

INTERIM REMEDIAL ACTION MEASURES: Petroleum-Impacted Soil Removal and In-Situ Chemical Oxidation

Ollison Property

23737 SW Newland Road Wilsonville, Oregon

Agency Information
ODEQ LUST File Number 03-19-0934

Prepared for:

Estate of David Ollison Attn: Sandy Wehrman

23737 SW Newland Road Wilsonville, OR 97070

Issued on:

February 20, 2024

EVREN Northwest, Inc. Project No. 114-19002-02

Offices in Portland and Bend, OR / San Rafael, CA P.O. Box 14488, Portland, Oregon 97293 T. 503-452-5561 / E. ENW@EVREN-NW.com

Interim Remedial Action Measures: Petroleum-Impacted Soil Removal and In-Situ Chemical Oxidation

Report for:

Ollison Property

23737 SW Newland Road Wilsonville, Oregon

Has been prepared for the sole benefit and use of our Client:

Estate of David Ollison Attn: Sandy Wehrman

> 23737 SW Newland Road Wilsonville, OR 97070

> > and its assignees

Issued February 20, 2024 by:

EXP. 2/1/2025

Paul M. Trone, R.G.
Principal Geologist

Lynn D. Green, C.E.G.
Principal Engineering Geologist

OLOGI

1.0	Introd	luction	1										
2.0	Scope of Work												
3.0	Site D	escription	2										
4.0	Overv	iew of Environmental History	6										
5.0	Appro	each	9										
	5.1	Objectives	9										
	5.2	Roles and Responsibilities	9										
	5.3	Overview of Removal Process	9										
	5.4	Preparation Activities	10										
	5.5	PCS Excavation	10										
	5.6	Soil Assessment and Confirmation	11										
	5.7	Post-Excavation and Post-ISCO Application Ground Water Monitoring	12										
	5.8	Laboratory Analysis	12										
	5.9	Cleanup Standards and Other Numeric Criteria	13										
	5.10	In-Situ Chemical Oxidation and Enhancement of Natural Attenuation											
	5.11	Waste Disposal	15										
6.0	Site W	/ork Results	15										
	6.1	Soil Excavation	16										
		6.1.1 Excavation EX01	16										
		6.1.2 Excavation EX02	18										
	6.2	Soil Treatment and Excavation Backfilling	18										
		6.2.1 Backfilling EX01	19										
		6.2.2 Backfilling EX02	19										
	6.3	Confirmation Sampling Results	19										
		6.3.1 Excavation EX01	19										
		6.3.2 Excavation EX02	20										
		6.3.3 Temporary Overburden Soil Stockpiles	20										
	6.4	Post-Excavation and Post-ISCO Ground Water Monitoring	20										
	6.5	Preliminary Risk Screening (Risk Drivers)	21										
8.0	Limita	tions	23										

Tables

IN TEXT (labeled by Section – Number)

- 3-1 Monitoring Well Construction
- 5-1 Analytical Plan

AFTER TEXT (following 'Tables' tab)

- 1 Sample Location and Field Headspace Volatiles Summary
- 2 Summary of Analytical Data, Soil
- 3 Summary of Ground Water Elevations
- 4 Summary of Water Quality Parameters
- 5 Further Evaluation of COPCs in Soil (Risk Drivers)

Figures

- 1 Site Vicinity Map
- 2 Site Plan
- 3 Sample Location Diagram
- 4 Ground Water Potentiometric Surface Plot, Third Quarter 2023 (Based on 9/25/2023 Ground Water Elevations)

Appendices

- A Site Photographs
- B Lines of Section
- C Field Sampling Data Sheets
- D Laboratory Analytical Reports
- E Water Quality Parameter Charts
- F ODEQ Soil Matrix Cleanup Scoresheet
- G Waste Disposal Receipts

amsl	above mean sea level	PCS	petroleum-contaminated soil
bgs	below ground surface	PID	photoionization detector
BTOC	below top of casing		parts per million by volume
CFSL	clean fill screening level	ppmv RBC	risk-based concentration
Client	Estate of David Ollison	RBDM	ODEQ's Risk-Based Decision
		KDDIVI	Making for the Remediation of
COIC	constituent of interest		Contaminated Sites guidance
COPC	constituent of potential concern		document
CRBG	Columbia River Basalt Group	RM	river mile
су	cubic yard	RRFF-5	Rural Residential Farm / Forest 5
DO	dissolved oxygen		Acres (zoning)
DRO	diesel-range organics	RRO	residual (oil)-range organics
ENW	EVREN Northwest, Inc.	SAP	Sampling and Analysis Plan
EPA	US Environmental Protection	sf	square feet
F&BI	Agency	SLRBCs	screening-level risk-based
FSI	Friedman & Bruya, Inc.		concentrations
	Focused Site Investigation	SOW	scope of work
ft/ft	vertical feet per lineal foot	T1, T2, T3	Tank 1, Tank 2, and Tank 3,
GRO	gasoline-range organics		respectively
HASP	Health and Safety Plan	Tgsb	Tertiary Sentinel Bluffs Member
IRAP	Interim Remedial Action Plan		flows of the Grande Ronde
ISCO	in-situ chemical oxidation		Basalt of the Yakima Basalt
LUST	Leaking Underground Storage Tank		Subgroup of CRBG
μS/cm	microSiemens per centimeter	UAI	Universal Applicators, Inc.
mg/Kg	milligrams per Kilogram	UST	underground storage tank
	milligrams per Liter	VI	vapor intrusion
mg/L	millivolt	VOC	volatile organic constituent
mV MRL	method reporting limit	WAM	Waste Authorization Manager
NTA	NTA Contracting, Inc.		
OAR	Oregon Administrative Rule		
ODEQ	-		
ODEQ	Oregon Department of Environmental Quality		
ORC	Oxygen Release Compound		
ORP	oxidation-reduction potential		
OWRD-GRID	Oregon Water Resources Department – Groundwater Resource Information Database		
PAH	polynuclear aromatic hydrocarbon		

1.0 Introduction

At the request of the Estate of David Ollison (Client), EVREN Northwest, Inc. (ENW) prepared this report documenting the cleanup of petroleum-contaminated soil (PCS) associated with three previously decommissioned underground storage tanks (USTs) and at the subject site (*Ollison Property*, 23737 SW Newland Road, Wilsonville, Oregon; see Figures 1 and 2). Work was performed according to the December 27, 2022, *Interim Remedial Action Plan*¹ (IRAP) which was approved by the Oregon Department of Environmental Quality (ODEQ) on January 18, 2023.²

Site work was conducted during August and September 2023 and is documented by photographs presented in Appendix A. This report describes the methods and findings of soil excavation and offsite disposal, removal of a UST previously decommissioned in place, soil over-burden assessment, and in-situ soil treatment.

2.0 Scope of Work

ENW completed the following scope of work (SOW) for this project, consistent with the ODEQ-approved IRAP.¹

- Removed asphalt pavement over excavation site EX01 and transported it to a facility for recycling/disposal.
- Used field screening methods to segregate clean overburden soils into temporary stockpiles, which were later assessed and used as backfill.
- Excavated accessible PCS in excavations EX01 and EX02 for off-site disposal at Waste Management's Hillsboro Landfill under Waste Authorization Manager (WAM) Profile no. 134514OR.
- Removed one 675-gallon UST (Tank 2 [T2]) within EX01, which had previously been abandoned in place, to facilitate PCS removal.
- Mobilized a Baker Tank to the site in case dewatering of the excavations was needed to facilitate soil removal and in-situ chemical oxidation (ISCO).
- Collected excavation margin samples from EX01 and EX02 to confirm removal of impacted subsurface soils and characterize residual impacted soil.
- Submitted soil samples to an independent analytical laboratory under chain-of-custody protocols for appropriate analysis.

¹ ENW, December 27, 2022. *Interim Remedial Action Plan, Ollison Estate, 23737 SW Newland Road, Wilsonville, Oregon, Agency Information: ODEQ LUST File Number 03-19-0934.*

² January 18, 2023. In an email Kevin Dana of ODEQ said he reviewed the Interim Remedial Action Plan, the plan looked good, and he did not have any comments or concerns.

- In-situ chemical oxidation:
 - Applied and wetted 11,130 pounds of Regenesis PersulfOx® plus 1,520 pounds of Oxygen Release Compound (ORC®) to EX01.
 - Applied and wetted 495.9 pounds of PersulfOx®, 150 pounds of ORC®, 120 pounds of RegenOX® Part A, and 150 pounds of RegenOX® Part B to EX02.
- Finished backfilling the excavations with ¾-minus gravel and clean overburden and compacted the fill.
- Arranged for proper disposal of all waste materials, e.g., soil, UST, decontamination water, and solid waste, i.e., wood pallets and spent personal protection equipment.
- Evaluated analytical results with respect to ODEQ UST cleanup standards and guidance documents.
- Monitored post-soil removal and post-ISCO application ground water elevations and parameters, which are presented and discussed in this report.
 - Measured depth to water in all monitoring wells and calculated water level elevations relative to an arbitrary datum. Developed a potentiometric map for the shallow ground water aquifer.
 - Purged five monitoring wells until measured field parameters stabilized.

Ground water sampling and analytical results will be presented in a Ground Water Monitoring Report under separate cover.

Prepared this report documenting the work conducted and presenting recommendations.

3.0 Site Description

The subject site is in a rural residential zoning district in unincorporated Clackamas County 3.8 miles northeast of Wilsonville, Oregon, and 2 miles east of Interstate 5. The subject site is a rectangular 4.74-acre parcel of land on the west side of SW Newland Road developed with a residence, a detached garage/shop building and greenhouses. A "new" water well installed in 2019, replacing an "old" well, and currently provides domestic water to the property. Surrounding land use is a mix of low-density residential and agricultural use.

The subject property is zoned Rural Residential Farm / Forest 5 Acres (RRFF-5), which is intended to:

- Provide areas for rural living where this type of development is compatible with the continuation of farm and forest uses.
- To conserve the natural scenic beauty of the County.
- To protect the watersheds of existing or potential major sources of municipal or domestic water supply from encroachment by uses that would affect the quantity or quality of water produced, protect wildlife habitats, and other such uses associated with the forest.
- To avoid the potential hazards of damage from fire, pollution, and conflict caused by urbanization.

Primary uses are one single family dwelling, residential home as defined in Section 202, or manufactured dwelling subject to the provisions of Section 824. Accessory uses include home occupations, accessory buildings incidental to the primary uses, produce stands, sign, a guest house, bed and breakfast homestays, and family daycare providers. Conditional uses include churches, schools, daycare facilities, cemeteries, service and recreational uses, operations conducted for the exploration, mining, and processing of geothermal resources, aggregate, and other mineral resources, sanitary landfills and debris fills bed and breakfast residences and inns, composting facilities, wireless telecommunication facilities, kennels, aircraft land uses, commercial recreational uses, and commercial of processing activities that are in conjunction with timber and farm uses. Prohibited uses include structures and uses of land not specially mentioned in section 309, outdoor advertising displays, any proposed division of land resulting in the creation of one or more parcels of land of less than 5 acres, and residential subdivisions in future urban areas.³

Geographic Setting. The subject site lies at the northwestern end of Pete's Mountain, which is an uplifted block north of the Canby Fault Zone. Situated in the SW ¼ of the SE ¼ of section 31, Township 2 South, Range 1 East of the Willamette Merdian, the site lies on the north slope of a local ridge at elevations ranging from approximately 470 feet above mean sea level (amsl) in the northeast corner to an elevation of 520 feet amsl at the southwest corner of the site (Figure 1, Canby, Oregon 7.5' quadrangle). The subject property slopes generally to the northeast, and surrounding topography is hilly with local elevations rising moderately to 839 feet amsl to the east-southeast, around 570 feet to the south, and dropping northeastward down to 100 feet amsl to the Tualatin River.

Geologic Setting. The site is in the Portland Basin. The Portland Basin is a low-lying area between the Oregon Cascade Range to the east and the Portland Hills and Tualatin Mountains to the west, and the Chehalem Mountains / Pete's Mountain to the south. The Columbia and Willamette Rivers are the principal rivers within the basin. The Portland Basin is underlain by fluvial and flood deposits of the Columbia River and Willamette River and their tributaries. Though flood lava flows of the Columbia River Basalt Group (CRBG) are the basement rocks in the basin, such flows have been uplifted to form topographic highs such as the Chehalem Mountains and its eastern extension Pete's Mountain.

During the middle Miocene (approximately 17 to 6 million years ago), numerous tholeiitic flood lava flows were erupted from long linear fissure systems in northeastern Oregon, eastern Washington, and western Idaho. Many individual flood lava flows were of sufficient size and volume to have reached western Oregon through a gap in the Cascade Range, and some flows spread into the central Willamette Valley and even reached the Pacific Ocean. The site is mapped as Sentinel Bluffs Member (Tgsb) flows of the Grande Ronde Basalt of the Yakima Basalt Subgroup of CRBG.⁴ Tgsb flows consist of blocky to columnarjointed and locally entablature/colonnade jointed light- to dark-gray basalt with vesicular flow tops. Weathered basalt surfaces are greenish gray to pale gray. Finely to medium crystalline in hand sample, intersertal, in places plagioclase-phyric with sparse, small (<0.5 cm [0.2 inch]) tabular plagioclase

³ Clackamas County Zoning and Development Ordinance, Section 309 Rural Residential Farm/Forest 5 Acres (RRFF-5); chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://dochub.clackamas.us/documents/drupal/a9d33a65-67c4-4ffd-be9a-

bdb39f685896#:~:text=The%20RRFF%2D5%20zone%20is,and%20are%20easily%20accessible%20to

⁴ Wells, R.E. and others, 2020. *Geologic Map of the Greater Portland Metropolitan and Surrounding Region, Oregon and Washington*: U.S. Geological Society Scientific Investigations Map 3443, Map Scale 1:63,360.

phenocrysts. Tgsb can be distinguished from younger Frenchman Springs flows and older Grande Ronde units on the combined basis of stratigraphic position, higher MgO (magnesium oxide) and low TiO₂ (titanium dioxide) composition, lithology, and paleomagnetic directions. Unit thickness is variable, ranging from 10-25 m (32-82 ft). Weathering is variable and believed to be related to individual basalt flows, in which some exposures are altered to red clay (laterite) to depths of 9 m (30 feet), and occasionally as deep as 18-53 m (60-175 ft), while others are only slightly weathered at the surface. The basalt is mantled with colluvium and a weathered soil horizon.

Subsurface conditions encountered in soil borings completed during ENW's *Focused Site Investigation* (FSI)⁵ and during this soil removal action consisted of basalt fragments and multi-colored interstitial finegrained sediments. These materials are consistent with the upper weathered zone of the underlying Tbsg. Borings encountered silts, sands and basalt with orange, red, yellow, and brown clayey weathered materials, including weathered and fractured basalt rock to the maximum depth explored of 8.3 m (27.5 ft) below ground surface (bgs). Sediments are interpreted as highly weathered Tgsb which underlie the area.

The driller's log obtained from the Oregon Water Resources Department (OWRD) Groundwater Resource Information Database for the 440-ft deep old on-site domestic well (CLAC 19644) installed in August 1994 identified 13 feet of brown clay followed by 30 feet of gray-brown decomposed basalt underlain by soft to hard gray and gray-brown basalt to the maximum depth drilled of 440 feet bgs. The old well was abandoned in June 2023 (CLAC 78034). The driller's log for the 420-ft deep new domestic well (CLAC 74697) installed in January 2019 identified a similar lithology with 13 ft of brown clay, followed by 15 ft of brown weathered basalt underlain by gray-brown and green fractured and broken basalt with intermittent porous brown and red basalt (interflow) zones.

Lines of section A-A', B-B', and C-C' are shown in Figure 3 and are included in Appendix B.

Surface Water. The nearest surface water to the subject property is the headwaters of an unnamed creek several hundred feet to the west. The creek flows northward to the Tualatin River, which eventually joins the Willamette River at its confluence near the town of Willamette between river mile (RM) 28 and 29. The next closest surface water is the headwaters of Newland Creek, which flows southward to its confluence with the Willamette River near RM 36. The Willamette River flows generally north to where it discharges to the Columbia River at RM 101.

Ground Water. The regional ground aquifer from which local wells derive their water occurs at depths below 300 feet. According to the Oregon Water Resources Department Groundwater Resource Information Database (OWRD-GRID), ground water in the old onsite water well (CLAC_19644) was obtained from a fractured basalt layer at 400- to 435-ft bgs. The old on-site well was abandoned in June 2023 (CLAC_78034). Driller's notes from a log for the new on-site well (CLAC_74697) describe the productive aquifer from 329 to 420 feet bgs within a fractured porous basalt layer. Static water was reported at 329 feet at the time of drilling.

EVREN Northwest, Inc. Project No. 114-19002-02

⁵ ENW, May 11, 2022. *Focused Site Investigation*, Ollison Property, 23737 SW Newland Road, Wilsonville, Oregon, Agency Information: ODEQ LUST File Number 03-19-0934, Prepared for: Estate of David Ollison, Attn: Sandy Wehrman, 23737 SW Newland Road, Wilsonville, OR 97070.

⁶ ENW, July 17, 2023. *Water Well Abandonment (CLAC 78034)*, Ollison Estate, 23737 SW Newland Road, Wilsonville, Oregon, Prepared for: Estate of David Ollison, 23737 SW Newland Road, Wilsonville, OR 97070.

During the FSI,⁵ ENW encountered a shallow water-bearing unit within the near-surface weathered basalt zone. Saturated soils were encountered at between 4-10 ft bgs with ground water stabilizing in temporary well points at depths ranging from 15-27 ft bgs. Depth to ground water in the old domestic well was measured at 291 ft bgs. Evidence of vadose zone petroleum impacts was observed in borings B01, B01′, B04, B09, and B10 at or near the soil/water interface (depths of 8.5-18.5 feet bgs). Ground water flow direction within the shallow ground water aquifer was presumed at the time to mirror surface topography and flow generally to the north-northeast.

In March 2023, five ground water monitoring wells (MW01 through MW05) were installed, developed, surveyed, and monitored in accordance with the IRAP. Monitoring well locations are shown in Figure 3. Monitoring well construction details are presented in Table 3-1.

Monitoring Well Identification	Dated Installed	Start Card No.	OWRD Well Tag ID	Total Depth Drilled (Feet bgs)	Slot Size (inches)	Slotted PVC Screen Interval (feet bgs)	Top of Casing Elevation (feet)
MW01	3/2/2023	1060275	L103392	30	0.040	15 - 30	518.62
MW02	3/2/2023	1060276	L103393	25	0.040	10 - 25	515.38
MW03	3/2/2023	1060277	L103394	25	0.040	10 - 25	510.29
MW04	3/2/2023	1060278	L104850	30	0.040	15 - 30	515.24
MW05	3/2/2023	1060279	L149144	25	0.040	10 - 25	507.94

Table 3-1. Monitoring Well Construction

ID = identification

OWRD = Oregon Water Resources Department

PVC = polyvinyl chloride

ENW performed hydraulic testing at the subject site on three separate occasions between March 15 and March 28, 2023. Monitoring well installation and hydraulic testing results are presented in ENW's April 7, 2023, *Technical Memorandum: March 2023 Ground Water Monitoring Well Installation Report.*⁷ March 2023 ground water monitoring results are presented in ENW's *First Quarter 2023 Ground Water Monitoring Report*, ⁸ and June 2023 ground water monitoring results are presented in ENW's *Second 2023 Ground Water Monitoring Report*. ⁹ Well installation, hydraulic (slug) testing, and monitoring results are summarized below:

• First water was encountered at depths ranging from 20-25 ft bgs. Ground water stabilized at depths ranging from 6.40 ft below top of casing (BTOC) in MW02 to 27.55 ft BTOC in MW01.

⁷ ENW, April 7, 2023. *Technical Memorandum: March 2023 Ground Water Monitoring Well Installation Report*, Ollison Estate, 23737 SW Newland Road, Wilsonville, Oregon, Prepared for: Estate of David Ollison, 23737 SW Newland Road, Wilsonville, OR 97070.

⁸ ENW, May 24, 2023. *First Quarter 2023 Ground Water Monitoring Report*, Ollison Estate, 23737 SW Newland Road, Wilsonville, Oregon, Prepared for: Estate of David Ollison, 23737 SW Newland Road, Wilsonville, OR 97070.

⁹ ENW, July 31, 2023. *Second Quarter 2023 Ground Water Monitoring Report*, Ollison Estate, 23737 SW Newland Road, Wilsonville, Oregon, Prepared for: Estate of David Ollison, 23737 SW Newland Road, Wilsonville, OR 97070.

- ENW developed the monitoring wells on March 8, 2023, through a process of surging the pumping. A total of approximately 70 gallons of development water was pumped from all five wells.
- The monitoring wells were professionally surveyed by Axis Mapping and Surveying Company of Bend, Oregon on March 9, 2023. relative to a National Geodetic Survey benchmark (Designation 2S1E32C60SE) with an elevation of 485.24 ft amsl.
- The results of slug testing suggest relatively variable hydraulic conductivity values ranged from 1.25E-06 to 2.44E-05 m/s (4.1E-06 to 8.0E-05 ft/s) for MW02 through MW05, with an average of 1.37E-05 m/s (4.5E-05 ft/s) on the selected falling head and rising head tests. These values are generally considered low permeability and are considered typical of the fine-grained silts and sands and weathered basalt of the uppermost aquifer in the subject area.
- During the March 10, 2023, monitoring event, depth to ground water ranged from 11.87-27.55 ft BTOC. A ground water potentiometric plot of water level data, excluding ambiguous data from MW01, suggested a north to northeastward ground water flow direction at a hydraulic gradient of 0.126 vertical feet per lineal foot (ft/ft).
- During the June 6, 2023, monitoring event, depth to ground water ranged from 16.09-23.12 ft BTOC. A ground water potentiometric plot of water level data, excluding ambiguous data from MW01, suggested a northward ground water flow direction at a gradient of 0.18 ft/ft.
- The estimated velocity of ground water flow in the uppermost water-bearing zone at the subject site is 8.53E-06 m/s (2.8E-5 ft/s) and 3.35E-5 m/s (1.1E-4 ft/s), which were calculated based on average hydraulic conductivity of 1.37E-5 m/s (4.5E-05 ft/s), gradient of 0.126 ft/ft, and range of effective porosity or specific yield of 0.05 to 0.2.

4.0 Overview of Environmental History

The environmental history of the site including the following key elements is presented in ENW's IRAP.¹ Activities occurring after the IRAP are summarized in this section.

- **1960s.** Two gasoline USTs and one diesel UST likely were installed in the building compound at the site when the residence was constructed.
- November 2018. A release of petroleum hydrocarbons was suspected when Sanetel Pumps, Inc.
 encountered petroleum odors in an old unused well (CLAC 19644) at the site. Gasoline-range
 organics (GRO), diesel-range organics (DRO), and residual (oil)-range organics (RRO) above
 ODEQ's respective screening level risk-based concentrations (SLRBCs) in a water sample from this
 old well.
- August to September 2019. Universal Applicators, Inc. (UAI) decommissioned by removal one 300-gallon fuel UST (T3), decommissioned in place one 675-gallon fuel UST (T2), and by removal one 675-gallon heating oil UST (T1). A total of approximately 14 tons of PCS were removed from T3 and T1 excavations during the decommissioning process. Residual GRO and DRO were only detected in confirmation samples from T3. UAI reported a release to ODEQ on September 20,

Ollison Property, Wilsonville, OR

2019, who assigned the site Leaking Underground Storage Tank File No. 03-19-0934. Characterization data was summarized in an Initial (Twenty Day) Report submitted to ODEQ.

- **November 2019 to January 2020.** UAI retained ENW to collaborate in response to ODEQ's November 19, 2019, letter request for further investigation to address data gaps, i.e., investigating the full extent of soil and ground water impacts at the site.
- December 2021 and February 2022. ENW installed 11 soil borings and collected soil and reconnaissance ground water samples to delineate the vertical and lateral extent of residual soil contamination associated with T1 and T3.⁵
 - Soil sampling data confirmed that impacts were relatively confined to the immediate area
 of tank T3 and beneath former heating oil tank T1 located next to the residence. Soil
 impacts extended to the shallow ground water table, which was encountered in borings
 at approximately 15 to 24 feet bgs.
 - Reconnaissance ground water sampling confirmed the presence of a plume of GRO- and DRO-related impacts next to T3, which extends north-northwest. Primarily DRO-related impacts were confirmed next to T1, which extends northeastward.
 - Concerning potential deeper aquifer impacts, GRO exceeding ODEQ's SLRBC were detected in a water sample from the old well (CLAC 19644); however, no petroleum hydrocarbons or related constituents were detected in a water sample from the new well (CLAC 74697).
 - Based on soil data, potentially unacceptable human health risks were suggested under the soil vapor intrusion into buildings pathway for a residential receptor, soil ingestion, dermal contact, and inhalation pathway for a construction worker, and leaching to ground water for a residential receptor and occupational worker.
 - o Based on reconnaissance ground water data, potentially unacceptable human health risks were suggested under ingestion and inhalation from tap water pathway for residential and occupational well users, vapor intrusion into buildings for current and future residential occupants, and ground water in an excavation for future construction/excavation workers.
- **February 2023.** Given the FSI⁵ results and to address potential risks to human receptors, ENW developed an *IRAP*¹ in accordance with applicable Oregon Administrative Rules (OAR 340-122-0010 through -0115) and *ODEQ UST Cleanup Manual*¹⁰ and cleanup guidance.¹¹ IRAP tasks included:
 - Baseline ground water monitoring following installation of five ground water monitoring wells.
 - o Immediate remedial measures as follows:
 - Excavating accessible PCS and disposing of these materials offsite at a permitted landfill.

¹⁰ http://www.deg.state.or.us/lg/pubs/docs/tanks/USTCleanupManual.pdf

¹¹ http://www.deq.state.or.us/pubs/reports.htm#cuguidance

- Applying chemical oxidant following soil removal to provide initial ground-water treatment and oxygen release compound while backfilling excavations to create ongoing remediation of residual petroleum-impacted soil and ground water.
- Submitting progress reports summarizing work completed during the remedial action phase of work.
- Preparing a comprehensive report documenting Immediate Remedial Measures site work.
- Ongoing post-interim action monitoring and possible additional interim actions, including initiating quarterly ground water monitoring and reporting, and providing recommendations for additional remedial actions (if needed / appropriate).
- Conducting a Residual Risk Assessment, including:
 - Reassessing the magnitude and extent of known residual impacts in soil and ground water.
 - Results of a beneficial land and water use survey.
 - Results of a residual risk assessment.
 - When appropriate, based on site conditions, requesting regulatory site closure.
- March 2023. Installation⁷ and monitoring⁸ of MW01 through MW05 during the first quarter 2023 detected dissolved GRO, DRO and related volatile organic constituents (VOCs) in shallow ground water beneath the site. The highest dissolved constituent concentrations were detected in MW02 (immediately down gradient of T2 and T3), followed by MW03 and MW04 (further down gradient and cross gradient) and MW05. This latter well had the highest DRO in ground water (as a note, MW05 is more proximate to the former heating oil UST T1). All five monitoring wells contained one or more dissolved constituents at concentrations exceeding SLRBCs. Ground-water plume morphology suggests an elongated ground water plume extending from T2/T3 northnortheastward toward MW03.
- June 2023. Monitoring⁹ of MW01 through MW05 during the second quarter 2023 detected dissolved GRO, DRO and related VOCs in shallow ground water beneath the site at concentrations exceeding ODEQ's SLRBCs. Again, the highest dissolved constituent concentrations were detected in MW02, followed by MW03 and MW04. Four of the five monitoring wells contained one or more dissolved constituents at concentrations exceeding generic SLRBCs. Because there is no known source of DRO near wells MW02 through MW04, ENW believes the presence of DRO in wells MW02 through MW04 is due to organic interference and overlap from weathered gasoline. During this sampling event there were no detections of GRO, DRO, or GRO- or DRO-related constituents in upgradient monitoring well MW01. Based on these results, the down gradient extent of the ground water plume lies at some point north of MW03 and northeast of MW05 and appears to be contained on site.

Based on these and previous results, ENW recommended:

• Performance of planned remedial excavations and application of post-excavation in-situ oxidization, as outlined in the IRAP.

 Post-remediation ground water monitoring for at least one year to determine long-term trends in residual ground-water concentrations and parameters, and to monitor effectiveness of interim remedial actions.

5.0 Approach

5.1 Objectives

The remedial action objectives for the site were to:

- 1) Reduce the concentrations of constituents of potential concern in shallow subsurface soil.
- 2) Reduce potential migration of contaminants onsite (via ground water or soil gas).
- 3) Utilize ISCO to reduce residual contaminant concentrations in shallow ground water at the source areas.

Additional objectives for the work were:

- To perform the work efficiently and cost-effectively, minimizing interference with farm operation. To this end a systematic approach was used to excavate PCS.
- To perform the work in a safe manner for technical personnel and site residents / farm employees.
- To document information and data generated in a professional manner that is valid for the intended use.

Photographs documenting ENW's field approach described in this section are presented in the photolog in Appendix A.

5.2 Roles and Responsibilities

UAI subcontracted ENW to provide on-site oversight to direct the extent and depth of excavation, collect samples as appropriate, arrange for waste disposal, and direct placement of in-situ treatment materials and excavation backfill.

- UAI and NTA Contracting, Inc. (NTA), of Portland, Oregon, as excavation contractors for the project. NTA subcontracted various trucking companies to transport PCS to the disposal facility.
- Regenesis® supplied and recommended quantities of in-situ treatment products, i.e., PersulfOx®, ORC-Advanced®, and RegenOX® Part A and B to be applied to the base of the excavations.
- PCS was disposed of at Waste Management's Hillsboro Landfill in Hillsboro, Oregon, under UAI's WAM Profile #134514OR.
- Laboratory analytical services were provided by Friedman & Bruya, Inc. (F&BI) of Seattle, Washington.

5.3 Overview of Removal Process

Work began with NTA removing asphaltic concrete pavement and disposing/recycling of the debris at Knife River's Coffee Lake facility in Sherwood, Oregon. "Clean" overburden soil was removed, stockpiled

on plastic sheeting along the southern site border and west of the shop building, and later sampled and analyzed to confirm it was acceptable for backfilling the excavations. PCS was excavated and direct loaded into trucks and transported to Hillsboro Landfill for disposal under WAM profile #134514OR. Field headspace tests using a photoionization detector (PID) were conducted on removed soils to guide the direction and depth of excavation. Soil samples were collected as appropriate to direct work, to provide laboratory results for material disposal profiles and to provide sample data at excavation margins. The first application of in-situ soil treatment products was placed in the base of each excavation, wetted, and covered with a 12-inch layer of clean aggregate. The second application of in-situ treatment products was placed on the aggregate layer and wetted prior to backfilling the remaining excavation with compacted layers of crushed rock and clean overburden soil.

A Baker tank was staged on site for dewatering of the excavations if necessary. While ground water was encountered at depth in both excavations, the ground water level dropped as the excavations deepened. Thus, it was not necessary to dewater either excavation.

5.4 Preparation Activities

ENW conducted or coordinated the following activities per the approved IRAP.¹

Plan Preparation. Internal Sampling and Analysis Plan (SAP) and a Health and Safety Plan (HASP) were prepared for the project.

ODEQ Notification. ENW notified ODEQ in advance of the soil removal action and in-situ remediation.

One Call Notification. Prior to any subsurface site work, a call was placed with One Call Utility Notification Service to identify and locate all public utilities near each of the proposed excavation locations.

Acquired Approved Soil Profile. PCS was disposed of at Hillsboro Landfill under WAM Profile #134514OR acquired by UAI.

Planning. ENW scheduled and coordinated with NTA to begin site work.

5.5 PCS Excavation

PCS excavation was directed by ENW and performed by NTA using a tracked excavator. Work was conducted following the guidelines outlined in the *IRAP*,¹ including:

- All activities were conducted according to the methods and procedures outlined in the HASP,¹² the IRAP and internal SAPs.
- Asphaltic concrete pavement at EX01 was removed, loaded into a truck, and transported to Knife River's Coffee Lake facility for recycling/disposal.
- Apparent clean overburden soil (based on field inspection) was segregated (stockpiled) on sheet plastic at the site pending results of composite characterization sampling.

¹² ENW, April 10, 2023. *Health and Safety Plan*, 23737 Newland Road, Wilsonville, Oregon 97070, ODEQ LUST File No. 03-19-0934, Prepared for: Estate of David Ollison, Attn: Sandy Wehrman, 23737 SW Newland Road, Wilsonville, Oregon, 97070.

- Whenever possible, during excavation PCS was immediately loaded into trucks for transport to the receiving landfill.
- Work conducted each day was documented, including the lateral and vertical extent of progressive excavation, field inspection results (lithology, field headspace measurements with a PID, sheen testing, odor, olfactory evidence, etc.), the disposition of soils, samples collected, soil stockpiles created and loads of PCS hauled offsite.
- Soil samples were collected by ENW and submitted to the laboratory for analysis (further described below).

The progressive details and findings of soil excavation are presented in Section 6.

5.6 Soil Assessment and Confirmation

Field Screening. In general, PCS was readily apparent based on visual appearance (e.g., green or gray staining, sheen, petroleum odor). Field headspace screening of soil samples collected from the floor and sidewalls of EX01 and EX02 was conducted to guide the excavation of PCS. Field headspace was measured by placing an aliquot of soil to be tested in a resealable plastic bag and inserting the tip of a PID into the bag and reading headspace volatiles in parts per million by volume (ppmv). PID readings are shown on Table 1.

Confirmation Soil Sampling. Confirmation grab soil samples were collected from the excavation margins (sidewalls) and floor of EX01 and EX02.

- **EX01**: eight (8) sets of depth discrete upper, middle, and lower¹³ excavation sidewall samples; one depth discrete middle sidewall sample; and seven (7) discrete floor samples collected at depths ranging from 20 to 23 ft bgs.
- **EX02**: four (4) depth discrete sidewall samples collected at 15.5 to 16 ft bgs, which are 2 to 2.5 feet above the excavation floor, and one floor sample collected at 18 ft bgs.

Confirmation soil samples were collected consistent with Oregon regulations and ODEQ guidance regarding locations and number of samples to demonstrate that an area meets cleanup criteria. Typically, one set of sidewall samples were collected every 20 linear feet for sidewall.

Overburden Stockpile Sampling. Composite sampling methodology was used to sample the following overburden soil stockpiles as follows:

- **EX01 Upper Stockpile:** The EX01 upper stockpile was located between the south side of the holly orchard and south property line. Comp01 consisted of 20 subsamples from random locations throughout the east half of the approximately 160 cubic yard (cy) stockpile; and Comp02 consisted of 20 subsamples from random locations throughout the west half of the stockpile.
- **EX01 Lower Stockpile:** The EX01 lower soil stockpile was located between the east side of the holly orchard and west side of the shop building. Comp03 consisted of 20 subsamples from

¹³ Upper sidewall samples were collected at 7 to 12 ft bgs or one-third the height of the impacted soil zone, the lower sidewall samples were collected 2 to 4.5 ft above the excavation floor, and middle sidewall samples were collected at 14 ft bgs, which is approximately one-half the distance between the upper sidewall sample and lower sidewall sample depths.

random locations throughout the south half of the approximately 130 cy stockpile; and COMP04 consisted of 20 subsamples from random locations throughout the north half of the stockpile.

• **EX02 Stockpile**: Comp05 consisted of eight (8) subsamples from random locations throughout the approximately 25 cy stockpile.

Soil Sampling Methodology. All soil samples were collected under the supervision of an ENW licensed geologist using current industry-standard protocol. When used, stainless steel sampling tools were decontaminated with a sequential wash of Alconox-water, ½ Alconox-water (diluted), and distilled water before and after each sample.

- Grab samples were collected with a decontaminated stainless-steel sampling tool or from the excavator bucket at a position not in contact with the bucket.
- Composite samples were collected at random locations throughout the top, middle, and bottom of the soil piles. The subsamples were placed together in a stainless-steel mixing bowl, mixed and then a composite sample was collected from this material.

Soil samples were transferred with fresh Nitrile gloves into sample containers provided by the laboratory. The containers were filled to minimize headspace before immediate sealing. The jar was then labeled with a distinctive designation, the date, time, project number, and sampler's name, and then immediately placed in cooled storage until they were delivered to the laboratory. Chain-of-custody protocols were implemented. Soil analytical data are presented in Table 2.

5.7 Post-Excavation and Post-ISCO Application Ground Water Monitoring

Ground Water Elevation and Flow Direction. On October 3, 2023, ENW opened the monitoring wells to allow water levels to equilibrate to ambient barometric pressure. Once equilibrated, depth-to-water measurements were measured relative to the surveyed markings at the top-of-casing of each monitoring well. Ground water elevations were calculated by subtracting the depth-to-water measurement from the surveyed top-of-casing elevation. Water level data are presented in Table 3 (attached following text) and recorded onto field sample data sheets included in Appendix C.

Well Purging and Field-Measured Parameters. Monitoring wells MW01 through MW05 were purged and sampled using low-flow sampling methods. Prior to sampling, approximately 3-4 liters (0.80-1.05 gal) of ground water were purged from each well using a low-flow peristaltic pump and dedicated polyethylene tubing. To monitor purging progress, an In-Situ water quality meter was used to measure water quality parameters. Purging was discontinued when water quality parameters stabilized. Field parameter data are presented in Table 4 (attached following text) and recorded onto FSDS forms included in Appendix C.

All purge water was placed in a steel drum (sealed and labeled) and left on-site pending receipt of analytical results. Investigation-derived waste will be appropriately disposed of based on laboratory results.

5.8 Laboratory Analysis

All water and soil samples were analyzed by F&BI of Seattle, Washington according to the analytical plan presented in Table 5-1. Laboratory analytical reports and chain-of-custody forms are included in Appendix D.

Analytical Method	Constituents	Soil
NWTPH-Gx	Northwest Total Petroleum Hydrocarbons – Gasoline-Range Organics (GRO)	All soil samples
NWTPH-Dx	Northwest Total Petroleum Hydrocarbons – Diesel-Range Organics (DRO) and Residual-Range Organics (RRO)	All soil samples
US Environmental Protection Agency (EPA) 8260D	GRO-Related Volatile Organic Constituents (VOCs)	Selected soil samples with the greatest concentration of GRO
EPA 8270E SIM	Polynuclear Aromatic Hydrocarbons (PAHs)	Selected soil samples with the greatest concentration of DRO
EPA 6020B	Total lead	Selected soil sample with the greatest concentration of GRO

5.9 Cleanup Standards and Other Numeric Criteria

Oregon's environmental cleanup rules (Oregon Administrative Rules [OAR] 340-122) establish the standards and procedures for the protection of current and future public health, safety and welfare, and the environment in the event of a release or threat of a release of a hazardous substance. In the event of a release of a hazardous substance, remedial actions shall be implemented to achieve:

- Acceptable risk levels defined in OAR 340-122-0115, as demonstrated by a residual risk assessment; or
- Numeric cleanup standards developed as part of an approved generic remedy identified or developed by the Department under OAR 340-122-0047, if applicable; or
- For areas where hazardous substances occur naturally (e.g., metals, etc.), the background level of the hazardous substances, if higher than those levels specified above.

Acceptable risk levels may be evaluated through conducting a site-specific risk assessment that calculates exposure point concentrations for specific exposure pathway receptor-scenarios or use generic for hazardous substances under ODEQ's Risk-Based Decision Making (RBDM) guideline to streamline the risk assessment process (see below).

The assessment and remediation of hazardous substances in Oregon are conducted according to OAR 340, Division 122, *Hazardous Substance Remedial Action Rules*. The following cleanup standards and numeric criteria may be applied in evaluating site assessment results.

Soil Matrix. Under the Soil Matrix Cleanup Option Rules (OARs 340-122-0320 through 0360) cleanup standards are determined by assigning site-specific values to environmental parameters (e.g., soil type, depth to ground water, etc.). For purposes of risk-based evaluations of soil, Soil Matrix Cleanup Levels are often used for screening purposes, where potentially significant levels of petroleum contamination may be present if concentrations of total petroleum hydrocarbons in soil exceed their respective soil matrix cleanup level or soil matrix level I for conservative screening purposes and may require remedial action. Concentrations of total petroleum hydrocarbons lower than their corresponding Soil Matrix Cleanup Level or Soil Matrix Level I if a cleanup level has not been determined, usually do not require any additional

cleanup or risk management. A completed soil matrix scoresheet provided in Appendix F shows a calculated score of 37, which corresponds to a Level 2 soil matrix cleanup site.

ODEQ Risk-Based Concentrations (RBCs). ODEQ has compiled default risk-based screening reference levels (RBDM guidance document) for common exposure-pathway receptor-scenarios that may be utilized in lieu of site-specific risk calculations (OAR 340-122-0115). In particular, the pre-calculated RBC represents the concentration of a constituent of interest (COI) in the impacted medium (e.g., soil, ground water, or air) that potentially represents an unacceptable risk level.

The published RBCs represent a conservative default concentration of a COI in an impacted medium (e.g., soil, ground water, soil gas, or air). When COI concentrations on a site exceed the RBC, unacceptable human health impacts are possible.

- For carcinogens, the regulatory standard is represented by an excess cancer risk of one in one million (1x10⁶), and
- For non-carcinogens, this is represented by a Hazard Index of 1.

RBC exceedances typically trigger further investigation and potentially a human health risk assessment. Therefore, RBCs can be applied at sites as generic, conservative cleanup standards and are routinely used by ODEQ to determine if a site requires additional action. Site-specific parameters used in the equations to develop the RBCs are often adjusted to match actual conditions in developing site-specific cleanup levels.

RBCs are generally used to evaluate sampling analytical results as follows:

- ODEQ's lowest RBC for all pathways for residential receptors is used as an initial 'conservative' screening of a constituent. If a constituent's concentration exceeds its SLRBC, it requires further evaluation. Otherwise, the constituent is considered unlikely to pose unacceptable risk to any human receptor.
- Because ODEQ Generic RBCs are based on several conservative assumptions (e.g., duration and type of exposure), exceeding an SLRBC does not necessarily indicate that additional investigation or remediation is required. Rather, the exceedance of a SLRBC may indicate that additional investigation and evaluation, including consideration of site-specific information (e.g., current, and future land uses), may be necessary to determine if remediation or other actions are necessary. In many cases, it is not possible to determine whether unacceptable risks to human health and the environment are present, and require further action, until a risk assessment, including evaluation of current and reasonably likely land and water uses, is complete.
- In general, ODEQ considers chemical concentrations less than SLRBCs to be protective of human health.

Should constituents be identified that also exceed their generic, but exposure pathway- and receptor-specific RBCs, then the appropriateness of additional site-specific methods allowed under the RBDM guidance document will be evaluated (e.g., the development of site-specific RBCs, sampling of soil gas and/or vapor, etc.).

Other Numeric Criteria. In addition to the above risk-based cleanup standards, concentrations were also compared to the following numeric criteria to determine if possible enrichment was occurring, and/or determine if there may be offsite soil disposal restrictions.

• **Background Metals.** Analytical data were compared with background concentrations established by ODEQ. [1],[2] ODEQ does not require cleanup for metals concentrations below default background concentrations. Background concentrations are used for screening data for metals in soil as part of the risk assessment.

5.10 In-Situ Chemical Oxidation and Enhancement of Natural Attenuation

ENW determined that treatment of residual PCS by ISCO would be an effective form of enhancing natural attenuation based on site characteristics. Therefore, prior to backfilling a strong chemical oxidant (PersulfOx®) was added to the soil of the excavation floor to oxidize high-concentration residual impacts in ground water. At the same time, an oxygen release compound (ORC-Advanced®) was mixed with this oxidant to provide a long-term zone of oxidation to enhance natural attenuation of residual impacts in shallow ground water. Both products were obtained from Regenesis, the manufacturer.

Chemical application was conducted twice, in a phased approach, to allow for a portion of the excavation to be backfilled. Application details are presented in Section 6.

5.11 Waste Disposal

Wastes were disposed as follows during this SOW:

- The in-place decommissioned UST was removed from the site and taken to Metro Metals Northwest, Inc., of Portland, Oregon for recycling.
- A total of 1,286.32 tons PCS was transported to Hillsboro Landfill for disposal under WAM Profile #134514OR issued to UAI by Waste Management, Inc.
- Well purge water awaits disposal.

Disposal receipts are included in Appendix G.

6.0 Site Work Results

Site work was completed between August 30, 2023, and September 25, 2023. This section discusses work conducted in general chronological order. Please reference:

- Figure 3 for locations: former USTs, sampling locations, lines of section, and excavation margins.
- Figure 4 for a ground water potentiometric surface plot.
- Appendix A for a photolog chronicling the site work.
- Table 1 for a summary of soil sample information including name, date sampled, depth, field headspace (PID) reading, and locations.

^[1] ODEQ, March 2013, Development of Oregon Background Metals Concentrations in Soil: Technical Report, Land Quality Division Cleanup Program.

^[2] ODEQ, October 28, 2002, Default Background Concentrations for metals, Memo from Toxicology Workgroup to DEQ Cleanup, Table 1 – Oregon DEQ Suggested Default Background Concentrations for Inorganic Contaminants in Various Environmental Media.

- Table 2 for a summary of soil analytical data.
- Table 3 for a summary of ground water elevations.
- Table 4 for a summary of water quality parameters.

6.1 Soil Excavation

6.1.1 Excavation EX01

In general, the top five feet of soil did not contain PCS based on field screening. This clean overburden was set aside in 'clean' soil "Upper" and "Lower" stockpiles until confirmed through sampling.

August 30, 2023. Following the removal of asphaltic concrete pavement, NTA began to excavate clean overburden above the approximate location of the former 300-gallon UST (T3). Stained soils were encountered at 6 ft bgs, though no volatile hydrocarbons were detected through field headspace tests with a PID; the maximum headspace reading was 0.2 ppmv. Removed overburden soil was loaded into dump trucks and transported a short distance to the "Upper" stockpile located in the narrow strip of land between the holly orchard and the south property line. The Upper stockpile was underlain by plastic sheeting prior to placing removed soil. Asphalt debris was transported to Knife River's Coffee Lake facility in Sherwood. Two buried power conduits were encountered when excavating near the southwest corner of the house. The power to these lines was shut off.

August 31, 2023. NTA loaded dump trucks with PCS encountered at 5.5 ft bgs and deeper at the southeast corner of EX01. Throughout the day, eight truckloads (95.79 tons) of PCS were transported to Hillsboro Landfill for disposal under WAM profile #134514OR. Field headspace volatile readings ranged from 1.6 to 79 ppmv. Shallower impacts, i.e., 4 feet bgs, were encountered above T2, which was eventually exposed. NTA removed two trees along the east part of the south excavation wall to access and remove T2, which was filled with gravel when decommissioned in place. At the end of the day, EX01 was 20 ft-wide by 11 ft-long by 10.5 ft-deep.

September 1, 2023. NTA continued to excavate PCS below T2 at the southeast corner of EX01. to the north toward the barn. Field headspace detections ranged from 790 ppmv at 10 ft bgs to 42 ppmv at 15 ft bgs, at which depth partially decomposed porphyritic basalt was encountered. GS01 and GS02 were collected along the south wall at 14 ft and 12 ft bgs, respectively, where field headspace of the former sample was 27.1 ppmv. Field headspace along the east end of the north wall ranged from 39 ppmv at 8 ft to 2,700 ppmv at 18 ft bgs, at which depth ground water was encountered. Depth to ground water in monitoring wells MW02 and MW04 were 17.10 ft below top of casing (BTOC) and 18.05 ft BTOC, respectively. Throughout the day 12 truckloads (149.33 tons) of PCS were transported to Hillsboro Landfill for disposal. EX01 was approximately 16 ft wide by 27 ft long by 15 ft deep.

September 5, 2023. NTA continued to excavate PCS from the floor of EX01, which was loaded into trucks and transported to Hillsboro Landfill. After PCS was out of reach of the excavator, NTA began removing asphalt pavement and clean overburden to expand EX01 westward to create a bench where the excavator could sit to remove PCS from the floor and east side of EX01. Field headspace was >5,000 ppmv on the east wall, 52.7 ppmv at 17 ft bgs at the soil/water interface at the base of the south wall where GS03 was collected, and 28 ppmv at 10 ft bgs, 162 ppmv at 14 ft bgs, and 201 ppmv at 18 ft bgs at the center part of the north wall where GS04, GS05, and GS06, respectively, were collected. Clean overburden was

transferred to one of the on-site stockpiles. Throughout the day, 19 truckloads (255.03 tons) of PCS were disposed of at Hillsboro Landfill. Ground water seepage was observed at the base of EX01 at 18 ft bgs.

September 6, 2023. Given high field headspace detection on the east wall (>5,000 ppmv), NTA removed asphalt pavement to expand EX01 20 feet eastward. Field screening determined that clean overburden continued down to 3 ft bgs along the east bench. Clean overburden was placed in the Lower stockpile on plastic sheeting. Six inches of ground water was observed at a depth of 18 ft-10 in the northeast corner of EX01. No PCS was transported to Hillsboro Landfill on this date.

September 7, 2023. NTA excavated PCS underlying the east bench where field headspace readings:

- beneath former T3 were 3,347 ppmv,
- just north of former T3 ranged from >5,000 ppmv at 6-8 ft bgs to 600 ppmv at 9 ft bgs, and
- 10-20 ft north of former T3 ranged from 60 ppmv at 7-10.5 ft bgs to 440 ppmv at 13 ft bgs.

NTA alternately loaded PCS onto trucks from the east side of EX01 and the bench on the west side of EX01. Nine truckloads (119.52 tons) of PCS were transported to Hillsboro Landfill for disposal throughout the day. Confirmation samples GS07-GS09 were collected at the southeast corner of EX01 at 9 ft, 14 ft, and 17 ft bgs, respectively. GS10 was collected at the northeast corner of EX01 at 10 ft bgs, GS11 from the east floor at 20 ft bgs, and GS12-GS14 were collected midway along the east wall at 18 ft, 14 ft, and 10 ft bgs, respectively. EX01 was roughly 110 ft-long (east-west) by 75 ft-wide (north-south) by up to 20 ft-deep.

September 8, 2023. NTA continued to load PCS from the east wall, which was stockpiled on the floor of EX01 onto trucks. Six truckloads (85.85 tons) of PCS were disposed of at the Hillsboro Landfill on this date. Depth to ground water of 20.05 ft BTOC in MW02 and 21.40 ft BTOC in MW04 on this date were 2.95 ft and 3.35 ft lower compared to measurements on September 1, 2023. ENW believes ground water levels dropped around EX01 possibly due to the relief in pressure on the subsurface following the cumulative removal of an estimated 450 tons of clean soil overburden and over 700 tons of PCS from EX01. As a result, ground water never collected in the floor of EX01 other than a couple inches in a deeper sump in the northeast corner of the excavation.

September 11, 2023. NTA continued to load PCS from the east wall, which was stockpiled on the floor of EX01 onto trucks. NTA excavated additional PCS from the floor next to the south wall after a field headspace reading of 700 ppmv was detected. Field headspace readings from the south wall of EX01 ranged from 6.3 ppmv at 10 ft bgs to 211 ppmv at 18 ft bgs and headspace readings from the north wall ranged from 423 ppmv at 10 ft to 36.4 ppmv at 18 ft bgs. With the assistance of the excavator operator, ENW collected confirmation sample GS15 at 20 ft bgs at the south floor, GS16 at 20 ft bgs at the northeast floor, GS18 at 21.5 ft bgs at the north-central floor, GS19 at 23 ft bgs at the south-central floor, GS20-GS22 at 10 ft, 14 ft and 18 ft bgs at the center of the north wall, and GS23-GS25 at 10 ft, 14 ft and 18 ft bgs at the center of the south wall of EX01. Through the course of the day, 18 truckloads (246.58 tons) of PCS were disposed of at Hillsboro Landfill.

September 12, 2023. NTA excavated PCS from the west end of EX01 and loaded trucks bound for Hillsboro Landfill. Throughout the day, 16 truckloads (213.44 tons) of PCS were disposed of at the landfill. With the assistance of the excavator operator, ENW collected confirmation sample GS26 at 20 ft bgs at the west floor, GS27-GS29 at 10 ft, 14 ft, and 18 ft bgs at the west side of the north wall, GS30-GS32 at 10 ft, 14 ft, and 18 ft bgs at the west side of the south wall, and GS33 at 21 ft bgs at the west floor of EX01. This was the last set of confirmation samples collected from EX01.

September 13, 2023. ENW collected composite sample Comp01 from the east half of the Upper stockpile, Comp02 from the west half of the Upper stockpile, Comp03 from the south half of the Lower stockpile, and Comp04 from the north half of the Lower stockpile. Each composite sample consisted of 20 grab subsamples. The samples were submitted to the laboratory for analysis. Oxidants and clean backfill were placed in EX01 on this date.

EX01's final dimensions were approximately 10 to 45 ft-wide (north-south), 37 to 65 ft-long (east-west), and 20 to 25 ft-deep. The area of EX01 is approximately 2,100 square feet (sf). Approximately 390 cys of clean overburden (less asphalt pavement) were removed and temporarily stored in the Upper and Lower soil stockpiles at the site. After laboratory results of Comp01 through Comp04 confirmed no detectable petroleum hydrocarbons present, overburden soil from the Upper and Lower stockpiles was used as backfill in EX01. A total of 1,194.19 tons of PCS were removed from EX01 and disposed of at Hillsboro Landfill under WAM profile #134514OR.

6.1.2 Excavation EX02

September 20, 2023. NTA excavated EX02 at the location of former heating oil tank T1 on the west side of the house. Apparent clean overburden was placed adjacent to the north side of EX02. No field evidence of impacts was noted until blue-gray stained soils were encountered at 13 feet bgs. Such staining continued to 17 ft bgs, and at 18 ft bgs field headspace volatiles were detected at 218 ppmv. Soil moisture increased at 16 ft bgs, which compares to the ground water level of 16.40 BTOC in MW05 a few feet north of EX02. PCS was direct-loaded into trucks and transported to Hillsboro Landfill for disposal. With the assistance of the excavator operation, ENW collected confirmation soil samples GS34 at 18 ft bgs at the floor, GS35 at 16 ft bgs at the north wall, GS36 at 15.5 feet bgs at the south wall, GS37 at 16 ft bgs at the east wall, and GS38 at 16 ft bgs at the west wall of EX02. Field headspace readings ranged from 0.9 ppmv (GS38) to 218 ppmv (GS34). ENW collected composite sample Comp05 (consisted of 8 subsamples) from the overburden pile from EX02 and submitted the sample to the laboratory for analysis.

EX02's final dimensions were approximately 6 to 10 ft-wide (east-west), 14 to 19.5 ft-long (north-south), and 18 ft-deep. Its surface area was approximately 200 sf. Approximately 22 cubic yards of overburden soil were removed and stockpiled at the site pending results of laboratory analysis of Comp05. A total of 62.93 tons of PCS were removed from EX02 and disposed of at Hillsboro Landfill under WAM profile # 134514OR. Eventually, the overburden soil from EX02 was disposed of at Hillsboro Landfill (29.2 tons) after 230 milligrams per kilogram (mg/Kg) DRO was detected in Comp05.

6.2 Soil Treatment and Excavation Backfilling

PersulfOx® and ORC-Advanced® were evenly applied during backfilling of EX01 and EX02 using the following procedure:

1. PersulfOx® and ORC-Advanced®- prescribed quantities were evenly spread over the excavation floor prior to backfilling (or during the process of applying the first few feet of coarse ballast [2 to 4 open aggregate] over EX01). Given the large area covered by EX01, an extend-a-lift was used to hand apply (spread) PersulfOx® and ORC-Advanced® over the central portions of the excavation floor. Since EX02 covered a much smaller area, the excavator bucket was used to spread the prescribed amount of PersulfOx® and ORC-Advanced® across the excavation floor. In each case, these oxidants were thoroughly wetted with water prior to (or while) layering the first few feet of aggregate over the excavation floor.

- Ballast (2 to 4 open aggregate) 8 to 11 feet of aggregate was layered in EX01, bring the level to approximately 12 feet bgs. Eight feet of aggregate was layered in EX02 to a level of approximately 10 feet bgs.
- 3. **Crushed Rock (3/4-minus)** 4 feet of ¾-minus crushed rock was added in 12-inch lifts and compacted in EX01 to a level of approximately 8 feet bgs. Eight feet of ¾-minus crushed rock was added in 12-inch lifts and compacted in EX02 to a level of approximately two feet bgs.
- 4. Clean Overburden Soil 5 feet of clean overburden soil (from EX01) was added to EX01 in 12-inch lifts and compacted to a level of approximately 3 feet bgs. No clean overburden soil was added to EX02 at this stage.
- 5. **Crushed Rock (3/4-minus)** 3 feet of ¾-minus crushed rock was added in 12-inch lifts and compacted in EX01 to a level of 3 inches below finished grade (to allow room for a 3-inch layer of asphaltic concrete paving). No additional crushed rock was added to EX02 at this stage.
- 6. **Clean Soil** 2 feet of clean soil was added to EX02 to bring the excavation up to surrounding grade. Clean soil was not added to EX01 at this stage.

6.2.1 Backfilling EX01

September 13-14, 2023. EX01 was backfilled after applying 11,130.2 pounds of PersulfOx and 1,520 pounds of ORC-Advanced across approximately 2,100 sf. As described above, EX01 was backfilled with 8 to 11 feet of larger diameter aggregate, 4 feet of minus crushed rock compacted in lifts, 5 feet of clean overburden soil compacted in lifts, and 3 feet of crushed rock compacted in lifts to a level 3 inches below grade. The surface will be restored with a 3-inch lift of asphaltic concrete pavement.

6.2.2 Backfilling EX02

September 20-22, 2023. EX02 was backfilled after applying 495.9 pounds of PersulfOx® and 150 pounds of ORC-Advanced® across 200 sf. These oxidants were supplemented with 120 pounds of RegenOX® Part A and 150 pounds of RegenOX® Part B, which also promote ISCO of petroleum-related volatiles. As described above, EX02 was backfilled with 8 feet of larger diameter aggregate, 8 feet of ¾-minus crushed rock compacted in lifts, and 2 feet of clean soil.

6.3 Confirmation Sampling Results

In total, 37 discrete soil samples and five composite soil samples were collected and analyzed with the following results: Table 2 summarizes all soil data and Figure 3 presents GRO sampling results by location in EX01 and EX02.

6.3.1 Excavation EX01

• Confirmation sampling from the margins of the excavation detected GRO in GS16, GS18, GS19, GS26, and GS33 collected from the floor (20 to 23 ft bgs) at the central, north, and west portion or EX01 at concentrations ranging from 78 mg/Kg (GS19) to 1,100 mg/Kg (GS26), which exceed ODEQ's SLRBC of 31 mg/Kg. GRO was also detected in GS25, GS29, and GS32 (18 ft bgs) at the central and west end of the south wall and the west end of the north wall at concentrations ranging from 33 mg/Kg to 180 mg/Kg, which exceed ODEQ's SLRBC.

- The GRO-related VOCs benzene, ethylbenzene, and naphthalene in GS16 (20 ft bgs) and naphthalene in GS26 (20 ft bgs) exceeded ODEQ's SLRBCs.
- Total lead was not detected at concentrations greater than ODEQ's regional default background concentration or Clean Fill Screening Level (CFSL) of 28 mg/Kg. PAHs were either not detected or detected at concentrations less than ODEQ's SLRBCs.

6.3.2 Excavation EX02

- Confirmation sampling from the margins of the excavation detected GRO in GS34 collected from the floor (18 ft bgs) and GS36 from the south wall at concentrations of 100 mg/Kg and 43 mg/Kg, which exceed ODEQ's SLRBC.
- No GRO-related VOCs were detected above laboratory method reporting limits (MRLs).
- Total lead was less than ODEQ's regional default background concentration and CFSL.
- PAHs were either not detected or detected at concentrations less than ODEQ's SLRBCs.

6.3.3 Temporary Overburden Soil Stockpiles

- No petroleum hydrocarbons were detected above laboratory MRLs in Comp01 or Comp02 collected from EX01's Upper overburden stockpile, or in Comp03 or Comp04 collected from EX01's Lower overburden stockpile. Based on these analytical results, overburden soils in the Upper and Lower overburden stockpiles qualify as clean fill and may be used as backfill in EX01
- DRO at 230 mg/Kg was detected in Comp05 collected from EX02's overburden stockpile. Based
 on these results overburden soil in EX02's stockpile does not qualify as clean fill and was thus
 disposed of at Hillsboro Landfill under WAM profile #134514OR.

6.4 Post-Excavation and Post-ISCO Ground Water Monitoring

Ground Water Elevation and Flow Direction. Depth to water and calculated water level elevations are presented on Table 3 (behind the Tables Tab after the text). Figure 4 presents a ground water potentiometric surface plot generated from the ground water elevations measured during the monitoring event. During the September 25, 2023, event, depth to ground water ranged from 15.05 to 26.77 feet BTOC. The ground-water elevation data from monitoring well MW01 was not included in the potentiometric plot (Figure 4) for this monitoring event since the data at this location appeared ambiguous. Based on the depth to ground water results for the other four monitoring wells, the ground-water flow direction was northeastward with a hydraulic gradient of approximately 0.06 ft/f).

Water Quality Parameters. Ground water parameters were measured during the September 25, 2023, and October 3, 2023, ground water monitoring events (Table 4).

- **pH measurements** were at or below the low range of pH of natural waters (6 to 9) in Oregon, ranging between 5.25 and 6.63 on September 25, 2023, and 2.32 and 6.24 on October 3, 2023. A drop in pH was noted in all wells, particularly in MW05, following the application of ISCO agents (See chart E-1 in Appendix E).
- **Temperatures** ranged between 14.74 to 16.14 °C September 25, 2023, and 13.91 to 16.39 °C October 3, 2023.

- **Electrical conductivity** ranged between 67 to 754 microSiemens per centimeter (μS/cm) on September 25, 2023, and 79 to 28,500 μS/cm on October 3, 2023. With one exception, a rise in electrical conductivity was noted, particularly in MW05, following the application of ISCO agents (See chart E-2 in Appendix E). The exception was MW04, where a decreasing trend is evident.
- Oxidation-reduction potential (ORP) ranged from 0-73 to 123 mV (millivolt) on September 25, 2023, and 75 to 609 mV on October 3, 2023. Positive ORP readings generally suggest oxidizing conditions, which is conducive to degradation of petroleum hydrocarbons. A rise in ORP was noted, particularly in MW05, following application of ISCO agents (See chart E-3 in Appendix E). Consistent positive ORP was noted in all monitoring wells during the two post-excavation and post-ISOC application events.
- **Dissolved oxygen (DO)** ranged from 0.64 to 3.94 milligrams per liter (mg/L) on September 25, 2023, and 0.89 mg/L to 11.47 mg/L on October 3, 2023. A rise in DO was noted following the application of ISCO agents (See chart E-4 in Appendix E). During the September and October 2023 monitoring events, DO readings were above 1.0 mg/L in MW01 and MW04, and DO was less than 1.0 mg/L in MW02, MW03, and MW05. DO greater than 1.0 mg/L suggests favorable conditions for natural attenuation by native aerobic microorganisms within the contaminant plume during portions of the year.

6.5 Preliminary Risk Screening (Risk Drivers)

To better understand potential risk drivers, a preliminary risk screening was conducted using the soil confirmation sample data from this soil removal action combined with the data from previous investigations. In Table 5, the identified constituents of potential concern (COPCs) in soil are further evaluated against generic default RBCs developed for several receptor populations and exposure pathway scenarios given in *Appendix A - Table of Risk-Based Concentrations* in ODEQ's RBDM guidance document to determine potential drivers of risk at this property.

Risk Drivers in Soil. Table 2 identified benzene, ethylbenzene, naphthalene and GRO as COPCs in soil (constituents exceeding their respective SLRBCs). An evaluation of risk drivers for soil (Table 5) suggests that two or more COPCs in soil may pose a risk to human health through the following pathways:

- Vapor Intrusion into Buildings exposure pathway for residential and urban residential receptors.
- Leaching to Ground Water exposure pathway for residential, urban residential, and occupational receptors.

Further Evaluation of Soil Pathways. ENW recommends a soil gas / sub-slab vapor survey to evaluate the vapor intrusion (VI) risk to current and future residents at the subject site.

The leaching to ground water followed by exposure through ingestion of ground water pathway is considered by ODEQ to be complete only if a review of current and reasonable likely future uses of ground water in the vicinity of the site determines that the impacted ground water aquifer is currently being used, or could be used in the future, for human consumption (i.e., domestic or occupational use of a water well containing contaminated ground water).

_

¹⁴ Pursuant to Updates to ODEQ's Vapor Intrusion approach, soil data has been eliminated for VI screening.

Domestic use of the shallow impacted aquifer at the site is deemed unlikely given the shallow aquifer's low permeability (Section 3) and inherent low productivity. Rather, domestic water used by the residents at the site is produced in a fractured porous basalt aquifer from 329 to 420 feet bgs (CLAC 74697). While GRO, DRO, and RRO exceeding ODEQ's SLRBCs were detected in a ground water sample from the old 440-ft-deep domestic well (CLAC 19644) at the site, no petroleum hydrocarbons or related constituents were detected in a water sample from the new 420-ft-deep well (CLAC 74697). This suggests that a faulty seal in the old well may have led to cross-contamination from the shallow to deeper basalt aquifer rather than vertical migration of contaminants through hundreds of feet of basalt rock. Thus, the old well was abandoned in June 2023 (CLAC 78034)⁶ per ENW's recommendation to prevent cross-contamination of the deeper basalt aquifer. Given these considerations, the risk of exposure by leaching or domestic use is likely to be low. A beneficial water use determination (to be completed as part of a Residual Risk Assessment) is required to further support an argument for exclusion of this pathway.

Please note: This soil removal and ISCO treatment SOW was completed for the purpose of reducing: the concentrations of COPCs in shallow subsurface soil, potential migration of contaminants onsite via ground water or soil gas, and residual contaminant concentrations to levels where risk-based regulatory closure can be completed without engineering controls. This SOW was not intended to evaluate risk or satisfy all regulatory requirements for site closure.

7.0 Discussion and Recommendations

The removal of PCS from EX01 and EX02 has effectively reduced concentrations of petroleum hydrocarbons and related constituents in the former release source areas (area of highest petroleum impacts). Subsequent ISCO treatment applied to each release area was intended as a proven means to enhance natural degradation of residual petroleum impacts in both soil and ground water at these locations. Post-excavation and ISCO monitoring demonstrate a response in ground water parameters, i.e., electrical conductivity, ORP, and DO, to ISCO applications. The response of ground water COI concentrations will be presented in subsequent post-remediation quarterly ground water monitoring reports, under separate cover.

Preliminary risk screening identified benzene, ethylbenzene, naphthalene and GRO as COPCs in soil. An evaluation of risk drivers suggests that two or more COPCs in soil may pose a risk to human health through the following pathways:

- Vapor Intrusion into Buildings exposure pathway for residential and urban residential receptors. 15
- Leaching to Ground Water exposure pathway for residential, urban residential, and occupational receptors.

Pursuant to Updates to ODEQ's Vapor Intrusion approach, a soil gas / sub-slab vapor survey is recommended to evaluate the VI risk to current and future residents at the subject site.

Domestic use of the shallow impacted aquifer at the site is deemed unlikely given the shallow aquifer's low permeability and inherent low productivity. Rather, domestic water used by the residents at the site is produced in a fractured porous basalt aquifer from 329 to 420 feet bgs (CLAC 74697). Although GRO,

-

¹⁵ Pursuant to Updates to ODEQ's Vapor Intrusion approach, soil data has been eliminated for VI screening.

DRO, and RRO exceeding ODEQ's SLRBCs were detected in a ground water sample from the old 440-ft-deep domestic well on site, no petroleum hydrocarbons or related constituents were detected in a water sample from the new 420-ft-deep well. which suggests that a faulty seal in the old well may have led to cross-contamination from the shallow to deeper basalt aquifer rather than vertical migration of contaminants through hundreds of feet of basalt rock. A beneficial water use determination is recommended to further support an argument for exclusion of this pathway, as part of a residual risk assessment.

A Contaminated Media Management Plan is recommended to inform decisions related to managing, characterizing, and disposing of low concentrations of petroleum-impacted soil and ground water during future trenching, utility, or other site subsurface-related activities that could encounter these petroleum-impacted media at the subject property. This plan would also serve to notify workers of the magnitude and extent of subsurface impacts, prescribe appropriate protective equipment, and present appropriate management and disposal options during future construction projects.

We recommend this report is kept as part of the permanent property records.

8.0 Limitations

The scope of this report is limited to observations made during on-site work; interviews with knowledgeable sources; and review of readily available published and unpublished reports and literature. As a result, these conclusions are based on information supplied by others as well as interpretations by qualified parties.

The focus of the work does not extend to the presence of the following conditions:

- 1. Naturally occurring toxic or hazardous substances in the subsurface soils, geology, and water,
- 2. Toxicity of substances common in current habitable environments, such as stored chemicals, products, building materials and consumables,
- 3. Contaminants or contaminant concentrations that are not a concern now but may be under future regulatory standards,
- 4. Unpredictable events that may occur after ENW's site work, such as illegal dumping or accidental spillage.

There is no practice that is thorough enough to absolutely identify the presence of all hazardous substances that may be present at a given site. ENW's investigation has been focused only on the potential for contamination that was specifically identified in the Scope of Work. Therefore, if contamination other than that specifically mentioned is present and not identified as part of a limited Scope of Work, ENW's environmental investigation shall not be construed as a guaranteed absence of such materials. ENW has endeavored to collect representative analytical samples for the locations and depths indicated in this report. However, no sampling program can thoroughly identify all variations in contaminant distribution.

We have performed our services for this project in accordance with our agreement and understanding with the client. This document and the information contained herein have been prepared solely for the use of the client.

ENW performed this study under a limited scope of services per our agreement. ENW assumes no responsibility for conditions that we did not specifically evaluate or conditions that were not generally recognized as environmentally unacceptable at the time this report was prepared.

Table 1 - Sample Location and Field Headspace Volatiles Summary

Sample Location ID	Date Sampled	Depth Sampled (feet)	PID Field Headspace (ppmv)	Sample Method	Location
				Excavaton EX01	
GS01	9/1/2023	14	27.1	Grab From Excavator Bucket	EX01 - S wall
GS02	9/1/2023	12		Grab From Excavator Bucket	EX01 - S wall
GS03	9/5/2023	17	53	Grab From Excavator Bucket	EX01 - S wall
GS04	9/5/2023	10	28	Grab From Excavator Bucket	EX01 - N wall E side
GS05	9/5/2023	14	162	Grab From Excavator Bucket	EX01 - N wall E side
GS06	9/5/2023	18	210	Grab From Excavator Bucket	EX01 - N wall E side
GS07	9/7/2023	9	24.5	Grab From Excavator Bucket	EX01 - SE wall
GS08	9/7/2023	14	3	Grab From Excavator Bucket	EX01 - SE wall
GS09	9/7/2023	17	10.8	Grab From Excavator Bucket	EX01 - SE wall
GS10	9/7/2023	14	56.1	Grab From Excavator Bucket	EX01 - NE wall
GS11	9/7/2023	20	148.2	Grab From Excavator Bucket	EX01 - E floor
GS12	9/7/2023	18	1,008	Grab From Excavator Bucket	EX01 - E wall
GS13	9/7/2023	14	88.9	Grab From Excavator Bucket	EX01 - E wall
GS14	9/7/2023	10	60.1	Grab From Excavator Bucket	EX01 - E wall
GS15	9/11/2023	20	24	Grab From Excavator Bucket	EX01 - S floor
GS16	9/11/2023	20	2,500	Grab From Excavator Bucket	EX01 - NE floor
GS18	9/11/2023	21.5	>5,000	Grab From Excavator Bucket	EX01 - N central floor
GS19	9/11/2023	23	3,200	Grab From Excavator Bucket	EX01 - S central floor
GS20	9/11/2023	10	35	Grab From Excavator Bucket	EX01 N wall center
GS21	9/11/2023	14	224	Grab From Excavator Bucket	EX01 N wall center
GS22	9/11/2023	18	620	Grab From Excavator Bucket	EX01 N wall center
GS23	9/11/2023	10	25	Grab From Excavator Bucket	EX01 S wall center
GS24	9/11/2023	14	56	Grab From Excavator Bucket	EX01 S wall center
GS25	9/11/2023	18	636	Grab From Excavator Bucket	EX01 S wall center
GS26	9/12/2023	20	502.3	Grab From Excavator Bucket	EX01 - W floor
GS27	9/12/2023	10	20.8	Grab From Excavator Bucket	EX01 N wall W side
GS28	9/12/2023	14	3	Grab From Excavator Bucket	EX01 N wall W side
GS29	9/12/2023	18	7.2	Grab From Excavator Bucket	EX01 N wall W side
GS30	9/12/2023	10	0.5	Grab From Excavator Bucket	EX01 S wall W side
GS31	9/12/2023	14	7.4	Grab From Excavator Bucket	EX01 S wall W side
GS32	9/12/2023	18	167.8	Grab From Excavator Bucket	EX01 S wall W side
GS33	9/12/2023	21	21.2	Grab From Excavator Bucket	EX01 W floor
Comp01	9/13/2023	V		Grab From Hand Auger	20 Subsample Composite of E half of Upper Overburden Stockpile
Comp02	9/13/2023	V		Grab From Hand Auger	20 Subsample Composite of W half of Upper Overburden Stockpile
Comp03	9/13/2023	V		Grab From Hand Auger	20 Subsample Composite of S half of Lower Overburden Stockpile
Comp04	9/13/2023	V		Grab From Hand Auger	20 Subsample Composite of N half of Lower Overburden Stockpile
				Excavaton EX02	
GS34	9/20/2023	18	218	Grab From Excavator Bucket	EX02 floor
GS35	9/20/2023	16	4	Grab From Excavator Bucket	EX02 N wall
GS36	9/20/2023	15.5	50	Grab From Excavator Bucket	EX02 S wall
GS37	9/20/2023	16	26.5	Grab From Excavator Bucket	EX02 E wall
GS38	9/20/2023	16	0.9	Grab From Excavator Bucket	EX02 W wall
Comp05	9/20/2023	V	2.1	Grab From Hand Auger	8 Subsample Composite of EX02 Overburden Stockpile

ppmv = parts per million by volume

V = composite subsamples were collected at 'various' depths in the soil stockpiles, representative of the upper, middle or lower portions of the soil stockpile -- = not recorded

Table 2 - Summary of Analytical Data, Soil

	Location ID	G	:1		62	1	НОТ	B01			
	Location ID	G	1		, <u>c</u>		1101			DUI	
	Sample ID		GI-S-59	N 60" G2	S 62" G2	99" HOT S	99" HOT N	7' W HOT	B01-8.5	B01-12	B01-SWI-18
	Date Sampled	8/27/2019	8/27/2019	9/11/2019	9/11/2019	9/11/2019	9/11/2019	9/11/2019	12/2/2021	12/2/2021	12/2/2021
Depth S	Sampled (feet)	5	5	5	5.2	8.3	8.3	7	8.5	12	18
	Sampled By	UAI	UAI	UAI	UAI	UAI	UAI	UAI	ENW	ENW	ENW
	Location	Tank T3, North End	Tank T3, South End	Tank T2, North End	Tank T2, South End	Tank T1, South End (soil removal confirmaiton sample)	Tank T1, North End (soil removal confirmaiton sample)	Tank T1, Center (initial assessment sample)		Tank T3, North End	
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)				
Volatile Organic Constituents											
Benzene	C, V								<0.03 (ND)		
EDB (1,2-dibromoethane)	C, V								<0.05 (ND)		
EDC (1,2-dichloroethane)	C, V								<0.05 (ND)		
Ethylbenzene	C, V								<0.05 (ND)		
MTBE (methyl t-butyl ether)	C, V								<0.05 (ND)		
Naphthalene	C, V								14		
iso-Propylbenzene (cumene)	nc, v								<0.05 (ND)		
Toluene	nc, v								<0.05 (ND)		
1,2,4-Trimethylbenzene	nc, v								<0.05 (ND)		
1,3,5-Trimethylbenzene	nc, v								<0.05 (ND)		
Xylenes	nc, v								<0.15 (ND)		
Metals											
Lead	NA, nv								12.3		
Semivolatile Organic Constituents											
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	nc, v		1						0.044		
Anthracene	nc, v								0.054		
Benz[a]anthracene	C, V		1						0.03		
Benzo[a]pyrene (BaP equivalents)	c, nv		1						0.03		
Benzo[b]fluoranthene	c, nv								<0.01 (ND)		
Benzo[k]fluoranthene	c, nv		1						<0.01 (ND)		
Chrysene	c, nv								0.013		
Dibenz[a,h]anthracene	c, nv								0.01		
Fluoranthene	nc, nv								0.034		
Fluorene	nc, v								<0.01 (ND)		
Indeno[1,2,3-cd]pyrene	c, nv								<0.01 (ND)		
Pyrene	nc, v								0.061		

Table 2 - Summary of Analytical Data, Soil

	Location ID	G	61	G	32		HOT		B01		
	Sample ID	GI-N-59	GI-S-59	N 60" G2	S 62" G2	99" HOT S	99" HOT N	7' W HOT	B01-8.5	B01-12	B01-SWI-18
	Date Sampled	8/27/2019	8/27/2019	9/11/2019	9/11/2019	9/11/2019	9/11/2019	9/11/2019	12/2/2021	12/2/2021	12/2/2021
Dep	pth Sampled (feet)	5	5	5	5.2	8.3	8.3	7	8.5	12	18
	Sampled By	UAI	UAI	UAI	UAI	UAI	UAI	UAI	ENW	ENW	ENW
	Location	Tank T3, North End	Tank T3, South End	Tank T2, North End	Tank T2, South End	Tank T1, South End (soil removal confirmaiton sample)	Tank T1, North End (soil removal confirmaiton sample)	Tank T1, Center (initial assessment sample)	Tank T3, North End		
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)				
Total Petroleum Hydrocarbons											
Generic Gasoline (GRO)	nc, v	34800	36800	<20 (NP)	<20 (NP)				4200	3700	28
Generic Diesel / Heating Oil (DRO)	nc, v	337	7650	<50 (NP)	<50 (NP)	<20 (ND)	<50 (ND)	5020	710	330	<50 (ND)
Generic Mineral Insulating Oil (RRO)	nc, nv	<100 (ND)	<100 (ND)	<100 (NP)	<100 (NP)	<100 (ND)	<100 (ND)	<100 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Pink shaded cells in table indicate sampled location has been subsequently removed to appropriate waste disposal/recycling location and no longer represents current conditions.

Table 2 - Summary of Analytical Data, Soil

	Location ID	B01'	B02	B03'	B04	B05	B06	B07	R	08	B09
	Location ib	D01	D02	D03	D04	D03	D00	501		<u> </u>	D03
	Sample ID	B01'-SWI-17	B02-11	B03'-SWI-16	B04-SWI-18	B05-SWI-18	B06-SWI-21	B07-SWI-18	B08-15	B08-SWI-18.5	B09-SWI-17.5
	Date Sampled	12/10/2021	12/2/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	2/14/2022	2/14/2022	2/14/2022
De	pth Sampled (feet)	17	11	16	18	18	21	18	15	18.5	17.5
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
Location		3' North of Tank T3	Tank T3, South End	14' South of Tank T3	21' West of Tank T3	28' East of Tank T3	West of Tank T1	North of Deck/House NE of Tank T1		ing and Greenhouse - T2 and T3	SE Corner of Shop Building - NW of T2 and T3
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents											
Benzene	C, V	0.78								<0.02 (ND)	0.15
EDB (1,2-dibromoethane)	C, V	<0.05 (ND)									
EDC (1,2-dichloroethane)	C, V	<0.05 (ND)									
Ethylbenzene	C, V	7.4								<0.02 (ND)	1.2
MTBE (methyl t-butyl ether)	C, V	<0.05 (ND)									
Naphthalene	C, V	1.6									
iso-Propylbenzene (cumene)	nc, v	0.95									
Toluene	nc, v	12								<0.02 (ND)	1.4
1,2,4-Trimethylbenzene	nc, v	21									
1,3,5-Trimethylbenzene	nc, v	6.6									
Xylenes	nc, v	43								<0.06 (ND)	8.4
Metals											
Lead	NA, nv	8.45									
Semivolatile Organic Constituents											
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	nc, v										
Anthracene	nc, v										
Benz[a]anthracene	C, V										
Benzo[a]pyrene (BaP equivalents)	c, nv										
Benzo[b]fluoranthene	c, nv										
Benzo[k]fluoranthene	c, nv										
Chrysene	c, nv										
Dibenz[a,h]anthracene	c, nv										
Fluoranthene	nc, nv										
Fluorene	nc, v										
Indeno[1,2,3-cd]pyrene	c, nv										
Pyrene	nc, v										

Table 2 - Summary of Analytical Data, Soil

Location	on ID	B01'	B02	B03'	B04	B05	B06	B07	В	08	B09
Samp	le ID	B01'-SWI-17	B02-11	B03'-SWI-16	B04-SWI-18	B05-SWI-18	B06-SWI-21	B07-SWI-18	B08-15	B08-SWI-18.5	B09-SWI-17.5
Date San	npled	12/10/2021	12/2/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021	2/14/2022	2/14/2022	2/14/2022
Depth Sampled	(feet)	17	11	16	18	18	21	18	15	18.5	17.5
Sample	ed By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
Loc	ation	3' North of Tank T3	Tank T3, South End	14' South of Tank T3	21' West of Tank T3	28' East of Tank T3	West of Tank T1	North of Deck/House NE of Tank T1	Between Shop Building and Greenhouse - West of T2 and T3		SE Corner of Shop Building - NW of T2 and T3
Constituent of Interest N	ote	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Total Petroleum Hydrocarbons	_										
Generic Gasoline (GRO)	c, v	1300	<20 (NP)	<5 (ND)	<50 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	140
Generic Diesel / Heating Oil (DRO)	c, v	<50 (ND)	<50 (NP)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)
Generic Mineral Insulating Oil (RRO)	, nv	<250 (ND)	<250 (NP)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Pink shaded cells in table indicate sampled location has been subsequently removed to appropriate waste disposal/recycling location and no longer represents current conditions.

Table 2 - Summary of Analytical Data, Soil

	Location ID		B10		B11	GS01	GS02	GS03	GS04	GS05	GS06
	2304101111		•		1 2	2301	1 2 2 2 2	2300	2301	2300	2300
	Sample ID		B10-10	B10-SWI-14.5	B11-SWI-17.5	GS01-EX01-SW-14	GS02-EX01-SW-12	GS03-EX01-SW-17- SWI	GS04-EX01-NW-10	GS05-EX01-NW-14	GS06-EX01-NW-18- SWI
	Date Sampled	2/14/2022	2/14/2022	2/14/2022	2/14/2022	9/1/2023	9/1/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023
De	epth Sampled (feet)	6.5	10	14.5	17.5	14	12	17	10	14	18
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location		South of T1		East of Shop Building - North of B09	EX01 - S wall	EX01 - S wall	EX01 - S wall	EX01 - N wall E side	EX01 - N wall E side	EX01 - N wall E side
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents											
Benzene	C, V	<0.02 (ND)	<0.03 (ND)	<0.02 (ND)	0.93						
EDB (1,2-dibromoethane)	C, V		<0.05 (ND)								
EDC (1,2-dichloroethane)	C, V		<0.05 (ND)								
Ethylbenzene	C, V	0.34	<0.05 (ND)	<0.02 (ND)	0.91						
MTBE (methyl t-butyl ether)	C, V		<0.05 (ND)								
Naphthalene	C, V	0.11	0.18								
iso-Propylbenzene (cumene)	nc, v		<0.05 (ND)								
Toluene	nc, v	<0.02 (ND)	<0.05 (ND)	<0.02 (ND)	0.17						
1,2,4-Trimethylbenzene	nc, v		<0.05 (ND)								
1,3,5-Trimethylbenzene	nc, v		0.12								
Xylenes	nc, v	0.52	<0.05 (ND)	<0.06 (ND)	4.2						
Metals											
Lead	NA, nv										
Semivolatile Organic Constituents											
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	nc, v	<0.05 (ND)									
Anthracene	nc, v	<0.05 (ND)									
Benz[a]anthracene	C, V	<0.05 (ND)									
Benzo[a]pyrene (BaP equivalents)	c, nv	<0.05 (ND)									
Benzo[b]fluoranthene	c, nv	<0.05 (ND)									
Benzo[k]fluoranthene	c, nv	<0.05 (ND)									
Chrysene	c, nv	<0.05 (ND)									
Dibenz[a,h]anthracene	c, nv	<0.05 (ND)									
Fluoranthene	nc, nv	<0.05 (ND)									
Fluorene	nc, v	<0.05 (ND)									
Indeno[1,2,3-cd]pyrene	c, nv	<0.05 (ND)									
Pyrene	nc, v	0.27									

Location	ID	B10		B11	GS01	GS02	GS03	GS04	GS05	GS06
Sample	ID B10-6.5	B10-10	B10-SWI-14.5	B11-SWI-17.5	GS01-EX01-SW-14	GS02-EX01-SW-12	GS03-EX01-SW-17- SWI	GS04-EX01-NW-10	GS05-EX01-NW-14	GS06-EX01-NW-18- SWI
Date Samp	ed 2/14/2022	2/14/2022	2/14/2022	2/14/2022	9/1/2023	9/1/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023
Depth Sampled (fe	et) 6.5	10	14.5	17.5	14	12	17	10	14	18
Sampled	By ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
Loca	on	South of T1		East of Shop Building - North of B09	EX01 - S wall	EX01 - S wall	EX01 - S wall	EX01 - N wall E side	EX01 - N wall E side	EX01 - N wall E side
Constituent of Interest No.	e mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Total Petroleum Hydrocarbons										
Generic Gasoline (GRO) nc,	200	470	7.9	30	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	15
Generic Diesel / Heating Oil (DRO) nc,	4900	1800	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)
Generic Mineral Insulating Oil (RRO) nc,	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Table 2 - Summary of Analytical Data, Soil

	Location ID	GS07	GS08	GS09	GS10	GS11	GS12	GS13	GS14	GS15	GS16
		GS07-EX01-SEW-9	C200 EV01 SEW	GS09-EX01-SEW- 17	GS10-EX01-NEW- 14		0040 EV04 EW 40				GS16-EX01-F-20
	Date Sampled	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/11/2023	9/11/2023
	Depth Sampled (feet)	9	14	17	14	20	18	14	10	20	20
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX01 - SE wall	EX01 - SE wall	EX01 - SE wall	EX01 - NE wall	EX01 - E floor	EX01 - E wall	EX01 - E wall	EX01 - E wall	EX01 - S floor	EX01 - NE floor
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents				,	,	,	,	,	,		, , ,
Benzene	C, V										0.18
EDB (1,2-dibromoethane)	C, V										<0.05 (ND)
EDC (1,2-dichloroethane)	C, V										<0.05 (ND)
Ethylbenzene	C, V										0.48
MTBE (methyl t-butyl ether)	C, V										<0.05 (ND)
Naphthalene	C, V										0.22
iso-Propylbenzene (cumene)	nc, v										0.15
Toluene	nc, v										0.22
1,2,4-Trimethylbenzene	nc, v										3.8
1,3,5-Trimethylbenzene	nc, v										1.3
Xylenes	nc, v										2.8
Metals											
Lead	NA, nv										7.25
Semivolatile Organic Constituents											
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	nc, v										
Anthracene	nc, v										
Benz[a]anthracene	C, V										
Benzo[a]pyrene (BaP equivalents)	c, nv										
Benzo[b]fluoranthene	c, nv										
Benzo[k]fluoranthene	c, nv										
Chrysene	c, nv										
Dibenz[a,h]anthracene	c, nv										
Fluoranthene	nc, nv										
Fluorene	nc, v										
Indeno[1,2,3-cd]pyrene	c, nv										
Pyrene	nc, v										

	Location ID	GS07	GS08	GS09	GS10	GS11	GS12	GS13	GS14	GS15	GS16
	Sample ID	GS07-EX01-SEW-9	GS08-EX01-SEW- 14	GS09-EX01-SEW- 17	GS10-EX01-NEW- 14	GS11-EX01-EF-20	GS12-EX01-EW-18- SWI	GS13-EX01-EW-14	GS14-EX01-EW-10	GS15-EX01-F-20	GS16-EX01-F-20
Dat	te Sampled	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/7/2023	9/11/2023	9/11/2023
Depth San	npled (feet)	9	14	17	14	20	18	14	10	20	20
S	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX01 - SE wall	EX01 - SE wall	EX01 - SE wall	EX01 - NE wall	EX01 - E floor	EX01 - E wall	EX01 - E wall	EX01 - E wall	EX01 - S floor	EX01 - NE floor
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Total Petroleum Hydrocarbons											
Generic Gasoline (GRO)	nc, v	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	370
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Table 2 - Summary of Analytical Data, Soil

	Location ID	GS18	GS19	GS20	GS21	GS22	GS23	GS24	GS25	GS26	GS27
	<u> </u>	0010	3010	0020	5021	0022	0020	3021	0020	3020	3027
	Sample ID	GS18-EX01-F-21.5	GS19-EX01-F-23	GS20-EX01-NW-10	GS21-EX01-NW-14	GS22-EX01-NW-18	GS23-EX01-SW-10	GS24-EX01-SW-14	GS25-EX01-SW-18	GS26-EX01-F-20	GS27-EX01-NW-10
	Date Sampled	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/12/2023	9/12/2023
	Depth Sampled (feet)	21.5	23	10	14	18	10	14	18	20	10
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX01 - N central floor	EX01 - S central floor	EX01 N wall center	EX01 N wall center	EX01 N wall center	EX01 S wall center	EX01 S wall center	EX01 S wall center	EX01 - W floor	EX01 N wall W side
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents											
Benzene	C, V								<0.05 (ND)	0.056	
EDB (1,2-dibromoethane)	C, V								<0.05 (ND)	<0.05 (ND)	
EDC (1,2-dichloroethane)	C, V								<0.05 (ND)	<0.05 (ND)	
Ethylbenzene	C, V								<0.05 (ND)	0.2	
MTBE (methyl t-butyl ether)	C, V								<0.05 (ND)	<0.05 (ND)	
Naphthalene	C, V								<0.05 (ND)	0.25	
iso-Propylbenzene (cumene)	nc, v								<0.05 (ND)	0.13	
Toluene	nc, v								<0.05 (ND)	<0.05 (ND)	
1,2,4-Trimethylbenzene	nc, v								<0.05 (ND)	3.4	
1,3,5-Trimethylbenzene	nc, v								<0.05 (ND)	1.2	
Xylenes	nc, v								<0.1 (ND)	0.72	
Metals											
Lead	NA, nv								11	5.01	
Semivolatile Organic Constituents											
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	nc, v										
Anthracene	nc, v										
Benz[a]anthracene	C, V										
Benzo[a]pyrene (BaP equivalents)	c, nv										
Benzo[b]fluoranthene	c, nv										
Benzo[k]fluoranthene	c, nv										
Chrysene	c, nv										
Dibenz[a,h]anthracene	c, nv										
Fluoranthene	nc, nv										
Fluorene	nc, v										
Indeno[1,2,3-cd]pyrene	c, nv										
Pyrene	nc, v										

L	ocation ID	GS18	GS19	GS20	GS21	GS22	GS23	GS24	GS25	GS26	GS27
8	Sample ID	GS18-EX01-F-21.5	GS19-EX01-F-23	GS20-EX01-NW-10	GS21-EX01-NW-14	GS22-EX01-NW-18	GS23-EX01-SW-10	GS24-EX01-SW-14	GS25-EX01-SW-18	GS26-EX01-F-20	GS27-EX01-NW-10
Date	Sampled	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/11/2023	9/12/2023	9/12/2023
Depth Sam	pled (feet)	21.5	23	10	14	18	10	14	18	20	10
Sa	ampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX01 - N central floor	EX01 - S central floor	EX01 N wall center	EX01 N wall center	EX01 N wall center	EX01 S wall center	EX01 S wall center	EX01 S wall center	EX01 - W floor	EX01 N wall W side
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Total Petroleum Hydrocarbons											
Generic Gasoline (GRO)	nc, v	150	78	<5 (ND)	27	<5 (ND)	<5 (ND)	<5 (ND)	180	1100	24
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Table 2 - Summary of Analytical Data, Soil

	Location ID	GS28	GS29	GS30	GS31	GS32	GS33	GS34	GS35	GS36	GS37
	Location ib	0020	0020	0000	3001	0002	0000	3001	0000	0000	0001
	Sample ID	GS28-EX01-NW-14	GS29-EX01-NW-18	GS30-EX01-SW-10	GS31-EX01-SW-14	GS32-EX01-SW-18	GS33-EX01-F-21	GS34-EX02-F-18	GS35-EX02-NW-16	GS36-EX02-SW- 15.5	GS37-EX02-EW-16
	Date Sampled	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/20/2023	9/20/2023	9/20/2023	9/20/2023
	Depth Sampled (feet)	14	18	10	14	18	21	18	16	15.5	16
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX01 N wall W side	EX01 N wall W side	EX01 S wall W side	EX01 S wall W side	EX01 S wall W side	EX01 W floor	EX02 floor	EX02 N wall	EX02 S wall	EX02 E wall
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)				
Volatile Organic Constituents											
Benzene	C, V							<0.03 (ND)			
EDB (1,2-dibromoethane)	C, V							<0.05 (ND)			
EDC (1,2-dichloroethane)	C, V							<0.05 (ND)			
Ethylbenzene	C, V							<0.05 (ND)			
MTBE (methyl t-butyl ether)	C, V							<0.05 (ND)			
Naphthalene	C, V							<0.05 (ND)			
iso-Propylbenzene (cumene)	nc, v							<0.05 (ND)			
Toluene	nc, v							<0.05 (ND)			
1,2,4-Trimethylbenzene	nc, v							<0.05 (ND)			
1,3,5-Trimethylbenzene	nc, v							<0.05 (ND)			
Xylenes	nc, v							<0.05 (ND)			
Metals											
Lead	NA, nv							6.19			
Semivolatile Organic Constituents											
Polycyclic Aromatic Hydrocarbons											
Acenaphthene	nc, v							<0.01 (ND)			
Anthracene	nc, v							<0.01 (ND)			
Benz[a]anthracene	C, V							<0.01 (ND)			
Benzo[a]pyrene (BaP equivalents)	c, nv							<0.01 (ND)			
Benzo[b]fluoranthene	c, nv							<0.01 (ND)			
Benzo[k]fluoranthene	c, nv							<0.01 (ND)			
Chrysene	c, nv							<0.01 (ND)			
Dibenz[a,h]anthracene	c, nv							<0.01 (ND)			
Fluoranthene	nc, nv							<0.01 (ND)			
Fluorene	nc, v							<0.01 (ND)			
Indeno[1,2,3-cd]pyrene	c, nv							<0.01 (ND)			
Pyrene	nc, v							<0.091 jl			

	Location ID	GS28	GS29	GS30	GS31	GS32	GS33	GS34	GS35	GS36	GS37
	Sample ID	GS28-EX01-NW-14	GS29-EX01-NW-18	GS30-EX01-SW-10	GS31-EX01-SW-14	GS32-EX01-SW-18	GS33-EX01-F-21	GS34-EX02-F-18	GS35-EX02-NW-16	GS36-EX02-SW- 15.5	GS37-EX02-EW-16
	Date Sampled	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/12/2023	9/20/2023	9/20/2023	9/20/2023	9/20/2023
	Depth Sampled (feet)	14	18	10	14	18	21	18	16	15.5	16
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX01 N wall W side	EX01 N wall W side	EX01 S wall W side	EX01 S wall W side	EX01 S wall W side	EX01 W floor	EX02 floor	EX02 N wall	EX02 S wall	EX02 E wall
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)				
Total Petroleum Hydrocarbons											
Generic Gasoline (GRO)	nc, v	<5 (ND)	33	<5 (ND)	<5 (ND)	140	80	100	<5 (ND)	43	12
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	910	<50 (ND)	300	110				
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)				

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.</p>

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Table 2 - Summary of Analytical Data, Soil

	Location ID	GS38	Comp01	Comp02	Comp03	Comp04	Comp05
	Sample ID	GS38-EX02-WW- 16	20 Subsample	20 Subsample	20 Subsample Composite of S half of Lower Overburden Stockpile	20 Subsample	8 Subsample Composite of EX02 Overburden Stockpile
	Date Sampled	9/20/2023	9/13/2023	9/13/2023	9/13/2023	9/13/2023	9/20/2023
Dep	th Sampled (feet)	16					
	Sampled By	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX02 W wall	Composite of E half of Upper Overburden Stockpile	Composite of W half of Upper Overburden Stockpile	Composite of S half of Lower Overburden Stockpile	Composite of N half of Lower Overburden Stockpile	Composite of EX02 Overburden Stockpile
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Volatile Organic Constituents		0 0 11 /					
Benzene	C, V						
EDB (1,2-dibromoethane)	C, V						
EDC (1,2-dichloroethane)	C, V						
Ethylbenzene	C, V						
MTBE (methyl t-butyl ether)	C, V						
Naphthalene	C, V						
iso-Propylbenzene (cumene)	nc, v						
Toluene	nc, v						
1,2,4-Trimethylbenzene	nc, v						
1,3,5-Trimethylbenzene	nc, v						
Xylenes	nc, v						
Metals							
Lead	NA, nv						
Semivolatile Organic Constituents							
Polycyclic Aromatic Hydrocarbons							
Acenaphthene	nc, v						
Anthracene	nc, v						
Benz[a]anthracene	C, V						
Benzo[a]pyrene (BaP equivalents)	c, nv						
Benzo[b]fluoranthene	c, nv						
Benzo[k]fluoranthene	c, nv						
Chrysene	c, nv						
Dibenz[a,h]anthracene	c, nv						
Fluoranthene	nc, nv						
Fluorene	nc, v						
Indeno[1,2,3-cd]pyrene	c, nv						
Pyrene	nc, v						

Table 2 - Summary of Analytical Data, Soil

Loc	cation ID	GS38	Comp01	Comp02	Comp03	Comp04	Comp05
Sa	ample ID	GS38-EX02-WW- 16	20 Subsample Composite of E half of Upper Overburden Stockpile	20 Subsample Composite of W half of Upper Overburden Stockpile	20 Subsample Composite of S half of Lower Overburden Stockpile	20 Subsample Composite of N half of Lower Overburden Stockpile	8 Subsample Composite of EX02 Overburden Stockpile
Date :	Sampled	9/20/2023	9/13/2023	9/13/2023	9/13/2023	9/13/2023	9/20/2023
Depth Sample	led (feet)	16					
Sar	npled By	ENW	ENW	ENW	ENW	ENW	ENW
	Location	EX02 W wall	Composite of E half of Upper Overburden Stockpile	Composite of W half of Upper Overburden Stockpile	Composite of S half of Lower Overburden Stockpile	Composite of N half of Lower Overburden Stockpile	Composite of EX02 Overburden Stockpile
Constituent of Interest	Note	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)	mg/Kg (ppm)
Total Petroleum Hydrocarbons							
Generic Gasoline (GRO)	nc, v	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)	<5 (ND)
Generic Diesel / Heating Oil (DRO)	nc, v	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	<50 (ND)	230
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)	<250 (ND)

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.</p>

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Table 2 - Summary of Analytical Data, Soil

	lti IDI		1			
Dep	Sample ID Date Sampled oth Sampled (feet)	Maximum Soil Concentration (remaining soil)	Soil Matrix Cleanup Level	ODEQs Screening- Level Risk-Based Concentrations	Background Concentrations (Regional Default)	Exceeds ODEQs Screening-Level SLRBCs (Soil) and/or Soil Matrix Cleanup Level
	Sampled By Location	` · ·		SLRBCs ¹ (Soil)	Portland Basin	TRUE OR Y FALSE OR N
Constituent of Interest	Note		mg/Kg	(ppm)		
Volatile Organic Constituents	,					
Benzene	C, V	0.93	NE	0.023		Υ
EDB (1,2-dibromoethane)	C, V	<0.05 (ND)	NE	0.00012		(Y)
EDC (1,2-dichloroethane)	C, V	<0.05 (ND)	NE	0.0028		(Y)
Ethylbenzene	C, V	0.91	NE	0.22		Υ
MTBE (methyl t-butyl ether)	C, V	<0.05 (ND)	NE	0.11		N
Naphthalene	C, V	0.25	NE	0.077		Υ
iso-Propylbenzene (cumene)	nc, v	0.15	NE	96		N
Toluene	nc, v	0.22	NE	83		N
1,2,4-Trimethylbenzene	nc, v	3.8	NE	10		N
1,3,5-Trimethylbenzene	nc, v	1.3	NE	11		N
Xylenes	nc, v	4.2	NE	23		N
Metals						
Lead	NA, nv	11	NE	30	79	N
Semivolatile Organic Constituents						
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	nc, v	<0.01 (ND)	NE	770		N
Anthracene	nc, v	<0.01 (ND)	NE	8200		N
Benz[a]anthracene	C, V	<0.01 (ND)	NE	1.1		N
Benzo[a]pyrene (BaP equivalents)	c, nv	<0.01 (ND)	NE	0.11		N
Benzo[b]fluoranthene	c, nv	<0.01 (ND)	NE	1.1		N
Benzo[k]fluoranthene	c, nv	<0.01 (ND)	NE	11		N
Chrysene	c, nv	<0.01 (ND)	NE	110		N
Dibenz[a,h]anthracene	c, nv	<0.01 (ND)	NE	0.11		N
Fluoranthene	nc, nv	<0.01 (ND)	NE	2400		N
Fluorene	nc, v	<0.01 (ND)	NE	770		N
Indeno[1,2,3-cd]pyrene	c, nv	<0.01 (ND)	NE	1.1		N
Pyrene	nc, v	0.091 jl	NE	1800		N

Dat Depth San	Sample ID e Sampled apled (feet) ampled By Location		Soil Matrix Cleanup Level	ODEQs Screening- Level Risk-Based Concentrations SLRBCs ¹ (Soil)	Background Concentrations (Regional Default)	Exceeds ODEQs Screening-Level SLRBCs (Soil) and/or Soil Matrix Cleanup Level TRUE OR Y FALSE OR N
Constituent of Interest	Note		mg/Kg	(ppm)		
Total Petroleum Hydrocarbons						
Generic Gasoline (GRO)	nc, v		80	31		Y
Generic Diesel / Heating Oil (DRO)	nc, v	910	500	1100		N
Generic Mineral Insulating Oil (RRO)	nc, nv	<250 (ND)	500	2800		N

Notes:

mg/Kg = milligram per kilogram or parts per million (ppm).

<# (ND) = not detected at or above the laboratory method reporting limit shown.</p>

NE = not established.

NP = not present at or above the laboratory method reporting limit shown (HCID analysis).

— = not analyzed or not applicable.

nc = noncarcinogenic

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

DRO = diesel-range organics.

RRO = residual-range organics.

Shaded concentrations exceed screening level risk-based concentrations and background concentrations, as applicable.

Table 3. Summary of Ground Water Elevations

Monitoring Well Designation	Date	OWRD Designation (Well Tag)	Completion Depth of Boring (feet bgs)	Monitored Depth Interval (feet bgs)	Surveyed Top of Casing (TOC) Elevation (feet AMSL) ¹	Depth to Water (DTW) (feet below TOC)	Depth to Product (DTP)	Relative Elevation (feet)	LNAPL Thickness (feet)	Note
	3/10/2023					27.55		491.07		
	6/6/2023	L103392	30	15 - 30	518.62	23.12		495.50		
MW01	9/25/2023	L103332	30	15 - 50	310.02	26.08		492.54		
IVIVVOI	10/3/2023					26.77		491.85		
					Minimum			491.07		
					Maximum			495.50		
	3/10/2023					13.07		502.31		
	6/6/2023					18.64		496.74		
	9/1/2023	L103393	25	10 - 25	515.38	17.10		498.28		
MW02	9/25/2023					18.96		496.42		
	10/3/2023					18.21		497.17		
					Minimum			496.42		
					Maximum			502.31		
	3/10/2023					11.87		498.42		
	6/6/2023	L103394	25	10 - 25	510.29	19.23		491.06		
MW03	9/25/2023	L103334	25	10 - 23	310.29	15.74		494.55		
1010003	10/3/2023					15.67		494.62		
					Minimum			491.06		
					Maximum			498.42		
	3/10/2023					15.60		499.64		
	6/6/2023					20.91		494.33		
	9/1/2023	L104850	30	15 - 30	515.24	18.05		497.19		
MW04	9/25/2023					17.55		497.69		
	10/3/2023					19.67		495.57		
					Minimum			494.33		
					Maximum			499.64		
	3/10/2023					11.92	11.91	496.03	0.01	2
	6/6/2023	L149144	25	10 - 25	507.94	16.09		491.85		
MW05	9/25/2023	L143144	20	10 - 23	307.34	14.96		492.98		
1010000	10/3/2023					15.05		492.89		
					Minimum			491.85		
					Maximum			496.03		
					Minimum	11.87		491.06		
					Maximum	27.55		502.31		

¹ Survey conducted on 03/10/2023 by Axis Mapping and Survey Co. relative to NAD 1983

Gasoline density = 0.702 g/mL

AMSL = above mean sea level;

bgs = below ground surface

DTP = depth to surface of phase-separated petroleum hydrocarbon product

LNAPL = light non-aqueous phase liquid

TOC = top of casing

². Adjusted relative ground water elevation = TOC - DTW + ([DTW-DTP]*Gasoline Density)

Table 4. Summary of Water Quality Parameters

Location	Date	Temp (°C)	Electrical Conductivity (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation- Reduction Potential (mV)	Turbidity (NTU)
	3/10/2023	8.14	82		5.82	183	649
	6/6/2023	17.15	170	5.01	6.43	123	22
	9/25/2023	15.29	222	3.94	6.63	75	261
NAVA (O.4	10/3/2023	16.21	233	11.47	6.24	246	52
MW01	Minimum (pre-cleanup)	8.14	82	5.01	5.82	123	22
	Maximum (pre-cleanup)	17.15	170	5.01	6.43	183	649
	Minimum (post-cleanup)	15.29	222	3.94	6.24	75	52
	Maximum (post-cleanup)	16.21	233	11.47	6.63	246	261
	3/10/2023	10.28	147	1.07	5.60	119	107
	6/6/2023	18.19	174	0.48	5.34	20	0
	9/25/2023	16.22	142	0.64	5.80	97	1000+
N 4) A / O O	10/3/2023	15.07	177	0.93	5.55	95	35
MW02	Minimum (pre-cleanup)	10.28	147	0.48	5.34	20	0
	Maximum (pre-cleanup)	18.19	174	1.07	5.60	119	107
	Minimum (post-cleanup)	15.07	142	0.64	5.55	95	35
	Maximum (post-cleanup)	16.22	177	0.93	5.80	97	1000
	3/10/2023	9.44	138	3.75	5.63	110	15
	6/6/2023	16.59	164	0.73	6.06	-73	22
	9/25/2023	14.74	67	0.68	5.46	119	44
MW03	10/3/2023	14.55	79	0.89	5.01	235	0
1010003	Minimum (pre-cleanup)	9.44	138	0.73	5.63	-73	15
	Maximum (pre-cleanup)	16.59	164	3.75	6.06	110	22
	Minimum (post-cleanup)	14.55	67	0.68	5.01	119	0
	Maximum (post-cleanup)	14.74	79	0.89	5.46	235	44
	3/10/2023	12.20	135	1.10	5.84	154	266
	6/6/2023	18.13	121	0.91	5.52	-12	0
	9/25/2023	16.14	96	3.01	5.32	201	55
MW04	10/3/2023	16.39	88	2.03	5.28	206	5
1010004	Minimum (pre-cleanup)	12.20	121	0.91	5.52	-12	0
	Maximum (pre-cleanup)	18.13	135	1.10	5.84	154	266
	Minimum (post-cleanup)	16.14	88	2.03	5.28	201	5
	Maximum (post-cleanup)	16.39	96	3.01	5.32	206	55
	3/10/2023	11.37	168	1.76	5.95	92	106
	6/6/2023	14.15	118	0.97	4.99	70	8.7
	9/25/2023	14.91	754	0.68	5.25	124	53.6
MW05	10/3/2023	13.91	28500	0.99	2.32	609	3.4
	Minimum (pre-cleanup)	11.37	118	0.97	4.99	70	9
	Maximum (pre-cleanup)	14.15	168	1.76	5.95	92	106
	Minimum (post-cleanup)	13.91	754	0.68	2.32	124	3
	Maximum (post-cleanup)	14.91	28500	0.99	5.25	609	54
			Site-Wide Sumn				
	Minimum (pre-cleanup)	8.14	82	0.48	4.99	-73	0
	Maximum (pre-cleanup)	18.19	174	5.01	6.43	183	649
	Minimum (post-cleanup)	13.91	67	0.64	2.32	75	0
	Maximum (post-cleanup)	16.39	28500	11.47	6.63	609	1000

[°]C = degrees Celsius

 μ S/cm = microSiemens per centimeter

mg/L = milligrams per liter

mV = millivolt

NTU = Nephelometric Turbidity Unit

Table 5 - Further Evaluation of COPCs in Soil (Risk Drivers)

Contaminated Medium		SOIL mg/Kg (ppm)												
Exposure Pathway		Vapor Intrusion into Buildings					Leaching to Groundwater					Maximum Detected Concentration		
		RBC_{si}					RBC_sw							
Receptor Scenario		Residential Ur		Urban Resid	rban Residential Occupationa		onal	Residential		Urban Residential		Occupational		
Direct or Indirect Pathway (see notes)		IVS		IVS		IVS		IS		IS		IS		<u> </u>
Contaminant of Concern	Note		Note		Note		Note		Note		Note		Note	mg/Kg (ppm)
Volatile Organic Constituents														
Benzene	C, V	0.16		0.38		2.1		0.023		0.1		0.1		0.93
Ethylbenzene	C, V	1.3		3		17		0.22		0.94		0.9		0.91
Naphthalene c, v		6.4		15		83		0.077		0.37		0.34		0.25
Total Petroleum Hydrocarbons														
Generic Gasoline (GRO)	nc, v	94		94		-	>Max	31		31		130		1100

Notes:

— = not analyzed or not applicable.

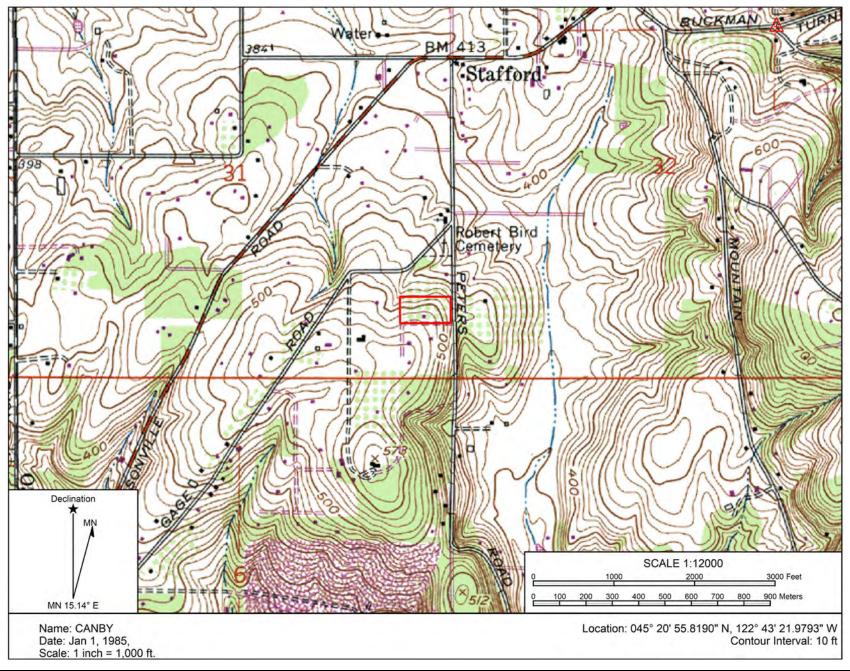
< = not detected above method reporting limit shown.

NE = not established.

mg/Kg = milligrams per Kilogram or parts per million (ppm).

c = carcinogenic

nc = noncarcinogenic

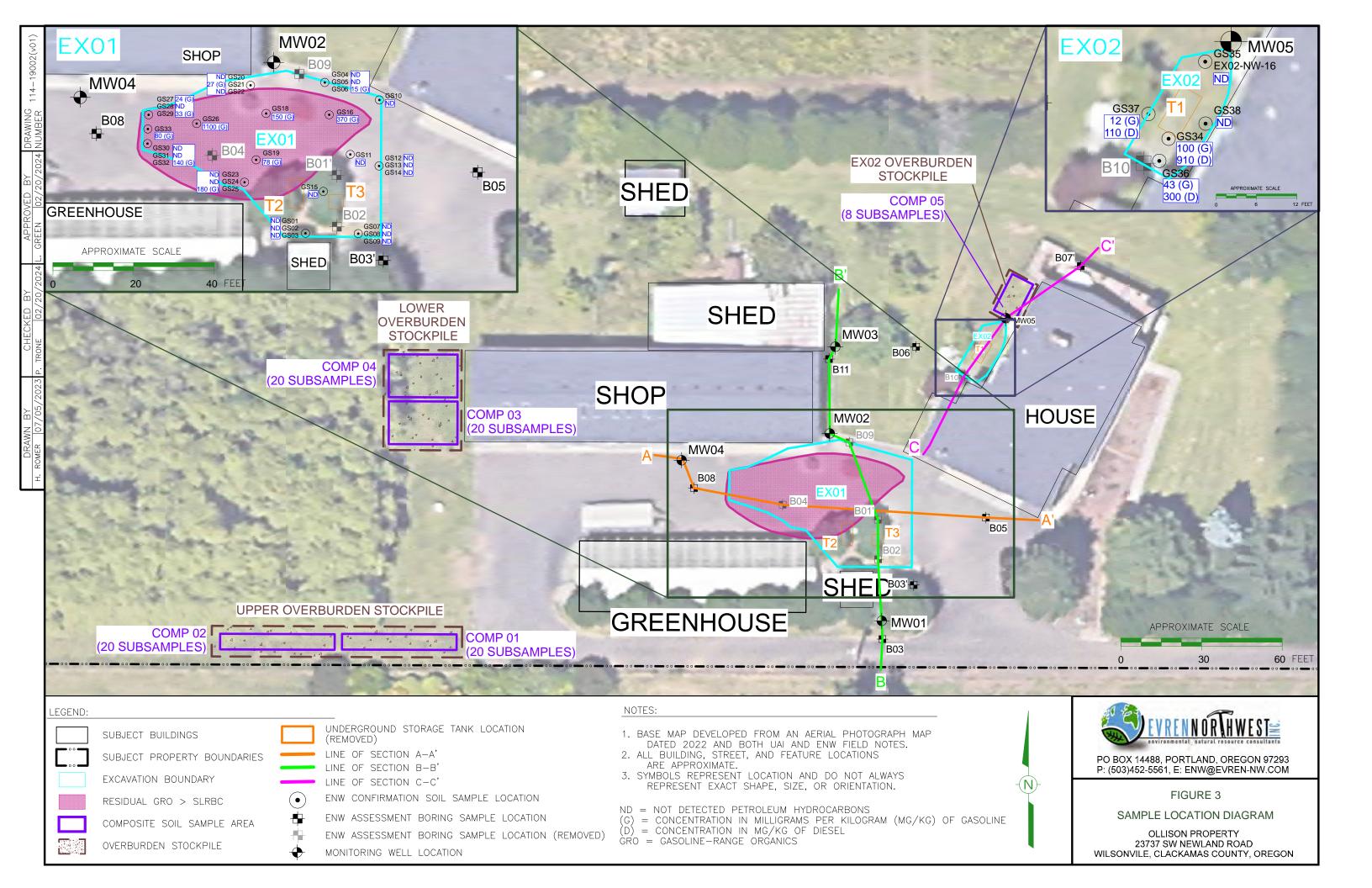

v = volatile

nv = nonvolatile

GRO = gasoline-range organics.

>Max = The constituent RBC for this pathway is greater than 100,000 mg/kg. The Department believes it is highly unlikely that such concentrations will ever be encountered.

Shaded RBCs exceed receptor/pathway combination indiated, as applicable.


Date Drawn: 5/11/2022 CAD File Name: 114-19002fig1sv_map Drawn By: CLR Approved By: LDG Ollison Property 23737 SW Newland Road Wilsonville, Clackamas County, Oregon

Site Vicinity Map

Project No. 114-19002

Figure No. **1**

Appendix A Site Photographs

NTA loading asphalt into WTF dump truck to be taken offsite for disposal - view southwest.

Removing clean overburden down to 5 feet bgs, which was temporarily stockpiled at the site.

Two buried power conduits were encountered when excavating near the southwest corner of the house – view facing east.

Temporary clean overburden stockpile south of the orchard along the southern site boundary – view west.

Site Photographs

Encountered petroleum-impacted soil (PCS) at 6 feet bgs at the southeast corner of the excavation – view south.

UST T2 was previously decommissioned in place by filling with gravel. Shallow petroleum impacted soil was discovered around T2.

Removing PCS below T2 at the SE excavation corner. Field headspace = 790 ppm@10', 446 ppm@13', and 42 ppm@15'.

Close-up of weathered porphyritic basalt encountered at 15 feet bgs.

Site Photographs

Confirmation grab sample GS01 collected at 14' bgs at the SW corner of EX01. GS02 collected at same position at 12' bgs.

The excavation area was enclosed with construction fencing.

NTA set up excavator on west bench to excavate east side of EX01, where PID detected >5000 ppm volatiles.

Site Photographs

Collected GS03 at the soil/ water interface (SWI) at 17' bgs at the base of the south wall.

Field headspace volatiles were 150 ppm@9', 250 ppm@12', and 180 ppm at 17' at center of north wall (GS04, GS05, and GS06).

PCS removal along the east wall of EX01.

GS07-GS09 were collected at the SE corner at 9', 14', and 17' bgs, respectively. GS10 was collected at the NE corner at 10' bgs. GS12-GS14 were collected midway along the E wall at 18', 14', and 10', respectively.

Site Photographs

Sump excavated in the NE corner of EX01.

A few inches of water were observed in the sump, not enough to sample.

Collection of GS26@20', GS27@10', GS28@14', GS29@18', GS30@10', GS31@14', GS32@18', and GS33@21' at east end of EX01.

Application of 2,865.2 lbs of Persulfox oxidizer and 400 lbs of Oxygen Release Compound (ORC) in EX01.

Site Photographs

Spreading clean aggregate over the Persulfox and ORC layer up to 17 feet bgs.

An additional 8,265 lbs of Persulfox and 1,120 lbs of ORC were applied over the aggregate layer, and wetted.

Aggregate was brought up to a level of 12 feet below finish grade.

Compacting ¾-minus crushed rock in lifts above the larger diameter aggregate layer to a level of approximately 8 feet below finish grade.

Site Photographs

After analysis showed the overburden soil was clean, Stockpiled overburden soil was placed and compacted above the crushed rock.

Stockpiled clean overburden soil was brought up to a level of approximately 3 feet below finish grade.

EX01 completely backfilled with compacted crushed rock to subgrade, i.e., 3 inches below finish grade. New asphalt pavement to be installed.

Site Photographs

Excavation EXO2 on the west side of the house at former location of UST T1 – view facing northeast.

Gray petroleum-stained soil was encountered in EX02 from approximately 13 to 17 feet bgs.

Following over-excavation of PCS, EX02 was approx. 14' to 15.5'-long by 6' to 10'-wide by 18'-deep.

Confirmation samples were collected from the floor (GS34), N wall (GS35), S wall (GS36), E wall (GS37), and W wall (GS38) at depths ranging from 15.5 to 18' bgs.

Site Photographs

495.9 lbs of Persulfox, 150 lbs of ORC, 120 lbs of Regenox Part A, and 150 lbs of Regenox Part B were added to EX02.

These oxidizers were mixed in a bucket and applied on the floor of EX02.

Clean aggregate backfill added to EX02.

Additional PersulfOx and ORC wetted with water were interlayered with clean aggregate as EX02 was backfilled.

Site Photographs

Crushed aggregate was compacted in lifts.

Based on confirmation test data, removed overburden soil from EXO2 was loaded into trucks and transported to Hillsboro Landfill for disposal September 22, 2023.

Appendix B Lines of Section

Appendix C Field Sampling Data Sheets

Weather Cond	el: Ja-du	m	F9			_ ,	Monitoring Well II Start Time	D: MW05	
DTW (prior to	ourging): /4	96	10/	ELL PURGING	MEODMAT	ION			
	DTW During	Pumping	VV	Specific	Dissolved	Water			Total Quantit
Time	Purging (feet)	Rate (L/min)	Temperature (degree C)	Conductivity (mS/cm), ±3%	Oxygen (mg/L), ±10%	pH	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Purged (gallons/liters
11:40	15-41	0.15	15.63	0.191	1.57	5.84	34	45.8	0.0
11:44	15.46	0.15	15,20	0.200	1-15	5.40	57	44.4	112
11:48	15-44	12.15	15.05	0,291	0.93	5.34	62	45.7	1.8
11:52	15.38	0.15	19.09	0.40	0.98	5.34	67	45.4	7.4
11:56	15.48	(2-15	15.05	0.729	0.86	5.32	74	48-6	30
12:00	15.41	0.15	15.02	0.512	0.81	5.3	82	47.9	3.6
12:04	19.41	0.15	15.00			53130	100	52.3	4.2
17:08	15.42	0.15	14.93	0.521	0.77	5.28	109	97.7	48
12:12	15.39	0.15	1493	0-721			117	52.8	5.2
17:16	15-39	0.15	14.91	0.754	0.69	5.25	124	536	5-9
Purge Pumping Decontamination	Rate (approx. L/r on method: n Factors: 2" = 0.		= 0.02 gal/foot		ONDITION		ell casing (in. dian Pump/Intake Dept		i: \$.8L
QA/QC Sample Sampling Metho			Lab QA/QC Peristaltic Pu		ment Blank er Pump	☐ None ☐ Dual Valve			
				SAMPLE IN	FORMATION				
	lytical	Destination Laborato		reservative	Bottle Size	Number of bottles	Sam	ple ID	Time Sampled
	meters	10000000000			1				
Parar Method of Trans	meters sportation of samp	ples: FedEx	Courier and packed with i			☐ Yes	□ No		

PROJECT NAM Event:	E:						ROJECT NUMBE	R: 114-10	
Field Personne Weather Condi	tions:	ary	119				Monitoring Well I Start Tim		
DTW (prior to p	urging): LS	.74	VA/	ELL PURGING	INFORMAT	ION			
	DTW During	Pumping	VV	Specific	Dissolved	Water			Total Quantity
Time	Purging (feet)	Rate (L/min)	Temperature (degree C)	Conductivity (mS/cm), ±3%	Oxygen (mg/L), ±10%	pH (S.U.), , ±0,1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Purged (gallons/liters
12:24	16.08	0.15	14.81	0.109	2.16	5.68	79	61.9	0.6
12:28	16.20	0.15	1462	0.089	1.0	9.68	90	44.9	1.2
12:32	16-41	0.15	14.61	0.083	0.79	4.59	15	44.7	1.8
17:30	16.53	0.19	14.69	0.075	0.70	4.59	103	435	2.4
(2:40	16-60	0.15	14.70	0.068	0.69	5.49	118	440	3.0
17:44	16-70	0.15	14-74	0.067	0.68	5.46	(19	44.3	3-4
Purge Pumping Decontaminatio Well Conversion	Factors: 2" = 0. Well Repairs/Add	17 gal / foot; 5/8		☐ Equipr	er Pump	Approx. None Dual Valve	/ell casing (in. diar Pump/Intake Dep	n): Z '	d: 3.GL
Anal	atast 1	Destinat	in I	SAMPLE IN	Bottle	Number			Time
	ytical neters	Laborato		reservative	Size	of bottles	Sam	ple ID	Sampled
								-Tiella-ellala	
All samples wer		ced into a coole	Courier r and packed with	ice or "blue Ice"		☐ Yes	□ No		
FIELD LIDSOFVAT	ons/Notes of sa	mpling event:							

Field Personne	1.								
			Non+9				Monitoring Well I		
Weather Cond OTW (prior to		an u				_	Start Tim	e: 11:54	
or to (brior to	rurging). 10.	76	W	ELL PURGINO	INFORMAT	ION			
	DTW During	Pumping		Specific	Dissolved	Water			Total Quantit
Time	Purging (feet)	Rate (L/min)	Temperature (degree C)	Conductivity (mS/cm), ±3%	Oxygen (mg/L), ±10%	pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Purged (gallons/liters
12:58	19.90	0.5	16.07	0.150	1.2G	5.00	17	100g+	O-6
14:02	70.02	015	16.11	0.153	0.79	5.86	23	1001	112
13:06	20.43	0-15	16.18	0.146	0-70	5.83	31	Inot	1.8
13:10	70.82	0-15	16.21	0.146	0.65	5.81	29	/court	2.4
13:14	21.35	0.15	6.00	0.142	0-64	5.80	97	laut	3.0
	V.31J		10.0						
									-
traction	1/ 11							Total Purge	o gov
Decontaminatio			f = 0.00 cal/fact				ell casing (in. dian Pump/Intake Dept		
veii Conversio	Factors: 2° = 0.	17 gai / 1001; 5/6	= u.uz galnoot	WELL CO	ONDITION				
Recommended	Well Repairs/Add	itional Notes:		WELL OF	JADITION				
			/						
QA/QC Sample Sampling Methor		cate dfos Pump	☐ Lab QA/QC ☐ Peristaltic Pu		ment Blank er Pump	☐ None ☐ Dual Valve			
				SAMPLE IN	FORMATION				
	ytical neters	Destinati Laborato		reservative	Bottle Size	Number of bottles	Sam	ple ID	Time Sampled
									1
- ilium							7		
All samples wer	portation of samp e immediately pla ons/Notes of sar	ced into a coole	Courier r and packed with i	ce or "blue ice"		☐ Yes	□ No		
		Pining or other							

ions: Danda	in Non					-0.05		
ions: P	in AMNI				D	ate: 09-25	77	
ions:		19				Monitoring Well I	D: Muley	
	ain					Start Time	e: 13.71	
urging): 17	.55	VA/	ELL BUDGING	INCODMAX	ION			
DTW During	Pumping	VV	Specific	Dissolved	-			Tatal Constitu
Purging (feet)	Rate (L/min)	Temperature (degree C)	Conductivity (mS/cm), ±3%	Oxygen	Water pH (S.U.), , ±0.1%	ORP (mV), , ±10 mV	Turbidity (NTU), , ±10%	Total Quantity Purged (gallons/liters)
7.68	0.15	16.92	0.145	3.12	4.28	188	V68	0.6
17.68	0.15	16.19	0.129	323	5.27	200	90/1	1.2
17.69	0.15	1619	0-14	3.27	5.29	207	244	1.8
17.69	0.15		0.100		7	203	605	2.4
17.70	0-15	16.14	0.096	3.01	9.32	201	546	3.0
method: Factors: 2" = 0.1 Vell Repairs/Addi	17 gal / foot; 5/8' itional Notes:	☐ Lab QA/QC	☐ Equipromp ☐ Bladde	nent Blank er Pump				1:7.0L
			SAMPLE INF					
tical eters			eservative	Bottle Size	Number of bottles	Samp	ole ID	Time Sampled
			······································					
						1 mmm		
								1
F	Purging (feet) (7-65) (7-65) (7-69) (7-69) (7-70) (7-70) (7-70) (7-70) (7-70) (1-7-70) (ate (approx. L/n method: Factors: 2* = 0.) (ate (approx. L/n method: Company of the co	Purging (feet) (Umin) (7-65	Purging	Purging Rate (Umin) (degree C) (mS/cm), ±3% (T-67) (U-77) (D-174) (D	Purging (feet) (L/min) (degree C) (mS/cm), ±3% (mg/L), ±10% Temperature (degree C) (mS/cm), ±3% (mg/L), ±10% Temperature (m	Purging (feet)	Purging (feet) (Umin)	Purging (feet) Climin (degree C) Conductivity (mSicm), ±3% (mgL), ±10% (SUJ), ±0.1% (mV), ±10 mV (NTU), ±10%

	Gell former	1				D	ate: 09-25	163	
Field Personn	-		-19				Monitoring Well I		
Weather Cond	100 100 100 100 100 100 100 100 100 100	no					Start Tim	e: 15:49	
DIW (prior to	purging): 24.	U	W	ELL PURGING	INFORMAT	ION			
	DTW During	Pumping		Specific	Dissolved	Water			Total Quantit
Time	Purging (feet)	Rate (L/min)	Temperature (degree C)	Conductivity (mS/cm), ±3%	Oxygen (mg/L), ±10%	pH	ORP (mV), , ±10 mV	Turbidity (NTU), ±10%	Purged (gallons/liters
13:53	76.63	0.15	15.82	0.210	4,55	6.47	ÇI	800	0.6
17:17	26.95	0.15	19.57	0.222	4.41	6.58	65	826	1.2
14.01	27.40	0.19	15.55	0.222	4.16	6.61	69	477	1.8
14.09	17:77	0.15	15.48	om	4.34	6-65	73	418	30
14:09	78.09	0-14	15.29	0.22	344	6.63	75	261	30
									- b 0/
Tubing: 7	16					_		Total Purge	3.06
Purge Pumping Decontamination	Rate (approx. L/m		= 0.02 gal/foot	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ell casing (in, dian Pump/Intake Dept		
Recommended	Well Repairs/Addit	tional Notes:		WELL CO	ONDITION				
		dos Pump	Lab QA/QC Peristaltic Pu		ment Blank er Pump	☐ None ☐ Dual Valve			
QA/QC Sample Sampling Meth	-			SAMPLE IN	FORMATION				
					Bottle	Number		2.52	Time Sampled
Sampling Meth	lytical meters	Destination Laborato		eservative	Size	of bottles	Sam	ole ID	Ontriples
Sampling Meth	lytical			eservative			Sam	ole ID	Gampiec
Sampling Method Anal Paral	lytical meters sportation of sample	Laborato	Courier Pr			of bottles		ole ID	Campiex
Ana Paral Method of Tran	lytical meters	Laborato	Courier Pr			of bottles	Sam	ole ID	Outriple

Appendix D Laboratory Analytical Reports

Summary: DATA VALID? ☐ YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Ollison Estate-23737 SW Newland Rd, Wilsonville

Project Number: 114-19002-02

Date of Review: 9/11/23 Lab. Name: F&BI Lab Batch ID #: 309022

Chain of Custody 1.) Are all requested analyses reported? 2.) Were the requested methods used? 3.) Trip blank submitted? 4.) Field blank submitted?	⊠yes ⊠yes □yes □yes	□no □no ⊠no ⊠no	
Timing 5.) Samples extracted within holding times? If not, are all discrepancies footnoted? 6.) Analysis performed within holding times? If not, are all discrepancies footnoted?	⊠yes □yes ⊠yes □yes	□no □no □no	⊠NA ⊠NA
Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) 8.) Are all reported values above either MRL or MDL? 9.) Are all values between the MDL & PQL tagged as trace? 10a.) Are reporting limits raised for other reason besides high analyte conc.? 10b.) If so, are they footnoted? 11.) Lab method blank completed? 12.) Lab, Field, or Trip Blank(s) report detections? If yes, indicate blank type, chemical(s) and concentration(s):	⊠yes ⊠yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no □no □no	⊠NA ⊠NA
 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? 	□yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no	⊠ NA □ NA □ NA
Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted?	⊠yes ⊠yes □yes	□no □no □no	□NA ⊠NA
17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 18.) Are all LCS/LCSD RPDs within acceptable limits? If not, are all discrepancies footnoted?	⊠yes ⊠yes □yes □yes	□no □no □no □no □no □no	□NA ⊠NA ⊠NA
Precision 19.) Are all matrix spike/matrix spike duplicate recoveries within			
acceptable limits? If not, are all discrepancies footnoted? 20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits?	⊠yes □yes ⊠yes	□no □no	□NA ⊠NA □NA
If not, are all discrepancies footnoted?	□yes	□no	⊠NA

21.) Do all RPD calculations for Field Duplicates meet acce	pted criteria?	□yes	□no	$\boxtimes NA$
Comments:				
Gasoline was not detected in one or more of the duplicat applicable. (nm)	e analyses. Therefore, calcu	lation of	the RPD	is not
Initial Review By: AR	Final Review By	' :		

Summary: DATA VALID? ☐ YES

Analytical Laboratory Data Validation Check Sheet

Project Name: Ollison Estate-23737 SW Newland Rd, Wilsonville

Project Number: 114-19002-02

Date of Review: 9/11/23 Lab. Name: F&BI Lab Batch ID #: 309047

Chain of Custody 1.) Are all requested analyses reported? 2.) Were the requested methods used? 3.) Trip blank submitted? 4.) Field blank submitted?	⊠yes ⊠yes □yes □yes	□no □no ⊠no ⊠no	
Timing 5.) Samples extracted within holding times? If not, are all discrepancies footnoted? 6.) Analysis performed within holding times? If not, are all discrepancies footnoted?	⊠yes □yes ⊠yes □yes	□no □no □no	⊠NA ⊠NA
Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) 8.) Are all reported values above either MRL or MDL? 9.) Are all values between the MDL & PQL tagged as trace? 10a.) Are reporting limits raised for other reason besides high analyte conc.? 10b.) If so, are they footnoted? 11.) Lab method blank completed? 12.) Lab, Field, or Trip Blank(s) report detections? If yes, indicate blank type, chemical(s) and concentration(s):	⊠yes ⊠yes □yes □yes ⊠yes □yes	□no □no □no □no □no □no □no □no □no	⊠NA ⊠NA
 13.) For inorganics and metals, is there one method blank for each analyte? If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? 	□yes □yes □yes □yes □yes □yes □yes	□no □no □no □no □no □no □no	⊠ NA □ NA □ NA
Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted?	⊠yes ⊠yes □yes	□no □no □no	□NA ⊠NA
17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 18.) Are all LCS/LCSD RPDs within acceptable limits? If not, are all discrepancies footnoted?	⊠yes ⊠yes □yes □yes	□no □no □no □no □no □no	□NA ⊠NA ⊠NA
Precision 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? If not, are all discrepancies footnoted? 20.) Are all matrix spike/matrix spike duplicate RPDs within	⊠yes □yes	□no □no	□ NA ⊠ NA
acceptable limits? If not, are all discrepancies footnoted?	⊠yes □yes	□no □no	□ NA ⊠ NA

21.) Do all RPD calculations for Field Duplicates meet acce	pted criteria?	□yes	□no	$\boxtimes NA$
Comments:				
Gasoline was not detected in one or more of the duplicat applicable. (nm)	e analyses. Therefore, calcu	lation of	the RPD	is not
Initial Review By: AR	Final Review By	' :		

Summary: DATA VALID?

⊠YES

Project Name: Ollison Estate-23737 SW Newland Rd-Wilsonville	Project Number: <u>114-1</u>	9002-02	
Date of Review: 9/13/2023 Lab. Name: F&BI	Lab Batch ID #: 309	9094	
Chain of Custody			
1.) Are all requested analyses reported?	⊠ye	s 🗆 no	
2.) Were the requested methods used?	⊠ye	s 🗆 no	
3.) Trip blank submitted?	□yes		
4.) Field blank submitted?	□yes		
Timing	,		
5.) Samples extracted within holding times?	⊠ye	s 🗆 no	
If not, are all discrepancies footnoted?	□yes	s □no	$\boxtimes NA$
6.) Analysis performed within holding times?	⊠ye:	s 🗆 no	
If not, are all discrepancies footnoted?	□yes		$\boxtimes NA$
Quality Assurance/Quality Control	,		
7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs)	⊠ye	s □no	
8.) Are all reported values above either MRL or MDL?	⊠ye	s 🗆 no	
9.) Are all values between the MDL & PQL tagged as trace?	□yes	s □no	$\boxtimes NA$
10a.) Are reporting limits raised for other reason besides high analyte of	conc.?	⊠no	
10b.) If so, are they footnoted?	□yes	s □no	⊠NA
11.) Lab method blank completed?	□yes		
12.) Lab, Field, or Trip Blank(s) report detections?	□yes		
If yes, indicate blank type, chemical(s) and concentration(s):			
13.) For inorganics and metals, is there one method blank for each ana	lyte? □yes	s □no	$\boxtimes NA$
If not, are all discrepancies footnoted?	□yes	s □no	
14.) For VOCs, is there one method blank for each day of analysis?	⊠ye	s □no	□NA
If not, are all discrepancies footnoted?	□yes	s □no	
15.) For SVOC's, is there one method blank for each extraction batch?	□yes	s □no	$\boxtimes NA$
If not, are all discrepancies footnoted?	□yes	s □no	
<u>Accuracy</u>			
16.) Is there a surrogate spike recovery for all VOC & SVOC samples?	⊠ye	s □no	□NA
Do all surrogate spike recoveries meet accepted criteria?	⊠ye	s □no	
If not, are all discrepancies footnoted?	□yes	s □no	$\boxtimes NA$
17.) Is there a spike recovery for all Laboratory Control Samples?	⊠ye	s □no	□NA
Do all LCS/LCSD spike recoveries meet accepted criteria?	⊠ye	s □no	
If not, are all discrepancies footnoted?	□yes	s □no	$\boxtimes NA$
18.) Are all LCS/LCSD RPDs within acceptable limits?	□yes	s □no	$\boxtimes NA$
If not, are all discrepancies footnoted?	□yes	s □no	$\boxtimes NA$
<u>Precision</u>			
19.) Are all matrix spike/matrix spike duplicate recoveries within			
acceptable limits?	⊠ye		□NA
If not, are all discrepancies footnoted?	□yes	s □no	⊠NA
20.) Are all matrix spike/matrix spike duplicate RPDs within	_	_	
acceptable limits?	⊠ye:		□NA
If not, are all discrepancies footnoted?	□yes		⊠NA
21.) Do all RPD calculations for Field Duplicates meet accepted criteria?	? □yes	s □no	⊠NA
Comments: Gasoline was not detected in one or more of the NWTPH-Gx duplicate a applicable. (nm)	analyses; Therefore, ca	lculation (of the RPD is not
Initial Review By: TMP	Final Review Bv		

Summary: DATA VALID?

⊠YES

Project Name: Ollison Estate-23737 SW Newland Rd-Wilsonville Project Name:	ect Number: <u>114-19002-02</u>	
Date of Review: 9/18/2023 Lab. Name: F&BI	Lab Batch ID #: 309139	
Chain of Custody 1.) Are all requested analyses reported? 2.) Were the requested methods used? 3.) Trip blank submitted? 4.) Field blank submitted?	⊠yes □no ⊠yes □no □yes ⊠no □yes ⊠no	
 Timing 5.) Samples extracted within holding times? If not, are all discrepancies footnoted? 6.) Analysis performed within holding times? If not, are all discrepancies footnoted? 	⊠yes □no□yes □no□yes □no□yes □no	⊠NA ⊠NA
Quality Assurance/Quality Control 7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs) 8.) Are all reported values above either MRL or MDL? 9.) Are all values between the MDL & PQL tagged as trace? 10a.) Are reporting limits raised for other reason besides high analyte cond 10b.) If so, are they footnoted? 11.) Lab method blank completed? 12.) Lab, Field, or Trip Blank(s) report detections? If yes, indicate blank type, chemical(s) and concentration(s):	 	⊠NA ⊠NA
 13.) For inorganics and metals, is there one method blank for each analyte If not, are all discrepancies footnoted? 14.) For VOCs, is there one method blank for each day of analysis? If not, are all discrepancies footnoted? 15.) For SVOC's, is there one method blank for each extraction batch? If not, are all discrepancies footnoted? 	e?	□NA □NA ⊠NA
Accuracy 16.) Is there a surrogate spike recovery for all VOC & SVOC samples? Do all surrogate spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 8260D 1,2-Dichloroethane-d4 fell outside the established control limits. (vol. 17.) Is there a spike recovery for all Laboratory Control Samples? Do all LCS/LCSD spike recoveries meet accepted criteria? If not, are all discrepancies footnoted? 18.) Are all LCS/LCSD RPDs within acceptable limits? If not, are all discrepancies footnoted?	 □yes □no 	□NA □NA □NA □NA □NA □NA □NA
Precision 19.) Are all matrix spike/matrix spike duplicate recoveries within acceptable limits? If not, are all discrepancies footnoted? 6020B lead was spiked at a level that was less than five times that present meaningful. (b) 20.) Are all matrix spike/matrix spike duplicate RPDs within acceptable limits?	□yes ⊠no ⊠yes □no in the sample. Matrix recove □yes ⊠no	□NA □NA ries may not be □NA
acceptable illines:	□ y c 3 □ 110	LIV.

If not, are all discrepancies footnoted?		⊻yes	□no	□NA
6020B lead was spiked at a level that was less than five times that p meaningful. (b)	resent in the sample. I	Matrix	recoverie	es may not be
21.) Do all RPD calculations for Field Duplicates meet accepted crite	ria? E	∃yes	□no	⊠NA
Comments:				
Gasoline was not detected in one or more of the duplicate analyses,	so calculation of the f	RPD is r	not appli	<u>cable. (nm)</u>
Initial Review By: LMP	Final Review By:			_

Summary: DATA VALID?

☐ YES

Project Name: Ollison Estate-23737 SW Ne	ewland Rd-Wilsonville	Project Number: 1	14-1900	02-02	
Date of Review: 9/18/2023	Lab. Name: F&BI	Lab Batch ID #	: 30917	' 4	_
<u>Chain of Custody</u>					
1.) Are all requested analyses reported?			⊴yes	□no	
2.) Were the requested methods used?			∃yes	□no	
3.) Trip blank submitted?			∃yes	⊠no	
4.) Field blank submitted?			∃yes	⊠no	
Timing					
5.) Samples extracted within holding time	s?		⊴yes	□no	
If not, are all discrepancies footno	oted?		∃yes	□no	\square NA
6.) Analysis performed within holding time	s?		∃yes	□no	
If not, are all discrepancies footno	oted?		∃yes	□no	□NA
Quality Assurance/Quality Control					
7.) Are the required reporting limits repor	ted? (MRLs vs MDLs/PQLs)		⊴yes	□no	
8.) Are all reported values above either M	RL or MDL?		∃yes	□no	
9.) Are all values between the MDL & PQL	tagged as trace?		∃yes	□no	$\boxtimes NA$
10a.) Are reporting limits raised for other	reason besides high analyte	conc.?	∃yes	⊠no	
10b.) If so, are they footnoted?			∃yes	□no	$\boxtimes NA$
11.) Lab method blank completed?			∃yes	□no	
12.) Lab, Field, or Trip Blank(s) report dete	ections?		∃yes	⊠no	
If yes, indicate blank type, chemical(s) and	concentration(s):				
13.) For inorganics and metals, is there on	e method blank for each ana	ılyte?	∃yes	□no	$\boxtimes NA$
If not, are all discrepancies footno	oted?		∃yes	□no	
14.) For VOCs, is there one method blank	for each day of analysis?		∃yes	□no	□NA
If not, are all discrepancies footno	oted?		∃yes	□no	
15.) For SVOC's, is there one method blan	k for each extraction batch?		∃yes	□no	$\boxtimes NA$
If not, are all discrepancies footno	oted?		∃yes	□no	
<u>Accuracy</u>					
16.) Is there a surrogate spike recovery for	r all VOC & SVOC samples?		∃yes	□no	□NA
Do all surrogate spike recoveries i	meet accepted criteria?		∃yes	□no	
If not, are all discrepancies footno	oted?		∃yes	□no	$\boxtimes NA$
17.) Is there a spike recovery for all Labora	atory Control Samples?		∃yes	□no	□NA
Do all LCS/LCSD spike recoveries r	neet accepted criteria?		∃yes	□no	
If not, are all discrepancies footno			∃yes	□no	$\boxtimes NA$
18.) Are all LCS/LCSD RPDs within accepta	ble limits?		∃yes	□no	$\boxtimes NA$
If not, are all discrepancies footno	oted?		∃yes	□no	$\boxtimes NA$
Precision					
19.) Are all matrix spike/matrix spike dupl	icate recoveries within				
acceptable limits?			⊴yes	□no	□NA
If not, are all discrepancies footnoted	! ?		∃yes	□no	$\boxtimes NA$
20.) Are all matrix spike/matrix spike dupl			-		
acceptable limits?			∃yes	□no	□NA
If not, are all discrepancies footnoted	! ?		∃yes	□no	$\boxtimes NA$
21.) Do all RPD calculations for Field Dupli			∃yes	□no	□NA
Comments:					
Gasoline was not detected in one or more			RPD is r	not appl	<u>licable. (nm)</u>
Initial Review By: <u>LMP</u>		Final Review By:			_

Summary:	DATA	VALID?	□YES

Project Name: Ollison Estate-23737	' SW Newland Rd-Wilsonville	Project Number: 1	14-190	02-02	
Date of Review: 9/19/2023	Lab. Name: F&BI Lab Batch ID #: 309161				
Chain of Custody 1.) Are all requested analyses repo			⊠yes	□no	
2.) Were the requested methods u	sed?		⊠yes	□no	
3.) Trip blank submitted?			□yes	⊠no	
4.) Field blank submitted?		l	□yes	⊠no	
Timing					
5.) Samples extracted within holding	ng times?		⊠yes	□no	
If not, are all discrepancies	s footnoted?]	□yes	□no	$\boxtimes NA$
6.) Analysis performed within holdi	ng times?		⊠yes	□no	
If not, are all discrepancies	s footnoted?	1	□yes	□no	$\boxtimes NA$
Quality Assurance/Quality Control					
7.) Are the required reporting limit	s reported? (MRLs vs MDLs/PQL	s)	⊠yes	□no	
8.) Are all reported values above e	ither MRL or MDL?	J	⊠yes	□no	
9.) Are all values between the MDI	. & PQL tagged as trace?	ļ	□yes	□no	$\boxtimes NA$
10a.) Are reporting limits raised fo	r other reason besides high analy	te conc.?	□yes	⊠no	
10b.) If so, are they footnoted?			□yes	□no	$\boxtimes NA$
11.) Lab method blank completed?			⊠yes	□no	
12.) Lab, Field, or Trip Blank(s) repo	ort detections?	ļ	□yes	⊠no	
If yes, indicate blank type, chemica	I(s) and concentration(s):				
13.) For inorganics and metals, is the	here one method blank for each a	analyte?	⊠yes	□no	\square NA
If not, are all discrepancies	s footnoted?	I	□yes	□no	
14.) For VOCs, is there one method	d blank for each day of analysis?	J	⊠yes	□no	□NA
If not, are all discrepancies	s footnoted?	I	□yes	□no	
15.) For SVOC's, is there one method	od blank for each extraction batcl	h? I	□yes	□no	$\boxtimes NA$
If not, are all discrepancies	s footnoted?	I	□yes	□no	
<u>Accuracy</u>					
16.) Is there a surrogate spike reco	very for all VOC & SVOC samples	?	⊠yes	□no	□NA
Do all surrogate spike reco	overies meet accepted criteria?	J	⊠yes	□no	
If not, are all discrepancies	s footnoted?	I	□yes	□no	$\boxtimes NA$
17.) Is there a spike recovery for al	Laboratory Control Samples?	J	⊠yes	□no	□NA
Do all LCS/LCSD spike reco	veries meet accepted criteria?	J	⊠yes	□no	
If not, are all discrepancies	s footnoted?	ļ	□yes	□no	$\boxtimes NA$
18.) Are all LCS/LCSD RPDs within a	acceptable limits?	ļ	□yes	□no	$\boxtimes NA$
If not, are all discrepancies	s footnoted?	I	□yes	□no	$\boxtimes NA$
<u>Precision</u>					
19.) Are all matrix spike/matrix spi	ke duplicate recoveries within				
acceptable limits?		I	□yes	⊠no	□NA
If not, are all discrepancies for	otnoted?	J	⊠yes	□no	□NA
The 6020B lead was spiked at a leve		at present in the sam	ple; Th	erefore	, matrix spike
recoveries may not be meaningful.					
20.) Are all matrix spike/matrix spi	ke duplicate RPDs within			_	
acceptable limits?			□yes	⊠no	□NA
If not, are all discrepancies for	otnoted?		⊠yes	□no	□NA

recoveries may not be meaningful. (b)	ifive times that present in the sa	ample; In	ierefore,	matrix spik	.(
21.) Do all RPD calculations for Field Duplicates meet a	accepted criteria?	□yes	□no	⊠NA	
Comments: Gasoline was not detected in one or more of the duplic	cate analyses. Calculation of the	RPD is no	ot applica	ble. (nm)	
Initial Review By: LMP	Final Review By	/ :			

Analytical Laboratory Data Validation Check Sheet

Project Name: Ollison Estate - 23737 SW Newland Rd, Wilsonville

Project Number: 114-19002-02

Date of Review: 10/5/23 Lab. Name: F&BI Lab Batch ID #: 309314

Chain of Custody			
1.) Are all requested analyses reported?	⊠yes	□no	
2.) Were the requested methods used?	⊠yes	□no	
3.) Trip blank submitted?	□yes	⊠no	
4.) Field blank submitted?	□yes	⊠no	
Timing			
5.) Samples extracted within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
6.) Analysis performed within holding times?	⊠yes	□no	
If not, are all discrepancies footnoted?	□yes	□no	\boxtimes NA
Quality Assurance/Quality Control			
7.) Are the required reporting limits reported? (MRLs vs MDLs/PQLs)	⊠yes	□no	
8.) Are all reported values above either MRL or MDL?	⊠yes	□no	
9.) Are all values between the MDL & PQL tagged as trace?	□yes	□no	⊠NA
10a.) Are reporting limits raised for other reason besides high analyte conc.?	□yes	⊠no	Z 14/ (
10b.) If so, are they footnoted?	□yes	□no	⊠NA
11.) Lab method blank completed?	⊠yes	□no	△NA
12.) Lab, Field, or Trip Blank(s) report detections?	-	⊠no	
If yes, indicate blank type, chemical(s) and concentration(s):	□yes	△110	
13.) For inorganics and metals, is there one method blank for each analyte?	⊠yes	□no	□NA
If not, are all discrepancies footnoted?	□yes	□no	
14.) For VOCs, is there one method blank for each day of analysis?	⊠yes	□no	□NA
If not, are all discrepancies footnoted?	□yes	□no	,,
15.) For SVOC's, is there one method blank for each extraction batch?	⊠yes	□no	\square NA
If not, are all discrepancies footnoted?	□yes	□no	
<u>Accuracy</u>			
16.) Is there a surrogate spike recovery for all VOC & SVOC samples?	⊠yes	□no	□NA
Do all surrogate spike recoveries meet accepted criteria?	□yes	⊠no	
If not, are all discrepancies footnoted?	-		□NA
For sample GS34-EX02-F-18, the value reported fell outside the control limits establis	,		
(vo)		,2 210111	
17.) Is there a spike recovery for all Laboratory Control Samples?	⊠yes	□no	□NA
Do all LCS/LCSD spike recoveries meet accepted criteria?	□yes	⊠no	
If not, are all discrepancies footnoted?	⊠yes	□no	\square NA
Pyrene in the 8270E laboratory control sample exceeded the acceptance criteria. The	-		
(vo)		55	3,
18.) Are all LCS/LCSD RPDs within acceptable limits?	□yes	□no	⊠NA
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
	-		

Precision

19.) Are all matrix spike/matrix spike duplicate recoveries within

acceptable limits?	⊠yes	□no	\square NA
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
20.) Are all matrix spike/matrix spike duplicate RPDs within			
acceptable limits?	⊠yes	□no	\square NA
If not, are all discrepancies footnoted?	□yes	□no	$\boxtimes NA$
21.) Do all RPD calculations for Field Duplicates meet accepted criteria?	□yes	□no	$\boxtimes NA$
Comments:			
The laboratory control sample percent recovery was out of control limits for Py should be considered an estimate. (jl)	rene. The repo	rted con	centratior
Gasoline was not detected in one or more of the duplicate analyses. Therefore applicable. (nm)	, calculation of	the RPD	is not
Initial Review By: AR Final Revi	ew By:		_

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

April 4, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on March 23, 2023 from the 114-19002-02, F&BI 303368 project. There are 20 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0404R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 23, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 303368 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Evren Northwest
303368 -01	Product-comp-230322
303368 -02	DRUM-COMP01-230322
303368 -03	DRUM-COMP02-230322

The benzene concentration in sample Product-comp-230322 exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

Date Extracted: 03/24/23 Date Analyzed: 03/24/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
DRUM-COMP01-230322 303368-02	<5	92
DRUM-COMP02-230322 303368-03	25	114
Method Blank 03-654 MB	<5	77

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

Date Extracted: 03/23/23 Date Analyzed: 03/23/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Residual Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
DRUM-COMP01-230322 303368-02	<50	<250	96
DRUM-COMP02-230322 303368-03	<50	<250	92
Method Blank	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: DRUM-COMP01-230322 Client: Evren Northwest

Date Received: 03/23/23 Project: 114-19002-02, F&BI 303368

Date Extracted:03/24/23Lab ID:303368-02Date Analyzed:03/24/23Data File:032425.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:md

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	84	120
Toluene-d8	104	73	128
4-Bromofluorobenzene	101	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Acetone 1,1-Dichloroethene Hexane Methylene chloride Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene 1,1-Dichloroethane 2,2-Dichloropropane cis-1,2-Dichloroethene Chloroform 2-Butanone (MEK) 1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane 1,1-Dichloropropene Carbon tetrachloride Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Dibromomethane	mg/kg (ppm) <0.5 <0.5 <0.05 <0.5 <0.5 <0.5 <0.5 <0	1,3-Dichloropropane Tetrachloroethene Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene 1,1,1,2-Tetrachloroethane m,p-Xylene o-Xylene Styrene Isopropylbenzene Bromoform n-Propylbenzene Bromobenzene 1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) <0.05 <0.025 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
4-Methyl-2-pentanone cis-1,3-Dichloropropene	<1 <0.05	1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	<0.5 <0.25
Toluene	<0.05 <0.05	Hexachlorobutadiene	<0.25 <0.25
trans-1,3-Dichloropropene	<0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane 2-Hexanone	<0.05 <0.5	1,2,3-Trichlorobenzene	<0.25
2	10.0		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: DRUM-COMP02-230322 Client: Evren Northwest

Date Received: 03/23/23 Project: 114-19002-02, F&BI 303368

Date Extracted:03/24/23Lab ID:303368-03Date Analyzed:03/24/23Data File:032426.DMatrix:SoilInstrument:GCMS13Units:mg/kg (ppm) Dry WeightOperator:md

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	96	84	120
Toluene-d8	91	73	128
4-Bromofluorobenzene	96	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene Hexane	<0.05 <0.25	m,p-Xylene	0.25 0.11
	<0.25 <0.5	o-Xylene	< 0.05
Methylene chloride	<0.5 <0.05	Styrene	<0.05 <0.05
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	<0.05 <0.05	Isopropylbenzene Bromoform	<0.05 <0.05
1,1-Dichloroethane	<0.05 <0.05	n-Propylbenzene	0.065
2,2-Dichloropropane	<0.05 <0.05	Bromobenzene	< 0.065
cis-1,2-Dichloroethene	<0.05 <0.05	1,3,5-Trimethylbenzene	<0.05 0.16
Chloroform	<0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	<0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	<0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	<0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	<0.05	1,2,4-Trimethylbenzene	0.39
Benzene	<0.03	sec-Butylbenzene	< 0.05
Trichloroethene	<0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	<0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	<0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	<0.5	<u></u>	2.20

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 114-19002-02, F&BI 303368

03/24/23 Date Extracted: Lab ID: 03-0670 mb Date Analyzed: 03/24/23 Data File: 032421.D Matrix: Soil Instrument: GCMS13 Units: mg/kg (ppm) Dry Weight Operator: md

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	84	120
Toluene-d8	100	73	128
4-Bromofluorobenzene	98	57	146

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-IsopropyItoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	<0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Product-comp-230322 Client: Evren Northwest

Date Received: 03/23/23 Project: 114-19002-02, F&BI 303368

Date Extracted: 03/29/23 Lab ID: 303368-01 1/200

Date Analyzed:03/29/23Data File:032932.DMatrix:Soil/ProductInstrument:GCMS13Units:ug/L (ppb)Operator:MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 114 71 132 Toluene-d8 113 68 139 4-Bromofluorobenzene 94 62 136

Concentration

Compounds: ug/L (ppb)

Benzene 49,000 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 114-19002-02, F&BI 303368

Date Extracted: 03/29/23 Lab ID: 03-0686 mb 1/200

Date Analyzed:03/29/23Data File:032931.DMatrix:Soil/ProductInstrument:GCMS13Units:ug/L (ppb)Operator:MD

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 95 71 132 Toluene-d8 94 68 139 4-Bromofluorobenzene 100 62 136

Concentration

Compounds: ug/L (ppb)

Benzene <70

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: Product-comp-230322 Client: Evren Northwest

Date Received: 03/23/23 Project: 114-19002-02, F&BI 303368

Date Extracted: 03/27/23 Lab ID: 303368-01 x0.1
Date Analyzed: 03/31/23 Data File: 303368-01 x0.1.075

Matrix: Soil/Product Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm) TCLP Limit

Lead <0.1 5.0

ENVIRONMENTAL CHEMISTS

Analysis for TCLP Metals By EPA Method 6020B and 1311

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 114-19002-02, F&BI 303368

 Date Extracted:
 03/27/23
 Lab ID:
 13-236 mb x0.1

 Date Analyzed:
 03/31/23
 Data File:
 13-236 mb x0.1.074

Matrix: Soil/Product Instrument: ICPMS2 Units: mg/L (ppm) Operator: SP

Concentration

Analyte: mg/L (ppm) TCLP Limit

Lead <0.1 5.0

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Product-comp-230322 Clien	nt: Evren Northwest
---	---------------------

Date Received: 03/23/23 Project: 114-19002-02, F&BI 303368

Date Extracted:03/23/23Lab ID:303368-01Date Analyzed:03/23/23Data File:032312.DMatrix:ProductInstrument:GC7Units:mg/kg (ppm)Operator:MG

UTITES.	тіу/ку (рріті)		IVIG	
Surrogates: Tetrachlorometaxy Decachlorobipheny		Lower Limit: 50 50	Upper Limit: 150 150	
Compounds:	mg/kg (ppm)			
Aroclor 1221	<2			
Aroclor 1232	<2			
Aroclor 1016	<2			
Aroclor 1242	<2			
Aroclor 1248	<2			
Aroclor 1254	<2			
Aroclor 1260	<2			
Aroclor 1262	<2			
Aroclor 1268	<2			

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 114-19002-02, F&BI 303368

Date Extracted: 03/23/23 Lab ID: 03-792 mb Date Analyzed: 03/23/23 Data File: 032304.D Matrix: Product Instrument: GC7 Units: mg/kg (ppm) Operator: MG

Surrogates: % Recovery: Limit: Limit: Tetrachlorometaxylene 90 50 150 Decachlorobiphenyl 121 50

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <2
Aroclor 1232 <2
Aroclor 1016 <2
Aroclor 1242 <2
Aroclor 1242 <2
Aroclor 1248 <2

Aroclor 1254 <2
Aroclor 1260 <2
Aroclor 1262 <2
Aroclor 1268 <2

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 303368-02 (Duplicate)

,	` '	, Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

	Felcelit							
	Reporting	Spike	Recovery	Acceptance				
Analyte	Units	Level	LCS	Criteria				
Gasoline	mg/kg (ppm)	40	100	61-153	•			

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 303367-02 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	94	94	70-130	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	92	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 303405-03 (Matrix Spike)

`	, ,		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Únits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	<0.5	18	17	10-47	6
Chloromethane	mg/kg (ppm)	2	< 0.5	47	44	10-88	7
Vinyl chloride	mg/kg (ppm)	2	< 0.05	51	48	10-79	6
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2 2	<0.5 <0.5	73 68	74 64	10-85 11-106	1 6
Trichlorofluoromethane	mg/kg (ppm)	2	<0.5	67	63	10-85	6
Acetone	mg/kg (ppm)	10	<5	80	81	10-224	1
1.1-Dichloroethene	mg/kg (ppm)	2	< 0.05	78	73	11-105	7
Hexane	mg/kg (ppm)	2	< 0.25	65	59	10-106	10
Methylene chloride	mg/kg (ppm)	2	< 0.5	86	76	10-139	12
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	94	87	18-131	8
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	84	77	16-122	9
1,1-Dichloroethane	mg/kg (ppm)	2	<0.05 <0.05	91 91	83 89	19-125 10-184	9 2
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	94	87 87	18-129	8
Chloroform	mg/kg (ppm)	2	<0.05	91	85	18-126	7
2-Butanone (MEK)	mg/kg (ppm)	10	<1	95	79	10-190	18
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	88	81	19-138	8
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	92	84	16-126	9
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	87	82	19-129	6
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	90	85	13-125	6
Benzene	mg/kg (ppm)	2	< 0.03	91	84	15-129	8
Trichloroethene	mg/kg (ppm)	2	<0.02	91	85	14-127	7
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	2 2	<0.05 <0.05	91 99	84 91	17-137 24-130	8 8
Dibromomethane	mg/kg (ppm)	2	< 0.05	92	86	20-138	7
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	99	92	21-139	7
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	94	84	17-135	11
Toluene	mg/kg (ppm)	2	< 0.05	85	78	15-129	9
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	94	84	18-130	11
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	93	84	29-128	10
2-Hexanone	mg/kg (ppm)	10	< 0.5	95	86	28-142	10
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	2 2	<0.05 <0.025	90 94	83 85	20-135 20-121	8 10
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2	< 0.025	93	84	11-138	10
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	92	83	21-130	10
Chlorobenzene	mg/kg (ppm)	2	< 0.05	93	83	19-129	11
Ethylbenzene	mg/kg (ppm)	2	< 0.05	91	82	23-133	10
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	94	83	16-127	12
m,p-Xylene	mg/kg (ppm)	4	<0.1	88	80	19-134	10
o-Xylene	mg/kg (ppm)	2	< 0.05	90	82	20-132	9
Styrene	mg/kg (ppm)	2 2	<0.05 <0.05	95 95	86	23-127	10 10
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	2	<0.05	95 96	86 84	21-134 10-142	13
n-Propylbenzene	mg/kg (ppm)	2	<0.05	96	87	10-142	10
Bromobenzene	mg/kg (ppm)	2	< 0.05	94	85	10-135	10
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	94	86	20-136	9
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	99	88	10-234	12
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	92	82	10-144	11
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	95	87	10-139	9
4-Chlorotoluene	mg/kg (ppm)	2 2	<0.05 <0.05	94 96	85 88	10-139 10-144	10 9
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm)	2	<0.05 <0.05	96 95	88 87	24-133	9
sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05	95 97	88	23-134	10
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	96	88	25-131	9
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	94	86	10-143	9
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	94	85	10-146	10
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	94	85	10-144	10
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	92	80	10-163	14
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	96	85	10-147	12
Hexachlorobutadiene	mg/kg (ppm)	2 2	< 0.25	97 95	86	10-162	12
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.25	95 94	85 83	30-138 10-173	11 12
1,2,0-111011010001120110	mg/kg (ppm)	2	VU.25	7*1	U.S	10-173	12

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyto	Units	Level	LCS	Criteria
Analyte Dichlorodifluoromethane	mg/kg (ppm)	2	50	10-93
Chloromethane	mg/kg (ppm)	2	70	34-101
Vinyl chloride	mg/kg (ppm)	2	78	47-106
Bromomethane	mg/kg (ppm)	2	87	38-123
Chloroethane	mg/kg (ppm)	2	89	44-123
Trichlorofluoromethane	mg/kg (ppm)	2	90	56-108
Acetone	mg/kg (ppm)	10	84	24-185
1,1-Dichloroethene	mg/kg (ppm)	2	99	61-118
Hexane Methylene chloride	mg/kg (ppm)	2 2	99 97	54-142 10-213
Methyl t-butyl ether (MTBE)	mg/kg (ppm) mg/kg (ppm)	2	104	70-130
trans-1,2-Dichloroethene	mg/kg (ppm)	2	99	70-130
1,1-Dichloroethane	mg/kg (ppm)	2	104	70-130
2,2-Dichloropropane	mg/kg (ppm)	2	105	45-172
cis-1,2-Dichloroethene	mg/kg (ppm)	2	105	70-130
Chloroform	mg/kg (ppm)	2	100	70-130
2-Butanone (MEK)	mg/kg (ppm)	10	101	36-182
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2 2	98 104	66-140 70-130
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2	104	70-130 70-130
Carbon tetrachloride	mg/kg (ppm)	2	105	68-146
Benzene	mg/kg (ppm)	2	103	70-130
Trichloroethene	mg/kg (ppm)	2	99	53-133
1,2-Dichloropropane	mg/kg (ppm)	2	100	67-137
Bromodichloromethane	mg/kg (ppm)	2	105	70-130
Dibromomethane	mg/kg (ppm)	2	100	70-130
4-Methyl-2-pentanone	mg/kg (ppm)	10	109	70-130
cis-1,3-Dichloropropene	mg/kg (ppm)	2 2	101 96	70-130
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2	103	63-127 70-130
1,1,2-Trichloroethane	mg/kg (ppm)	2	102	70-130
2-Hexanone	mg/kg (ppm)	10	102	65-148
1,3-Dichloropropane	mg/kg (ppm)	2	99	67-135
Tetrachloroethene	mg/kg (ppm)	2	104	59-138
Dibromochloromethane	mg/kg (ppm)	2	102	61-154
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	102	70-130
Chlorobenzene Ethylbenzene	mg/kg (ppm)	2 2	102 100	65-133 60-140
1,1,1,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2	103	68-129
m,p-Xylene	mg/kg (ppm)	4	98	56-145
o-Xylene	mg/kg (ppm)	2	99	61-137
Styrene	mg/kg (ppm)	2	103	61-138
Isopropylbenzene	mg/kg (ppm)	2	103	52-148
Bromoform	mg/kg (ppm)	2	102	57-166
n-Propylbenzene	mg/kg (ppm)	2 2	107	36-162
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	106 105	63-127 43-156
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	111	35-184
1,2,3-Trichloropropane	mg/kg (ppm)	2	104	70-130
2-Chlorotoluene	mg/kg (ppm)	2	107	50-146
4-Chlorotoluene	mg/kg (ppm)	2	105	47-150
tert-Butylbenzene	mg/kg (ppm)	2	106	41-154
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	105	42-159
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm)	2 2	106 106	25-175 18-186
1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	105	49-149
1,4-Dichlorobenzene	mg/kg (ppm)	2	104	48-149
1,2-Dichlorobenzene	mg/kg (ppm)	2	104	58-139
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	102	70-130
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	105	39-166
Hexachlorobutadiene	mg/kg (ppm)	2	104	41-186
Naphthalene	mg/kg (ppm)	2	104	67-143
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	100	49-165

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 303427-09 (Matrix Spike)

		Percent				
	Reporting	Spike	Sample	Recovery	Acceptance	
Analyte	Units	Level	Result	MS	Criteria	
Benzene	ug/L (ppb)	10	11	106 b	50-150	

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benzene	ug/L (ppb)	10	109	109	70-130	0

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL/SOLID SAMPLES FOR TCLP METALS USING EPA METHODS 6020B AND 1311

Laboratory Code: 303433-04 (Matrix Spike)

				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	_
Lead	mg/L (ppm)	1.0	<1	84	85	75-125	1	-

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/L (ppm)	1.0	86	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 04/04/23 Date Received: 03/23/23

Project: 114-19002-02, F&BI 303368

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF PRODUCT SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	25	105	109	69-137	4
Aroclor 1260	mg/kg (ppm)	25	114	114	78-148	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

202268				SAMPL	E CHAIN	OF	CU	STO	DDY	I		C	3/	23,	123	P/	NI,	i
Report To Lyun Gr	ier	1		SAMPI	ERS (signo	ature)	loud	an	1	Non	6	-					#o NAROUND 7	f(
Company Evren /	ompany Evren Northwest PROJ			PROJE	PROJECT NAME /				PO# Stand			Standar RUSH_	rd turnaround					
Address P.O. Box	144	188			2017-07	2									I	Rush charges authorized by:		ed by:
City, State, ZIP For Han Phone (53)452-536 E				-				DICE	☐ Archive			MPLE DISPOSAL samples Dispose after 30 days						
) 0								L	ANA	LYS	ES R	EQU	ESTE		1,	
Sample ID		Lab II	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	TCLP Benzene	OF PLP		. No	tes
Product-cong- 23	332	01 A-	F 02-22-23	9:15	Precluit	6			Ц	7 4			X	X	X			
DRUM - COMPOS - 2303	II.	OL A-	E 03-22-23	9:45	50.1	5	X	X			X							
Product-comp-23 DRUM-COMPOI-2303 DRUM-COMPOZ-2303	22	03	63-22-23	9:55	Soil	5	X	×			X							
					1			S	am	ote	s re	9C6	ive	da	4	-00		
						7 . 3												
					i i													
Friedman & Bruya, Inc.	Ralin	quished by	SIGNATURE	, ,		PRIN	1		E	-					PAN		DATE	TIME
Ph. (206) 285-8282	J.C.T.		Mary 116	ull	Jordan	A TO THE THE	Nen					8	1.2.	1	Vor	thnest	03-22-23	18:a)
Received by: Relinquished by:		hul		F	ANH	PH	Ar	V F53					03/23/23	10:18				

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 8, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 2, 2023 from the 114-19002-02, F&BI 309022 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0908R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 2, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 309022 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309022 -01	GS01-EX01-SW-14
309022 -02	GS02-EX-01-SW-12

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/02/23

Project: 114-19002-02, F&BI 309022

Date Extracted: 09/06/23 Date Analyzed: 09/06/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GS01-EX01-SW-14 309022-01	<5	121
GS02-EX-01-SW-12 309022-02	<5	127
Method Blank	<5	125

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/02/23

Project: 114-19002-02, F&BI 309022

Date Extracted: 09/05/23 Date Analyzed: 09/05/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
GS01-EX01-SW-14 309022-01	<50	<250	79
GS02-EX-01-SW-12 309022-02	<50	<250	80
Method Blank	<50	<250	69

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/02/23

Project: 114-19002-02, F&BI 309022

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309022-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			FEICEIIL		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	97	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/02/23

Project: 114-19002-02, F&BI 309022

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 309022-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	92	94	64-136	2

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	92	78-121

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Lynn Green			SAMPL	ERS (signa	ature)	6	V			09/02	1	Pag	ge#of RNAROUND T	ME		
Company EVREN-NW			PROJECT NAME PO#			Standard Turnaround										
Address 40 SE 24th Ave				114-19	1002	-0	2				RUSH_ Rush charges authorized by		by:			
City, State, ZIP Portland, Oregon 972	214			MARKS INVOICE TO		INVOICE TO		INVOICE TO		INVOICE TO		SAMPLE DISPOSAL				AL
	ynng@evren-nw	.com	Daniert	Project Specific RLs - Yes / No		Ш	Dispose after 30 days Archive Samples									
Thomas			Project	оресиис кл	s - re	S / I	NO		ANA	LYSES REQU	JEST	Other_ ED				
						×	×	021	8270	8082						
Sample ID	Lab ID	Date	Time	Sample	# of	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	PA 8				Not	as		
		Sampled	Sampled	Туре	Jars	TWN	NWT	EXE	VOUS EPA	PCBs EPA		M	1			
G501-EY01-SW-44		1.1		1	1			BT	PA	PC	-					
501-5W-14	61	9/01/23		Soul	1	×	X	- 1	-		Ľ					
6502-5W-12	02	9/01/23	1435	Soul	1_	X	X				L					
6502-ex-01-sw-12					16. 6						F		10			
DS 9/2/22 ME							= 4					14				
DS 9/2/22 ME					11.		= 1									
									4							
					11.5		-4			1						
						14				1000						
				V == (M							
1													411			
Friedman & Day To Ball	Sinquished by:	ICNATURE			PRII	NT.N	AME	,		CON	/PAI	VY	DATE	TIME		
	ived by:	4	J-		10	an	5	2/k	ó_	k	N	W	J 5601/23	(750		
	ngdished by:	(Pile)		Ja	nes	B	FU>	Y		F	B		9/2	1600		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 8, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 6, 2023 from the 114-19002-02, F&BI 309047 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0908R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 6, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 309047 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309047 -01	GS03-EX01-SW-17-SWI
309047 -02	GS04-EX01-NW-10
309047 -03	GS05-EX01-NW-14
309047 -04	GS06-EX01-NW-18-SWI

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/06/23

Project: 114-19002-02, F&BI 309047

Date Extracted: 09/06/23 Date Analyzed: 09/06/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GS03-EX01-SW-17-SWI	<5	97
GS04-EX01-NW-10 309047-02	<5	94
GS05-EX01-NW-14 309047-03	<5	100
GS06-EX01-NW-18-SWI 309047-04	15	101
Method Blank	<5	125

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/06/23

Project: 114-19002-02, F&BI 309047

Date Extracted: 09/06/23 Date Analyzed: 09/06/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Residual Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
GS03-EX01-SW-17-SWI	<50	<250	91
GS04-EX01-NW-10 309047-02	<50	<250	90
GS05-EX01-NW-14 309047-03	<50	<250	89
GS06-EX01-NW-18-SWI 309047-04	<50	<250	89
Method Blank 03-2092 MB2	<50	<250	92

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/06/23

Project: 114-19002-02, F&BI 309047

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309022-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			FEICEIIL		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	97	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/08/23 Date Received: 09/06/23

Project: 114-19002-02, F&BI 309047

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 308347-08 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	650	89	83	53-141	7

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	86	71-126

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

VS-A1/N4 09/06/23 SAMPLE CHAIN OF CUSTODY 309047 SAMPLERS (signature) Report To Lynn Green PROJECT NAME PO# Standard Turnaround Company EVREN-NW RUSH 114-19002-02 Rush charges authorized by: Address 40 SE 24th Ave SAMPLE DISPOSAL REMARKS INVOICE TO City, State, ZIP Porlland, Oregon 97214 Dispose after 30 days Archive Samples Email lynng@evren-nw.com Phone 503-452-5561 Project Specific RLs - Yes / No Other_

									A	NAI	YSE	SRI	EQUE	STEI)		
Sample ID Eyor (LAI Saryles) V per E6 a	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	VOCs EPA 8260	PAHS EPA 8270	PCBs EPA 8082						Notes
EXOL GS03-SW-17-SW1			11:00	Son	5	Х	X									11	
EXOL GS04 - NW-10	02	9-5-2023	13:10	i ez	2	X	X		8	-	4						
EXOL-GSOS-NW-14	03	9-5-2023	13:45		5	X	X	17		71			JH	T			
142-81- 4506- WH-8-5WI	04	9-5-2023	13:55		1	χ	X			. 1				-			
					13			ſſ			T _V						
								8	Sam	ple	s re	ceiv	ed at	t	20	C	
							-						+			-	4
										= 1						+	
					J		1							1		- 11	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	PRINT.NAME	COMPANY	DATE	TIME
Relinquished by:	EUN BRUGGEMIN	ENW	9-5-2023	17:00
Received by:	AMHPHAN	F83	09/06/23	10:22
Relinquished by:				
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 13, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 8, 2023 from the 114-19002-02, F&BI 309094 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0913R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 8, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 309094 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309094 -01	GS07-EX01-SEW-9
309094 -02	GS08-EX01-SEW-14
309094 -03	GS09-EX01-SEW-17
309094 -04	GS10-EX01-NEW-14
309094 -05	GS11-EX01-EF-20
309094 -06	GS12-EX01-EW-18-SWI
309094 -07	GS13-EX01-EW-14
309094 -08	GS14-EX01-EW-10

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/23 Date Received: 09/08/23

Project: 114-19002-02, F&BI 309094

Date Extracted: 09/08/23 Date Analyzed: 09/08/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
GS07-EX01-SEW-9 309094-01	<5	128
GS08-EX01-SEW-14 309094-02	<5	124
GS09-EX01-SEW-17 309094-03	<5	128
GS10-EX01-NEW-14 309094-04	<5	122
GS11-EX01-EF-20 309094-05	<5	127
GS12-EX01-EW-18-SWI	<5	127
GS13-EX01-EW-14 309094-07	<5	122
GS14-EX01-EW-10 309094-08	<5	122
Method Blank 03-2078 MB	<5	98

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/23 Date Received: 09/08/23

Project: 114-19002-02, F&BI 309094

Date Extracted: 09/08/23 Date Analyzed: 09/08/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Residual Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
GS07-EX01-SEW-9 309094-01	<50	<250	78
GS08-EX01-SEW-14 309094-02	<50	<250	79
GS09-EX01-SEW-17 309094-03	<50	<250	77
GS10-EX01-NEW-14 309094-04	<50	<250	85
GS11-EX01-EF-20 309094-05	<50	<250	83
GS12-EX01-EW-18-SWI 309094-06	<50	<250	77
GS13-EX01-EW-14 309094-07	<50	<250	81
GS14-EX01-EW-10 309094-08	<50	<250	79
Method Blank 03-2118 MB	<50	<250	83

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/23 Date Received: 09/08/23

Project: 114-19002-02, F&BI 309094

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309059-01 (Duplicate)

	•	Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			FEICEIIL		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	105	70-130	•

ENVIRONMENTAL CHEMISTS

Date of Report: 09/13/23 Date Received: 09/08/23

Project: 114-19002-02, F&BI 309094

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 309094-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	ma/ka (ppm)	5.000	<50	96	96	64-136	0

Laboratory Code: Laboratory Control Sample

3	3	•	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	92	78-121

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

309094	SAMPLE CHAIN OF CUSTODY	09/08/2	3 N3/VS_A1
Report To Lynn Green	SAMPLERS (signature)		Page #of TURNAROUND TIME
Company EVREN-NW	PROJECT NAME	PO#	Standard Turnaround RUSH
Address 40 SE 24th Ave	114-19002-02		Rush charges authorized by:
City, State, ZIP Portland, Oregon 97214 Phone 503-452-5561 Email lynng@evren-nw.com	REMARKS	INVOICE TO	SAMPLE DISPOSAL Dispose after 30 days Archive Samples

									P	NAI	YSE	S REQ	UESTE	D	
Sample ID	Lab ID	Date Sampled	Time Samplęd	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	VOCs EPA 8260	PAHS EPA 8270	PCBs EPA 8082				Notes
6507-EX01-SEW-9	OI A.E	9/07/23	9:40	Soil	5	X	X						E		4
G508-EXOL-SEW-14	02	1	9:54	-	1	X	X								
3509-EXOL-SEW-17	03 A-E		(0:00		5	X	X								
GS10-EX01-NEW-14			10:55		5	X	X					H			
3511 - EXOI - EF-20			11:44		1	X	X								
GS12 EX01-EW-18-5			12:35			X	×	4							-05 and 06 same da
5513-EX01-EW-14	07 A.E		12:40		5	X	X								per LG 09/12/23 W
GSH-EXOI-EW-10	08	V	13:05	V	-	X	X					-4			
ъ															
		1			الرازالا										

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

SIGNATURE	RRINT.NAME	COMPANY	DATE	TIME
Relinquished W:	Dan Sayks	FNW	9/03/23	17:30
Received by:	Whan ohan	FEBI	09/08/23	1120
Relinquished by:				
Received by:	2	Samples received	at 3	C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 18, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 12, 2023 from the 114-19002, F&BI 309139 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0918R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 12, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002, F&BI 309139 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309139 -01	GS15-EX01-F-20
309139 -02	GS16-EX01-F-20
309139 -03	GS18-EX01-F-21.5
309139 -04	GS19-EX01-F-23
309139 -05	GS20-EX01-NW-10
309139 -06	GS21-EX01-NW-14
309139 -07	GS22-EX01-NW-18
309139 -08	GS23-EX01-SW-10
309139 -09	GS24-EX01-SW-14
309139 -10	GS25-EX01-SW-18

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/12/23

Project: 114-19002, F&BI 309139

Date Extracted: 09/12/23 Date Analyzed: 09/12/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GS15-EX01-F-20 309139-01	<5	116
GS16-EX01-F-20 309139-02 1/5	370	129
GS18-EX01-F-21.5 309139-03 1/5	150	115
GS19-EX01-F-23 309139-04 1/5	78	119
GS20-EX01-NW-10 309139-05	<5	114
GS21-EX01-NW-14 309139-06	27	113
GS22-EX01-NW-18 309139-07	<5	117
GS23-EX01-SW-10 309139-08	<5	114
GS24-EX01-SW-14 309139-09	<5	114
GS25-EX01-SW-18 309139-10	180	129
Method Blank 03-2085 MB	<5	115

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/12/23

Project: 114-19002, F&BI 309139

Date Extracted: 09/12/23 Date Analyzed: 09/12/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Residual Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
GS15-EX01-F-20 309139-01	<50	<250	94
GS16-EX01-F-20 309139-02	<50	<250	89
GS18-EX01-F-21.5 309139-03	<50	<250	93
GS19-EX01-F-23 309139-04	<50	<250	93
GS20-EX01-NW-10 309139-05	<50	<250	94
GS21-EX01-NW-14 309139-06	<50	<250	95
GS22-EX01-NW-18 309139-07	<50	<250	94
GS23-EX01-SW-10 309139-08	<50	<250	91
GS24-EX01-SW-14 309139-09	<50	<250	90
GS25-EX01-SW-18 309139-10	<50	<250	90
Method Blank	<50	<250	95

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GS16-EX01-F-20 Client: Evren Northwest

Date Received: 09/12/23 Project: 114-19002, F&BI 309139

 Date Extracted:
 09/13/23
 Lab ID:
 309139-02 x2

 Date Analyzed:
 09/13/23
 Data File:
 309139-02 x2.093

Matrix: Soil Instrument: ICPMS2 Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 7.25

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GS25-EX01-SW-18 Client: Evren Northwest

Date Received: 09/12/23 Project: 114-19002, F&BI 309139

Date Extracted:09/13/23Lab ID:309139-10Date Analyzed:09/13/23Data File:309139-10.091Matrix:SoilInstrument:ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 11.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 114-19002, F&BI 309139

Date Extracted: 09/13/23 Lab ID: 13-703 mb2
Date Analyzed: 09/13/23 Data File: 13-703 mb2.042
Matrix: Soil Instrument: ICPMS2

Matrix: Soil Instrument: ICPN Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GS16-EX01-F-20 Client: Evren Northwest

Date Received: 09/12/23 Project: 114-19002, F&BI 309139

Date Extracted: 09/14/23 Lab ID: 309139-02 Date Analyzed: 09/14/23 Data File: 091407.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	90	109
Toluene-d8	102	86	115
4-Bromofluorobenzene	102	84	115

Concentration Compounds: mg/kg (ppm) Methyl t-butyl ether (MTBE) <0.05 1 2-Dichloroethane (EDC) <0.05

1,2-Dichloroethane (EDC) < 0.05 Benzene 0.18 Toluene 0.22 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene 0.48 m,p-Xylene 1.8 o-Xylene 1.0 Isopropylbenzene 0.15 n-Propylbenzene 0.68 1,3,5-Trimethylbenzene 1.3 1,2,4-Trimethylbenzene 3.8 Naphthalene 0.22

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GS25-EX01-SW-18 Client: Evren Northwest

Date Received: 09/12/23 Project: 114-19002, F&BI 309139

Date Extracted: 09/14/23 Lab ID: 309139-10 Date Analyzed: 09/14/23 Data File: 091408.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 110 vo 90 109 Toluene-d8 104 86 115 99 4-Bromofluorobenzene 84 115

Concentration

Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene < 0.03 Toluene < 0.05 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Isopropylbenzene < 0.05 n-Propylbenzene < 0.05 1,3,5-Trimethylbenzene < 0.05 1,2,4-Trimethylbenzene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 114-19002, F&BI 309139

09/14/23 Date Extracted: Lab ID: 03-2129 mb Date Analyzed: 09/14/23 Data File: 091406.D Soil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 108 90 109 Toluene-d8 103 86 115 4-Bromofluorobenzene 107 84 115

Concentration
Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene < 0.03 Toluene < 0.05 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Isopropylbenzene < 0.05 n-Propylbenzene < 0.05 1,3,5-Trimethylbenzene < 0.05 1,2,4-Trimethylbenzene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/12/23

Project: 114-19002, F&BI 309139

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309139-01 (Duplicate)

-	·	Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			FEICEIIL		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	97	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/12/23

Project: 114-19002, F&BI 309139

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 309139-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	106	106	63-146	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	108	77-123

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/12/23

Project: 114-19002, F&BI 309139

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 309127-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	104	68 b	131 b	75-125	63 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	102	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/12/23

Project: 114-19002, F&BI 309139

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 308395-16 (Matrix Spike)

Laboratory Code. 300373-10 ((Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	85	85	21-145	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	88	86	12-160	2
Benzene	mg/kg (ppm)	2	< 0.03	91	91	29-129	0
Toluene	mg/kg (ppm)	2	< 0.05	96	94	35-130	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	89	89	28-142	0
Ethylbenzene	mg/kg (ppm)	2	< 0.05	91	92	32-137	1
m,p-Xylene	mg/kg (ppm)	4	< 0.1	97	97	34-136	0
o-Xylene	mg/kg (ppm)	2	< 0.05	94	93	33-134	1
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	91	91	31-142	0
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	93	97	23-146	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	94	97	18-149	3
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	93	97	10-182	4
Naphthalene	mg/kg (ppm)	2	< 0.05	82	86	14-157	5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	89	60-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	92	56-135
Benzene	mg/kg (ppm)	2	93	65-136
Toluene	mg/kg (ppm)	2	94	66-126
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	93	66-129
Ethylbenzene	mg/kg (ppm)	2	90	64-123
m,p-Xylene	mg/kg (ppm)	4	97	68-128
o-Xylene	mg/kg (ppm)	2	93	67-129
Isopropylbenzene	mg/kg (ppm)	2	91	68-128
n-Propylbenzene	mg/kg (ppm)	2	91	68-129
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	93	69-129
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	92	69-128
Naphthalene	mg/kg (ppm)	2	83	62-128

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

09/12/23 G3/N3/VS,A1 SAMPLE CHANNOF CUSTODY 309139 SAMPLERS (menature) TURNAROUND TIME Report To Lynn Green Standard Turnaround PROJECT NAME PO# Company EVREN-NW 114-19 002 Rush charges authorized by: Address 40 SE 24th Ave SAMPLE DISPOSAL INVOICE TO REMARKS City, State, ZIP Portland, Oregon 97214 Dispose after 30 days Archive Samples Email lynng@evren-nw.com Phone 503-452-5561 Other Project Specific RLs - Yes / No ANALYSES REQUESTED VOCs EPA 8260 PCBs EPA 8082 RBDM VOCs BTEX EPA 802. NWTPH-Gx PAHS EPA Time Sample # of Date Notes Lab ID Sample ID Jars Sampled Sampled Type 9/11/23 X 0810 5 6515-EXOL-F-2001 A-std TAT per LG 09/13/23 MH 9/11/23 0815 5 5 6516-EXUI-F-20 02 A-E A 5 9/1/23 1240 6513-EXOL-F-21,5 03 9/11/23 1245 6519- EXOI-F-2304 5 9/11/23 6520-EXOI-NW-1005 1250 5 9/11/23 1502 5 5 GS21-EXD1-NW-1406A-E S 9/11/23 5 X 200€ 1507 6522-EXOI-NW-1807 5 X 1522 6523-EXOL- SW-10 08 5 9/11/23 1527 5 GSZ4-EXOL-SW-14/09 9/11/23 5 1529 6525-EXOL-SW-18 10 DATE TIME COMPANY SIGNATURE PRINT NAME ENW 9/11/23 Relinguished by: Friedman & Bruya, Inc. Ente Chapman 1700 Received by: hul 09/12/23 12:45 3012 16th Avenue West F8B ANH PHAN Seattle, WA 98119-2029 Relinquished by: Received by: Ph. (206) 285-8282

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 18, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 14, 2023 from the 114-19002-02, F&BI 309174 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0918R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 14, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 309174 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309174 -01	Comp01-Upper-East
309174 -02	Comp02-Upper-West
309174 -03	Comp03-Lower-South
309174 -04	Comp04-Lower-North

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/14/23

Project: 114-19002-02, F&BI 309174

Date Extracted: 09/14/23 Date Analyzed: 09/14/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
Comp01-Upper-East 309174-01	<5	115
Comp02-Upper-West 309174-02	<5	111
Comp03-Lower-South	<5	110
Comp04-Lower-North	<5	113
Method Blank	<5	113

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/14/23

Project: 114-19002-02, F&BI 309174

Date Extracted: 09/14/23 Date Analyzed: 09/14/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Residual Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
Comp01-Upper-East 309174-01	<50	<250	94
Comp02-Upper-West	<50	<250	92
Comp03-Lower-South	<50	<250	95
Comp04-Lower-North	<50	<250	90
Method Blank 03-2201 MB	<50	<250	85

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/14/23

Project: 114-19002-02, F&BI 309174

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309169-07 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			FEICEIIL		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	100	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/23 Date Received: 09/14/23

Project: 114-19002-02, F&BI 309174

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 309174-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	102	104	64-136	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	108	78-121

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

309174			SAMPLE							0	7/1	14/	23	(1	1	1
Report To Lycin Green			SAMPL	ERS (sign	ature)	and	1/n	/	11	-					Page 7	MAROUND	rime
209174 Report To GUIN GUEN Company Even MA Address P.O: Box 14468	ofteness	+	PROJE	CT NAME 9007-00	/			- 6			0#		Ŧ	St. RI Rush	andar JSH_	turnarounder Lycu	Gue
City, State, ZIP Portland, Phone (903)457-95 (1 Email	06 97	793 Vren-nu.l	REMAR		s? - Ye	es /	No		П	OVV	ICE	ТО		□ Ot	chive : her_	PLE DISPO samples Dispose afte	
									I	NAI	YSE	SRE	QUES	TED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082				No	tes
Compol-Ver-East	01	09-13-23	14:54	901	(X	X										
COMPOZ-Vyper-West	02	09-13-23	14:57	305/	T.	X	K										
Compos-Lower-South	03	09-13-23	15:45	Soll	l	X	X					T		-		11.	
Compos-Vyper-west Compos-Lower-South Compos-Lower-South	04	0915-23		Soil		X	X			9							
		,				(3						d					
									Sar	nla	2 72	cair	ed at	3	•C		
							1,		Jan	Pic	3 14						
			/A									П				100	
Friedman & Bruya, Inc. Relin	SI quished by: //	GNATURE	10	-7	PRIN		,	_				_	OMPA			DATE 09-13.75	TIME

Ph. (206) 285-8282

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
c.	Relinquished by:	Sorchan Morry	Evren NW	09-13-05	18:W
	Received by:	ANHPHAN	F% 3	09/14/23	10:19
	Received by:			10.00	
	Assessed by				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 19, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 13, 2023 from the 114-19002-02, F&BI 309161 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW0919R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 13, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 309161 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309161 -01	GS27-EX01-NW-10
309161 -02	GS28-EX01-NW-14
309161 -03	GS29-EX01-NW-18
309161 -04	GS30-EX01-SW-10
309161 -05	GS31-EX01-SW-14
309161 -06	GS32-EX01-SW-18
309161 -07	GS33-EX01-F-21
309161 -08	GS26-EX01-F-20

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/13/23

Project: 114-19002-02, F&BI 309161

Date Extracted: 09/13/23 Date Analyzed: 09/13/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GS27-EX01-NW-10 309161-01	24	98
GS28-EX01-NW-14 309161-02	<5	98
GS29-EX01-NW-18 309161-03	33	104
GS30-EX01-SW-10 309161-04	<5	94
GS31-EX01-SW-14 309161-05	<5	97
GS32-EX01-SW-18 309161-06	140	123
GS33-EX01-F-21 309161-07	80	119
GS26-EX01-F-20 309161-08 1/10	1,100	126
Method Blank 03-2085 MB2	<5	99

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/13/23

Project: 114-19002-02, F&BI 309161

Date Extracted: 09/13/23 Date Analyzed: 09/13/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Residual Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
GS27-EX01-NW-10 309161-01	<50	<250	104
GS28-EX01-NW-14 309161-02	<50	<250	104
GS29-EX01-NW-18 309161-03	<50	<250	102
GS30-EX01-SW-10 309161-04	<50	<250	105
GS31-EX01-SW-14 309161-05	<50	<250	103
GS32-EX01-SW-18 309161-06	<50	<250	104
GS33-EX01-F-21 309161-07	<50	<250	106
GS26-EX01-F-20 309161-08	<50	<250	105
Method Blank 03-2195 MB	<50	<250	87

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GS26-EX01-F-20 Client: Evren Northwest

Date Received: 09/13/23 Project: 114-19002-02, F&BI 309161

Date Extracted:09/14/23Lab ID:309161-08Date Analyzed:09/14/23Data File:309161-08.121Matrix:SoilInstrument:ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 5.01

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 114-19002-02, F&BI 309161

Date Extracted:09/14/23Lab ID:13-707 mbDate Analyzed:09/14/23Data File:13-707 mb.047Matrix:SoilInstrument:ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GS26-EX01-F-20 Client: Evren Northwest

Date Received: 09/13/23 Project: 114-19002-02, F&BI 309161

Date Extracted: 09/14/23 Lab ID: 309161-08 Date Analyzed: 09/14/23 Data File: 091420.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 106 90 109 Toluene-d8 99 86 115 96 4-Bromofluorobenzene 84 115

Concentration Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene 0.056 Toluene < 0.05 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene 0.20 m,p-Xylene 0.59 o-Xylene 0.13 Isopropylbenzene 0.13 n-Propylbenzene 0.58 1,3,5-Trimethylbenzene 1.2 1,2,4-Trimethylbenzene 3.4 Naphthalene 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 114-19002-02, F&BI 309161

09/14/23 Date Extracted: Lab ID: 03-2131 mb Date Analyzed: 09/14/23 Data File: 091418.D Soil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 103 90 109 Toluene-d8 100 86 115 99 4-Bromofluorobenzene 84 115

Concentration
Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) <0.05
1,2-Dichloroethane (EDC) <0.05

Benzene < 0.03 Toluene < 0.05 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Isopropylbenzene < 0.05 n-Propylbenzene < 0.05 1,3,5-Trimethylbenzene < 0.05 1,2,4-Trimethylbenzene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/13/23

Project: 114-19002-02, F&BI 309161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309139-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

-	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	40	97	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/13/23

Project: 114-19002-02, F&BI 309161

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 309156-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	96	98	64-136	2

,	,	'	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	102	78-121

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/13/23

Project: 114-19002-02, F&BI 309161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 309169-07 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	365	356 b	205 b	75-125	54 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	93	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 09/19/23 Date Received: 09/13/23

Project: 114-19002-02, F&BI 309161

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 309169-07 (Matrix Spike)

Laboratory Code. 307107-07	(Matrix Spike)						
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	84	89	21-145	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	87	94	12-160	8
Benzene	mg/kg (ppm)	2	< 0.03	88	94	29-129	7
Toluene	mg/kg (ppm)	2	< 0.05	94	97	35-130	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	89	92	28-142	3
Ethylbenzene	mg/kg (ppm)	2	< 0.05	90	94	32-137	4
m,p-Xylene	mg/kg (ppm)	4	< 0.1	97	103	34-136	6
o-Xylene	mg/kg (ppm)	2	< 0.05	94	95	33-134	1
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	90	94	31-142	4
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	97	96	23-146	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	96	99	18-149	3
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	95	95	10-182	0
Naphthalene	mg/kg (ppm)	2	< 0.05	85	86	14-157	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	90	60-123
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	94	56-135
Benzene	mg/kg (ppm)	2	97	65-136
Toluene	mg/kg (ppm)	2	102	66-126
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	102	66-129
Ethylbenzene	mg/kg (ppm)	2	98	64-123
m,p-Xylene	mg/kg (ppm)	4	105	68-128
o-Xylene	mg/kg (ppm)	2	99	67-129
Isopropylbenzene	mg/kg (ppm)	2	98	68-128
n-Propylbenzene	mg/kg (ppm)	2	104	68-129
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	105	69-129
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	102	69-128
Naphthalene	mg/kg (ppm)	2	94	62-128

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

1001C/	AMPLE CHAIN OF CUSTO	DY 09/13/	13 VS-AI/NZ
309161 Report To Lyan Green	SAMPLERS (signature) ford in	Man	Page #ofTURNAROUND TIME
Company Even Northwest Address P.O. Box 14488	PROJECT NAME 14-19002-02	PO#	Standard turnaround RUSH per Lyun Green Rush charges authorized by:
City, State, ZIP Rostland OR 97293 Phone (28) 457-5561 Email lynng Deilsen-nw. com	REMARKS Project specific RLs? - Yes / No	INVOICE TO	SAMPLE DISPOSAL Archive samples Other Default: Dispose after 30 days

					200	ANALYSES REQUESTED											
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHs EPA 8270	PCBs EPA 8082	RBDM VOCs	Lead			Notes
6527-Exol-NW-10	OI A-E	09-12-23	12:56	Soil	5	X	X	L						H		3	A-per LG STD TA
G528-EXOI-NW-14		09-12-23	13:09	Soil	5	X	X		4			Щ					09/14/23 ME
G529-EXO1-NW-18	0.5	09.12-23	13:18	Soil	5	X	X										
G530-EXO1-SW-10	04	09-12-23	13727	Soll	5	X	X	П									
GG31-EX01-SW-14	05	09.12-23	13:35	Soil	5	X	X										
G532-8×01-5W-18	06	09-12-23	13:44	50:1	5	X	X							10			
G533-Exel-F-21		09-12-23	13:52	Seil	5	X	X										
6526-8x01-F-20	08 1	09-12-23	The second second	Set (5	X	X						Sam	ples	rec	eive	I at <u>∠</u> °C
												L U			J		

Friedman & Bruya, Inc. Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	- Jordan Ments	Evien Narthmet	09-12-23	18:00
Received by:	ANH PHAN	F8h	09/13/23	10:58
Relinquished by:				1 = -7
Received her				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 4, 2023

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on September 21, 2023 from the 114-19002-02, F&BI 309314 project. There are 15 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1004R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 21, 2023 by Friedman & Bruya, Inc. from the Evren Northwest 114-19002-02, F&BI 309314 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Evren Northwest
309314 -01	GS34-EX02-F-18
309314 -02	GS35-EX02-NW-16
309314 -03	GS36-EX02-SW-15.5
309314 -04	GS37-EX02-EW-16
309314 -05	GS38-EX02-WW-16
309314 -06	COMP05-EX02

Pyrene in the 8270E laboratory control sample exceeded the acceptance criteria. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

Date Extracted: 09/21/23 Date Analyzed: 09/21/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
GS34-EX02-F-18 309314-01	100	132
GS35-EX02-NW-16 309314-02	<5	113
GS36-EX02-SW-15.5 309314-03	43	123
GS37-EX02-EW-16 309314-04	12	116
GS38-EX02-WW-16 309314-05	<5	122
COMP05-EX02 309314-06	<5	105
Method Blank 03-2185 MB	<5	118

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

Date Extracted: 09/21/23 Date Analyzed: 09/21/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Residual Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
GS34-EX02-F-18 309314-01	910	<250	102
GS35-EX02-NW-16 309314-02	<50	<250	93
GS36-EX02-SW-15.5	300	<250	100
GS37-EX02-EW-16 309314-04	110	<250	99
GS38-EX02-WW-16 309314-05	<50	<250	88
COMP05-EX02 309314-06	230	<250	106
Method Blank	<50	<250	94

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: GS34-EX02-F-18 Client: Evren Northwest

Date Received: 09/21/23 Project: 114-19002-02, F&BI 309314

Date Extracted:09/25/23Lab ID:309314-01Date Analyzed:09/25/23Data File:309314-01.127Matrix:SoilInstrument:ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 6.19

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Evren Northwest

Date Received: NA Project: 114-19002-02, F&BI 309314

Date Extracted: 09/25/23 Lab ID: 13-741 mb
Date Analyzed: 09/25/23 Data File: 13-741 mb.082
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: GS34-EX02-F-18 Client: Evren Northwest

Date Received: 09/21/23 Project: 114-19002-02, F&BI 309314

Date Extracted: 09/26/23 Lab ID: 309314-01 Date Analyzed: 09/26/23 Data File: 092616.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 114 vo 90 109 Toluene-d8 103 86 115 4-Bromofluorobenzene 108 84 115

Concentration mg/kg (ppm)

Compounds: Methyl t-butyl ether (MTBE) < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene < 0.03 Toluene < 0.05 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Isopropylbenzene < 0.05 n-Propylbenzene < 0.05 1,3,5-Trimethylbenzene < 0.05 1,2,4-Trimethylbenzene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Evren Northwest

Date Received: Not Applicable Project: 114-19002-02, F&BI 309314

Date Extracted: 09/26/23 Lab ID: 03-2161 mb Date Analyzed: 09/26/23 Data File: 092606.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Dry Weight Units: Operator: MD

Upper Lower Surrogates: % Recovery: Limit: Limit: 1.2-Dichloroethane-d4 92 90 109 Toluene-d8 105 86 115 4-Bromofluorobenzene 101 84 115

Concentration
Compounds: mg/kg (ppm)

Methyl t-butyl ether (MTBE) < 0.05 1,2-Dichloroethane (EDC) < 0.05 Benzene < 0.03 Toluene < 0.05 1,2-Dibromoethane (EDB) < 0.05 Ethylbenzene < 0.05 m,p-Xylene < 0.1 o-Xylene < 0.05 Isopropylbenzene < 0.05 n-Propylbenzene < 0.05 1,3,5-Trimethylbenzene < 0.05 1,2,4-Trimethylbenzene < 0.05 Naphthalene < 0.05

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: GS34-E	X02-F-18 Client:	Evren Northwest
--------------------------	------------------	-----------------

Date Received: 09/21/23 Project: 114-19002-02, F&BI 309314

Date Extracted: 09/26/23 Lab ID: 309314-01 1/5 Date Analyzed: 09/26/23 Data File: 092615.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight VM Operator:

Surrogates: Lower Upper Surrogates: % Recovery: Limit: Limit: Limit: 100

Nitrobenzene-d5 198 104 10 2-Fluorobiphenyl 88 45 117 2,4,6-Tribromophenol 86 11 158 Terphenyl-d14 122 50 124

Concentration Compounds: mg/kg (ppm)

Naphthalene < 0.01 2-Methylnaphthalene 0.054 1-Methylnaphthalene 0.028 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene 0.045 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene 0.091 jl Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
-------------------	--------------	---------	-----------------

Date Received: Not Applicable Project: 114-19002-02, F&BI 309314

Date Extracted: 09/26/23 Lab ID: 03-2286 mb 1/5
Date Analyzed: 09/26/23 Data File: 092609.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Dry Weight Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
Nitrobenzene-d5	104	10	198
2-Fluorobiphenyl	111	45	117
2,4,6-Tribromophenol	85	11	158
Terphenyl-d14	124	50	124

Concentration

Compounds:	mg/kg (ppm)
Naphthalene 2-Methylnaphthalene	<0.01 <0.01
1-Methylnaphthalene	< 0.01
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.01
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 309250-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	40	92	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 309283-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	<50	110	114	64-136	4

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	110	78-121

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 309330-02 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	6.55	112	97	75-125	14

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 309371-02 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	83	89	21-145	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	89	93	12-160	4
Benzene	mg/kg (ppm)	2	< 0.03	89	94	29-129	5
Toluene	mg/kg (ppm)	2	< 0.05	90	94	35-130	4
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	87	87	28-142	0
Ethylbenzene	mg/kg (ppm)	2	< 0.05	87	90	32-137	3
m,p-Xylene	mg/kg (ppm)	4	< 0.1	93	96	34-136	3
o-Xylene	mg/kg (ppm)	2	< 0.05	89	95	33-134	7
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	88	93	31-142	6
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	92	94	23-146	2
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	92	95	18-149	3
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	89	95	10-182	7
Naphthalene	mg/kg (ppm)	2	< 0.05	80	86	14-157	7

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	95	60-123		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	101	56-135		
Benzene	mg/kg (ppm)	2	101	65-136		
Toluene	mg/kg (ppm)	2	100	66-126		
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	99	66-129		
Ethylbenzene	mg/kg (ppm)	2	97	64-123		
m,p-Xylene	mg/kg (ppm)	4	101	68-128		
o-Xylene	mg/kg (ppm)	2	100	67-129		
Isopropylbenzene	mg/kg (ppm)	2	99	68-128		
n-Propylbenzene	mg/kg (ppm)	2	94	68-129		
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	98	69-129		
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	95	69-128		
Naphthalene	mg/kg (ppm)	2	84	62-128		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/04/23 Date Received: 09/21/23

Project: 114-19002-02, F&BI 309314

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 309367-01 1/5 (Matrix Spike)

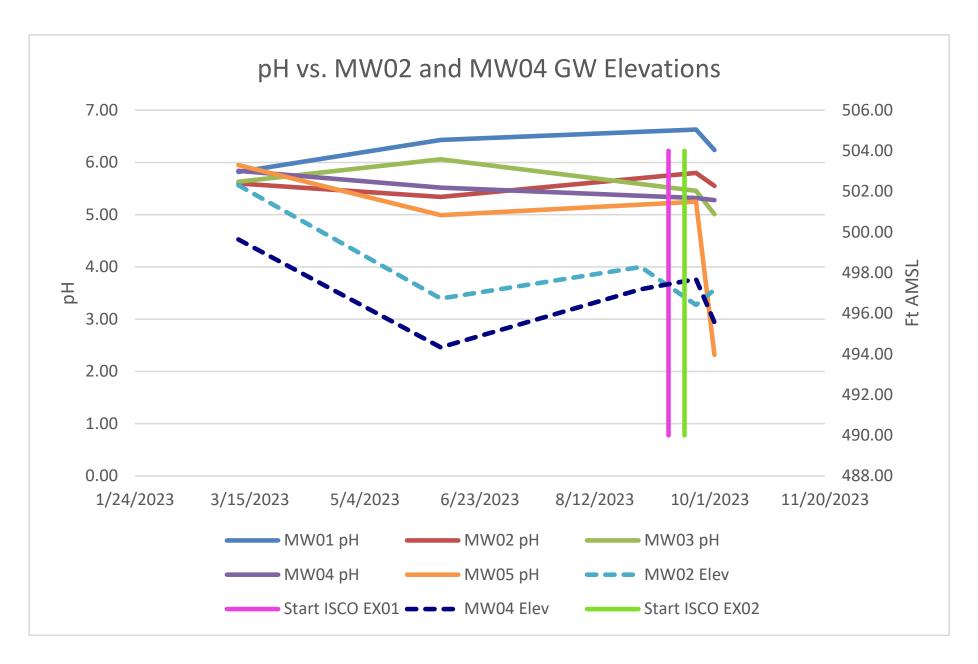
			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Ünits	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg (ppm)	0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	88 97 100 97 96 101 99 100 94	79 87 91 90 89 94 95 97	28-125 10-192 10-163 45-128 36-125 48-121 46-122 30-144 50-150	11 11 9 7 8 7 4 3
Pyrene Benz(a)anthracene Chrysene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	mg/kg (ppm)	0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	105 105 109 106 98 102 105 104	113 107 105 104 95 103 103 101 105	40-134 50-150 50-150 50-150 50-150 50-150 40-140 41-136 29-139	2 4 2 3 1 2 3 0

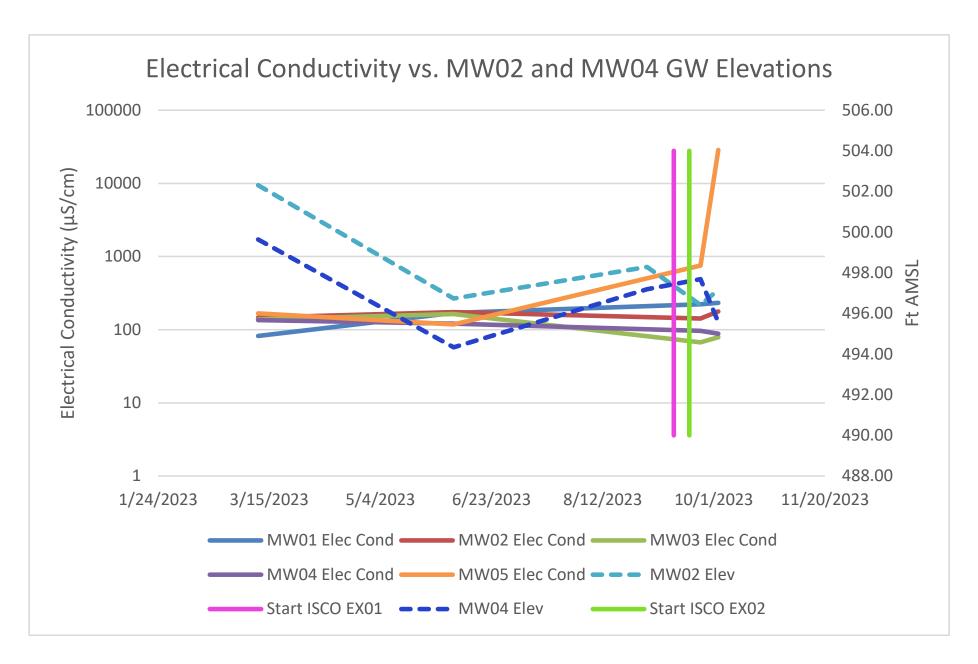
Edbordtory Code: Edbordtory C	oriti or oarripic	170		
	D	0 !!	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Únits	Level	LCS	Criteria
Naphthalene	mg/kg (ppm)	0.83	97	57-107
2-Methylnaphthalene	mg/kg (ppm)	0.83	98	63-112
1-Methylnaphthalene	mg/kg (ppm)	0.83	102	63-113
Acenaphthylene	mg/kg (ppm)	0.83	108	70-130
Acenaphthene	mg/kg (ppm)	0.83	106	66-112
Fluorene	mg/kg (ppm)	0.83	113	67-117
Phenanthrene	mg/kg (ppm)	0.83	105	70-130
Anthracene	mg/kg (ppm)	0.83	107	70-130
Fluoranthene	mg/kg (ppm)	0.83	98	70-130
Pyrene	mg/kg (ppm)	0.83	136 vo	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	117	70-130
Chrysene	mg/kg (ppm)	0.83	113	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	111	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	107	67-128
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	105	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	118	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	114	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	119	65-130

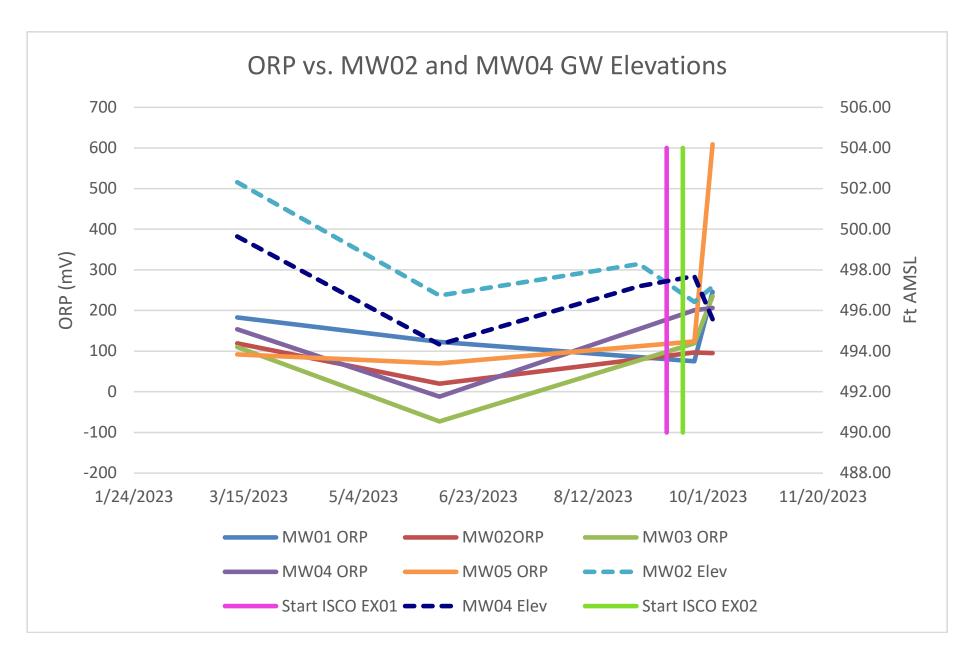
ENVIRONMENTAL CHEMISTS

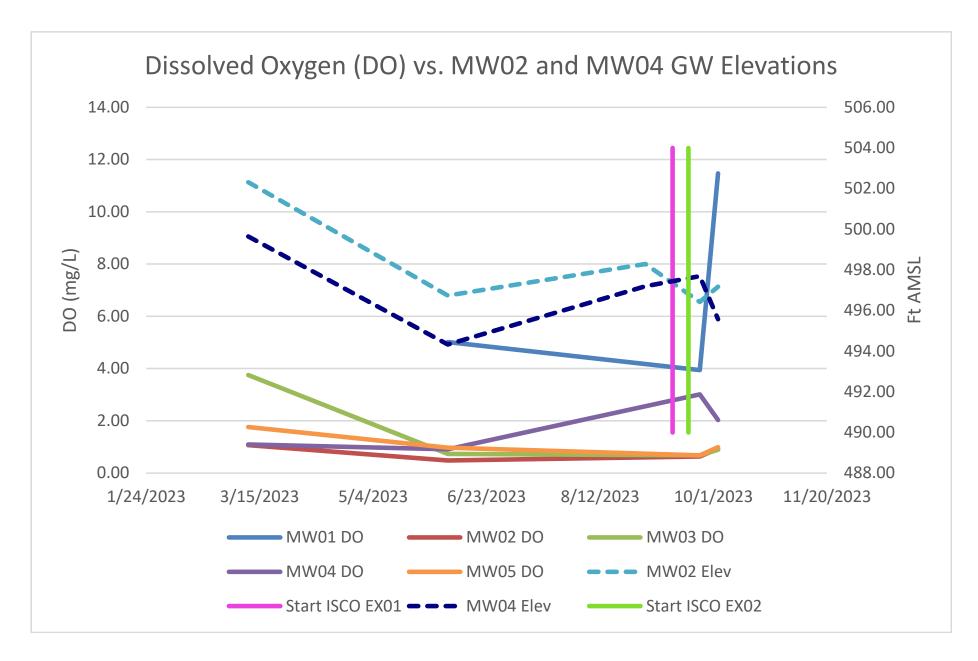
Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- Ic The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.


eport To Jun Gree	~			SAMPLERS (signature)						Page # Of TURNAROUND TIME						
ompany Form North	nwest 4400			PROJECT NAME 14-19002-02				PO#					☐ Standard turnaround ☐ RUSH			
ity, State, ZIP Kov Hand	OR.		REMAR	KS			E.	lor		V/ ·	ICE		OHIO	□ C Def	rchive s	PLE DISPOSAL amples ispose after 30 da
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	NWTPH-Dx	NWTPH-Gx	BTEX EPA 8021	NWTPH-HCID	VOCs EPA 8260	PAHS EPA 8270	PCBs EPA 8082	RBDM VOCs		Lead	A-per LG 09/23/23 ME Notes
6534-EX02-F-18	01 A.E	9/20/23	8:52	Soil	5	×	*				A		A	A	1	FI.
5535 - EXOZ-NW-16		BAE.	9:07		5	X	X									
536-EX02-SW-15.	503		9:19		5	X	×			17			41			
537 - EXOZ-EW-16			9:30		5	X	×	4				J. II (113	
0530 - EXOZ-WWAL			9:39		5	*	4				H			4	1 7	
OMPOS-EXOZ	06		9:40	J	1	7	7		3							Rush Please


Friedman & Bruya, Inc. Ph. (206) 285-8282


PRINT NAME	COMPANY	DATE	TIME
Dan Saik	FRIW	9/2023	17:30
When The	in FEBI	9/21/23	1025
			1
	Dan Sayko	Dan Sayko Tru	Dan Sayko Truw 9/20/23


Appendix E

Water Quality Parameter Charts

Appendix F

ODEQ Soil Matrix Cleanup Scoresheet

Soil Matrix Scoresheet

Depth to Ground Water		
< 25 feet (10))	10
25 - 50 feet (7)		10
51 - 100 feet (4)		
> 100 feet (1)		
Mean Annual Precipitation		
> 45 inches (10	0)	5
20 - 45 inches (5)		3
< 20 inches (1)		
Native Soil Types		
Coarse sands, gravels (1	0)	5
Silts, fine sands (5)	5
Clays (1)		
Sensitivity of uppermost Aqui	fer	
Sole Source (10)		
Current Potable (7)		7
Future Potable (4)		
Non-potable (1)		
Potential Receptors		
Many, near (10)		10
Medium (5)		10
Few, far (1)		
TOTAL SCORE =		37
Matrix Score	Cleanup level in ppm TPH	
IVIALITY SCOLE	Gasoline	Diesel
Level 1: > 40 pts.	40	100
Level 2: 25 - 40 pts.	80	500
Level 3: < 25 pts.	130	1000

Appendix G Waste Disposal Receipts

METRO METALS NORTHWEST	T, INC.: FERE	ROUS	Date: 0	9/21/2023		2541506	Carolina	2541506
Vendor: 353309 JESSI	E JACOB ASHE					Ticket#:	4006943	
Paid To: JESSE JACOB AS	SHE	4	Total	Wt: 521	4	Descrip:	OR	
Truck#	Notes:	14:		*******		Tot.Paid:	\$45.10	
Commodity		Gross	Tare	Tare2 Contam		Net UM	Price	Total
Environmental Surcharge		1 -				1 EA	-3.00	-3.00
Tin		19,960	19,440			520 N	185.00	48.10
	1			30				
	(

Exp:ration: 12/10/24

EZ Profile™*

Requested Facility: Hillsboro Landfill		☐ Unsure Profile Number: 13451	4OR
	uest Certifica	ate of Disposal 🛮 Renewal? Original Profile Number: 134514	
A. GENERATOR INFORMATION (MATERIAL ORIGIN)		B. BILLING INFORMATION SAME AS	S GENERATO
1. Generator Name: Universal Applicators, Inc.			
2. Generator Site Address: Various Generators		2. Billing Address: 10350 N Vancouver Way #329	
(City, State, ZIP) Portland OR 97217		(City, State, ZIP) Portland OR 97217	
3. County: Multnomah		3. Contact Name: Greg Babcock	
4. Contact Name: Greg Babcock		4. Email: uaitank@gmail.com	
5. Email: uaitank@gmail.com		5. Phone: (503) 236-6359 6. Fax: (503) 233-98	
6. Phone: (503) 236-6359 7. Fax: (503) 233-980	14		Yes 🗹 N
8. Generator EPA ID:		8. P.O. Number:	. 103
9. State ID:		9. Payment Method: ☑ Credit Account ☐ Cash ☐ Cre	edit Card
C. MATERIAL INFORMATION		D. REGULATORY INFORMATION	
1. Common Name: LF02 Diesel Fuel/Fuel 0il Contaminated Soi	1		Yes* 🗹 N
Describe Process(es) Generating Material:		Code:	163 1
Soil contaminated with diesel fuel and/or fuel oil from a prod	duct spill.		Yes 🗹 N
associated with vehicle accidents or minor spills experience	d during	Code:	103
fuel transfer.		3. Is this material non-hazardous due to Treatment, Delisting, or an Exclusion?	Yes* 🗹 N
2. Material Composition and Contaminants:	ee Attached	- [- [- [- [- [- [- [- [- [- [Yes* IN
	100 %	5. From an industry regulated under Benzene NESHAP?	Yes* N
1. Soi1 2.	100 %	6. Facility remediation subject to 40 CFR 63 GGGGG?	Yes* N
3.		The state of the s	Yes* 🛮 N
4.		8. NRC or State-regulated radioactive or NORM waste?	
Total comp. must be equal to or greater than 100% ≥	100%	*If Yes, see Addendum (page 2) for additional questions	
3. State Waste Codes:	■ N/A	네는 경우 나는데 가게 되었다. 그렇게 되면 되었다. 그렇게 되었다면 하지만 하지만 그렇게 하게 되었다면 하다.	Yes 🗷 N
4. Color: Varies			Yes N
5. Physical State at 70°F: ☑ Solid ☐ Liquid ☐ Other: _			Yes N
6. Free Liquid Range Percentage: to		네는 그는 그리는 경에게 하면 이 아이들면 생각이라면 하나면 얼마가 있습니다.	Yes N
7. pH:to		10. Regulated and/or Untreated Medical/Infectious Waste?	Yes 🗹 N
8. Strong Odor: Yes No Describe:			Yes 🗷 N
9. Flash Point: □ <140°F □ 140°−199°F □ ≥200°		→ If Yes: □ Non-Friable □ Non-Friable - Regulated	
E. ANALYTICAL AND OTHER REPRESENTATIVE INFORMATION		F. SHIPPING AND DOT INFORMATION	
Analytical attached	☐ Yes	1. ☐ One-Time Event ☐ Repeat Event/Ongoing Business	É-
Please identify applicable samples and/or lab reports:		2. Estimated Quantity/Unit of Measure: 500	
		☑ Tons ☐ Yards ☐ Drums ☐ Gallons ☐ Other:	
		Container Type and Size: <u>Dump Truck or Dump Box</u>	
		4. USDOT Proper Shipping Name:	☑ N/
Other information attached (such as MSDS)?	☐ Yes	The state of the s	
all relevant information necessary for proper material characterization and	itted in this and I to identify kno I or by using a I disclosed to W	d all attached documents contain true and accurate descriptions of this mat own and suspected hazards has been provided. Any analytical data attached an equivalent method. All changes occurring in the character of the material daste Management prior to providing the material to Waste Management.	d was derived
as supporting documents provided, are accurate and complete.		2411	
	/10/2021	A Must	
Title: Controller			
Company: Universal Applicators, Inc.			

Customer Summary Report

Hillsboro Landfill - S03305 (USA) 08/30/2023 12:00 AM - 09/22/2023 11:59 PM Operation Type: All Customer: All - Ticket Type: All - Customer Type: All - PMT Category: All - Profile: 1345140R

Ticket Date	Customer	Profile	Truck	Material	Tons
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	9.66
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	07-S0L0	Cont Soil Pet-RGC-Tons	10.86
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	12.71
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	11.45
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	13.99
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	12.48
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	11.26
8/31/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	13.38
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	12.36
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	12.61
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	10.47
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	12.64
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	13.59
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	14.51
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	11.73
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	13.07
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	14.01
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	11.40
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	11.34
9/1/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	11.60
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	7-SOLO	Cont Soil Pet-RGC-Tons	13.64
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	6-SOLO	Cont Soil Pet-RGC-Tons	12.09
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	2	Cont Soil Pet-RGC-Tons	11.08
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	18	Cont Soil Pet-RGC-Tons	13.82
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	13.73
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	7-SOLO	Cont Soil Pet-RGC-Tons	14.12
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	6-SOLO	Cont Soil Pet-RGC-Tons	14.29
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	2	Cont Soil Pet-RGC-Tons	13.89
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	18	Cont Soil Pet-RGC-Tons	14.69
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	14.28
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	7-SOLO	Cont Soil Pet-RGC-Tons	13.59
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	6-SOLO	Cont Soil Pet-RGC-Tons	13.95
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	2	Cont Soil Pet-RGC-Tons	12.89
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	18	Cont Soil Pet-RGC-Tons	13.96
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	11.86
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	7-SOLO	Cont Soil Pet-RGC-Tons	13.53
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	2	Cont Soil Pet-RGC-Tons	11.71
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	6-SOLO	Cont Soil Pet-RGC-Tons	13.80
9/5/2023	UNIVERSAL APPLICATORS INC	134514OR	18	Cont Soil Pet-RGC-Tons	14.11
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	11.35
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	11.25

Customer Summary Report

Hillsboro Landfill - S03305 (USA) 08/30/2023 12:00 AM - 09/22/2023 11:59 PM Operation Type: All Customer: All - Ticket Type: All - Customer Type: All - PMT Category: All - Profile: 134514OR

Ticket Date	Customer	Profile	Truck	Material	Tons
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	11.74
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	14.46
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	13.75
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	14.00
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	14.13
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	14.37
9/7/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	14.47
9/8/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	14.07
9/8/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	17.03
9/8/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	13.53
9/8/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	14.84
9/8/2023	UNIVERSAL APPLICATORS INC	134514OR	68-SOLO	Cont Soil Pet-RGC-Tons	13.40
9/8/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	12.98
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	11.91
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	4 SOLO	Cont Soil Pet-RGC-Tons	13.62
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	27-solo	Cont Soil Pet-RGC-Tons	15.36
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	5	Cont Soil Pet-RGC-Tons	12.84
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	14.22
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	16.46
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	4 SOLO	Cont Soil Pet-RGC-Tons	13.81
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	5	Cont Soil Pet-RGC-Tons	12.26
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	27-solo	Cont Soil Pet-RGC-Tons	15.39
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	12.12
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	14.54
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	5	Cont Soil Pet-RGC-Tons	12.57
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	4 SOLO	Cont Soil Pet-RGC-Tons	12.27
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	13.79
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	07-SOLO	Cont Soil Pet-RGC-Tons	15.96
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	5	Cont Soil Pet-RGC-Tons	12.16
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	27-solo	Cont Soil Pet-RGC-Tons	15.47
9/11/2023	UNIVERSAL APPLICATORS INC	134514OR	4 SOLO	Cont Soil Pet-RGC-Tons	11.83
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1-solo	Cont Soil Pet-RGC-Tons	14.19
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	14.55
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	21 SOLO	Cont Soil Pet-RGC-Tons	15.79
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	13.03
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	134	Cont Soil Pet-RGC-Tons	13.10
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1-solo	Cont Soil Pet-RGC-Tons	9.99
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	21 SOLO	Cont Soil Pet-RGC-Tons	14.18
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	12.16
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	134	Cont Soil Pet-RGC-Tons	14.04
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	9.83

Customer Summary Report

Hillsboro Landfill - S03305 (USA) 08/30/2023 12:00 AM - 09/22/2023 11:59 PM Operation Type: All Customer: All - Ticket Type: All - Customer Type: All - PMT Category: All - Profile: 1345140R

Ticket Date	Customer	Profile	Truck	Material	Tons
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1-solo	Cont Soil Pet-RGC-Tons	16.51
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	12.97
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	21 SOLO	Cont Soil Pet-RGC-Tons	13.45
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	13.17
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	134	Cont Soil Pet-RGC-Tons	15.94
9/12/2023	UNIVERSAL APPLICATORS INC	134514OR	1	Cont Soil Pet-RGC-Tons	10.54
9/13/2023	UNIVERSAL APPLICATORS INC	134514OR	DAVE	Cont Soil Pet-RGC-Tons	4.63
9/14/2023	UNIVERSAL APPLICATORS INC	134514OR	DAVE	Cont Soil Pet-RGC-Tons	3.45
9/15/2023	UNIVERSAL APPLICATORS INC	134514OR	DAVE	Cont Soil Pet-RGC-Tons	7.14
9/15/2023	UNIVERSAL APPLICATORS INC	134514OR	dave	Cont Soil Pet-RGC-Tons	7.72
9/19/2023	UNIVERSAL APPLICATORS INC	134514OR	4	Cont Soil Pet-RGC-Tons	5.71
9/20/2023	UNIVERSAL APPLICATORS INC	134514OR	57	Cont Soil Pet-RGC-Tons	13.23
9/20/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	13.52
9/20/2023	UNIVERSAL APPLICATORS INC	134514OR	57	Cont Soil Pet-RGC-Tons	11.34
9/20/2023	UNIVERSAL APPLICATORS INC	134514OR	96	Cont Soil Pet-RGC-Tons	13.19
9/20/2023	UNIVERSAL APPLICATORS INC	134514OR	57	Cont Soil Pet-RGC-Tons	11.65
9/22/2023	UNIVERSAL APPLICATORS INC	134514OR	28	Cont Soil Pet-RGC-Tons	8.48
9/22/2023	UNIVERSAL APPLICATORS INC	134514OR	28	Cont Soil Pet-RGC-Tons	12.46
9/22/2023	UNIVERSAL APPLICATORS INC	134514OR	28	Cont Soil Pet-RGC-Tons	8.26
TOTALS:					1,286.32