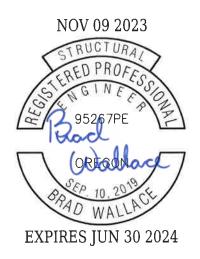
Revised Structural Calculations


77.5'x85' CANOPY MVE #23-1096

REVISED PER REVIEW - NOVEMBER 9. 2023

TANK CANOPY PORTLAND INTERNATIONAL AIRPORT 5000 NE Marine Drive, Portland, Oregon

Canopy Supplied by:

BESTWORTH ROMMEL LLC 19818 74th Ave. NE Arlington, WA 98223

Structural Design by:

Job: ____ Subject:

MVE #23-1096 B-R #363261

TANK CANOPY

Page: 1
Date: 11/09/23

By: CRH

CANOPY DESIGN CRITERIA

CANOPY SPECIFICATIONS:

Length	85	ft	Total Height of Canopy	24	ft max.
Width	77.5	ft	Number of Column Rows	4	₹ *x
Fascia Height	3	ft	Number of Columns/Row	4	₹ ~
Canopy Clear Height	21	_ft max.	Site Elevation	95	ft

CODE: OSSC 2022

INCLUDES 3.4 KIPS FOR SUPPORTED PIPES

Dead and Live Loads:

Total Canony Dead Load

Total Callopy Dead Load	9	psi
Dead Load on Purlins	5	psf
Mansard Dead Load	0	psf
Ground Snow Load	11	psf **
Roof Snow Load	13.2	psf
Thermal Factor	1.2	ā
Importance Factor	1.2	•
Exposure Factor	1.0	•
Roof Live Load	20	psf
Live Load Reduction pe	r OSSC 1	607.13.2.1
$At = 528 \text{ ft}^2 \text{ F}$	= 0	
R1 = 0.67 R3	2 = 1.0	0 *
Reduced Live Load (Lr)	13.4	psf

Canopy Area 6587.5 ft² Mansard Roof Area ft^2 0 **Total Canopy Dead Load** 62.69 kips Max. Column Trib. Width 22 ft Max. Column Trib. Length 24 ft Max. Column Trib. Area 528 ft^2

**Rain on snow surcharge must be applied as per ASCE 7-16 Section 7.10, therefore 5 psf has been added to the roof snow load for the balanced load case only. Rain on snow surcharge need not be applied to drift or unbalanced loads.

 S_{D1} based on Fv = 1.925 for Site Class D as per ASCE 7-16 Table 11.4-2.

Earthquake Design Data:

Site	Class		92	D	_(default)
Seis	mic Desi	gn (D		
S_{S}	0.846	g	S _{DS}	0.677	g
S_1	0.375	g	S _{D1}	0.481	_g ←
Impo	ortance F	acto	1.5		

(for columns & footings)

Wind Design Data:

Basic Wind Speed (V)	110	mph
ASD Wind Speed (V _{asd})	85	mph
Exposure	С	
Risk Category	IV	=
Rainfall Intensity:	1.5	_ in/hr

The canopy is classified as cantilevered column system detailed to conform to the requirements for Steel Ordinary Cantilever Column Systems as per ASCE 7-16 Table 12.2-1 and has been designed using the Equivalent Lateral Force Procedure as per Section 12.8.

From ASCE 7-16 Section 12.8

$T = Ct Hn^x = 0.207$	TL = 6 from ASCE 7-16 Fig 22-14 R = 1.25
Ct = 0.02 x = 0.75	for $T \le TL$ Cs max = 2.787 Cs min = 0.447
Hn = 22.58	for T>TL Cs max = 80.72 Cs min = 0.225 for S1>0.6
Ts = SD1/SDS = 0.7	T≤1.5Ts, Therefore, site specific ground motion analysis not require
	(Eqn. 12.8-2) Cs for design = 0.81 OK

For SDC = D, E, or F Ω and ρ need not be used in the same load combinations (ASCE 12.4). $\rho = 1.3$ Therefore, the canopy has been designed for $\Omega = \rho = 1.3$

Job: MVE #23-1096 B-R #363261 Subject:

TANK CANOPY

Page:

Date: 10/27/23

By: CRH

ASCE 7-16 WIND FORCES (CHAPTER 27 DIRECTIONAL PROCEDURE)

Open Building with Monoslope Roof (Section 27.3.2) with fascia panels as Parapets (Section 27.3.4)

Basic Wind Speed (V) =	110	mph	Gust Effect Factor (Section 26.11)
Exposure (Section 26.7) =	С		The canopy's fundamental natural frequency
Risk Category =	IV		is greater than 1 Hz, and is therefore rigid as
Canopy Clear Height =	21	ft	defined in Section 26.2. Therfore, as per
Fascia Height =	3	ft	Section 26.11.1, G = 0.85
Mean Roof Height =	21.333	ft	
Kd (Table 26.6-1) =	0.85		Ground Elevation Factor (Section 26.9)
Wind Profile Area (As) =	255	ft^2	Ke (Table 26.9-1) = 1.00
Site Elevation =	95	ft	· · · · · · · · · · · · · · · · · · ·

Note:

Topographic effects need not be applied, therefore Kht = Kpt = 1.0.

Velocity Pressure (Section 26.10.2, Table 26.11-1)

10.00 ty 11000 at 0 (000 tion 20.10.2)							
α (Table 26.11-1) =	9.5	zg (Table 26.11-1) =	900	ft			
For Open Buildings:		For Parapets (Fascia Panels):					
h =	21.333 ft	p =	24	ft			
$Kh = 2.01 (h/zg)^2/\alpha =$	0.914	$Kp = 2.01 (p/zg)^2/\alpha =$	0.937				
$q_h = 0.00256 (Kh) (Kht) (Kd)$	(Ke) (V^2)	$q_p = 0.00256 \text{ (Kp) (Kpt) (Kd) (Ke) (V^2)}$					
Therefore, qh =	24.0 psf	Therefore, $q_p =$	24.6	psf			

MWFRS Horizontal Forces (Section 27.3.4)

Top of Windward Fascia	p ₁ =	24	ft	Top of Leeward Fascia $p_2 = 24$	ft
Bottom of Windward Fascia	$z_1 =$	21	ft	Bottom of Leeward Fascia $z_2 = 21.33$	ft
Windward Fascia Height = 3 ft Leeward Fascia Height = Parapet Wind Pressure for MWFRS $p_p = q_p GC_{pn}$					
From Section 27.3.4, Wir	ndward	GC_p	n =	1.5 Leeward GC _{pn} = -1.0	
Windward Parapet Pressure =	= 36.	9	osf	(i.e. towards fascia)	
Leeward Parapet Pressure =	-24	.6 p	osf	(i.e. away from fascia)	
Canopy Length =	85	f	ŧ		

THEREFORE: Total Horizontal Force (F) = 14980 lbs = 14.98 kips (on fascia)

MWFRS Vertical Forces (Figure 27.3-4)

Clear Leeward or Windward Flow will control design (obstructions always < 50%). 85 ft L = 77.5 ft Θ= B = 0 degrees Therefore, Design Uplift Pressure = -22.4 From Figure 27.3-4, Worst Case $C_N = -1.1$ From Figure 27.3-4, Worst Case $C_N = 1.2$ Therefore, Design Down Pressure = psf

See the Unbalanced Loads page for MWFRS unbalanced wind loads on single row canopies (if applicable).

Job: ___ Subject:

MVE #23-1096 B-R #363261

TANK CANOPY

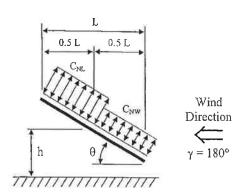
Page:

Date: 10/27/23
By: CRH

ASCE 7-16 WIND FORCES (CHAPTER 27 DIRECTIONAL PROCEDURE) continued

Open Building with Monoslope Roof (Section 27.3.2) with fascia panels as Parapets (Section 27.3.4)

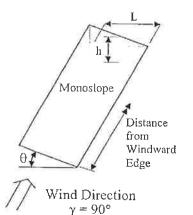
MWFRS Vertical Forces (Figure 27.3-4) continued


MWFRS Wind, Transverse (Figure 27.3-4)

B = 85 ft L = 77.5 ft
$$\Theta$$
 = 0 ° 0.180°

$$\gamma$$
 = 180 ° Load Case A, Clear Wind Flow C_{NW} = 1.2 p = 24.5 psf C_{NL} = 0.3 p = 6.1 psf γ = 180 ° Load Case B, Clear Wind Flow C_{NW} = -1.1 p = -22.4 psf C_{NL} = -0.1 p = -2.0 psf

85 ft



MWFRS Wind, Longitudinal (Figure 27.3-7)

L =

Θ = 0	0	γ =		90 °					
Load Case A, Clear Wind Flow									
For ≤ h	$C_N =$	-0.8	p =	-16.3	psf				
For > h, ≤ 2h	$C_N =$	-0.6	p =	-12.2	psf				
For > 2h	$C_N =$	-0.3	p =	-6.1	psf				
Load Case B,	Clear Wil	nd Flow							
For ≤ h	$C_N =$	8.0	p =	16.3	psf				
For > h, ≤ 2h	$C_N =$	0.5	p =	10.2	psf				
For > 2h	$C_N =$	0.3	p =	6.1	psf				

Job:

Subject:

MVE #23-1096 B-R #363261

TANK CANOPY

Page:

Date: 10/27/23

By: CRH

ASCE 7-16 WIND FORCES (CHAPTER 30 - COMPONENTS & CLADDING)

Part 5 - Open Buildings (Section 30.7)

G =0.85 (from page 2) $q_h =$

21.33 ft h =

24.0 psf (from page 2) 24.6 psf (from page 2)

85 ft B == 77.5 ft

Roof Component Pressure

Clear Wind Flow will control design (obstructions always < 50%).

Component Wind Pressure for Open Buildings

 $p = q_hGC_N$

Θ= degrees

10% of least horizontal dimension a =

7.75 ft Therefore:

8.53 ft 3.10 ft

a = 7.75 ft $a^2 =$ 60.1 sq.ft.

4% of least horizontal dimension

3 ft

 $4.0a^2 =$ 240.3 sq.ft.

 $< a^2$ a^{2} to 4.0 a^{2} $> 4.0a^2$

 $q_p =$

	Zone 3				Zone 2				Zone 1			
	CN	р	C _N	р	C _N	р	C _N	р	C _N	р	C _N	р
j	2.4	48.9	-3.3	-67.3	1.8	36.7	-1.7	-34.7	1.2	24.5	-1.1	-22.4
4	1.8	36.7	-1.7	-34.7	1.8	36.7	-1.7	-34.7	1.2	24.5	-1.1	-22.4
	1.2	24.5	-1.1	-22.4	1.2	24.5	-1.1	-22.4	1.2	24.5	-1.1	-22.4

Area of Single Deck Pan = 103.33 ft² >a^2 and <4.0a^2

ft

Max. Downward Component Pressure = 36.7 psf ULT = 48.9 plf ULT per deck pan

Max. Uplift Component Pressure = **-34.7** psf ULT = -46.2 plf ULT per deck pan

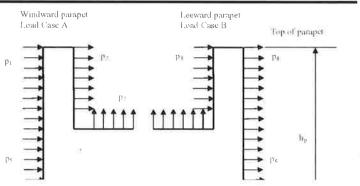
ASCE 7-16 WIND FORCES (CHAPTER 30 - COMPONENTS & CLADDING)

Part 6 - Parapets (Section 30.8)

Parapet Component Pressure

Component Wind Pressure for Parapets:

 $p = q_p ((GC_p) - (GC_{pi}))$


 $GC_{pi} = 0$ (Table 26.13-1)

Therefore, $p = q_0 GC_0$

Fascia Height = 3

Fascia Frame Spacing = 4 ft

Effective Wind Area = ft^2 12

**See Fig. 30.3-2A Footnote 5 and 30.5-1 Footnote 7.

Page: Date: 10/27/23

> By: CRH

ASCE 7-16 WIND FORCES (CHAPTER 30 - COMPONENTS & CLADDING) continued

Part 6 - Parapets (Section 30.8)

-	OF	rascia	Height	<	3	π	
10	ft ²		1000	Δ	Ξ	20	1

	TOFF ascia Fleight > 5 ft								
A	L = 10 f	t ²	Α	$A = 20 \text{ ft}^2$					
Zone	GC_p	GC_p	Zone	GC_p	GC_p				
5	-1.4	1.0	5	-1.3	0.95				
4	-1.1	1.0	4	-1.05	0.95				
3	-2.8	0.3	3	-2.3	0.3				
2	-1.8	0.3	2	-1.6	0.3				

$A = 10 \text{ ft}^2$			Α	$A = 20 \text{ ft}^2$			
Zone	GC_p	GC_p	Zone	GC_p	GC_p		
5	-1.4	1.0	5	-1.3	0.95		
4	-1.1	1.0	4	-1.05	0.95		
3	-1.8	1.0	3	-1.6	0.95		
2	-1.8	1.0	2	-1.6	0.95		

negative	LOWER	UPPER	ACTUAL	p (psf)
Area	10	20	12	
Z 5	-1.4	-1.3	-1.38	-28.8
Z4	-1.1	-1.05	-1.09	-22.8
Z3	-2.8	-2.3	-2.70	-56.4
Z2	-1.8	-1.6	-1.76	-36.8

negative	LOWER	UPPER	ACTUAL	p (psf)
Area	10	20	12	
Z 5	-1.4	-1.3	-1.38	-28.8
Z4	-1.1	-1.05	-1.09	-22.8
Z 3	-1.8	-1.6	-1.76	-36.8
Z2	-1.8	-1.6	-1.76	-36.8

positive	LOWER	UPPER	ACTUAL	p (psf)
Area	10	20	12	
Z 5	1.0	0.95	0.99	20.7
Z4	1.0	0.95	0.99	20.7

Load Case A
P1 = 20.7
P2 =
$$\frac{-36.8}{57.5}$$
 psf

LOAD PATH FOR THE LATERAL FORCE RESISTING SYSTEM

Wind forces on the canopy fascia are transferred to the LFRS from the fascia brackets screwed to the deck pans, and through the deck pans to the purlins via canopy deck clips or bolts (see plans). The canopy deck pans are not fastened together (i.e. there are no side-lap screws), therefore the canopy deck does not act as a traditional diaphragm. Lateral wind and seismic forces are transferred directly to the cantilevered columns through weak axis flexure of the purlins and beams in both the transverse and longitudinal directions. Weak axis flexure and combined biaxial forces have been checked for both purlins and beams in the following pages.

Page: 6
Date: 10/31/23
By: CRH

LATERAL	. ANALY	'SIS				
WIND (from pag	ge 2)				
qp =					24.6	psf
Total Ba	ase She	ar (V) =	=		14.98	kip
<u>SEISMI</u>	<u>C</u>					
SDS =	0.677		SDC =	=	D	
R =					1.25	
Cs =					0.81	
Seismic	: VV =				62.69	kip
Total Ba	se She	ar (V) =	=		50.93	kip
W at top o	of Colum	n =			1.06	kip
Qe at top	of Colun	nn (Ω r	ot incl.)	=	4.08	kip
Distance F	⁻ rom Ba	se =			22.58	ft
PURLINS			QTY	Y.:	8	
Max. Pu	ırlin Trib	. Width	1 =		10.67	ft
Purlin T	rib. Wid	th # 2 =	=		10.42	ft
Purlin T					9.42	ft
Purlin T	rib. Wid	th # 4 =	=		8.25	ft
Left Car	ntilever =	=			6.5	ft
3	Bay	(s) @			24	ft
Right Ca	antilever	=			6.5	ft
Strong A	Axis Loa	ds:				
D =	0.005	ksf	S =	0.	0182	ksf
Lr =	0.02	ksf	Wd =	0.	0245	ksf
Ev =	0.0098	klf	Wu =	-0	.0224	ksf
Weak A	xis Load	ds:				
Eh =	0.059	klf	Wh =	0	.022	klf
From Pa	ages 9-	15, Us	e /	N	12 x	19
BEAMS			QTY	<u> </u>	4	
Left Car	ntilever =	•			4	ft
3	Bay	(s) @			26	ft max.

EAMS	S			QTY.:	4	
Left	Cantile	ever =			4	ft
3	3	Bay(s)	@		26	ft max.
Righ	t Canti	lever =			11.5	ft
Maxi	mum 🛚	Fributary	Width	ı =	24	ft
Stroi	ng Axis	Loads:		Ev =	0.004	2 klf
(k)	D	Lr	S	Wd	Wu	Ev
P1	2.20	5.12	4.66	6.26	-5.74	0.24
P2	2.15	5.00	4.55	6.12	-5.61	0.23
P3	1.94	4.52	4.11	5.53	-5.07	0.21
P4	1.66	3.87	3.52	4.73	-4.34	0.18
Weak Axis Loads:						
Eh =	0.1	161 klf	V	h = 0	0.044	klf
B1&B3 From Pages 16-19, Use W 16 x 26						
B2 F	rom P	ages 20)-22, U	se W	16 x	31

COLUM	NS		QTY.:	16	
Colum	ın Speci	fication:	HSS	12x12	x1/4
t =	0.233	in	Fy =	50	ksi
A =	10.8	in2	Length =	22.58	ft
W =	39.4	plf	Z =	47.6	in3
Reduc	ed Z for	4.75" D	ia. Hole =	40.4	in3
Max. A	Allowable	e Stress	Ratio =	0.849	
Max. [) Reacti	on from	Beam =	5.66	kip
Max. l	r React	ion from	Beam =	11.69	kip
Reduc	ed Lr R	eaction :	=	7.83	kip
Max. S	S Reacti	on from	Beam =	10.63	kip
Max. \	Nd Read	ction froi	m Beam =	14.29	kip
Max. \	Nu Read	ction froi	m Beam =	-13.1	kip
Max. I	Ev from	Beam =		0.89	kip
Colum	ın Weigl	nt =		0.89	kip

 Seismic Load Combinations with overstrength are required as per AISC 341-16 Load Combinations (ASCE 7-16 2.4.5)

8. $1.0D + 0.7Ev + 0.7\Omega Qe$

9. $1.0D + 0.525Ev + 0.525\Omega Qe + 0.75S$

10. $0.6D - 0.7Ev + 0.7\Omega Qe$ $\Omega = 1.3$

		D		S		E _{vert}		E _{horiz}	z
8.	=	6.55	k	0	k	0.62	k	3.71	k
9	=	6.55	k	7.976	k	0.47	k	2.79	k
10.	=	3.93	k	0	k	-0.62	k	3.71	k
From Page 23, Prc < 0.15Pc as required by									
ASCE 7-16 12.2.5.2.									

From Page 24, the Column is OK.

 An increase in allowable stress of 1.2 is allowed for members designed using overstrength as per ASCE 7-16 2.4.5.
 Max. Allowable Stress Ratio = 1.02

Note: Full roof live loads are used for the design of the purlins and beams and reduced live loads are used for the design of all other members.

Page:

Date: 10/31/23 By: CRH

COLUMN BASE PLATE

Fy =	36	ksi
Wind Shear at Base =	1.06	kip
Seismic Shear (ΩQe) =	5.31	kip
Wind Moment at Base =	23.88	kft
Seismic Moment =	119.84	kft

**See Column section for axial loads.

From Page 25, Use 1.25"x22"x22" Base Plate

COLUMN BASE PLATE WELD

Sweld = 192 in^2 Max. Moment at Base = 119.8 kft Max. Moment at Base = 1438 kin Weld Strength Required = 1438 kin 192 in^2 Weld Strength Reg'd (M only) = 7.49 k/in Shear at Base (for max. M) = 5.31 kips Weld Length = in^2 48 Total Weld Strength Required = 7.6 k/in Base Plate Thickness = 1.25 in Min. Weld Size (per AISC Table J2.4) = Use 6 /16 in fillet weld all around column 8.352 k/in > 7.6 k/in OKG.F. =

Check Weld Base Metal Per AISC J.4

Weld	Rn = FwAw	φ =	0.75
Base	Rn = Fbm Abm	t =	0.233

Fw = 0.6Fexx = 42 ksiFbm = Fv = 50 ksi

Aw 0.265 in2 $\phi Rn = 8.353$ k/in **OK** Abm 0.233 in2 $\phi Rn = 8.719$ k/in **OK**

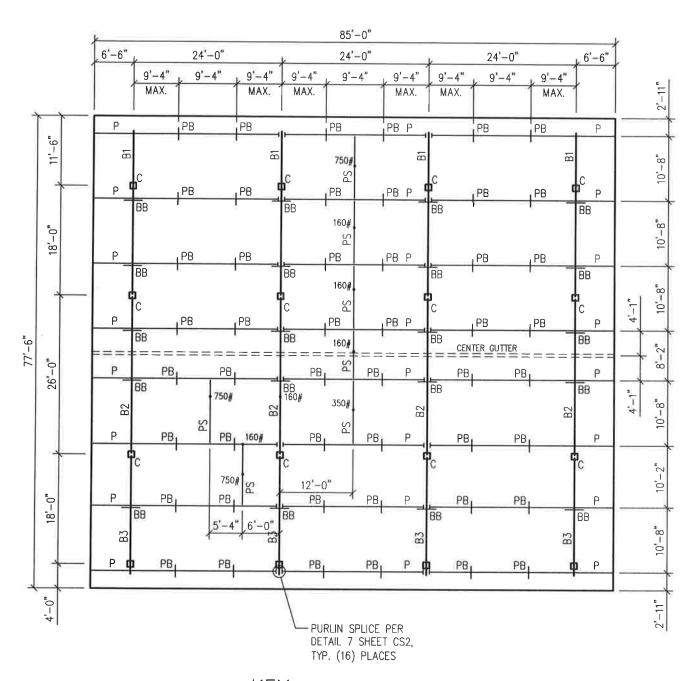
ANCHOR RODS (ASTM F1554)

No. Rods per Connection =	4		
Mean Anchor Rod Spacing =	16	in	
Number of Rods in Tension =	2	in	

LRFD FACTORED LOADS

(see Column Base Plate calculations)

•			,	
	P (kips)	V (kips)	M (kft)	
1.	32.01	0.53	11.94	
2.	27.46	1.06	23.88	
3.	10.87	5.31	119.84	
4.	20.18	1.06	23.88	
5.	5.00	5.31	119.84	CONTROLS


ANCHOR DESIGN LOADS (Factored)

Nu (on 2 anchors) =	89.88	kip
Vu (on 4 anchors) =	5.31	kip
See Anchor Rod Design on Page	no 26	

ENGINEERING, INC. MOUNTAIN VIEW BUILDING SYSTEMS, INC.

345 No. Main, Suite A • Brigham City, Utah 84302 Phone (435) 734-9700 • Fax (435) 734-9519

Job	#23-1096 BESTWORTH ROMMEL	Page	8
Subject	PDX TANK CANOPY	Date	10-27-23
	PORTLAND, OREGON	Bv	C.R.H.

KEY

B1, B3 = W16x26 BEAM

B2 = W16x31 BEAM

P = W12x19 PURLIN

PS = C4x5.4 PIPE SUPPORT

 $C = HSS 12"x12"x_4^1" COLUMN$

 $PB = 1\frac{1}{2}$ "x $1\frac{1}{2}$ "x16 GA. PURLIN BRACE

BB = $2" \times 2" \times \frac{3}{16}"$ BEAM BRACE

Project Title:

CRH

Engineer: Project ID:

Project Descr: Structural Design of Canopy

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Middle Purlins (Strong Axis)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method 'Allowable Strength Design

Beam Bracing: Beam bracing is defined Beam-by-Beam

Bending Axis: Major Axis Bending

Fy: Steel Yield: E: Modulus :

50.0 ksi

29,000.0 ksi

Unbraced Lengths

Span # 1, Defined Brace Spacing, First Brace at ft and spaced at 9.333 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Loads on all spans...

Uniform Load on ALL spans: D = 0.0050, Lr = 0.020, S = 0.01820, W = 0.02450 ksf, Tributary Width = 10.667 ft

Uniform Load on ALL spans : E = 0.00980 k/ft

DES	IGN	SL	IMI	IΑ	RY
------------	------------	----	-----	----	----

ESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.740 : 1	Maximum S	Shear Stress Ratio =	0.073 : 1
Section used for this span	W12x19	Sect	tion used for this span	W12x19
Ma : Applied	25,196 k-ft		Va : Applied	4.199 k
Mn / Omega : Allowable	34.068 k-ft		Vn/Omega : Allowable	57.340 k
Load Combination +D+0,750Lr+	0.750L+0.450W+H		I Combination +D+0.750Lr	+0.750L+0.450W+H 0.000 ft
Span # where maximum occurs	Span # 1	Spar	n # where maximum occurs	Span # 1
Maximum Deflection Max Downward Transient Deflection	0 in Ratio =	0 <240.0	n/a	
Max Upward Transient Deflection	0 in Ratio =	0 <240.0	n/a	
Max Downward Total Deflection	0.696 in Ratio =	414 >=180	Span: 1: +D+0.750Lr+0.750L+0	450W+H
Max Upward Total Deflection	0 in Ratio ≃	0 <180	n/a	

Vertical Reactions	Support notation : Far left is #	Values in KIPS
Load Combination	Support 1 Support 2	

Lodd Combination	Capport	Oupport 2
Max Upward from all Load Conditions	3.136	3.136
Max Upward from Load Cases	3.136	3.136
D Only	0.868	0.868
Lr Only	2.560	2.560
S Only	2.330	2.330
W Only	3:136	3.136
E Only	0.118	0.118
H Only		

Project Title:

Engineer: CRH

Project ID:

Project Descr: Structural Design of Canopy

10

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Middle Purlins (Strong Axis) with Pipe Load

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

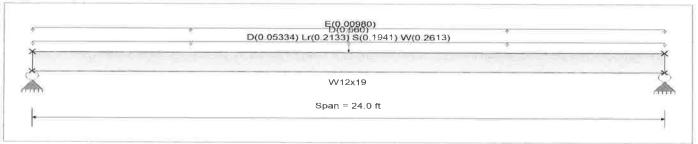
Load Combination Set: ASCE 7-16

Material Properties

Analysis Method Allowable Strength Design

Beam Bracing: Beam bracing is defined Beam-by-Beam

Fy: Steel Yield: E: Modulus :


50.0 ksi

29,000.0 ksi

Bending Axis: Major Axis Bending

Unbraced Lengths

Span # 1, Defined Brace Spacing, First Brace at ft and spaced at 9.333 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Loads on all spans...

Uniform Load on ALL spans: D = 0.0050, Lr = 0.020, S = 0.01820, W = 0.02450 ksf, Tributary Width = 10.667 ft

Uniform Load on ALL spans: E = 0.00980 k/ft

Load(s) for Span Number 1

Point Load: D = 0.560 k @ 12.0 ft

DESIGN STIMMARY

						Design OK
ess Ratio =	0.827 : 1	Ma	ximum S	hear Stress Rat	io =	0.078 : 1
an	W12x19		Sect	ion used for this s	pan	W12x19
d	28,556 k-ft			Va : Applied		4.479 k
a : Allowable	34.525 k-ft			Vn/Omega: Allo	wable	57.340 k
+D+0,750Lr+	-0.750L+0.450W+H		Load	Combination	+D+0.750Lr+0.750L	+0.450W+H
			Local	tion of maximum o	n span	0.000 ft
n occurs	Span # 1		Span	# where maximur	n occurs	Span # 1
nt Deflection	0 in Ratio =	0	<240.0	n/a		
Deflection	0 in Ratio =	0	<240.0	n/a		
eflection	0.770 in Ratio =	374	>=180	Span: 1: +D+0.1	750Lr+0.750L+0.450W+	Н
ection	0 in Ratio =	0	<180	n/a		
	n occurs ont Deflection Deflection eflection	tan W12x19 d 28,556 k-ft a : Allowable 34,525 k-ft +D+0,750Lr+0,750L+0,450W+H n occurs Span # 1 ent Deflection 0 in Ratio = Deflection 0 in Ratio = eflection 0,770 in Ratio =	wan w12x19 d 28.556 k-ft a : Allowable 34.525 k-ft +D+0.750Lr+0.750L+0.450W+H an occurs Span # 1 ent Deflection 0 in Ratio = 0 Deflection 0 in Ratio = 0 eflection 0,770 in Ratio = 374	Van W12x19 Sect d 28,556 k-ft 4 a: Allowable 34,525 k-ft 4 +D+0,750Lr+0,750L+0.450W+H Load Local L	Section used for this state Section used for this state	Maximum Shear Stress Ratio =

V	ertic	aı	Rea	acti	ons
	Load	Сс	mbi	natic	n

D Only

Lr Only

S Only

W Only

E Only

H Only

Max Upward from all Load Conditions

Max Upward from Load Cases

		Support notation : Far left is #	Values in KIPS
Support 1	Support :	2	
3,136	3.13	6	
3.136	3.13	6	
1,148	1.14	8	
2.560	2.56	0	
2,330	2.33	0	
3.136	3.13	6	
0,118	0.11	8	

FOR REFERENCE ONLY

Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, UT 84302

Project Title: Engineer:

Project ID: Project Descr:

Structural Design of Canopy

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Middle Purlins (Weak Axis)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method 'Allowable Strength Design Beam Bracing: Completely Unbraced Bending Axis: Minor Axis Bending

Fy: Steel Yield:

CRH

50.0 ksi

E: Modulus :

29,000.0 ksi

W(0.0220) E(0.0590) W12x19 Span = 24.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans: W = 0.0220, E = 0.0590 k/ft

ESIGN STIMMADV

ESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio = 0.400: 1		Max	ximum S	hear Stress Ratio =	0.009:1
Section used for this span	on used for this span W12x19		Sect	on used for this span	W12x19
Ma : Applied	2.974 k-ft			Va : Applied	0.4956 k
Mn / Omega : Allowable	Mn / Omega : Allowable 7,435 k-ft			Vn/Omega : Allowable	56.140 k
Load Combination	E Only * 0.70		Load Combination Location of maximum on span		E Only * 0.70 0.000 ft
Span # where maximum occurs	Span # 1			# where maximum occurs	Span # 1
Maximum Deflection					
Max Downward Transient Deflection	0 in Ratio =	0	<240.0	n/a	
Max Upward Transient Deflection	0 in Ratio =	0	<240.0	n/a	
Max Downward Total Deflection	2.840 in Ratio =	101	>=60.0	Span: 1 : E Only * 0,70	
Max Upward Total Deflection	0 in Ratio =	0	<60.0	n/a	

Vertical Reactions		S	upport notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Max Upward from all Load Conditions	0.708	0.708			
Max Upward from Load Cases	0.708	0.708			
W Only	0.264	0.264			
E Only	0.708	0.708			

Job: MVE #23-1096 B-R #363261

Subject: TANK CANOPY

Page: 12
Date: 10/27/23

CRH

By:

MIDDLE PURLIN LOAD COMBINATIONS FOR BIAXIAL BENDING (ASD)

Stress Ratio	Strong Axis	Weak Axis	
Dead Load (D)	0.241		=
Roof Live Load (Lr)	0.451		
Floor Live Load (L)			
Snow Load (S)	0.410		
Wind Load (0.6W)	0.331	0.128	These ratios already have 0.6 factor applied.
Seismic Load (0.7E)	0.014	0.400	These ratios already have 0.7 factor applied.

ASCE 7-16 LOAD COMBINATIONS (ASD)

1,	D	7.	0.6D + 0.6W
2.	D + L	8.	D + 0.7Ev + 0.7Eh
3.	D + (Lr or S)	9.	D + 0.75L+ 0.75(0.7E) + 0.75S
4.	D + 0.75L + 0.75(Lr or S)	10.	0.6D - 0.7Ev + 0.7Eh
_			

5. D + 0.6W

0 + 0.75L + 0.75(0.6W) + 0.75(Lr or S)

	STRONG	WEAK	COMBINED		
1.	0.241	0.000	0.241		
2.	0.241	0.000	0.241		
3.	0.692	0.000	0.692		
4.	0.579	0.000	0.579		
5.	0.572	0.128	0.700		
6.	0.828	0.096	0.924	CONTROLS <1.0 OK	
7.	0.476	0.128	0.604		
8.	0.255	0.400	0.655		
9.	0.559	0.300	0.859		
10.	0.131	0.400	0.531		

ASCE 7-16 CH. 2.4.5 SEISMIC LOAD COMBINATIONS WITH OVERSTRENGTH (ASD)

8. 1	$.0D + 0.7Ev + 0.7\Omega Qe$
------	------------------------------

 $\Omega = 1.3$

9 $1.0D + 0.525Ev + 0.525\Omega Qe + 0.75S$

10. $0.6D - 0.7Ev + 0.7\Omega Qe$

	COMBINED	WEAK	STRONG	
	0.771	0.520	0.251	8.
CONTROLS <1.2 OF	0.829	0.273	0.556	9
	0.651	0.520	0.131	10.

[•] An increase in allowable stress of 1.2 is allowed for members designed using overstrength as per ASCE 7-16 2.4.5.

Project Title: Engineer:

CRH

Project ID: Project Descr:

Structural Design of Canopy

13

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

Design OK

W12x19

0.079:1

4.507 k

DESCRIPTION: End Purlins (Strong Axis)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method :Allowable Strength Design

Beam Bracing: Beam bracing is defined Beam-by-Beam

Bending Axis: Major Axis Bending


Fy: Steel Yield

50.0 ksi

E: Modulus : 29,000.0 ksi

Unbraced Lengths

Span # 1, Defined Brace Spacing, First Brace at ft and spaced at 9.333 ft Span # 2, Defined Brace Spacing, First Brace at ft and spaced at 1.333 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Loads on all spans...

Uniform Load on ALL spans: D = 0.0050, Lr = 0.020, S = 0.01820, W = 0.02450 ksf, Tributary Width = 10.667 ft

Uniform Load on ALL spans: E = 0.00980 k/ft

DESIGN SUMMARY Maximum Bending Stress Ratio = 0.671:1 Maximum Shear Stress Ratio = Section used for this span W12x19 Section used for this span

Span #1

Ma: Applied 23.230 k-ft Va : Applied Mn / Omega: Allowable 34.640 k-ft Vn/Omega: Allowable

Load CombidationLr+0.750L+0.450W+H, LL Comb Run (L*)

57.340 k Load Combi@a7500Lr+0.750L+0.450W+H, LL Comb Run (LL) Location of maximum on span 24,000 ft Span # where maximum occurs Span #1

Maximum Deflection

Span # where maximum occurs

Max Downward Transient Deflection 0 in Ratio = 0 <240.0 Max Upward Transient Deflection 0 in Ratio = 0 <240.0

Max Downward Total Deflection 0.631 in Ratio = 456 >=180 Span: 2: +D+0.750Lr+0.750L+0.450W+H, LL Comb Run Max Upward Total Deflection -0.486 in Ratio = >=180 Span: 2: +D+0.750Lr+0.750L+0.450W+H, LL Comb Run 321

n/a

n/a

Vertical Reactions		S	upport notation : Far left is #	Values in KIPS	
Load Combination	Support 1	Support 2	Support 3		
Max Upward from all Load Conditions	2.906	5.065			
Max Upward from Load Cases	2.906	5.065			
Max Downward from all Load Conditions (Resis	-0.188				
Max Downward from Load Cases (Resisting Up					
D Only	0.804	1.402			
Lr Only, LL Comb Run (*L)	-0.188	1.574			
Lr Only, LL Comb Run (L*)	2.560	2,560			
Lr Only, LL Comb Run (LL)	2.372	4.135			

S Only	2.159	3,762
W Only	2.906	5.065
E Only	0.109	0,190
H Only		

Project Title: Engineer:

CRH

Project ID:

Project Descr: Structural Design of Canopy

14

Steel Beam

(c) ENERCALC INC 1983-2023

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

DESCRIPTION: End Purlins (Strong Axis) with Pipe Load

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set : ASCE 7-16

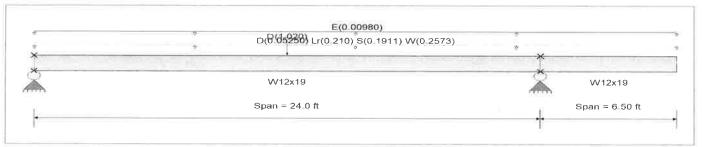
Material Properties

Analysis Method 'Allowable Strength Design

Beam Bracing: Beam bracing is defined Beam-by-Beam

Bending Axis: Major Axis Bending

Fy: Steel Yield: E: Modulus :


50.0 ksi

29,000.0 ksi

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

Unbraced Lengths

Span # 1, Defined Brace Spacing, First Brace at ft and spaced at 9.333 ft Span # 2, Defined Brace Spacing, First Brace at ft and spaced at 1.333 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Loads on all spans...

Uniform Load on ALL spans: D = 0.0050, Lr = 0.020, S = 0.01820, W = 0.02450 ksf, Tributary Width = 10.50 ft

Uniform Load on ALL spans: E = 0.00980 k/ft

Load(s) for Span Number 1

Point Load: D = 1.020 k @ 12.0 ft

Maximum Bending Stress Ratio =		.821 : 1	Ма	vimum S	hear Stress Ratio =	Design OK 0.086 : 1
Section used for this span		2x19	IVIC		ion used for this span	W12x19
Ma : Applied	2	8.965 k-ft			Va : Applied	4.951 k
Mn / Omega : Allowable	3	5.295 k-ft			Vn/Omega : Allowable	57:340 k
Load Combida 600 Lr+0.750 L+0.450 W+H	, LL Comb Ru	ın (L*)			Combidatம்Lr+0.750L+0.450W+H, tion of maximum on span	LL Comb Run (LL) 24.000 ft
Span # where maximum occurs	Sp	an # 1		Span	# where maximum occurs	Span # 1
Maximum Deflection						
Max Downward Transient Deflection	0 in	Ratio =	0	<240.0	n/a	
Max Upward Transient Deflection	0 in	Ratio =	0	<240.0	n/a	
Max Downward Total Deflection	0.757 in	Ratio =	380	>=180	Span: 2: +D+0.750Lr+0.750L+0.4	450W+H, LL Comb Run
Max Upward Total Deflection	-0.588 in	Ratio =	265	>=180	Span: 2: +D+0.750Lr+0.750L+0.4	150W+H, LL Comb Run

/ertical Reactions		S	support notation : Far left is #	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
Max Upward from all Load Conditions	2.861	4.986		
Max Upward from Load Cases	2.861	4.986		
Max Downward from all Load Conditions (Resis	-0.185			
Max Downward from Load Cases (Resisting Ur	-0.185			
D Only	1,305	1.896		
Lr Only, LL Comb Run (*L)	-0.185	1.550		
Lr Only, LL Comb Run (L*)	2.520	2,520		
Lr Only, LL Comb Run (LL)	2.335	4.070		
S Only	2.125	3.704		
W Only	2.861	4.986		
E Only	0.109	0.190		
H Only				

FOR REFERENCE ONLY

Mountain View Engineering, Inc. 345 N. Main St. Ste. A Brigham City, UT 84302

Project Title: Engineer:

CRH

Project ID:

Project Descr: Structural Design of Canopy

15

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

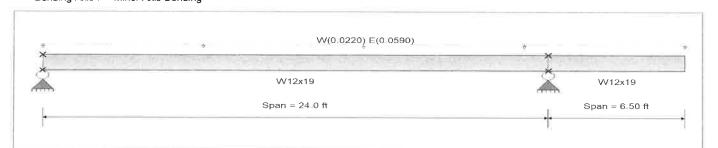
(c) ENERCALC INC 1983-2023

DESCRIPTION: End Purlins (Weak Axis)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16


Material Properties

Analysis Method Allowable Strength Design Beam Bracing: Completely Unbraced Bending Axis: Minor Axis Bending Fy: Steel Yield:

50.0 ksi

E: Modulus :

29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added

Loads on all spans...

Uniform Load on ALL spans: W = 0.0220, E = 0.0590 k/ft

SIGN SUMMARY					Design OK	
Maximum Bending Stress Ratio =	0.343 : 1	Ma	ximum S	hear Stress Ratio =	0.009 :	1
Section used for this span	W12x19		Sect	ion used for this span	W12x19	
Ma : Applied	2,553 k-ft			Va : Applied	0.5320	k
Mn / Omega : Allowable	7,435 k-ft			Vn/Omega : Allowable	56.140	k
Load Combination	E Only * 0.70			Combination tion of maximum on span	E Only * 0.70 24.000	ft
Span # where maximum occurs	Span # 1			# where maximum occurs	Span # 1	
Maximum Deflection						
Max Downward Transient Deflection	0 in Ratio =	0	<240.0	n/a		
Max Upward Transient Deflection	0 in Ratio =	0	<240.0	n/a		
Max Downward Total Deflection	2.348 in Ratio =	123	>=60.0	Span: 2 : E Only * 0.70		
Max Upward Total Deflection	-1.586 in Ratio =	98	>=60.0	Span: 2 : E Only * 0.70		

Vertical Reactions		S	upport notation : Far left is #	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
Max Upward from all Load Conditions	0.656	1.143		
Max Upward from Load Cases	0.656	1.143		
W Only	0.245	0.426		
E Only	0.656	1.143		

Project Title:

Engineer: CRH

Project ID:

Project Descr: Structural Design of Canopy

6

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Beam 1 (Strong Axis)

CODE REFERENCES

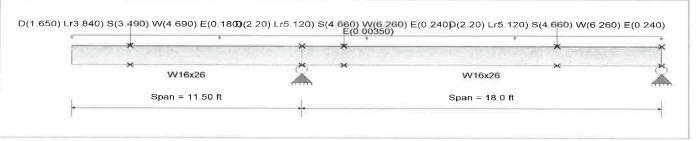
Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method : Allowable Strength Design

Beam Bracing: Beam bracing is defined Beam-by-Beam


Bending Axis : Major Axis Bending

Fy : Steel Yield : E: Modulus : 50.0 ksi

29,000.0 ksi

Unbraced Lengths

Span # 1, Defined Brace Locations, First Brace at 2.917 ft, Second Brace at ft, Third Brace at ft Span # 2, Defined Brace Locations, First Brace at 2.083 ft, Second Brace at 12.750 ft, Third Brace at ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading

Loads on all spans...

Uniform Load on ALL spans: E = 0.00350 k/ft

Load(s) for Span Number 1

Point Load: D = 1.650, Lr = 3.840, S = 3.490, W = 4.690, E = 0.180 k @ 2.917 ft

Load(s) for Span Number 2

Point Load : D = 2.20, Lr = 5.120, S = 4.660, W = 6.260, E = 0.240 k @ 2.083 ft Point Load : D = 2.20, Lr = 5.120, S = 4.660, W = 6.260, E = 0.240 k @ 12.750 ft

SIGN SUMMARY					Design OK
Maximum Bending Stress Ratio =	0.711:1	Ma	ximum S	hear Stress Ratio =	0.197 : 1
Section used for this span	W16x26		Sect	ion used for this span	W16x26
Ma : Applied	58.724 k-ft			Va : Applied	13.913 k
Mn / Omega : Allowable	82.587 k-ft			Vn/Omega : Allowable	70.509 k
Load Combi 0叔硷L r+0.750L+0.450W+H	I, LL Comb Run (L*)			Combi นิสโฒ ีLr+0,750L+0,450W+H tion of maximum on span	I, LL Comb Run (LL) 11.500 ft
Span # where maximum occurs	Span # 1		Span	# where maximum occurs	Span # 1
Maximum Deflection					
Max Downward Transient Deflection	0 in Ratio =	0	<240.0	n/a	
Max Upward Transient Deflection	0 in Ratio =	0	<240,0	n/a	
Max Downward Total Deflection	0.935 in Ratio =	295	>=180	Span: 2: +D+0.750Lr+0.750L+0.	450W+H, LL Comb Run
Max Upward Total Deflection	-0.140 in Ratio =	1544	>=180	Span: 2: +D+Lr+H, LL Comb Ru	

Vertical Reactions	S	upport notation : Far	left is #'	Values in KIPS	
Load Combination	Support 1 Support 2	Support 3			
Max Upward from all Load Conditions	14.288	4.219			
Max Upward from Load Cases	14.288	4.219			
Max Downward from all Load Conditions (Resis		-1.831			
Max Downward from Load Cases (Resisting Up		-1.831			
D Only	5.656	1.165			
Lr Only, LL Comb Run (*L)	6.021	4.219			
Lr Only, LL Comb Run (L*)	5.671	-1:831			
Lr Only, LL Comb Run (LL)	11.692	2.388			
S Only	10.634	2.176			
W Only	14.288	2.922			
E Only	0.633	0.131			
•	1				

WORST CASE AXIAL LOAD TO COLUMNS

Project Title:

Engineer: CRH

Project ID: Project Descr:

Structural Design of Canopy

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC# : KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

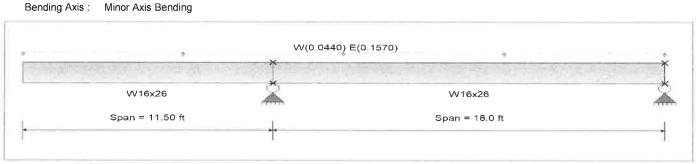
DESCRIPTION: Beam 1 (Weak Axis)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties


Analysis Method 'Allowable Strength Design Beam Bracing: Completely Unbraced

Fy: Steel Yield:

50.0 ksi

E: Modulus:

29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans : W = 0.0440, E = 0.1570 k/ft

SIGN SUMMARY					Design OK
Maximum Bending Stress Ratio =	0.532:1	Ma	ximum S	hear Stress Ratio =	0.020 : 1
Section used for this span	W16x26		Sect	ion used for this span	W16x26
Ma : Applied	7.267 k-ft			Va : Applied	1.393 k
Mn / Omega : Allowable	13.673 k-ft			Vn/Omega : Allowable	68.174 k
Load Combination	E Only * 0.70		Load Combination Location of maximum on span		E Only * 0.70 11.500 ft
Span # where maximum occurs	Span # 1		Span	# where maximum occurs	Span # 1
Maximum Deflection					
Max Downward Transient Deflection	0 in Ratio =	0	<60.0	n/a	
Max Upward Transient Deflection	0 in Ratio =	0	<60.0	n/a	
Max Downward Total Deflection	2.704 in Ratio =	102	>=60.0	Span: 2 : E Only * 0.70	
Max Upward Total Deflection	-0.153 in Ratio =	1413	>=60.0	Span: 2 : E Only * 0.70	

Vertical Reactions	S	upport notation : Far left is #	Values in KIPS	
Load Combination	Support 1 Support 2	Support 3		
Max Upward from all Load Conditions	3.795	0.836		
Max Upward from Load Cases	3.795	0.836		
W Only	1.064	0.234		
E Only	3.795	0,836		

Page: 18 Date: 10/27/23 By: CRH

BEAM 1 LOAD COMBINATIONS FOR BIAXIAL BENDING (ASD)

Stress Ratio	Strong Axis	Weak Axis	
Dead Load (D)	0.192		_
Roof Live Load (Lr)	0.399		
Floor Live Load (L)			
Snow Load (S)	0.363		
Wind Load (0.6W)	0.293	0.128	These ratios already have 0.6 factor applied.
Seismic Load (0.7E)	0.015	0.532	These ratios already have 0.7 factor applied.

ASCE 7-16 LOAD COMBINATIONS (ASD)

1.	D	7.	0.6D + 0.6W
2.	D + L	8.	D + 0.7Ev + 0.7Eh
3.	D + (Lr or S)	9.	D + 0.75L+ 0.75(0.7E) + 0.75S
4.	D + 0.75L + 0.75(Lr or S)	10.	0.6D - 0.7Ev + 0.7Eh
5	D + 0.6W		

D + 0.600

D + 0.75L + 0.75(0.6W) + 0.75(Lr or S)6.

	STRONG	WEAK	COMBINED		
1.	0.192	0.000	0.192		
2.	0.192	0.000	0.192		
3.	0.591	0.000	0.591		
4.	0.491	0.000	0.491		
5 .	0.485	0.128	0.613		
6.	0.711	0.096	0.807		
7.	0.408	0.128	0.536		
8.	0.207	0.532	0.739		
9.	0.476	0.399	0.875	CONTROLS	<1.0 OK
10.	0.100	0.532	0.632		

ASCE 7-16 CH. 2.4.5 SEISMIC LOAD COMBINATIONS WITH OVERSTRENGTH (ASD)

8.	$1.0D + 0.7Ev + 0.7\Omega Qe$	$\Omega = 1$.3
----	-------------------------------	--------------	----

9 $1.0D + 0.525Ev + 0.525\Omega Qe + 0.75S$

10. $0.6D - 0.7Ev + 0.7\Omega Qe$

	STRONG	WEAK	COMBINED		
8.	0.203	0.692	0.894	CONTROLS	<1.2 OK
9	0.472	0.363	0.835		
10.	0.100	0.692	0.792		

An increase in allowable stress of 1.2 is allowed for members designed using overstrength as per ASCE 7-16 2.4.5.

Project Title: Engineer:

CRH

Project ID:
Project Descr: Structural Design of Canopy

19

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC# : KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Beam 3 (Strong Axis)

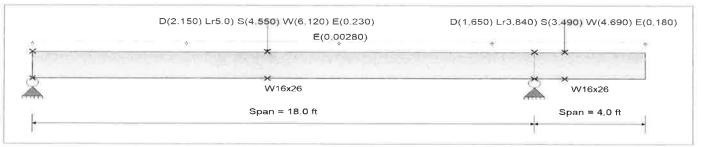
CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method 'Allowable Strength Design


Beam Bracing: Beam bracing is defined Beam-by-Beam

Fy: Steel Yield: E: Modulus: 50.0 ksi 29,000.0 ksi

Bending Axis: Major Axis Bending

Unbraced Lengths

Span # 1, Defined Brace Locations, First Brace at 8,417 ft, Second Brace at 0.0 ft, Third Brace at 0.0 ft Span # 2, Defined Brace Locations, First Brace at 1.083 ft, Second Brace at ft, Third Brace at ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Loads on all spans...

Uniform Load on ALL spans : E = 0.00280 k/ft

Load(s) for Span Number 1

Point Load: D = 2.150, Lr = 5.0, S = 4.550, W = 6.120, E = 0.230 k @ 8.417 ft

Load(s) for Span Number 2

Point Load: D = 1.650, Lr = 3.840, S = 3.490, W = 4.690, E = 0.180 k @ 1.083 ft

DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.343:1 Maximum Shear Stress Ratio = 0.096:1 Section used for this span W16x26 Section used for this span W16x26 Ma: Applied Va: Applied 37.797 k-ft 6.745 k Mn / Omega: Allowable 110.279 k-ft Vn/Omega: Allowable 70.509 k Load Combidat600Lr+0.750L+0.450W+H, LL Comb Run (L*) Load Combit@ati5@Lr+0.750L+0,450W+H, LL Comb Run (*L) Location of maximum on span 18.000 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span #1 Maximum Deflection Max Downward Transient Deflection 0 in Ratio = <240.0 0 n/a Max Upward Transient Deflection 0 in Ratio = <240.0 0 0.198 in Ratio = Max Downward Total Deflection >=180 Span: 2: +D+0.750Lr+0.750L+0.450W+H, LL Comb Run 1090 Max Upward Total Deflection -0.118 in Ratio = >=180 Span: 2: +D+0.750Lr+0.750L+0.450W+H, LL Comb Run 813

ertical Reactions		S	upport notation : Far left is #	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
Max Upward from all Load Conditions	2.976	7.834		
Max Upward from Load Cases	2.976	7.834		
Max Downward from all Load Conditions (Resis	-0.231			
Max Downward from Load Cases (Resisting Up	-0.231			
D Only	1.268	3.104		
Lr Only, LL Comb Run (*L)	-0,231	4.071		
Lr Only, LL Comb Run (L*)	2.662	2.338		
Lr Only, LL Comb Run (LL)	2.431	6,409		
S Only	2.212	5.828		
W Only	2.976	7.834		
E Only	0.136	0.336		
H Only				

Project Title: Engineer:

CRH

Project ID:

Project Descr: Structural Design of Canopy

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

20

Steel Beam

(c) ENERCALC INC 1983-2023

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

DESCRIPTION: Beam 2 (Strong Axis)

CODE REFERENCES

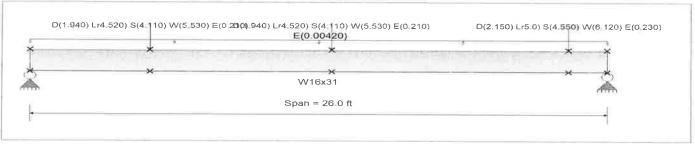
Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method :Allowable Strength Design

Beam Bracing: Beam bracing is defined Beam-by-Beam


Fy: Steel Yield: E: Modulus:

50.0 ksi

29,000.0 ksi

Bending Axis: Major Axis Bending Unbraced Lengths

Span # 1, Defined Brace Locations, First Brace at 5.417 ft, Second Brace at 13.583 ft, Third Brace at 24.250 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Loads on all spans...

Uniform Load on ALL spans: E = 0.00420 k/ft

Load(s) for Span Number 1

Point Load: D = 1.940, Lr = 4.520, S = 4.110, W = 5.530, E = 0.210 k @ 5.417 ft

Point Load: D = 1,940, Lr = 4,520, S = 4,110, W = 5.530, E = 0.210 k @ 13,583 ft

Point Load: D = 2.150, Lr = 5.0, S = 4.550, W = 6.120, E = 0.230 k @ 24.250 ft

DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.673:1 Maximum Shear Stress Ratio = 0.162:1Section used for this span W16x31 Section used for this span W16x31 Ma: Applied 81.303 k-ft Va : Applied 14.188 k Mn / Omega : Allowable 120.865 k-ft Vn/Omega: Allowable 87.450 k +D+0.750Lr+0.750L+0.450W+H Load Combination Load Combination +D+0,750Lr+0.750L+0,450W+H Location of maximum on span 26:000 ft Span # where maximum occurs Span #1 Span # where maximum occurs Span #1 Maximum Deflection Max Downward Transient Deflection 0 in Ratio = <240.0 0 Max Upward Transient Deflection 0 in Ratio = <240.0 0 n/a Max Downward Total Deflection 0.856 in Ratio = >=180 Span: 1: +D+0.750Lr+0.750L+0.450W+H 365 Max Upward Total Deflection 0 in Ratio = <180 0 n/a

Vertical Reactions			Support notation : Far left is #	Values in KIPS
Load Combination	Support 1	Support	2	
Max Upward from all Load Conditions	7.431	9.74	49	
Max Upward from Load Cases	7.431	9.74	1 9	
D Only	3.010	3.83	26	
Lr Only	6.073	7.90	67	
S Only	5.523	7.24	47	
W Only	7.431	9.74	19	
E Only	0.337	0.42	23	
H Only				

Project Title:

Engineer: CRH

Project ID: Project Descr:

Structural Design of Canopy

21

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Beam 2 (Weak Axis)

CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method 'Allowable Strength Design Beam Bracing : Completely Unbraced

Bending Axis: Minor Axis Bending

Fy: Steel Yield:

50.0 ksi

E: Modulus :

29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Loads on all spans...

Uniform Load on ALL spans: W = 0.0440, E = 0.1610 k/ft

DESIGN SUMMARY

DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio =	0.543 : 1	Maximum S	Shear Stress Ratio =	0.015 : 1
Section used for this span	W16x31	Sec	tion used for this span	W16x31
Ma : Applied	9.523 k-ft		Va : Applied	1.465 k
Mn / Omega : Allowable	17.540 k-ft		Vn/Omega : Allowable	97.328 k
Load Combination	E Only * 0.70		d Combination ation of maximum on span	E Only * 0,70 0,000 ft
Span # where maximum occurs	Span # 1	Spai	n # where maximum occurs	Span # 1
Maximum Deflection				
Max Downward Transient Deflection	0 in Ratio =	0 <60.0	n/a	
Max Upward Transient Deflection	0 in Ratio =	0 <60.0	n/a	
Max Downward Total Deflection	3.237 in Ratio =	96 >=60.0	Span: 1 : E Only * 0,70	
Max Upward Total Deflection	0 in Ratio =	0 <60.0	n/a	

Vertical Reactions		Sup	port notation : Far left is #	Values in KIPS
Load Combination	Support 1 S	Support 2		
Max Upward from all Load Conditions	2.093	2.093		
Max Upward from Load Combinations				
Max Upward from Load Cases	2.093	2.093		
Max Downward from all Load Conditions (Resistant	5			
Max Downward from Load Combinations (Resi	Į.			
Max Downward from Load Cases (Resisting Up	F			
W Only	0.572	0.572		
E Only	2.093	2,093		

Page:

By:

22

CRH

Date: 10/27/23

BEAM 2 LOAD COMBINATIONS FOR BIAXIAL BENDING (ASD)

Stress Ratio	Strong Axis	Weak Axis	
Dead Load (D)	0.184		=
Roof Live Load (Lr)	0.376		
Floor Live Load (L)			
Snow Load (S)	0.342		
Wind Load (0.6W)	0.276	0.127	These ratios already have 0.6 factor applied.
Seismic Load (0.7E)	0.014	0.543	These ratios already have 0.7 factor applied.

ASCE 7-16 LOAD COMBINATIONS (ASD)

1	D	7.	0.6D + 0.6W
2.	D + L	8.	D + 0.7Ev + 0.7Eh
3.	D + (Lr or S)	9.	D + 0.75L+ 0.75(0.7E) + 0.75S
4.	D + 0.75L + 0.75(Lr or S)	10.	0.6D - 0.7Ev + 0.7Eh
5.	D + 0.6W		

6.	D + 0.75L +	0.75(0.6W) +	0.75(Lr or S)
----	-------------	--------------	---------------

	STRONG	WEAK	COMBINED		
1.	0.184	0.000	0.184		
2.	0.184	0.000	0.184		
3.	0.560	0.000	0.560		
4.	0.466	0.000	0.466		
5 .	0.460	0.127	0.587		
6.	0.673	0.095	0.768		
7.	0.386	0.127	0.513		
8.	0.198	0.543	0.741		
9.	0.451	0.407	0.858	CONTROLS	<1.0 OK
10.	0.096	0.543	0.639		

ASCE 7-16 CH. 2.4.5 SEISMIC LOAD COMBINATIONS WITH OVERSTRENGTH (ASD)

8.	1.0D + 0.7Ev + 0.7ΩQe	Ω =	1.3

9 1.0D + 0.525Ev + 0.525 Ω Qe + 0.75S

10. $0.6D - 0.7Ev + 0.7\Omega Qe$

	STRONG	WEAK	COMBINED		
8.	0.194	0.706	0.900	CONTROLS	<1.2 OK
9	0.448	0.371	0.818		
10.	0.096	0.706	0.802		

[•] An increase in allowable stress of 1.2 is allowed for members designed using overstrength as per ASCE 7-16 2.4.5.

Project Title: Engineer:

CRH

Project ID:

Project Descr:

Structural Design of Canopy

Steel	Col	lumn

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Columns (Verify Axial Stress <15%, all loads input as DL since L.C. are already done on page 6)

Code References

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Steel Section Name: HSS12x12x1/4 Allowable Strength Analysis Method:

Steel Stress Grade Fy: Steel Yield

E : Elastic Bending Modulus

50.0 ksi

29,000.0 ksi

Overall Column Height Top & Bottom Fixity

22.583 ft

Brace condition:

Top Free, Bottom Fixed

Unbraced Length for buckling ABOUT X-X Axis = 22,583 ft, K = 2,1 Unbraced Length for buckling ABOUT Y-Y Axis = 22,583 ft, K = 2.1

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Column self weight included: 890.45 lbs * Dead Load Factor

AXIAL LOADS ...

Axial Load at 22.583 ft, D = 14.990 k

DESIGN SUMMARY

Bending	& Shear Check Results										
PASS N	flax, Axial+Bending Stress Ratio =	0.1381	: 1	Maximum Load Read	ctions .						
	Load Combination	D Only		Top along X-X			0.0 k				
	Location of max above base	0.0	ft	Bottom along X-X	<		0.0 k				
	At maximum location values are			Top along Y-Y			0.0 k				
	Pa : Axial	15.880	k	Bottom along Y-	1		0.0 k				
	Pn / Omega : Allowable	Pn / Omega : Allowable 115,004 k				ŭ					
	Ma-x : Applied	0.0		Maximum Load Defle							
	Mn-x / Omega : Allowable	86.793	k-ft	Along Y-Y for load combination	0.0 in	at	0.0 ft	above base			
	Ma-y : Applied	0.0	k-ft	ioi ioaa combiliation	•			above base			
	Mn-y / Omega : Allowable	86.793	k-ft	Along X-X	0.0 in at		0_0 ft				
	-			for load combination	:						
PASS	Maximum Shear Stress Ratio	0.0	: 1								
	Load Combination	0.0									
	Location of max.above base	0.0	ft								
	At maximum location values are										
	Va : Applied	0.0									
	Vn / Omega : Allowable	0.0	k								

Load Combination Results

	Maximum Axial + Bending	Stress Ratios					Maximum Shear Ratios			
Load Combination	Stress Ratio Status	Location	Cbx	Cby	KxLx/Ry	KyLy/Rx	Stress Ratio	Status	Location	
D Only	0.138 PASS	0.00 ft	1.00	1.00	118.81	118.81	0.000	PASS	0.00 ft	

Project Title:

CRH

Engineer:

Project ID: Project Descr:

Structural Design of Canopy

Steel Column

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30 **DESCRIPTION:** Columns

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

Code References

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Steel Section Name: HSS12x12x1/4 Allowable Strength Analysis Method:

Steel Stress Grade

Fy: Steel Yield 50.0 ksi E: Elastic Bending Modulus 29,000.0 ksi Overall Column Height Top & Bottom Fixity

22.583 ft Top Free, Bottom Fixed

Brace condition:

Unbraced Length for buckling ABOUT X-X Axis = 22,583 ft, K = 2,1 Unbraced Length for buckling ABOUT Y-Y Axis = 22,583 ft, K = 2.1

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Column self weight included: 890.45 lbs * Dead Load Factor

AXIAL LOADS ...

Axial Load at 22.583 ft, Xecc = 1.0 in, Yecc = -1.0 in, D = 5.660, LR = 7.830, S = 10.630, W = 14.290, E = 0.890 k BENDING LOADS ...

0.0 ft

-0:5236 k-ft

86,793 k-ft

0.03929 : 1

0.0 ft

3.717 k

94.604 k

+D+0.70E

Lat. Point Load at 22.583 ft creating Mx-x, W = 1.060, E = 5.310 k

DESIGN SUMMARY

Bending & Shear Check Results PASS Max. Axial+Bending Stress Ratio = 0.9983 : 1 Load Combination D+0.70E

Location of max above base At maximum location values are ... Pa: Axial

7.173 k Pn / Omega : Allowabli 115.004 k Ma-x: Applied -83,417 k-ft Mn-x / Omega: Allowable 86,793 k-ft

Ma-y: Applied Mn-y / Omega: Allowable

PASS Maximum Shear Stress Ration Load Combination

> Location of max.above base At maximum location values are Va : Applied

Vn / Omega: Allowable

Maximum Load Reactions . .

Top along X-X 0.0 k Bottom along X-X 0.0 k Top along Y-Y 0.0 k Bottom along Y-Y 5,310 k

Maximum Load Deflections . . .

.02 OK

Along Y-Y 3.391 in at 22.583ft above base

for load combination : +0.60D+0.70E

Along X-X 0.1017 in at 22.583ft above base

for load combination :+D+0.750S+0.450W

Load Combination Results

	Maximum Axial +		Stress Ratios					Maximum	Shear F	Ratios
Load Combination	Stress Ratio	Status	Location	Cbx	Cby	KxLx/Ry	KyLy/Rx	Stress Ratio	Status	Location
D Only	0.039	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.000	PASS	0.00 ft
+D+Lr	0.088	PASS	20.01 ft	1.67	1.00	118.81	118.81	0.000	PASS	0.00 ft
+D+S	0.106	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.000	PASS	0,00 ft
+D+0.750Lr	0.076	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.000	PASS	0.00 ft
+D+0.750S	0.089	PASS	1.36 ft	1.67	1.00	118.81	118.81	0.000	PASS	0.00 ft
+D+0.60W	0.231	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.007	PASS	0.00 ft
+D+0.750Lr+0.450W	0.206	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.005	PASS	0.00 ft
+D+0.750S+0.450W	0.215	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.005	PASS	0.00 ft
+0.60D+0.60W	0.220	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.007	PASS	0.00 ft
+D+0.70E	0.998	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.039	PASS	0.00 ft
+D+0.750S+0.5250E	0.791	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.029	PASS	0.00 ft
+0.60D+0.70E	0.987	PASS	0.00 ft	1.67	1.00	118.81	118.81	0.039	PASS	0.00 ft

Page:

25 Date: 10/31/23

By: CRH

BASEPLATE CALCULATIONS

**Overstrength included in E.

COLUMN BASE REACTIONS Dead Load (D) Roof Live Load (Lr) Snow Load (S) Wind Load (W, ult) Seismic Load (Ev, Emh, ult)	Axial (P, kips) 6.55 7.83 10.63 14.29 0.89	Shear (V, kips) 0.00 0.00 0.00 1.06 5.31	Moment (M, 0.00 0.00 0.00 23.88 119.84	
ASCE 7-16 LOAD COMBINATIONS (L 3. 1.2D + 1.6(Lr or S) + 0.5W 4. 1.2D + 1.0W + 0.5(Lr or S) 5. 0.9D + 1.0W 6. 1.2D + 1.0Ev + 1.0Emh + 0.2S 7. 0.9D - 1.0Ev + 1.0Emh	3. 4. 6. 5. 7.	32.01 0 27.46 1 20.18 1 10.87 5	(kips) M 0.53 1.06 1.06 5.31 5.31	1 (kip*ft) 11.94 23.88 23.88 119.84 119.84 CONTROLS
$\begin{array}{c c} \hline \textbf{CONTROLLING LOADS} \\ \hline P = & 5.00 & \text{kips} \\ \hline V = & 5.31 & \text{kips} \\ \hline M = & 119.84 & \text{kipft} \\ \hline \end{array}$				
Total Number of Anchor Rods = Number of Anchor Rods in Tension = Number of Anchor Rods in Shear = For Baseplate, Fy = For F1554 Anchors, Futa =	4 2 4 36 ksi 58 ksi	SDC = D f'c = 3500 Baseplate Dime	psi _psi ensions: N	= <u>22</u> in B = <u>22</u> in
Anchor Rows: 2 anchors @ d = 0 anchors @ d = 0 anchors @ d = 0	16 in in on in on in	d' = <u>16</u> in Distance of Anchor	rs from Plate E	dge = <u>3</u> in
Tension on Each Anchor = 44.3 Shear on Each Anchor = 1.3		From AISC 360:	Φ _B =	0.9
Column Outisde Dimension = 12 Side Bending Moment Arm = 2 Side Bending Moment in Plate = 179 Bending Plane (W _{plate}) = 22	in 76 kip*in	Round or Square? Corner Bending Mo Corner Bending Mo Bending Plane (W _r	oment Arm = oment in Plate :	square 2.83 in 127.11 kip*in 14.142 in
Plate Thickness Required = (4 Fy*W	* M 0.5	= <u>1.053</u> inches	Use 1.25	inch thick plate

THEREFORE, 1.25 in. x 22 in. BASEPLATE IS OK

Page: 26 Date: 11/09/23

CRH By:

Mmax @ Column Base = 119.84 k*ft (LRFD)

Vmax @ Column Base =

5.31 kips (LRFD)

 $\lambda_a = 1.0$ for cast-in-place anchors in normal weight concrete (see ACI 318-19 Section 19.2.4)

ANCHOR ROD GROUP CHECK (per ACI 318-19 Chapter 17, headed anchors)

Tensile Force on Anchors $(N_U) =$	89.88	kips
Shear Force on Anchors $(V_U) =$	5.31	kips
Seismic Design Category =	D	
Number of Anchors (n) =	4	
Number of Anchors in Tension (n) =	2	
Anchor Diameter $(d_a) = 1.5$ in $A_{SE} =$	1,410	in^2
Anchor Spacing Perpendicular to Load (s ₁) =	16	in
Anchor Spacing Parallel to Load $(s_2) =$	16	in

Steel Strength of Anchors in Tension (17.6.1)

$$N_{sa} = nA_{SE}F_{uta} = 163.56 \text{ kips}$$

 $\phi = 0.75 \quad \phi N_{sa} = 122.67 \text{ kips}$

Steel Strength of Anchors in Shear (17.7.1)

Built-up grout pads used? YES (0.8 factor applied below)

$$V_S = 0.6 \text{nA}_{SE} F_{uta} = 157.02 \text{ kips}$$

 $\phi = 0.65 \quad \phi V_S = 102.06 \text{ kips}$

ANCHOR ROD GROUP CAPACITY

ALLOW. TENSION (ΦN_N) = 122.67 kips > 89.9 kips ΘK ALLOW. SHEAR $(\Phi V_N) = 102.06 \text{ kips} > 5.31 \text{ kips} \quad \overline{OK}$

CHECK SHEAR/TENSION INTERACTION

 $N_{UA} > 0.2\Phi N_N$? YES **UNITY CHECK NOT** $V_{UA} > 0.2\Phi V_N$? NO **NECESSARY**

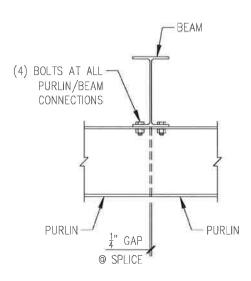
$$\frac{N_{UA}}{\Phi N_N} + \frac{V_{UA}}{\Phi V_N} = 0.78 < 1.20 \ \underline{OK}$$

PLEASE NOTE: MOUNTAIN VIEW ENGINEERING HAS PROVIDED A CHECK OF THE STEEL STRENGTH OF THE ANCHOR RODS ONLY. FOUNDATION DESIGN IS BY OTHERS SO DESIGN OF THE ANCHOR RODS TO RESIST CONCRETE BREAKOUT, PULLOUT, AND SIDE FACE BLOWOUT ARE THE RESPONSIBILITY OF THE FOUNDATION DESIGNER. FOUNDATION DESIGNER SHALL DETERMINE ANCHOR ROD EMBEDMENT DEPTH REQUIRED IN THEIR FOUNDATION DESIGN.

Page: Date:

27 10/31/23 By: CRH

MAX. PURLIN REACTIONS Occurs @ Splice? NO


PURLIN/BEAM CONNECTION DESIGN (ASD)

Applied Factor of Safety = 1.25 Max. Gravity Design Load = 11.1 k (ASD) Max. Shear Design Load = 1.2 k (ASD)

BOLT DESIGN

Try (4) 3/4"
$$\emptyset$$
 A325 G.F. = 19.9 kips tension d_b = 0.75 in G.F. = 11.9 kips shear

Tension / Bolt = Unity Check: 0.139 2.77 k (ASD) OK Shear / Bolt = 0.31 k (ASD) Unity Check: 0.026 OK 0.165 ОК

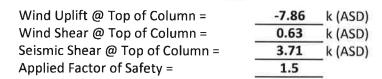
USE (4) 3/4" ø A325 BOLTS

PRYING ACTION

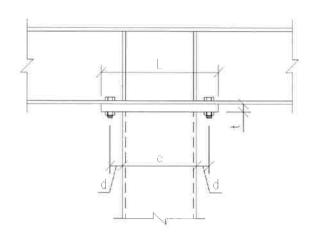
Bear	n:	W16)	(26				Purli	in:		W	/12X	19			
T =	2.77	* 2	bolts	=	6	kips	T =	2	2.77	*	2	bolts	=	6	kips
F _U g t _w	= 6! = 2.7 = 0.2	5 ksi '5 in 50 in	b _f t _f d	H H	5.50 0.345 15.70	in in in	F _U g t _w	=	65 2.2 0.23	5 35	ksi in in	b _f t _f d	= =	4.01 0.350 12.20	in in in
	= 0.8	75 in (r	web to C noment eff. flange	arm)		b b' p	=	0.63	25	in (n	veb to C noment ff. flang	arm)		
t mir	n. = (6.66 T	<u>,</u>) c).5			t mii	n.	= (_6	66 T p Fu) ().5		
	= ().332 iı	n <	0.34	5 in	ОК			= 0	.25	5 in	· <	0.35	0 in	_ок

FLANGE THICKNESSES ARE SUFFICIENT TO ELIMINATE PRYING ACTION, NO OTHER CHECKS NEEDED.

FLANGE THICKNESSES ARE SUFFICIENT TO ELIMINATE PRYING ACTION, NO OTHER CHECKS NEEDED.


Job: MVE #23-1096 B-R #363261 Subject:

TANK CANOPY


Page: 28 Date: 10/31/23

By: CRH

COLUMN CAP PLATE DESIGN

DEAD LOADS HAVE BEEN NEGLECTED (CONSERVATIVE)

WELD DESIGN

Weld Strength Required =
$$\frac{11.79 \text{ k}}{48 \text{ in}} + \frac{0.95 \text{ k}}{48 \text{ in}} = \frac{0.27 \text{ k/ir}}{48 \text{ in}}$$

/16" E-70XX FILLET WELD ALL AROUND USE G.F. = 2.78 k/in

BOLT DESIGN

$$\frac{\textit{Try}}{d_b} = \frac{3}{4} \% \frac{\text{A325}}{\text{on a G.F.}} = \frac{19.9}{\text{G.F.}} = \frac{11.9}{\text{kips tension}}$$

USE (4) 3/4" ø A325 BOLTS

PLATE DESIGN (FLEXURE FROM BOLT TENSION)

Plate Width (w) =
$$\frac{14}{11.8}$$
 in Fy = 36
Moment in Plate = $\frac{11.8}{11.8}$ k*in

t required =
$$(\frac{(6.68)(11.8 \text{ k*in})}{(36 \text{ ksi})(14 \text{ in})})^{0.5} = \frac{0.395}{}$$
 in

0.75" x 14" x 20" PLATE USE

Job: Subject: MVE #23-1096 B-R #363261

TANK CANOPY

Page: 29 Date: 10/31/23

OK

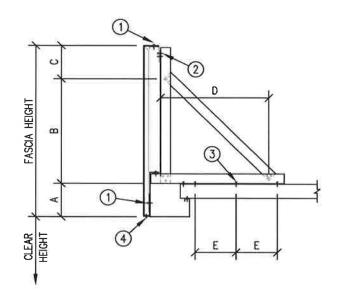
By: **CRH**

FASCIA FRAME DESIGN

DIMENSIONS

Clear Height 21 ft **Edge Distance** 2.917 ft Fascia Height = 36 in Gutter Width 8 in

Frame Spacing 48 in o.c.


7 D 22 Α in in

22 Ε В in 12 in @ sides 7 Ε in 16 in @ ends

FORCES

Fascia Weight (incl. frames) plf

Wind Force (from page 5) = **57.5** psf ULT 34.5 psf ASD Due to the fascia's light weight, wind 138.0 plf ASD force will always control over seismic.

FRAME MEMBERS

Try: 1"x2"x1" 18 GA. Z ASTM A653 SS 33 ksi Fy =

0.173 in2 0.4033 in2

0.1088 in2

BENDING ON MEMBER XY

in $M_c = 0.282 \text{ kin}$ 늄 #### 22 in -0.280 kin in $M_{\Delta} = 0.000 \text{ kin}$

0.282 kin Mmax =

CHECK SCREWS

Mallow = 1.850 k*in

From CFS: OK

COMPRESSION ON MEMBER XZ

Length of XZ = 31.1 in Rxn @ X =339 lbs Rxn @ Y = 207 lbs From CFS: P =479 lbs Pallow = 1425 lb

SCREW CAPACITIES

#8 TEK G.F. = 177 LB Shear (Lapped 18 GA.)

#1/4 TEK G.F. = 230 LB Pullout (2 layers of 20 GA. base)

#1/4 TEK G.F. = 205 LB Shear (Lapped 20 GA.)

#1/4 TEK G.F. = 306 LB Shear (Lapped 18 GA.)

#1/4 TEK G.F. = 153 LB Pullout (18 GA.)

#1/4-14 TEK 1 @ 12 IN O.C. Trib. Area = 1.5 sq.ft. Shear F = 51.7 lb < 306 lb OK

(2) #1/4 TEK @ EACH FRAME Trib. Area = 6 sq.ft. Tensile F = 207 lb < 306 lb ОК (Check Fasica Weight) Trib. Area = 6 sq.ft. Shear F = Ιb 306 lb ОК <

#1/4 TEK @ EACH FRAME Trib. Area = 12 sq.ft. Shear F = 414 lb < 615 lb ОК ОК (Check Tension from Member XY wind from right) Tensile F = lb 339 < 690 lb

#8 TEK @ 12 IN O.C. Trib. Area = 1.5 sq.ft. Shear F = 52 lb < 177 lb OK

NOTE: Fascia frame connections at X, Y, and Z are pinned, therefore, there will be no moment on the connection of the frames to the deck pans (screw mark #3) Forces will transfer to screws as direct tension and shear. There is no tension due to moment.

Subject:

Job: MVE #23-1096 B-R #363261

TANK CANOPY

Nodal Bracing as per AISC 360-16 Appendix 6, 6.3.1.b

 $P_{br} = \frac{0.02 \, M_r \, C_d}{h_0} = 0.58 \, \text{kips}$

REQUIRED STIFFNESS $B_{br} = \Omega \left(\frac{10 M_r C_d}{L_h h_0} \right) = 5.2 \text{ k/in}$

Page: 30 Date: 10/31/23

By: CRH

PURLIN BRACE DESIGN (ASD)

28.56 kft Mmax. in Purlin (ASD) = Applied Factor of Safety = 1 **342.72** kin Mmax. For Design (M_r) =

Tension only braces?

YES

Purlin:

W12X19

$$\Omega = 2.0$$

 $F_{IJI} =$ 4.01 in 2.25 in 0.350 in = 0.235 in12.20 in

 $h_0 = 11.850$ in (CL to CL flange) 1.0 (single curvature) = 9.333 ft (unbraced length)

Brace:

L1.5x1.5x16 GA.

$$\Omega = 2.0$$

 F_{γ} 33 = 45 degrees = 29000 ksi L = 17.253 in

= 0.064 in $r_{y} = 0.4742 \text{ ksi}$

1.5 d in

 0.187 in^2 $A = 0.095 \text{ in}^2$ (reduced for coped angle)

ACTUAL STIFFNESS

$$B_b = \cos^2\theta \quad (\frac{AE}{L_b}) = 13.3 \text{ k/in} > 5.2 \text{ k/in}$$

REQUIRED STRENGTH

 $P_{AXIAL} = (\frac{17.253 \text{ in}}{12.2 \text{ in}})(0.58 \text{ kips}) = 0.82 \text{ kips}$

TENSILE STRENGTH

 $P_n = \frac{F_y A}{Q} = 1.6$ kips > 0.82 kips STRENGTH OK

CONNECTION FORCES:

Shear Force =

578 lbs

Tensile Force

ATTACHEMENT:

3 #12 TEK 2 G.F. = 430 LB Shear (16 GA. min. base) Shear F = **PURLIN** 578 lb < 1290 lb OK **SCREWS: 3** #12 TEK 2 G.F. = 515 LB Tension (3/16") Tensile F = 578 lb < 1545 lb ОК ОК Combined: 0.823 < 1.0

3 #12 TEK 2 G.F. = 400 LB Shear (2 layers of 20 GA. base) Shear F = OK 578 lb < 1200 lb DECK **3** #12 TEK 2 G.F. = 400 LB Shear (2 layers of 20 GA. base) Tensile F = ОК 578 lb < 1200 lb **SCREWS:** Combined: 0.964 < OK 1.0

Subject:

REQUIRED STRENGTH

Job: **MVE #23-1096 B-R #363261**

TANK CANOPY

Page: 31 Date: 10/31/23

By: CRH

BEAM BRACE DESIGN (ASD)

Nodal Bracing as per AISC 360-16 Appendix 6, 6.3.1.b

 $P_{br} = \frac{0.02 \text{ M}_r \text{ C}_d}{h_0} = 1.89 \text{ kips}$

REQUIRED STIFFNESS $B_{br} = \Omega \left(\frac{10 \text{ M}_r \text{ C}_d}{L_b \text{ h}_0} \right) = 19.7 \text{ k/in}$

Mmax. in Beam (ASD) = **81.3** kft Applied Factor of Safety = 1.5 **1463.4** kin Mmax. For Design (M_r) =

Tension only braces? YES

Beam: **W16X31** $\Omega = 2.0$

F_U = **65** ksi $b_f = 5.53$ in = 2.75 in $t_f = 0.440$ in = 0.275 in = 15.90 in

 $h_0 = 15.460$ in (CL to CL flange) 1.0 (single curvature) = 8 ft (unbraced length)

Brace: **L2X2X3/16** $\Omega = 2.0$

 F_{γ} = 36 ksi θ = 45 degrees L = 22.486 in= 29000 ksi $= 0.188 \text{ in} \qquad r_{Y} = 0.612 \text{ ksi}$

= 2

= 0.722 in^2 A = 0.381 in^2 (reduced for coped angle)

ACTUAL STIFFNESS $B_b = \cos^2\theta + (\frac{AE}{L_b}) = 60.2 \text{ k/in} > 19.7 \text{ k/in} \text{ STIFFNESS OK}$

 $P_{AXIAL} = \left(\frac{22.486 \text{ in}}{15.9 \text{ in}}\right) (1.89 \text{ kips}) = 2.68 \text{ kips}$

 $P_n = \frac{F_Y A}{O} = 6.9 \text{ kips} > 2.68 \text{ kips}$ STRENGTH OK **TENSILE** STRENGTH

KL/r = 99.6 OK Fe >= 0.44 Fy Therefore, Fcr = Fy * 0.658^(Fy/Fe) **COMPRESSIVE** Fe = 28.88 ksi Therefore, Fa = 12.8 ksi STRENGTH

 $P_n = \frac{F_{cr} A_g}{Q} = 4.62 \text{ kips} > 2.68 \text{ kips}$ STRENGTH OK

Shear Force = 1893 lbs CONNECTION FORCES: Tensile Force = 1893 lbs

ATTACHEMENT:

1 3/4"Ø A307 G.F. = 5300 LB Shear **BOLTS:**

1 3/4"Ø A307 G.F. = 9940 LB Tension

Shear F = 1893 lb < 5300 lb Tensile F = 1893 lb < 9940 lb

OK

ОК

<u>OK</u>

Combined: 0.548 < 1.0

Project Title: Engineer:

CRH

Project ID:

Project Descr: Structural Design of Canopy

32

Steel Beam

Project File: 23-1096 ibc 2021 double row 9-7-2023.ec6

LIC#: KW-06014791, Build:20.23.08.30

MOUNTAIN VIEW ENGINEERING, INC.

(c) ENERCALC INC 1983-2023

DESCRIPTION: Pipe Supports

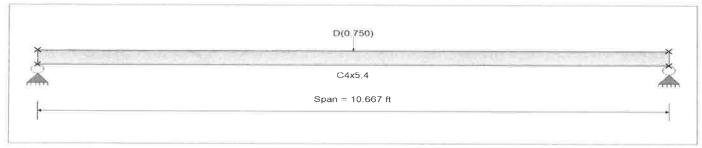
CODE REFERENCES

Calculations per AISC 360-16, IBC 2021, ASCE 7-16

Load Combination Set: ASCE 7-16

Material Properties

Analysis Method :Allowable Strength Design Beam Bracing: Completely Unbraced


Bending Axis: Major Axis Bending

Fy: Steel Yield:

36.0 ksi

E: Modulus :

29,000.0 ksi

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Load(s) for Span Number 1

Point Load: D = 0.750 k @ 5.333 ft

		Design OK
0.657 : 1	Maximum Shear Stress Ratio =	0.042 : 1
C4x5.4	Section used for this span	C4x5.4
2.077 k-ft	Va : Applied	0.4038 k
3,159 k-ft	Vn/Omega : Allowable	9.520 k
+D+H	Load Combination Location of maximum on span	+D+H 0.000 ft
Span # 1	Span # where maximum occurs	Span # 1
0 in Ratio ≃	0 <240.0 n/a	
0 in Ratio =	0 <240.0 n/a	
0.309 in Ratio =	414 >=180 Span: 1 : +D+H	
0 in Ratio =	0 <180 n/a	
	C4x5.4 2.077 k-ft 3.159 k-ft +D+H Span # 1 0 in Ratio = 0 in Ratio = 0.309 in Ratio =	C4x5.4 Section used for this span 2.077 k-ft Va : Applied 3.159 k-ft Vn/Omega : Allowable +D+H Load Combination Location of maximum on span Span # 1 Span # where maximum occurs 0 in Ratio = 0 <240.0 n/a 0 in Ratio = 0 <240.0 n/a 0.309 in Ratio = 414 >=180 Span: 1 : +D+H

Vertical Reactions		Support notation : Far left is #	Values in KIPS
Load Combination	Support 1	Support 2	
Max Upward from all Load Conditions	0.404	0.404	
Max Upward from Load Cases	0.404	0.404	
D Only	0.404	0-404	
H Only			

Page 1 ing, Inc.		Distance (in) 0.188 0.313 1.469 8.000 1.500 0.375	
Christopher R., Handy Mountain View Engineering, Inc.		k Hole Size Coef. (in) 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000 9.000	
	ength increase. th increase. 29500 ksi 40 ksi 55 ksi 0 in* 6w end	Gage) 0 in	
CFS Version 12.0,2 Section: Deck Pans,cfss Deck Pans Rev, Date: 1/14/2019 9:16:13 AM By: Christopher R, Handy Printed: 4/21/2020 1:45:58 PM Section Inputs	Grade 40 rming str ve streng ity, E fu verride,	Part 1, Thickness 0.0346 in (20 Placement of Part from Origin: X to center of gravity Y to center of gravity Angle Engine Capacity (in) (deg) (a) 0.375 99.000 0.072 0.655 180.000 0.073 2.938 270.000 0.073 2.938 270.000 0.074 15.000 0.075 0.000 0.000 0.075 0.000 0.075 0.000 0.075 0.000 0.075 0.000 0.	
CFS Version 12.0,2 Section: Deck Pans, ciss Deck Pans Rev. Date: 1/14/2019 9: By: Christopher R., Hand Printed: 4/21/2020 1.45,5 Section Inputs	Material: A653 SS No cold work of for No inelastic reservations of Elastic. Vield Strength, Fy Tensile Strength, Torsion Constant O Warping Constant O	Part 1, Th Placement X to cente V to cente Outside di	

Positive Bending Mayo 3.1288 k-ft Iye 20.225 in⁴ Sye(1) 3.4040 in³ Sye(r) 1.8773 in³

Material Type: A653 SS Grade 40, Fy=40 ksi
Axial
Axial
Pao
4.991 k Maxo
6.5531 k-ft
Ae
6.2497 in² Ixe
6.892 in²
Ta
19.673 k Sxe(t)
6.3319 in³
Sxe(t)
1.3718 in³

Fully Braced Strength - AISI S100-16/S1-18, US, ASD

Negative Bending Mayo 3.0352 k-ft Iye 19.228 in* Sye(1) 1.8217 in³ Sye(r) 3.1213 in³

Negative Bending
Maxo 0.5492 k-ft
Ixe 0.418 in⁴
Sxe(t) 0.2752 in³
Sxe(b) 0.2817 in³

2.593 k 0.717 k

Shear Vay Vax 53.901 k-in²

Torsion Ba

Page 1 Christopher R, Handy Mountain View Engineering, Inc.			Width 23.739 in	Ixy 0.275 in ⁴	α -89.439 deg			Xo -0.035 in	yo -1.681 in	jx -0.056 in	jy 10.891 in	Cw 37.831 in ⁶	J 0.0003278 in4		
Chris Mour		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0027926 k/ft	1.014 in	2.382 in	0.618 in	3.000 in	5.941 in	8.144 in	8.571 in	16.715 in	5.941 in	1.012 in	6.027 in	6.257 in
	13 AM PM		₩t.	ž	y(t)	y(b)	Height	5	×(1)	x(r)	Width	۲. ۲.	Γ2	PC	٢
ofss cfss	99:16: andy 46:54	erties	in²	in4	in³	in3	in3	in4	in3	in3	in³	in4	in4	in4	in4
CFS Version 12,0,2 Section: Deck Pans cfss Deck Pans	Rev. Date: 1/14/2019 9:16:13 AM By: Christopher R. Handy Printed: 4/21/2020 1:46:54 PM	Full Section Properties	0.82136	0.844	0.3544	1.3658	0.4970	28,989	3.5594	3.3823	4.3582	28,992	0.841	29.833	32.154 in ⁴
CFS Vers Section: De Deck Pans	Rev Dat By: Chris Printed: 4	Full Sec	Area	XI	Sx(t)	Sx(b)	ZX	Iy	Sy(1)	Sy(r)	Zy	La	Iz	Ic	H

			1					ey (in) 0.000						
Page 1 CHRIS												k/ft in in		k/ft
Pa Ch sering, Inc.		-\$			te and Time :16:13 AM			ex (in) 0.000			End	ridgiilide -0.006665 k, Width=1 k, Width=1	End	Magnitude -0.026660
císa Mountain View Engineering, Inc.				uations	Revision Date and 1/14/2019 9:16:13	Wei	(K) 0.10752 0.10752	Lm (ft) 20.000	¥	1.0000 1.0000 1.0000 1.0000	Start	Magnitude -0.006665 -0.020000 -0.020000	Start	Magnitude -0.026660
SIDE,cfsa Mountai		-95-		fication eq ks		Le	(+t) 38.500 38.500	кф (к) 0.0000	Fastened	Yes 1 Yes 1 Yes 1 Yes 1	End Loc.	38.500	End Loc.	(ft) 38.500
Snow RIGHT	W	-		ntal using speci member chec		Area	(1n²) 0.82136	Braced R Flange None 0.0000		(1h) 1.00 1.00 1.00	Start Loc.	0.000 0.000 0.100 38.400	Start Loc.	(ft) 0.000
.2 .nalysis with ,	3 10:51:59 / :50:00 PM			on: Horiza buckling buckling	10		40	End Loc. Bu (ft) F 38.500 No		(11) 2.917 13.583 23.750 34.417		000.06 00.000 00.000	2	(deg) 90.000
CFS Version 13,0,2 Analysis: Deck Pan Analysis with Snow RIGHT SIDE,cfsa Deck Pans with Snow Mour	Rev. Date: 10/27/2023 10:51:59 AM By: CHRIS Printed: 10/27/2023 2:50:00 PM	-	Analysis Inputs	General Member Orientation: Horizontal Calculate global buckling using specification equations Do not include torsion in member checks	Members Section file 1 Deck Pans.cfss	Material	1 A653 SS Grade Total	Start Loc. E (ft) 1 0.000	Supports Type Loca	1 XYT 13 2 XYT 13 3 XYT 23 4 XYT 34	Loading: Dead Load Type	1 Distributed 2 Concentrated 3 Concentrated	Loading: Roof Live Type	1 Distributed

Page 2 CHRIS End Magnitude -0.024300 k/ft End Magnitude 0.048900 k/ft	
Mountain View Engineering, Inc. 1 Loc. Start (ft) Magnitude Magnitude (ft) Magnitude Magnitude (ft) Magnitude Magnitude (88.500 0.048900 0.04890	
SIDE_cdsa Mountain End Loc. (ft) 38.500 5. ASD 5. ASD 5. ASD	5, ASD 5, ASD 5, ASD
CFS Version 13.0.2 Analysis: Deck Pan Analysis with Snow RIGHT SIDE_cfsa Deck Pans with Snow Mour Rev, Date: 10/27/2023 10:51:59 AM By. CHRIS Printed: 10/27/2023 2:50:00 PM Loading: Snow Load Type (deg) (ft) (ft) Loistributed 99.000 0.000 38.56 Loading: Wind Load Angle Start Loc. End Loc Type (deg) (ft) (ft) Loading: Mind Load Angle Start Loc. Type (deg) 88.56 Load Combination: D Specification: A1SI S100-16/51-18, US, ASD Inflection Point Bracing: No Factor Loading AISI S100-16/51-18, US, ASD Load Combination: Datr Loading AISI S100-16/51-18, US, ASD Load Combination: A1SI S100-16/51-18, US, ASD Specification: A1SI S100-16/51-18, US, ASD Specification: A1SI S100-16/51-18, US, ASD Specification: A1SI S100-16/51-18, US, ASD Specification Point Bracine: No	ht 1.000 1.000 1.000 1.000 1.000 AISI S100-16/S1-18, US, racing: No Factor ht 1.000 0.600 0.600 AISI S100-16/S1-18, US, racing: No Factor 1.000 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
CFS Version 13.0.2 Analysis: Deck Pan Analysis with Srow Deck Pans with Snow Rev, Date: 10/27/2023 10:51:59 AM By: CHRIS Grid 10/27/2023 2:50:00 PM Loading: Snow Load Angle 5t Loading: Mind Load Angle 5t Load Combination: D Specification: AISI 5100-16 Loading Height Loading Height Specification: AISI 5100-16 Load Combination: D+Lr Specification: AISI 5100-16 Loading Height Specification: AISI 5100-16 Loading Height Dead Combination: D+Lr Specification: AISI 5100-16 Loading Height Dead Combination: D+Lr Specification: AISI 5100-16 Loading Height Specification: AISI 5100-16 Loading Height Load Combination: D+Lr Specification: AISI 5100-16 Loading Height Specification: AISI 5100-16 AND	Deam Self Weight 1.00 Beam Self Weight 1.00 Beam Self Weight 1.00 Combination: D-0.6W Fication: AISI S100-16/S1-18, Conding Seam Self Weight 1.00 Bead Load 0.00 Combination: D-0.75(0.6W+L+Lr) Fication: AISI S100-16/S1-13, Combination: D-0.75(0.6W+L+Lr) Fication: AISI S100-16/S1-13, cction Point Bracing: No Facto Combination: AISI S100-16/S1-13, cction Point Bracing: No Facto Coading Pear Self Weight 1.00 Pear Self Wei
CFS Version 13.0.2 Analysis: Deck Pan Analysis w Deck Pans with Snow Rev, Date: 10/27/2023 10:51:5 By: CHRIS Printed: 10/27/2023 2:50:00 PP Loading: Snow Load Type (del 1 Distributed 90:00 Loading: Wind Load Type (del 1 Distributed 276:00 Load Combination: DIS Specification: AISI SI Inflection Point Bracing: Loading 1 Beam Self Weight 2 Dead Load Combination: DHL Coad Combination: AISI SI Inflection Point Bracing: 1 Beam Self Weight 2 Dead Load 3 Roof Live Load 3 Roof Live Load 1 Repertion Point Bracing: 1 Dead Combination: AISI SI Inflection Point Racing: 2 Dead Load 3 Roof Live Load 3 Roof Live Load 1 Inflection Point Bracing: 1 Inflection Point Brac	Loading Beam Self Weight Dead Load Specification: AISI S Inflection Point Bracing Beam Self Weight Dead Combination: D+0.6W Wind Load Wind Load Loading Loading Beam Self Weight Dead Combination: D+0.7S Specification: AISI S Inflection Point Bracing Loading Beam Self Weight Dead Load 4 Product Load 4 Product Load 5 Roof Live Load 5 Roof Live Load 6 Wand Load

CFS Version 13.0.2 Analysis: Deck Pan Analysis with Snow RIGHT SIDE,cfsa Deck Pans with Snow

Maximum Shears, Moments, and Deflections

Rev. Date: 10/27/2023 10:51:59 AM By: CHRIS Printed: 10/27/2023 2:50:00 PM

Page 3 CHRIS Mountain View Engineering, Inc.																	
ith Snow RIGHT SIDE cfsa Mount	9 AM M	D+0.75(0.6W+L+S) AISI S100-16/S1-18, US, ASD	No	Factor	1.000	1,000	0.750	0.750	0.750	0.450	M9	AISI S100-16/S1-18, US, ASD	No	Factor	0.600	0.600	0.600
CFS Version 13.0,2 Analysis: Deck Pan Analysis with Snow RIGHT SIDE, cfsa Deck Pans with Snow	Rev, Date: 10/27/2023 10:51:59 AM By: CHRIS Printed: 10/27/2023 2:50:00 PM	Load Combination: D+0.75(0.6W+L+5) Specification: AISI S100-16/S1-	Inflection Point Bracing: No	Loading	1 Beam Self Weight	2 Dead Load	3 Live Load	4 Product Load	5 Snow Load	6 Wind Load	Load Combination: 0.6D+0.6W	Specification: AISI S1	Inflection Point Bracing: No	Loading	1 Beam Self Weight	2 Dead Load	3 Wind Load

rection	Reaction (K) 0.42150 0.56679 0.52202	Deflection (in) 0.09790 -0.21017 0.00539 -0.13302 0.01132
tions, Y Di	Shear(r) (k) 0.25140 0.26935 0.26820	Location (ft) 0.000 7.926 14.169 18.848 28.968 32.544 38.500
All Combina	Shear(1) (k) -0.17010 -0.29745 -0.25382 -0.28870	Moment (K-in) -3.3032 4.0663 -6.2499 2.2092 -5.3029 3.0842 -6.1030
Envelope of All Combinations, Y Direction	Location (ft) 2.917 13.583 23.758 34.417	Location (ft) 2.917 7.803 13.583 18.817 23.758 28.952 28.952 34.417

10.666 ft 1.0000

t t

Load Combination: D+0.75(0.6W+L+Lr)
Design Parameters at 13.583 ft, Left side:
Lx 10.666 ft Ly 1.6666 ft
Kx 1.0000 Ky 1.0000

Member Check - AISI S100-16/S1-18, US, ASD

0.0000 in 0.0000 in

e x

Section: Deck Pans.cfss
Material Type: A653 SS Grade 40, Fy=40 ksi
Cbx 1.2324 Cby 1.0000
Cmx 1.0000 Cmy 1.0000
Braced Flance: None kp 0 K
Red. Factor, R: 0 Lm 20.000 ft

V× (k) 0.0000 0.0000

My (k-in) 0.000 0.000 29.243

Vy (k) -0.2974 -0.2974 2.5934

Mx (k-in) -6.250 -6.250 6.591

P (K) 0.0000 0.0000 2.9304

> Total Applied Strength

Loads:

Interaction Equations Eq. H1.2-1 (P, Mx, My) 0.000 + 0.948 + 0.000 = 0.948 <= 1.0 Eq. H1.2-1 (Mx, Vy) Sqrt(0.099 + 0.013) = 0.955 <= 1.0 Eq. H2.1 (My, Vx) Sqrt(0.000 + 0.000) = 0.000 <= 1.0 Eq. H2.1 (My, Vx) Sqrt(0.000 + 0.000) = 0.000 <= 1.0

	CHRIS	ew Engineering, Inc.
CFS Version 13,0.2	Analysis: Deck Pan Analysis with Snow LEFT SIDE cfsa	Deck Pans with Snow Mountain

Rev. Date: 10/27/2023 10:49:47 AM By: CHRIS Printed: 10/27/2023 2:50:00 PM

	-6	5-
	-9	5
	9	\$
3	-9	5-

Analysis Inputs

General Member Orientation: Horizontal Calculate global buckling using specification equations Do not include torsion in member checks

Section File 1 Deck Pans.cfss	ss		Re 1/	Revision Date and Time 1/14/2019 9:16:13 AM	and Time :13 AM	
Material		Area	Length	Weight		
1 A653 SS Grade 40 Total		(111°) 0.82136	(11) 39.000 39.000	(K) 0.10891 0.10891		
Start Loc.	End Loc. Braced	œ	\$		ex	ey
1 0.888	(Tt) Fiduge 39.000 None	Fidange None 0.0000	(K) 0.0000	(+t) 20.000	(11) 0.000	(nr) 0.000

								End	Magnitude
	¥		.0000	0000	0000	0000		art	itude
			7	Π	7	1		.00.	ft)
	-astened		Yes	Yes	Yes	Yes		End L	(ft) Magn
	Fas								
	aring	(in)	1.00	1.00	1.00	1.00		Start	(deg) (ft)
	9							ngle	deg)
	ocation.	(ft)	2.917	13.583	24.250	34.917	peo		
	_						ead t		
Supports	Type		1 XYT	2 XYT	3 XYT	4 XYT	Loading: Dead Load	Type	

		k/ft	in	in				k/ft	
End	Magnitude Magnitude	-0.006665	k, Width=1	0.020000 k, Width=1 in		End	Magnitude	-0.026660 k/ft	
Start	Magnitude	-0.006665	-0.020000	-0.020000		Start	Magnitude ∧	-0.026660	
	(ft) N					End Loc.	(ft) Mi	39.000	
Start Loc.	(deg) (ft)	0.000	0.100	38.650		Start Loc.	(deg) (ft)	0.000	
Angle	(deg)	90.006	90.06	90.06	Load	Angle	(deg)	99.99	
Type		1 Distributed	2 Concentrated	3 Concentrated	Loading: Roof Live Load	Type		1 Distributed	

CFS Version 13.0.2 Analysis: Deck Pan Analysis with Snow LEFT SIDE cfsa Deck Pans with Snow	alysis with Sno	W LEFT SID	E.cfsa Mountai	rfsa Mountain View Engineering, Inc.	Page 2 CHRIS eering, Inc.
Rev, Date: 10/27/2023 10:49:47 AM By: CHRIS Printed: 10/27/2023 2:50:00 PM	10:49:47 AM				
Loading: Snow Load Type	Angle Sta	Start Loc.	End Loc.	Start	End Magazitado
1 Distributed	90.006		39.000	-0.024300	-0.024300 k/ft
Loading: Wind Load Type	Angle Sta (deg)	Start Loc. (ft)	End Loc.	Start Magnitude	End Magnitude
1 Distributed	270.000		39,000	0.048900	0.048900 k/ft
Load Combination: D Specification: AI Inflection Point Bra Loading 1 Beam Self Weight 2 Dead Load	D AISI S100-16/S1-18, Bracing: No Facto ght 1.00	S1-18, US, Factor 1.000 1.000	ASD		
d Combination: cification: lection Point B Loading Beam Self Weig	D+Lr AISI S100-16/S1-18, Bracing: No Factor Eht 1.000	S1-18, US, Factor 1.000	ASD		
2 Dead Load 3 Roof Live Load		1.000			
d Combination: cification: lection Point Loading Beam Self Wei	D+S AISI S100-16/S1-18, Bracing: No Facto	51-18, US, Factor 1.000	ASD		
2 Dead Load 3 Snow Load	,	1.000			
d Combination: cification: lection Point B Loading Beam Self Weig	D+0.6W AISI S100-16/S1-18, Bracing: No Factor ght 1.000	S1-18, US, Factor 1.000	ASD		
2 Dead Load 3 Wind Load		1.000			
Load Combination: D+0.75(0.6W+L+Lr) Specification: AISI S100-16/S1-18, Inflection Point Bracing: No Facto	D+0.75(0.6W+L AISI S100-16/ Bracing: No	+lr) S1-18, US, Factor	ASD		
Beam	ш.	1.000			
3 Live Load 4 Product Load 5 Roof Live Load		0.750 0.750 0.750			
6 Wind Load		0.450			

Page 4 CHRIS

Page 3 cfsa Maintain Viaw Engineering Inc	
CFS Version 13.0,2 Analysis: Deck Pan Analysis with Snow LEFT SIDE cfsa	3 10:49:47 AM

Printed: 10/27/2023 2:50:00 PM

Load Combination: D+0.75(0.6W+L+5)
Specification: AISI S100-16/S1-18, US, ASD
Inflection Point Bracing: No Factor
Loading Fame Self Weight 1.000
2 Dead Load 1.000
3 Live Load 0.750
4 Product Load 0.750
5 Snow Load 0.750
6 Wind Load 0.450

Load Combination: 0.6D+0.6W Specification: AISI S100-16/S1-18, US, ASD Inflection Point Bracing: No Factor 0.600 0.600 0.600 Loading 1 Beam Self Weight 2 Dead Load 3 Wind Load

Member Check - AISI S100-16/S1-18, US, ASD

	ft Lt 10.666 ft	Kt 1.0000		i		ey 0.0000	~	ft	My	(k-in) (k)	0.888 0.8888	0.000 0.0000	29,243 0,6701
83 ft, Left side	y 10.666 ft	y 1.8869		ade 40, Fy=40 ks	by 1.0000	Сту 1.0000	K¢ 0 K	m 20.000 ft	Mx Vy	(k-in) (k)	-6.547 -0.2998	-6.547 -0.2998	6.591 2.5934
Design Parameters at 13.583 ft, Left side:	10.666 ft Ly	1.0000 Ky	Section: Deck Pans.cfss	Material Type: A653 SS Grade 40, Fy=40 ksi	1.2472 C	1.0000 C	Braced Flange: None k	or, R: 0 L	۵	(k)		- 00000	2.9304
Design Par	LX	××	Section: [Material	Cbx	Cmx	Braced Fl	Red. Factor, R: 0	Loads:		Total	Applied	Strength

Interaction Equations eq. (9.99 + 0.993 + 0.000 = 0.993 <= 1.0 Eq. H1.2-1 (P, Mx, My) 8.000 + 0.993 + 0.013) = 1.000 <= 1.0 Eq. H2-1 (Mx, Vy) Sqrt(0.987 + 0.013) = 1.000 <= 1.0 Eq. H2-1 (My, Vx) Sqrt(0.000 + 0.000) = 0.000 <= 1.0

WI FET SIDE cfsa	Mountain View Engineering,	
Analysis: Deck Pan Analysis with Snow I FET SIDE cfsa	Deck Pans with Snow	Rev. Date: 10/27/2023 10:49:47 AM

CFS Version 13.0.2

By: CHRIS Printed: 10/27/2023 2:50:00 PM

Maximum Shears, Moments, and Deflections

rection	Reaction (K) 0.41918 0.58134 0.53859	Deflection (in) 0.08898 -0.19826 0.00201 -0.1174 0.01105
itions, Y Di	Shear(r) (k) 0.24908 0.28158 0.27126	Location (ft) 0.000 7.880 13.929 19.067 29.522 33.022 39.000
All Combinations, Y Direction	Shear(1) (k) -0.17010 -0.29977 -0.26732	Moment (k-in) -3.3832 3.9387 -6.5472 2.6974 -5.6351 2.9448
Envelope of	Location (ft) 2.917 13.583 24.250 34.917	Location (ft) 2.917 7.757 7.757 13.583 19.055 24.265 24.265 29.522 34.917

STRUCTURAL NOTES: A. GENERAL The contractor shall verify all conditions and dimensions at the site. Observation visits to the site by the design engineer shall neither be construed as inspection nor approval of construction. During and after construction, builder and/or owner shall keep loads on the structure within limits of design loads. Typical details shall apply where specific details are not shown.

4. Typical details shall apply where specific details are not shown.

5. These drawing are for use in construction of a single canopy (U.N.O.) with materials provided and fabricated by BESTWORTH ROMMEL LLC only. Use by another canopy manufacturer will invalidate MVE's

C. FOUNDATION — BY OTHERS
D. CONCRETE AND REINFORCEMENT — BY OTHERS

Response Modification Factor R 1.25

1. Concrete Foundations — f'c=5000 p.s.i. min. 1

2. Grout under steel base plates shall be non—shrink grout complying with ASTM C1107, f'c=5000 p.s.i., and installed per manufacturer's recommendations. Special inspection required.

E. STRUCTURAL STEEL
1. Structural steel shall be fabricated and erected in accordance with the latest edition of the following:
a. AISC 360 "Specifications for the Design Fabrication and Erection of

Structural Steel Buildings."

b. AISC 303 "Code of Standard Practice" excluding the following sections: 4.4, 4.4.1, 4.4.2, and 7.15.

c. AISI S100 "North American Specification for the Design of Cold—formed Steel Structural Members."

 Structural steel shall conform to ASTM A36 for channels, plates, and angles, ASTM A500 grade C for HSS (46 k.s.i. min. pipes and 50 k.s.i. min. for squares and rectangles), and ASTM A992 grade 50 for all beams and purlins.

3. All welding shall be performed by certified welders in accordance with the American Welding Society using E-70xx electrodes.
4. On all bolted connections, use ASTM A307 bolts unless otherwise

specified (no special inspection required).

5. Metal roof deck shall be 20 ga. ASTM A653 grade 40. All other cold form steel members shall be ASTM A653 grade 33.

6. All exposed structural steel shall be primed with rust—inhibitive steel primer paint. All welds and other exposed areas shall be primed with prime coat after fabrication. Sheet metal components are either aalvanized or factory pre—finished baked—on enamel.

F. SPECIAL INSPECTION REQUIREMENTS

1. Special inspection shall be provided by owner according to Chapter 17 of the OSSC. The special inspector shall observe the work for conformance with the contract documents. The special inspector shall send reports to the owner, building official, architect, engineer and contractor. All discrepancies shall be brought to the attention of the contractor for correction. The special inspector shall submit a final signed report stating that the special inspection work was, to the best of his/her knowledge, in conformance with the plans specifications and applicable workmanship provision of the OSSC.

2. Continuous special inspection means the full—time observation of work requiring special inspection by an approved special inspector who is present in the area where the work is being performed. Periodic special inspection means the part—time or intermittent observation of work requiring special inspection by an approved special inspector who is present in the area where the work has been or is being performed and at the completion of the work.

The following systems are subject to the special inspection requirements noted herein:
 a. The Seismic-Force-Resisting System including:

a. The Seismic-Force-Resisting System including:
i. Columns
ii. Column Base Connection
v. Beams
iii. Footings

 Special inspection is required for the following work. All inspections to be continuous unless noted otherwise:

 Welding — See Table 1 at right for inspection requirements. Special inspection is not required where welding is performed in an approved fabricator shop as per OSSC 1705.2.

b. Bolting — See Table 2 for inspection requirements.
c. Cold Formed Steel Deck (OSSC 1705.2.2) — N.A..
d. Other Steel Elements — See Table 3 for inspection requirements.

e. Concrete Construction (OSSC 1705.3)
i. Special inspection for concrete foundations will be determined by the foundation designer (not MVE).

ii. Special inspection of non shrink grout required as per Table 5.
iii. Special inspection of anchor rods required as per Table 5.
f. Masonry Construction (OSSC 1705.4) - N.A.
g. Wood Construction (OSSC 1705.5) - N.A.

h. Soils (OSSC 1705.6) — See Table 4 for inspection requirements. j. Driven Deep Foundations (OSSC 1705.7) — N.A. k. Cast—in—place Deep Foundations (OSSC 1705.8) — N.A.

m. Helical Pile Foundations (OSSC 1705.9) — N.A.

n. Special Inspections for Wind Resistance (OSSC 1705.11) - N.A. (V_{asd} < 110 mph)
 p. Special Inspections for Seismic Resistance (OSSC 1705.12) - See

p. Special Inspections for Seismic Resistance (OSSC 1705.12) — See
Tables, 1, 2, and 3 for inspection requirements.

5. Special inspector must be qualified as required by OSSC 1704.2.1 and

approved by the local building department.

6. Structural Observations: None Required

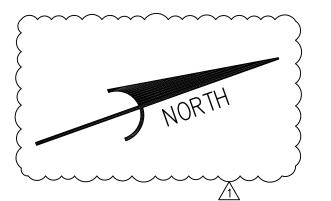

T1515 /	NODEST	ON 711	CVC FOR WELDING
TABLE 1 –			SKS FOR WELDING
VERIFICATION AND INSPECTION TASK	CONTINUOUS	PERIODIC	DETAILED INSTRUCTIONS
1. PRIOR TO WELDING (TABLE N5.4-1, AISC 360-16	6): -		
Verify welder qualification records and continuity records	Х	-	
b. WPS available	Х	-	
c. Manufacturer certifications for welding consumables available	Х	-	
d. Material identification	_	Х	Verify type and grade of material.
e. Welder identification system	-	Х	A system shall be maintained by which a welder who welded a joint or member can be identified.
f. Fit-up of groove welds	-	Х	Verify joint preparation, dimensions, cleanliness, tacking and backing.
g. Fit—up of CJP groove welds of HSS T—, Y—, and K—joints without backing	X	-	Verify joint preparation, dimensions, cleanliness, and tacking.
h. Access holes	-	Х	Verify configuration and finish.
j. Fit-up of fillet welds	_	Х	Verify alignment, gaps at root, cleanliness of steel surfaces, and tack weld quality and location.
k. Check welding equipment	_	Х	
2. DURING WELDING (TABLE N5.4-2, AISC 360-16):	:		
a. Control and handling of welding consumables	-	Х	Verify packaging and exposure control.
b. Cracked tack welds		Х	Verify welding does not occur over cracked tack welds
c. Environmental conditions		Х	Verify wind speed is within limits as well as precipitati and temperature.
d. WPS followed	-	Х	Verify items such as settings on welding equipment, to speed, welding materials, shielding gas type/flow rate, preheat applied, interpass temperature maintained, and proper position.
e. Welding techniques		Х	Verify interpass and final cleaning, each pass is within profile limitations, and quality of each pass.
f. Steel headed stud anchors	Х	_	Verify placement and installation.
3. AFTER WELDING (TABLE N5.4-3, AISC 360-16):			
a. Welds cleaned	-	Х	Verify that welds have been properly cleaned.
b. Size, length, and location of welds	Х	-	
c. Welds meet visual acceptance criteria	Х	-	
d. Arc strikes	Х	-	
e. k-area	Х	-	
f. Backing & weld tabs removed	Х	-	
g. Repair activities	Х	-	
h. Document acceptance or rejection of welded joint/member	Х	-	
4. NONDESTRUCTIVE TESTING (SECTION N5.5, AISC	360-16, SECTI	ON J6.2 A	NSC 314–16):
a. CJP welds (Risk Cat. II)	-	Х	Ultrasonic testing shall be performed on 10% of CJP groove welds in butt, T-, and corner joints subject to transversely applied tension loading in materials 5/16 thick or greater. Testing rate must be increased to 10 if > 5% of welds tested have unacceptable defects.

TABLE 2 - INSPECTION TASKS FOR BOLTING								
CONTINUOUS	PERIODIC	DETAILED INSTRUCTIONS						
1. PRIOR TO BOLTING (TABLE N5.6-1, AISC 360-16): Not required, only snug-tight joints are specified [per Section N5.6(a) of AISC 360-16].								
2. DURING BOLTING (TABLE N5.6-2, AISC 360-16): Not required, only snug-tight joints are specified [per Section N5.6(a) of AISC 360-16].								
3. AFTER BOLTING (TABLE N5.6–3, AISC 360–16):								
a. Document acceptance or rejection of bolted connections								
	CONTINUOUS 6): ed [per Section ed [per Section	CONTINUOUS PERIODIC 6): ed [per Section N5.6(a) : ed [per Section N5.6(a)						

TABLE 3 – IN	SPECTION	TASKS	FOR OTHER STEEL ELEMENTS
TYPE	CONTINUOUS	PERIODIC	DETAILED INSTRUCTIONS
4. OTHER STEEL INSPECTIONS (SECTION N5.8	B, AISC 360-1	6; Tables	J8-1 & J10-1, AISC 341-16):
a. Structural steel details	I	Х	All fabricated steel or steel frames shall be inspected to verify compliance with the details in the construction documents, such as braces, stiffeners, member locations, and proper application of joint details at each connection.
b. Anchor rods and other embedments supporting structural steel	-	X	Shall be on the premises during the placement of anchor rods and other embedments supporting structural steel for compliance with construction documents. Verify the diameter, grade, type, and length of the anchor rod or embedded item, and the extent or depth of embedment prior to placement of concrete.

			ONS AND TESTS OF CONCRETE (ABLE 1705.3)				
TYPE	CONTINUOUS	PERIODIC	DETAILED INSTRUCTIONS				
1. Inspect reinforcement and verify placement.	-	X	Verify prior to placing concrete that reinforcing is of specified type, grade and size; that it is free of oil, dirt and rust; that it is located and spaced properly; that hooks, bends, ties, stirrups and supplemental reinforcement are placed correctly; that lap lengths, stagger and offsets are provided; and that all mechanica connections are installed per the manufacturer's instructions and/or evaluation report. ACI 318: Ch. 20, 25.2, 25.3, 26.6.1—26.6.3, OSSC 1908.4				
2. Welding of reinforcing steel (AWS D1.4, ACI 318: 26.6.4) - N.A.							
3. Anchors & embeds cast in concrete	-	Х	Verify anchor rods and embed plates are of specified type grade, and size. Verify anchor rod placement and embedment. All anchor rods and embed plates shall be tied in place and secured prior to placing concrete, no "wet—setting" allowed. ACI 318: 17.8.2				
4. Anchors post-installed in hardened concrete m	embers						
 a. Adhesive anchors installed horizontally or vertically to resist sustained tension loads. 	Х	-	All post—installed anchors shall be specially inspected as required by the approved ICC—ES report. ACI 318: 17.8.2				
b. Mechanincal anchors and adhesive anchors not defined in 4.a.	-	Х	All post—installed anchors shall be specially inspected as required by the approved ICC—ES report. ACI 318: 17.8.2				
5. Verify use of required design mix.	-	х	Verify that all mixes used comply with the approved construction documents; ACI 318: Ch. 19, 26.4.3, 26.4.4 and OSSC 1904.1, 1904.2, 1908.2, 1908.3.				
6. Prior to placement, fabricate specimens for strength tests, perform slump & air content test, and determine concrete temperature.	х	-	ASTM C172, ASTM C31, ACI 318: 26.4, 26.12, OSSC 1908.10				
7. Inspect concrete placement for proper application techniques.	Х	-	ACI 318: 26.5, OSSC 1908.6, 1908.7, 1908.8				

NOTE: THE BASE OF THE COLUMN, BASE PLATE,
AND ANCHOR RODS SHALL BE COATED IN
GALVANIZING PAINT 2.0-3.0 MILS THICK,
INSTALLED IN ACCORDANCE WITH THE
MANUFACTURER'S RECOMMENDATIONS, IN ORDER
TO PROTECT THE CONNECTION FROM CORROSION.

• ???# FROM PIPE SUPPORTS. SUM OF ALL LOADS IS 3400 LBS.

NOTE: THE CANOPY FASCIA IS REYNOBOND
ALUMINUM COMPOSITE MATERIAL (ACM)
AND HAS BEEN TESTED IN ACCORDANCE
WITH ASTM E84 AND D1929:
Thickness: 3 mm
Flame Spread Index: 0

Minimum Self-Ignition Temp.: 650°

Smoke Developed Index:

SEISMIC FORCE RESISTING SYSTEM (SFRS) INFO

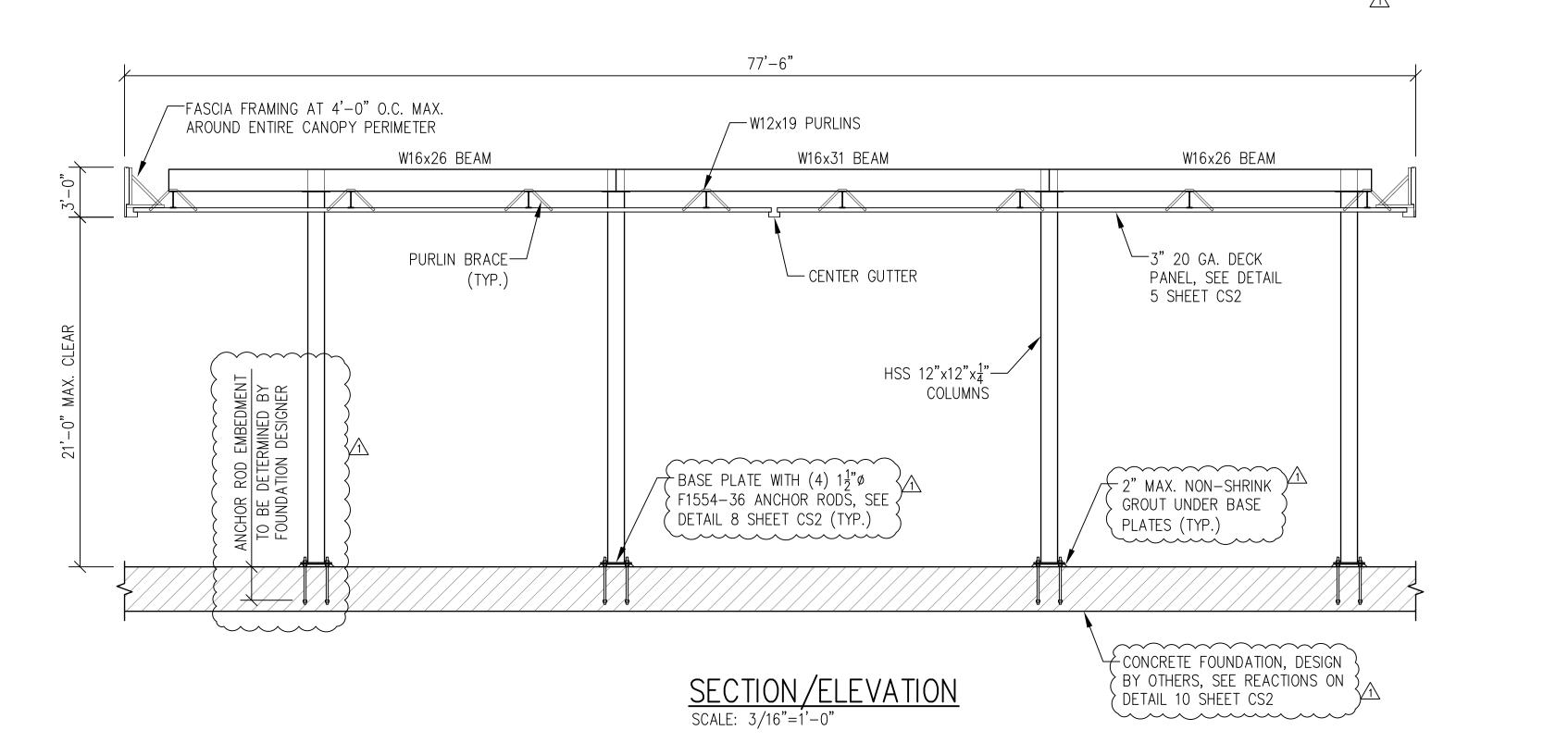
A. Refer to AISC 341-16 Section A4 and ASCE 7-16.
B. Designation of the SFRS: G.2. Steel ordinary cantilever column systems (ASCE 7-16 Table 12.2-1) See AISC 341-16 Section E5 (OCCS).

C. R = 1.25, Cs = 0.81
D. Analysis Procedure = Equivalent Lateral Force
E. Members and Connections that are part of the SFRS:

a. Columnsb. Column Base Connectionc. Footingsd. Purlinse. Beams

F. Protected Zones — N.A.
G. See details and notes for connection configurations,


material specifications, and sizes.


H. Weld filler materials for welds part of the SFRS:

a. Yield Strength = 58 ksi min.
b. Tensile Strength = 70 ksi min.

c. Elongation = 22% min.
d. CVN Toughness = 20 ft-lb min. @ 0° F
See details and notes for other welding requirements.

J. Demand Critical Welds — N.A. K. Lowest Anticipated Service Temperature — 0° F

TANK CANOPY
PORTLAND INTERNATIONAL AIRPORT
5000 NE MARINE DRIVE
PORTLAND, OREGON
BESTWORTH ROMMEL LLC

PORTION: 5000 PORTION: 5000 PORTION: PO

GINEERING, INC.

Consulting

Consulting

Design

Consulting

Design

Consulting

Design

Consulting

Design

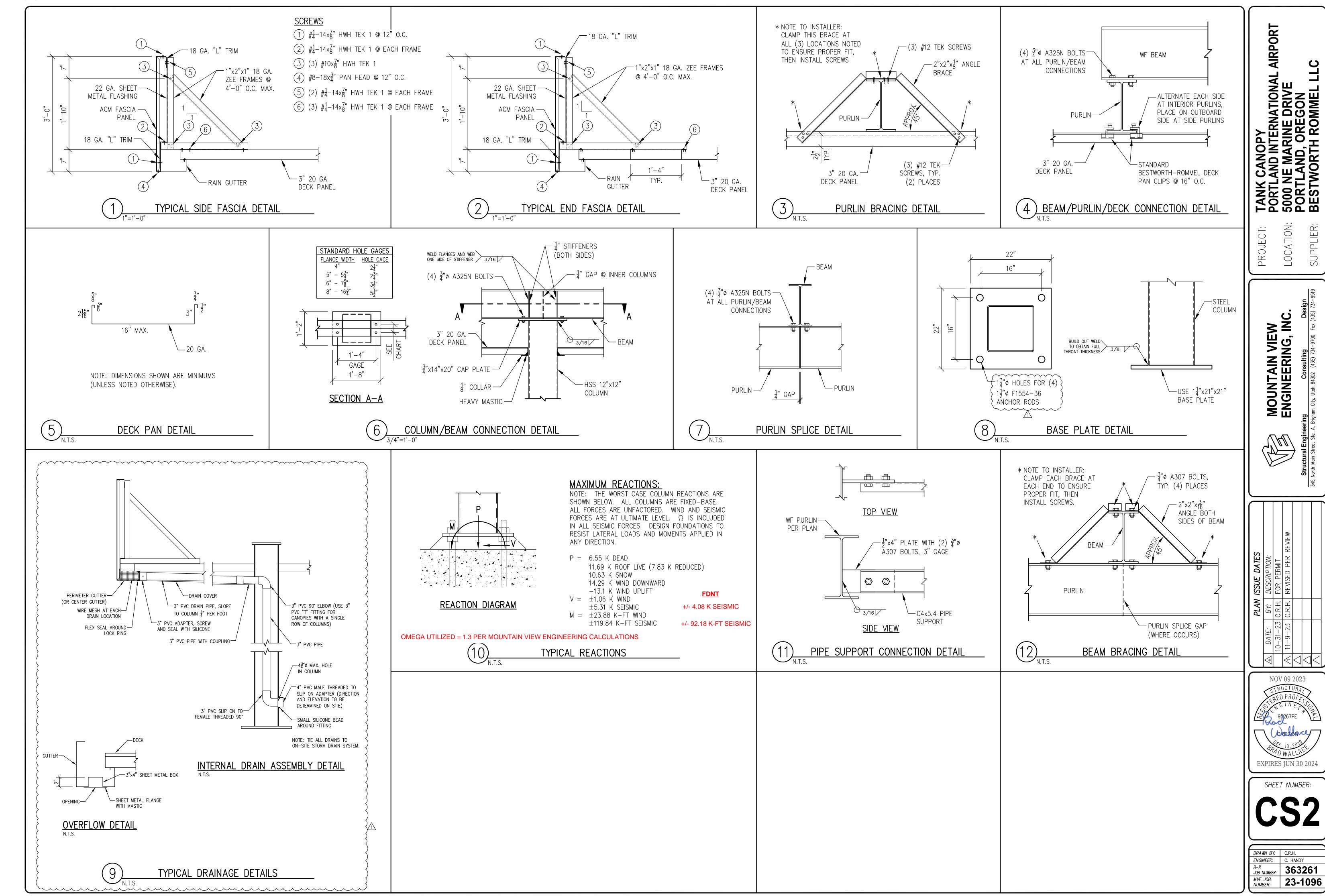
MOUNT ENGINE Structural Engineering

 PLAN ISSUE DATES

 △ DATE: BY: DESCRIPTION:

 10-31-23 C.R.H. FOR PERMIT

 △ 11-9-23 C.R.H. REVISED PER REVIEW


SHEET NUMBER:

 DRAWN BY:
 C.R.H.

 ENGINEER:
 C. HANDY

 B-R
 363261

 MVE JOB
 23-1096

