	0.96
A3I0916-02	Soil	EPA 8270E SIM	09/08/23 09:15	09/12/23 10:04	10.62g/5mL	10g/5mL	0.94
A3I0916-03	Soil	EPA 8270E SIM	09/08/23 09:00	09/12/23 10:04	10.04g/5mL	10g/5mL	1.00
A3I0916-04	Soil	EPA 8270E SIM	09/08/23 09:40	09/12/23 10:04	10.81g/5mL	10g/5mL	0.93
A3I0916-04	Soil	EPA 8270E SIM	09/08/23 09:40	09/12/23 10:04	10.81g/5mL	10g/5mL	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: **USPS - Prosper PDX**

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0542							
A3I0916-01	Soil	EPA 6020B	09/08/23 08:50	09/18/23 12:38	0.492g/50mL	0.5g/50mL	1.02
A3I0916-02	Soil	EPA 6020B	09/08/23 09:15	09/18/23 12:38	0.538g/50mL	0.5g/50mL	0.93
A3I0916-03	Soil	EPA 6020B	09/08/23 09:00	09/18/23 12:38	0.505g/50mL	0.5g/50mL	0.99
A3I0916-04	Soil	EPA 6020B	09/08/23 09:40	09/18/23 12:38	0.503 g/50 mL	0.5g/50mL	0.99

	Percent Dry Weight												
Prep: Total Solids ([Ory Weight) - 2022				Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 23I0284													
A3I0916-01	Soil	EPA 8000D	09/08/23 08:50	09/11/23 10:25			NA						
A3I0916-02	Soil	EPA 8000D	09/08/23 09:15	09/11/23 10:25			NA						
A3I0916-03	Soil	EPA 8000D	09/08/23 09:00	09/11/23 10:25			NA						
A3I0916-04	Soil	EPA 8000D	09/08/23 09:40	09/11/23 10:25			NA						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 38 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

601 SW 2nd Ave Suite 1400 Project Number: 185750980 Report ID: Portland, OR 97204 Project Manager: Graeme Taylor A3I0916 - 09 22 23 1726

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex

ex Laborato	<u>ories</u>
F-11	The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the $\pm -20\%$ criteria listed in EPA method 8260/8270 by $\pm 10\%$. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the $\pm -20\%$ criteria listed in EPA method 8260/8270 by $\pm 35\%$. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the $\pm -20\%$ criteria listed in EPA method 8260/8270 by $\pm 68\%$. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -2%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -38%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 39 of 44 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

<u>Detection Limits:</u> Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750980
 Report ID:

 Portland, OR 97204
 Project Manager:
 Graeme Taylor
 A310916 - 09 22 23 1726

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 41 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Stantec Portland Project: USPS - Prosper PDX

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

Commany Starter		0/00 SW Sanaburg St., 11gara, OK 9/113 Fr.: 503-/18-2513	57																						
	_ A	Project Mgr. Grove we	\ \dot{\dot{\dot{\dot{\dot{\dot{\dot{	8	3	10	Taylor		Project	Project Name:	1	15	1	USPS	12	13	Tar. 12		Project #:	1	08402 rsy 1857 50980	1	15	12	6
Address: 2nd Am, Both	1	fre gon	ς		Phone:	لڻ		3	513	\ E	Tail:	दु	چ	1	3	503-367-6158 Email: Grove, toylor & stutution	艾	9.5	.0g						
Sampled by: Kirk Warm	- }	•												4	ALY:	ANALYSIS REQUEST	OCIES	-			490				
:ц								-		-	J. 35	<u> </u>				ʻq, ʻp;	K'	das		-					
State Orchion County Mulfrowh	DATE	TIME	# OF CONTAINERS	NWTPH-HCID	xa-H9TWN	NWTPH-Gz	8760 BTEX	8760 RBDM VOCs	8260 VOCs Full List	8740 SIM BVHs	8270 Semi-Vols Full Li	8087 LCB ²	8081 Pesticides	RCRA Metals (8)	Priority Metals (13)	AL, Sb, As, Bs, Be, C Cs, Cr, Co, Cu, Fe, I	Ca, Cr, Co, Cu, Fe, I Be, Mg, Mn, Mo, Wi, Se, Ag, Wa, Tl, Y, Zn TOTAL DISS. TO	TCLP Metals (8)		***					Hold Sample
Ex 6- South Wall - 8"	2	952	5 2		×	×		 	×	K		-	_	X		7		ļ		-	_				
EX 6- NON WIN - 81	-	915	2 2	ļ.,	×	×			×	X			_	×				<u> </u>		-					<u> </u>
Ex 6 - West will-9"		3	2		×	×			*	×			_	1				ļ			_				
Bx6- EM> L-11-8	<u>ه</u> چ	940 5	2		×	×			7	メメ				7											
		+	-	4				\dashv	-	-	_	-								-					
	+	+	+	_			1	+	+-	+	-	+	\bot							-				1	+
		-	-				1	+	+		-	-								+	-			1	+
			$\vdash \vdash$	Ш			\Box	\vdash	$\vdash \vdash$	H	\square	$\vdash \vdash$	Ш												
Standard Turn Around Time (TAT) = 10 Business Days	round Time	(TAT) = 1	0 Busines	s Days						<u>N</u>	ECIA	SPECIAL INSTRUCTIONS	TRUC	NOL	siól .										
TAT Beautofed (simila)	1 Day	2 Day	<u>*</u> ((C)	3 Day																				
	5 Day	Standard	lard	ŏ	Other:																				
	SAMPLES ARE HELD FOR 30 DAYS	FOR 30 DA	,XS							Г						3	1								
RELINQUISHED BY: Signature: The ZU - 9	9(8/23	Si is	RECEIVED BY: Signaline:	7	3	1	Date: 9/8/23	22		Sign RE	attre:	RELINQUISHED BY: Signature:	ED BY.		_	Date:			RECE. Signatur	RECEIVED BY: Signature:	ت		Date:		
}	125	1 - 2	fed Name:	Z	O.		Line:	11:25	١,	差	Printed Name	ame:			[Time:			Printed	Printed Name:			Time		
Company: State		\$ ₹	Company:	,	_	-				ð	Company:								Сопрвлу	is is					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 43 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Stantec Portland</u> Project: <u>USPS - Prosper PDX</u>

 601 SW 2nd Ave Suite 1400
 Project Number: 185750980
 Report ID:

 Portland, OR 97204
 Project Manager: Graeme Taylor
 A310916 - 09 22 23 1726

APEX LABS COOLER RECEIPT FORM
Client: Starter Element WO#: A3 10916
Project/Project #: Former USPS Facility /1857 50980
Delivery Info:
Date/time received: 9/8/23 @ 11:25 By: ASM
Delivered by: Apex_Client SSS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other_
Cooler Inspection Date/time inspected: 9/1/23 @ 11:25 By: 25
Chain of Custody included? Yes No
Signed/dated by client? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)
Custody seals? (Y/N)
Received on ice? (Y/N)
Temp. blanks? (Y/N)
Ice type: (Gel/Real/Other) Recol
Condition (In/Out):
Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 9/8/23 @ 17:47 By: 2600 All samples intact? Yes No Comments:
Bottle labels/COCs agree? Yes No X Comments: 802 Jan Fer EXG-Gust wall-8'
rads ExG-Eastwall
COC/container discrepancies form initiated? Yes No ×
Containers/volumes received appropriate for analysis? Yes X No Comments:
Do VOA vials have visible headspace? Yes No NA Comments
Water samples: pH checked: YesNoNApH appropriate? YesNoNA
Comments:
Additional information:
Labeled by: Cooler Inspected by:
KAM FORM Y-003 R-00 -

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevenberg