

Aquatic Life Toxics Criteria Rulemaking 2024

The concentration for each compound listed in Table 30 is a criterion established for waters of the state in order to protect aquatic life. The aquatic life criteria apply to waterbodies where the protection of fish and aquatic life is a designated use. All values are expressed as micrograms per liter (μ g/L). Compounds are listed in alphabetical order with the corresponding information: the Chemical Abstract Service (CAS) number, whether there is a human health criterion for the pollutant (i.e. "y"= yes, "n" = no), and the associated aquatic life freshwater and saltwater acute and chronic criteria. *Italicized* pollutants are not identified as priority pollutants by EPA. Dashes in the table column indicate that there is no aquatic life criterion.

Unless otherwise noted in the table below, the acute criterion is the Criterion Maximum Concentration (CMC) applied as a one-hour average concentration, and the chronic criterion is the Criterion Continuous Concentration (CCC) applied as a 96-hour (4 days) average concentration. The CMC and CCC criteria may not be exceeded more than once every three years. Footnote A, associated with eleven pesticide pollutants in Table 30, describes the exception to the frequency and duration of the toxics criteria stated in this paragraph.

	DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants							
	·		Freshwater (μg/L)		Saltwater (μg/L)			
Ν	ło.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)
	<u>1</u>	<u>Acrolein</u>	<u>107028</u>	У	<u>3.0</u>	<u>3.0</u>		=
Δ	IOTE	E: These acrolein crit	eria are not e	effective for C	lean Water Act <u>p</u>	purposes until a	pproved by EPA	<u>-</u>
	<u>2</u> 1	Aldrin	309002	у	3 ^A		1.3 ^A	
A	See	expanded endnote A	at bottom of	Table 30 for a	alternate frequen	ncy and duration	n of this criterion	
	<u>3</u> 2	Alkalinity		n		20,000 в		

	DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants								
				Fresh (µg			twater lg/L)		
No.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)		
^B Criterion shown is the minimum (i.e. CCC in water may not be below this value in order to protect aquatic life).									
throug desigr necess	gh OAR 340-041-034 nated use. The chroni sary to account for th	0. The acute ic criteria in 1 ne presence of	criteria in Ta Table 30(c) a r absence of s				ad salinity ues for saltwater ummonia) can be in the tables abient Water a for Ammonia 989 -004) lculator for twater ammonia <i>t.state.or.us/wq/st</i> .htm AR 340-041-0101 are not a use. It is not of fish for the		
	ic criteria. Refer to L onal information on .			·	·	·	ses.htm for		
<u>5</u>	<u>Aluminum</u>	<u>7429905</u>	<u>n</u>	<u>See O, P</u>	<u>See O, P</u>	=			
water using softwo Alumi Alumi	freshwater criterion column. Acute (CMC the 2018 Aluminum tre package using the num Criteria Calcula num (EPA 822-R-18	C) and chroni Criteria Calc e same 1985 (ator V.2.0.xls)	c (CCC) fress ulator (Alumi Guidelines ca x, as defined	hwater aluminun inum Criteria Ca lculation approa in EPA's Final A	n criteria values Aculator V.2.0.x Ach and underly Aquatic Life Am	: for a site shall l :lsx), or a calcula ing model equati bient Water Qua	be calculated ator in R or other ons as in the lity Criteria for		
	num (EPA 822-K-18) nation.	-001) ana rej	erencea ai lhi	i i i i i i i i i i i i i i i i i i i	e 50. see also el	unoie O jor pro	<u>ceuures unu</u>		

	DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants						
	No. Pollutant Number		Fresh (µg			twater Ig/L)	
No.		Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)	
<u>alumi</u> <u>NOTI</u>	^P For characterizing ambient waters, Oregon will use analytical methods that measure the bioavailable fraction of aluminum. Oregon will measure total recoverable aluminum where required by Federal regulations. NOTE: These aluminum criteria are not effective for Clean Water Act purposes until approved by EPA. However, this is a federally promulgated aluminum criterion currently effective in Oregon.						
<u>6</u> 4	Arsenic	7440382	у	340 ^{с, d}	150 С, р	69 ^{C, D}	₃₆ с, р
	⁻ ^C Criterion is expressed in terms of "dissolved" concentrations in the water column. ^D Criterion is applied as total inorganic arsenic (i.e. arsenic (III) + arsenic (V)).						
<u>7</u> 5	BHC Gamma (Lindane)	58899	у	0.95	0.08 A	0.16 ^A	
^A See	expanded endnote A	at bottom of	Table 30 for a	alternate frequen	ncy and duration	n of this criterion	l.
<u>8</u> 6	Cadmium	7440439	n	See <u>C, F</u> E	See C, F	<u>33</u> 40 °C	<u>7.9<mark>8.8</mark></u> C
E <u>The</u> the wo	 ^C Criterion is expressed in terms of "dissolved" concentrations in the water column. ^E The freshwater criterion for this metal is expressed as "total recoverable" and is a function of hardness (mg/L) in the water column. To calculate the criterion, use formula under expanded endnote E at bottom of Table 30. ^F The freshwater criterion for this metal is expressed as a function of hardness (mg/L) in the water column. To calculate the criterion, use formula under expanded endnote E at bottom of Table 30. 						
Act pt	E: The freshwater acu urposes until approve ion currently effective	ed by EPA. H					
<u>9</u>	<u>Carbaryl</u>	<u>63252</u>	<u>n</u>	<u>2.1</u>	2.1	<u>1.6</u>	=
NOTE	E: These carbaryl crit	teria are not o	effective for C	Clean Water Act	<u>purposes until a</u>	pproved by EPA	<u>.</u>
<u>10</u> 7	Chlordane	57749	У	2.4 ^A	0.0043 ^A	0.09 ^A	0.004 ^A
	expanded endnote A	5	Table 30 for a			n of this criterion	2.
<u>11</u> 8	Chloride	16887006	n	860,000	230,000		
<u>12</u> 9	Chlorine	7782505	n	19	11	13	7.5

	DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants								
				Fresh µg			water g/L)		
No.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)		
<u>13</u> 4 0	Chlorpyrifos	2921882	n	0.083	0.041	0.011	0.0056		
<u>14</u> 4 4	Chromium III	16065831	n	See C, F	See C, F				
calcu <u>15</u> 4 2	e freshwater criterior late the criterion, use Chromium VI	e formula und 18540299	er expanded on n			,	50 [°]		
^C Crit	terion is expressed in	terms of "dis	solved" conc	entrations in the	water column.				
<u>16</u> 4 3	Copper	7440508	У	eentrations in the See C, N	See C, N	4.8 ^C	_{3.1} c		
164 3 C Crit N The tempe the bo chron and in [Note revise		7440508 terms of "dis for copper is column. To ca ce acute coppo capplied as a Quality Com	y ssolved" conc a function of lculate the cr er criterion (C 96 hour (4 de umission adop	See C, N rentrations in the ⁶ the concentratic iterion, use the B CMC) is applied ays) average con	See C, N water column. on of ions, alkal Biotic Ligand M as a one-hour a centration. See l copper criteria	inity, organic car odel referenced i verage concentra endnote N also f 1 on 11/02/2016.	bon, pH and n endnote N at ation. The for procedures However, the		
164 3 Crit N The tempe the bo chron and in Chrone Prote	Copper terion is expressed in freshwater criterion erature in the water c ottom of Table 30. Th tic criterion (CCC) is nformation. et criteria become efj	7440508 terms of "dis for copper is column. To ca ce acute coppo capplied as a Quality Com	y ssolved" conc a function of lculate the cr er criterion (C 96 hour (4 de umission adop	See C, N rentrations in the ⁶ the concentratic iterion, use the B CMC) is applied ays) average con	See C, N water column. on of ions, alkal Biotic Ligand M as a one-hour a centration. See l copper criteria	inity, organic car odel referenced i verage concentra endnote N also f 1 on 11/02/2016.	bon, pH and n endnote N at ation. The for procedures However, the		
164 3 C Crit N The tempe the bo chron and in [Note Prote 174	Copper terion is expressed in freshwater criterion erature in the water c ottom of Table 30. Th nic criterion (CCC) is nformation. the Environmental ed criteria become effort ection Agency.]	7440508 terms of "dis for copper is column. To ca cacute copper capplied as a Quality Com fective for fea	y ssolved" conc a function of lculate the cr er criterion (C 96 hour (4 d mission adop leral Clean W	See C, N eentrations in the ^c the concentratic iterion, use the E CMC) is applied ays) average con eted these revised ater Act purpose	See C , N e water column. on of ions, alkal Biotic Ligand M as a one-hour a peentration. See I copper criteria es upon approva	inity, organic car odel referenced i verage concentra endnote N also f on 11/02/2016. to the U.S. Env 1 J	bon, pH and n endnote N at ation. The for procedures However, the		

		DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants							
					Fresh (μg			twater Ig/L)	
	No.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)	
	^A See expanded endnote A at bottom of Table 30 for alternate frequency and duration of this criterion. ^G This criterion applies to DDT and its metabolites (i.e. the total concentration of DDT and its metabolites should not exceed this value).								
	<u>19</u> 1 6	Demeton	8065483	n		0.1		0.1	
	<u>20</u>	<u>Diazinon</u>	<u>333415</u>	<u>n</u>	<u>0.17</u>	<u>0.17</u>	<u>0.82</u>	<u>0.82</u>	
;	NOTE: These diazinon criteria are not effective for Clean Water Act purposes until approved by EPA.								
I	<u>21</u> 1 7	Dieldrin	60571	у	0.24	0.056	0.71 ^A	0.0019 ^A	
	⁴ See	expanded endnote A	at bottom of	Table 30 for a	alternate frequen	ncy and duration	n of this criterion	l.	
	<u>22</u> + 8	Endosulfan	115297	n	0.22 ^A , H	0.056 ^A , H	0.034 ^{А, Н}	0.0087 ^{A, H}	
	^H This	expanded endnote A value is based on the hould be applied as th	e criterion pu	blished in An	nbient Water Qu	•	•		
	<u>23</u> 1 9	Endosulfan Alpha	959988	у	0.22 ^A	0.056 ^A	0.034 ^A	0.0087 ^A	
	⁴ See	expanded endnote A	at bottom of	Table 30 for a	alternate frequen	ncy and duration	n of this criterion	l.	
	<u>24</u> 2 0	Endosulfan Beta	33213659	У	0.22 ^A	0.056 ^A	0.034 ^A	0.0087 ^A	
	^A See expanded endnote A at bottom of Table 30 for alternate frequency and duration of this criterion.								
	<u>25</u> 2 1	Endrin	72208	У	0.086	0.036	0.037 ^A	0.0023 ^A	
	⁴ See	expanded endnote A	at bottom of	Table 30 for a	alternate frequer	ncy and duration	n of this criterion	l.	
	<u>26</u> 2 2	Guthion	86500	n		0.01		0.01	

DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants								
				Fresh ^v (µg			water g/L)	
No.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)	
2 <u>7</u> 2 3	Heptachlor	76448	У	0.52 ^A	0.0038 ^A	0.053 ^A	0.0036 ^A	
See	expanded endnote A	at bottom of	Table 30 for a	alternate frequen	cy and duration	n of this criterion.		
<u>28</u> 2 4	Heptachlor Epoxide	1024573	у	0.52 ^A	0.0038 ^A	0.053 ^A	0.0036 ^A	
¹ See	expanded endnote A	at bottom of	Table 30 for a	alternate frequen	cy and duration	n of this criterion.		
<u>29</u> 2 5	Iron (total)	7439896	n	Ţ	1000			
<u>30</u> 2 6	Lead	7439921	n	See C , F	See C, F	210 ^C	8.1 ^C	
The	terion is expressed in freshwater criterion late the criterion, us Malathion	for this meta	l is expressed	as a function of	hardness (mg/L		umn. To	
$\frac{512}{7}$	Walathon	121755			0.1		0.1	
<u>32</u> 2 8	Mercury (total)	7439976	n	2.4	0.012	2.1	0.025	
<u>33</u> 2 9	Methoxychlor	72435	у		0.03		0.03	
<u>34</u> 3 θ	Mirex	2385855	n		0.001		0.001	
<u>35</u> 3 1	Nickel	7440020	у	See C , F	See C ,F	74 ^C	8.2 ^C	

^F The freshwater criterion for this metal is expressed as a function of hardness (mg/L) in the water column. To calculate the criterion, use formula under expanded endnote F at bottom of Table 30.

	DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants							
				Fresh (µg			water g/L)	
No.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)	
<u>36</u> 3 2	Parathion	56382	n	0.065	0.013	-		
<u>37</u> 3 3	Pentachlorophe nol	87865	у	See I	See I	13	7.9	
	hwater aquatic life v vs: CMC=(exp(1.005	• •	-	-		f pH, and are cal	culated as	
<u>38</u> 3 4	Phosphorus Elemental	7723140	n	-	-		0.1	
<u>39</u> 3 5	Polychlorinated Biphenyls (PCBs)	NA	у	2К	0.014 к	10 ^K	0.03 ^к	
^K This	s criterion applies to	total PCBs (e	e.g. determine	d as Aroclors or	congeners)			
<u>40</u> 3 6	Selenium	7782492	у	See C , L	4.6 [°]	290 ^C	71 ^c	
^L The treate	^C Criterion is expressed in terms of "dissolved" concentrations in the water column. ^L The CMC=(1/[(f1/CMC1)+(f2/CMC2)]µg/L) * CF where f1 and f2 are the fractions of total selenium that are treated as selenite and selenate, respectively, and CMC1 and CMC2 are 185.9 µg/L and 12.82 µg/L, respectively. See expanded endnote F for the Conversion Factor (CF) for selenium.							
<u>41</u> 3 7	Silver	7440224	n	See C , F	0.10 [°]	1.9 ^C		
^F The	terion is expressed in freshwater acute cri late the criterion, use	terion for this	s metal is exp	ressed as a funci	tion of hardness		ater column. To	
<u>42</u> 3 8	Sulfide Hydrogen Sulfide	7783064	n		2		2	

	DISCUSSION DRAFT OAR 340-041-8033 Table 30 Aquatic Life Water Quality Criteria for Toxic Pollutants								
				Fresh (µg			water g/L)		
No.	Pollutant	CAS Number	Human Health Criterion	Acute Criterion (CMC)	Chronic Criterion (CCC)	Acute Criterion (CMC)	Chronic Criterion (CCC)		
<u>43</u> 3 9	Toxaphene	8001352	у	0.73	0.0002	0.21	0.0002		
<u>44</u> 4 0	Tributyltin (TBT)	688733	n	0.46	<u>0.072</u> 0.063	<u>0.42</u> 0.37	<u>0.0074 </u>		
<u>NOTE: The freshwater chronic and both saltwater criteria for tributyltin are not effective for Clean Water Act</u> purposes until approved by EPA. The acute criterion is not changing and is effective.									
<u>45</u> 4 <u>1</u>	Zinc	7440666	у	See C , F	See C , F	90 c	81 ^C		
^F The	terion is expressed in freshwater criterion	for this meta	l is expressed	as a function of	hardness (mg/L		lumn. To		

calculate the criterion, use formula under expanded endnote F at bottom of Table 30.

Expanded Endnotes A, E, F, N, O

Endnote A: Alternate Frequency and Duration for Certain Pesticides

This criterion is based on EPA recommendations issued in 1980 that were derived using guidelines that differed from EPA's 1985 Guidelines which update minimum data requirements and derivation procedures. The CMC may not be exceeded at any time and the CCC may not be exceeded based on a 24-hour average. The CMC may be applied using a one hour averaging period not to be exceeded more than once every three years, if the CMC values given in Table 30 are divided by 2 to obtain a value that is more comparable to a CMC derived using the 1985 Guidelines.

Endnote E: Equation for Hardness-Dependent Freshwater Cadmium Acute Criteria

The freshwater criterion for this metal is expressed as total recoverable with two significant figures, and is a function of hardness (mg/L) in the water column. Criteria values based on hardness are calculated using the following formula (CMC refers to the acute criterion):

Chemical	₩A	₽A	mc	bc
Cadmium	1.128	-3.828	N/A	N/A

 $CMC = (exp(m_A * [ln(hardness)] + b_A))$

Endnote F: Equations for Hardness-Dependent Freshwater Metals Criteria and Conversion Factor Table

The freshwater criterion for this metal is expressed as dissolved with two significant figures, and is a function of hardness (mg/L) in the water column. Criteria values based on hardness are calculated using the following formulas (CMC refers to the acute criterion; CCC refers to the chronic criterion):

 $CMC = (exp(m_A*[ln(hardness)] + b_A))*CF$

 $\mathbf{CCC} = (\exp(\mathbf{m}_{C} * [\ln(\text{hardness})] + \mathbf{b}_{C})) * CF$

"CF" is the conversion factor used for converting a metal criterion expressed as the total recoverable fraction in the water column to a criterion expressed as the dissolved fraction in the water column.

Values for Calculating Hardness-Dependent Metals Criteria					
Chemical	m _A	b _A	mc	bc	
Cadmium	<u>-N/A</u> 0.9789	<u>-3.866 N/A</u>	0.7409	-4.719	
Chromium III	0.8190	3.7256	0.8190	0.6848	
Lead	1.273	-1.460	1.273	-4.705	
Nickel	0.8460	2.255	0.8460	0.0584	
Silver	1.72	-6.59			
Zinc	0.8473	0.884	0.8473	0.884	

The conversion factors (CF) below must be used in the equations above for the hardness-dependent metals in order to convert total recoverable metals criteria to dissolved metals criteria. For metals that are not hardness-dependent (i.e. arsenic, chromium VI, selenium, and silver (chronic)), or are saltwater criteria, the criterion value associated with the metal in Table 30 already reflects a dissolved criterion based on its conversion factor below.

C	Conversion Factor (CF	F) Table for Dissolved	d Metals	
Chemical	Fresh	Saltwater		
Chemical	Acute	Chronic	Acute	Chronic
Arsenic	1.000	1.000	1.000	1.000
Cadmium	<u>1.136672-[(ln</u> hardness)(0.041838)] N/ A	1.101672-[(ln hardness)(0.041838)]	0.994	0.994
Chromium III	0.316	0.860		
Chromium VI	0.982	0.962	0.993	0.993
Copper	N/A	N/A	0.83	0.83
Lead	1.46203-[(ln hardness)(0.145712)]	1.46203-[(ln hardness)(0.145712)]	0.951	0.951
Nickel	0.998	0.997	0.990	0.990
Selenium	0.996	0.922	0.998	0.998
Silver	0.85	0.85	0.85	
Zinc	0.978	0.986	0.946	0.946

Endnote N: Deriving freshwater copper criteria.

The freshwater copper criteria at any time are the Biotic Ligand Model (BLM) derived Instantaneous Water Quality Criteria (IWQC) output based on a concurrently measured set of model input parameter values. The Biotic Ligand Model uses multiple ambient water quality parameters to derive 1-hour acute exposure (CMC) and 96-hour chronic exposure (CCC) water quality criteria (IWQC) for copper based on the site specific water chemistry that determines the toxicity of copper to aquatic life. If measured data for one or more of the model input parameters used to derive the acute and chronic IWQC is not available, the procedures in section (1) or (2) of this endnote will be used as specified to substitute an estimate or a default value for the missing input parameter. BLM results (IWQC) based on sufficient measured input parameter data are more accurate and supersede results based on estimates or default values. The acceptable BLM software to calculate the IWQC include version 2.2.3, referenced in "Aquatic Life Ambient Freshwater Quality Criteria – Copper": EPA-822-R-07-001, February 2007, and version 2.2.4. The criteria are expressed as dissolved copper in micrograms per liter (to the nearest one-tenth).

(1) Input Parameter Substitution and Estimation Procedures to Derive BLM Criteria (IWQC)

If the measured value for any input parameter needed to derive an IWQC using the BLM is not available, DEQ will substitute an estimated input parameter value according to the procedures described in this section [Endnote N (1)]. If the data required to determine the estimated parameter value is not available, DEQ will use default values derived according to the procedures in Endnote N (2).

(a) Total recoverable concentration measurements will be substituted for dissolved concentration measurements that are not available. For alkalinity, calcium, chloride, magnesium, potassium, sodium and sulfate, total recoverable concentration measurements will be used as a direct substitute for dissolved concentration measurements. Total organic carbon (TOC) measurements will be multiplied by 0.83 to convert the TOC value to an equivalent dissolved organic carbon (DOC) value; except where sufficient TOC and DOC data are available for a site, DEQ will calculate and apply a site-specific translator in place of 0.83 to convert TOC values to DOC for use in the BLM.

(b) Alkalinity, calcium, chloride, magnesium, potassium, sodium and sulfate: If data for any of these BLM input parameters are missing from a particular dataset, DEQ will estimate its value based on the relationship of the ion or alkalinity to specific conductance measurements for that data set using the regression analysis equations in Table 1. Specific conductance measurements must be concurrent with the other BLM input parameters dataset.

	Table N-1				
Parameter	Regression Equation				
Alkalinity	Alk. = $exp^{(0.88 \cdot [\ln(SpC)] - 0.41)}$				
Calcium	$Ca = exp^{(0.96 \cdot [ln(SpC)] - 2.29)}$				
Chloride	$Cl = exp^{(1.15 \cdot [ln(SpC)] - 3.82)}$				
Magnesium	$Mg = exp^{(0.91 \cdot [\ln(SpC)] - 3.09)}$				
Potassium	$\mathbf{K} = \exp^{(0.84 \cdot [\ln(\mathrm{SpC})] - 3.74)}$				
Sodium	$Na = exp^{(0.86 \cdot [\ln(SpC)] - 2.22)}$				
Sulfate	$SO_4 = exp^{(1.45 \cdot [ln(SpC)] - 5.59}$				

Where, "SpC" is a measurement of specific conductance in µmhos/cm, "ln" is the natural logarithm, and "exp" is a mathematical constant that is the base of the natural logarithm.

(c) pH

If concurrent pH data is missing from the sample dataset, DEQ will use a representative pH value determined by interpolating from data available for the site or proximate monitoring locations where conditions (such as type of water body, stream flow and geology) are similar to the site. DEQ will use the available data and methods to produce the best practicable estimate of pH for the site and time for which the IWQC is being derived.

(d) Temperature

If concurrent temperature data is missing from the sample dataset, DEQ will use a monthly mean temperature based on data available for the site or proximate monitoring locations where conditions (such as type of water body and stream flow) are similar to the site.

(e) Humic Acid

If sufficient high quality data on the percentage of humic acid as a proportion of DOC is available for a site, DEQ will use that value in the BLM in place of the default value of 10% used in the model.

(2) Default Action Values

If the measured value for DOC, alkalinity, calcium, chloride, magnesium, potassium, sodium or sulfate is not available to derive an IWQC using the BLM, and the parameter value cannot be estimated as specified in section (1) above, DEQ will use a conservative input value for the missing parameter as described in this section [Endnote N (2)] to derive a default action value using the Biotic Ligand Model. The default action value will be used for Clean Water Act purposes until measured or estimated input parameter data are available to derive accurate copper criteria (IWQC) based on site specific water chemistry.

(a) The default input parameter values for DOC, alkalinity calcium, chloride, magnesium, potassium, sodium and sulfate will be the percentile value from the distribution of the high quality data available for surface waters in the region as shown in Table N-2.

	Table N-2 Percentile of data distribution to be used as default value by region										
Region	DOC percentile	Alkalinity and lons percentile									
Willamette	20 th	20 th									
Coastal	20 th	20 th									
Cascades	20 th	20 th									
Eastern	15 th	15 th									
Columbia River	20 th	20 th									

(b) The regional default values for each parameter and region will be updated periodically as additional high quality data becomes available and is added to DEQ's database.

(c) The regional default values for each parameter are available on DEQ's website.

(d) The regions listed in Table N-2 are comprised of the following EPA Level III ecoregions or waterbody:

(i) Willamette: the Willamette Valley

(ii) Coastal: Coast Range and Klamath Mountains

(iii) Cascades: Cascades

(iv) Eastern: Eastern Cascades Slopes and Foothills, Columbia Plateau, Blue Mountains, Northern Basin and Range and Snake River Plain

(v) Columbia River: Columbia River mainstem in Oregon

(3) General Policies

(a) The copper BLM derives instantaneous criteria results (IWQC) that vary at a site over time reflecting the effect of local water chemistry on copper toxicity to aquatic organisms. DEQ will apply the BLM criteria for Clean Water Act purposes to protect the water body during the most bioavailable or toxic conditions.

(b) For assessing waters of the state, DEQ will use approaches that give preference to the use of BLM criteria derived with site-specific measured input parameter data.

Endnote O: Deriving freshwater aluminum criteria.

The freshwater aluminum criteria at any time are the Aluminum Criteria Calculator (v 2.0) derived Instantaneous Criteria Values (ICV) based on a concurrently measured set of calculator input parameter values. The Aluminum Criteria Calculator uses dissolved organic carbon (DOC), pH, and total hardness to derive 1-hour acute exposure (CMC) and 96-hour chronic exposure (CCC) water quality criteria (ICV) for aluminum based on the water chemistry that determines the toxicity of aluminum to aquatic life. If measured data for one or more of the calculator input parameters used to derive the acute and chronic ICV is not available, DEQ will use estimated or default values for the missing input parameter or will apply a default regional criteria value derived using ecoregional data. See DEQ's Aluminum Standard Interpretation and Application Procedures document for the procedures to estimate calculator input values. See section (1) below for the default regional aluminum criteria.

Aluminum Criteria Calculator results (ICV) based on sufficient concurrent measured input parameter data are more accurate and supersede results based on default values or estimates or default regional criteria values. The acceptable Aluminum Criteria Calculator software to calculate the ICV include version 2.0, referenced in "Final Aquatic Life Ambient Water Quality Criteria for Aluminum": EPA 822-R-18-001, December 2018, and version -XXX. The criteria are expressed as total recoverable or bioavailable aluminum in micrograms per liter (to two significant figures).

(1) Applying Aluminum Default Ecoregional Criteria (ICV)

If pH or total hardness data are missing and cannot be calculated or estimated as described in DEQ's Aluminum Standard Interpretation and Application Procedures, DEQ will apply a-regional default aluminum criterion value. These default values are inherently conservative to provide protection against potential aluminum toxicity when there is uncertainty due to a lack of input parameter data. When input parameter data becomes available, criteria values will be derived using the Aluminum Calculator and the regional default values will no longer apply.

(a) The default aluminum criterion value (ICV) will be the 10th percentile value from the distribution of the high quality data available for surface waters in each region. The regions listed in Table O-4 are comprised of EPA Level III ecoregions with the Columbia River mainstem treated separately.

(b) The regional default aluminum criteria values (ICV) will be updated periodically as additional high quality data becomes available and is added to DEQ's database.

(c) The regional default aluminum criteria values (ICV) are available on DEQ's website.

(2) General Policies

(a) The Aluminum Criteria Calculator derives instantaneous criteria values (ICV) that vary at a site over time reflecting the effect of local water chemistry on aluminum toxicity to aquatic organisms. To apply the aluminum criteria for Clean Water Act purposes, instantaneous criteria values will be calculated for the range of water chemistry conditions that occur at a site, including during conditions when aluminum is most toxic.

(b) For assessing waters of the state, DEQ will use approaches that give preference to the use of Aluminum Criteria Calculator criteria derived with site-specific measured input parameter data.

	Table 30(a): Ammonia Acute Criteria Values (One-hour Average)—Salmonid Species Present Temperature and pH-Dependent and expressed as Total Ammonia Nitrogen (mg/L TAN)																
	Criteria cannot be exceeded more than once every three years																
Act	$Acute \ Criterion = MIN\left(\left(\frac{0.275}{1+10^{7.204-pH}} + \frac{39.0}{1+10^{pH-7.204}}\right), \left(0.7249 \times \left(\frac{0.0114}{1+10^{7.204-pH}} + \frac{1.6181}{1+10^{pH-7.204}}\right) \times \left(23.12 \times 10^{0.036 \times (20-T)}\right)\right)\right)$																
							Т	empera	ture (°C	;)							
рН	0-14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
6.5	33	33	32	29	27	25	23	21	19	18	16	15	14	13	12	11	9.9
6.6	31	31	30	28	26	24	22	20	18	17	16	14	13	12	11	10	9.5
6.7	30	30	29	27	24	22	21	19	18	16	15	14	13	12	11	9.8	9.0
6.8	28	28	27	25	23	21	20	18	17	15	14	13	12	11	10	9.2	8.5
6.9	26	26	25	23	21	20	18	17	15	14	13	12	11	10	9.4	8.6	7.9
7.0	24	24	23	21	20	18	17	15	14	13	12	11	10	9.4	8.6	8.0	7.3
7.1	22	22	21	20	18	17	15	14	13	12	11	10	9.3	8.5	7.9	7.2	6.7
7.2	20	20	19	18	16	15	14	13	12	11	9.8	9.1	8.3	7.7	7.1	6.5	6.0
7.3	18	18	17	16	14	13	12	11	10	9.5	8.7	8.0	7.4	6.8	6.3	5.8	5.3
7.4	15	15	15	14	13	12	11	9.8	9.0	8.3	7.7	7.0	6.5	6.0	5.5	5.1	4.7
7.5	13	13	13	12	11	10	9.2	8.5	7.8	7.2	6.6	6.1	5.6	5.2	4.8	4.4	4.0
7.6	11	11	11	10	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5
7.7	9.6	9.6	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5	3.2	3.0
7.8	8.1	8.1	7.9	7.2	6.7	6.1	5.6	5.2	4.8	4.4	4.0	3.7	3.4	3.2	2.9	2.7	2.5
7.9	6.8	6.8	6.6	6.0	5.6	5.1	4.7	4.3	4.0	3.7	3.4	3.1	2.9	2.6	2.4	2.2	2.1
8.0	5.6	5.6	5.4	5.0	4.6	4.2	3.9 3.2	3.6	3.3 2.7	3.0 2.5	2.8 2.3	2.6	2.4	2.2	2.0	1.9	1.7
8.1 8.2	4.6	4.6	4.5	4.1	3.8	3.5 2.9	2.7	2.4	2.7	2.5	2.3 1.9	2.1	2.0	1.8	1.7	1.5	1.4
8.3	3.1	3.1	3.1	2.8	2.6	2.9	2.7	2.4	1.9	1.7	1.9	1.6	1.3	1.3	1.4	1.0	0.96
8.4	2.6	2.6	2.5	2.3	2.0	2.4	1.8	1.7	1.9	1.7	1.3	1.4	1.5	1.2	0.93	0.86	0.79
8.5	2.0	2.0	2.3	1.9	1.8	1.6	1.5	1.4	1.3	1.4	1.1	0.98	0.90	0.83	0.77	0.71	0.65
8.6	1.8	1.8	1.7	1.6	1.5	1.3	1.2	1.1	1.0	0.96	0.88	0.90	0.75	0.69	0.63	0.71	0.54
8.7	1.5	1.5	1.4	1.3	1.2	1.1	1.0	0.94	0.87	0.80	0.74	0.68	0.62	0.57	0.53	0.49	0.45
8.8	1.2	1.2	1.2	1.1	1.0	0.93	0.86	0.79	0.73	0.67	0.62	0.57	0.52	0.48	0.44	0.41	0.37
8.9	1.0	1.0	1.0	0.93	0.85	0.79	0.72	0.67	0.61	0.56	0.52	0.48	0.44	0.40	0.37	0.34	0.32
9.0	0.88	0.88	0.86	0.79	0.73	0.67	0.62	0.57	0.52	0.48	0.44	0.41	0.37	0.34	0.32	0.29	0.27
9.0	0.88	0.88	0.86	0.79	0.73	0.67	0.62	0.57	0.52	0.48	0.44	0.41	0.37	0.34	0.32	0.29	0.27

	Table 30(b): Ammonia Acute Criteria Values (One-hour Average*)—Salmonid Species Absent Temperature and pH-Dependent and expressed as Total Ammonia Nitrogen (mg/L TAN)																				
	Criteria cannot be exceeded more than once every three years																				
				auto C	wit owi o			0.0	0114		1 (10	1				100.036	X(20-T))			
			A		rilerio	n = 0.7	249 X	1+10) ^{7.204} –p	$\frac{1}{1} + \frac{1}{1}$	+ 10 ^{pH-}	-7.204 ×	. MIN (:	51.93,2	.3.12 X	100000	(20 1))			
										empera	•	-									
рН	0-10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
6.5	51	48	44	41	37	34	32	29	27	25	23	21	19	18	16	15	14	13	12	11	9.9
6.6	49	46	42	39	36	33	30	28	26	24	22	20	18	17	16	14	13	12	11	10	9.5
6.7	46	44	40	37	34	31	29	27	24	22	21	19	18	16	15	14	13	12	11	9.8	9.0
6.8	44	41	38	35	32	30	27	25	23	21	20	18	17	15	14	13	12	11	10	9.2	8.5
6.9	41	38	35	32	30	28	25	23	21	20	18	17	15	14	13	12	11	10	9.4	8.6	7.9
7.0	38	35	33	30	28	25	23	21	20	18	17	15	14	13	12	11	10	9.4	8.6	7.9	7.3
7.1	34	32	30	27	25	23	21	20	18	17	15	14	13	12	11	10	9.3	8.5	7.9	7.2	6.7
7.2	31	29	27	25	23	21	19	18	16	15	14	13	12	11	9.8	9.1	8.3	7.7	7.1	6.5	6.0
7.3	27	26	24	22	20	18	17	16	14	13	12	11	10	9.5	8.7	8.0	7.4	6.8	6.3	5.8	5.3
7.4	24	22	21	19	18	16	15	14	13	12	11	9.8	9.0	8.3	7.7	7.0	6.5	6.0	5.5	5.1	4.7
7.5	21	19	18	17	15	14	13	12	11	10	9.2	8.5	7.8	7.2	6.6	6.1	5.6	5.2	4.8	4.4	4.0
7.6	18	17	15	14	13	12	11	10	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5
7.7	15	14	13	12	11	10	9.3	8.6	7.9	7.3	6.7	6.2	5.7	5.2	4.8	4.4	4.1	3.8	3.5	3.2	2.9
7.8	13	12	11	10	9.3	8.5	7.9	7.2	6.7	6.1	5.6	5.2	4.8	4.4	4.0	3.7	3.4	3.2	2.9	2.7	2.5
7.9	11	9.9	9.1	8.4	7.7	7.1	6.6	3.0	5.6	5.1	4.7	4.3	4.0	3.7	3.4	3.1	2.9	2.6	2.4	2.2	2.1
8.0	8.8	8.2	7.6	7.0	6.4	5.9	5.4	5.0	4.6	4.2	3.9	3.6	3.3	3.0	2.8	2.6	2.4	2.2	2.0	1.9	1.7
8.1	7.2	6.8	6.3	5.8	5.3	4.9	4.5	4.1	3.8	3.5	3.2	3.0	2.7	2.5	2.3	2.1	2.0	1.8	1.7	1.5	1.4
8.2	6.0	5.6	5.2	4.8	4.4	4.0	3.7	3.4	3.1	2.9	2.7	2.4	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2
8.3	4.9	4.6	4.3	3.9	3.6	3.3	3.1	2.8	2.6	2.4	2.2	2.0	1.9	1.7	1.6	1.4	1.3	1.2	1.1	1.0	0.96
8.4	4.1	3.8	3.5	3.2	3.0	2.7	2.5	2.3	2.1	2.0	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0	0.93	0.86	0.79
8.5	3.3	3.1	2.9	2.7	2.4	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.2	1.1	0.98	0.90	0.83	0.77	0.71	0.65
8.6	2.8	2.6	2.4	2.2	2.0	1.9	1.7	1.6	1.5	1.3	1.2	1.1	1.0	0.96	0.88	0.81	0.75	0.69	0.63	0.58	0.54
8.7	2.3	2.2	2.0	1.8	1.7	1.6	1.4	1.3	1.2	1.1	1.0	0.94	0.87	0.80	0.74	0.68	0.62	0.57	0.53	0.49	0.45
8.8	1.9	1.8	1.7	1.5	1.4	1.3	1.2	1.1	1.0	0.93	0.86	0.79	0.73	0.67	0.62	0.57	0.52	0.48	0.44	0.41	0.37
8.9	1.6	1.5	1.4	1.3	1.2	1.1	1.0	0.93	0.85	0.79	0.72	0.67	0.61	0.56	0.52	0.48	0.44	0.40	0.37	0.34	0.32
9.0	1.4	1.3	1.2	1.1	1.0	0.93	0.86	0.79	0.73	0.67	0.62	0.57	0.52	0.48	0.44	0.41	0.37	0.34	0.32	0.29	0.27

			* Th	e hiah	T€	emper	ature	and pł	H-Dep	enden	t and	expres	ssed a	is Tota	al Amr	Rolli nonia	Nitrog	en (m	g/L TA		nronic	value		
				e nign				-				-										Value		
	Criteria cannot be exceeded more than once every three years $(1.1994) = (2.1294) (22.144X(T_2))$																							
	Chronic Criterion = $0.8876 \times \left(\frac{0.0278}{1+10^{7.688-pH}} + \frac{1.1994}{1+10^{pH-7.688}}\right) \times \left(2.126 \times 10^{0.028 \times (20 - MAX(T,7))}\right)$																							
	$\frac{(1+10^{7.088-ph} 1+10^{ph-7.088})}{\text{Temperature (°C)}}$																							
рН	0-7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
6.5	4.9	4.6	4.3	4.1	3.8	3.6	3.3	3.1	2.9	2.8	2.6	2.4	2.3	2.1	2.0	1.9	1.8	1.6	1.5	1.5	1.4	1.3	1.2	1.1
6.6	4.8	4.5	4.3	4.0	3.8	3.5	3.3	3.1	2.9	2.7	2.5	2.4	2.2	2.1	2.0	1.8	1.7	1.6	1.5	1.4	1.3	1.3	1.2	1.1
6.7	4.8	4.5	4.2	3.9	3.7	3.5	3.2	3.0	2.8	2.7	2.5	2.3	2.2	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1
6.8	4.6	4.4	4.1	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.3	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.1
6.9	4.5	4.2	4.0	3.7	3.5	3.3	3.1	2.9	2.7	2.5	2.4	2.2	2.1	2.0	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1	1.0
7.0	4.4	4.1	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.3	2.2	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.1	0.99
7.1	4.2	3.9	3.7	3.5	3.2	3.0	2.8	2.7	2.5	2.3	2.2	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1	1.0	0.95
7.2	4.0	3.7	3.5	3.3	3.1	2.9	2.7	2.5	2.4	2.2	2.1	2.0	1.8	1.7	1.6	1.5	1.4	1.3	1.3	1.2	1.1	1.0	0.96	0.90
7.3	3.8	3.5	3.3	3.1	2.9	2.7	2.6	2.4	2.2	2.1	2.0	1.8	1.7	1.6	1.5	1.4	1.3	1.3	1.2	1.1	1.0	0.97	0.91	0.85
7.4	3.5	3.3	3.1	2.9	2.7	2.5	2.4	2.2	2.1	2.0	1.8	1.7	1.6	1.5	1.4	1.3	1.3	1.2	1.1	1.0	0.96	0.90	0.85	0.79
7.5	3.2	3.0	2.8	2.7	2.5	2.3	2.2	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1	1.0	0.95	0.89	0.83	0.78	0.73
7.6	2.9	2.8	2.6	2.4	2.3	2.1	2.0	1.9	1.8	1.6	1.5	1.4	1.4	1.3	1.2	1.1	1.1	0.98	0.92	0.86	0.81	0.76	0.71	0.67
7.7	2.6	2.4	2.3	2.2	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.1	1.0	0.94	0.88	0.83	0.78	0.73	0.68	0.64	0.60
7.8	2.3	2.2	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1	1.0	0.95	0.89	0.84	0.79	0.74	0.69	0.65	0.61	0.57	0.53
7.9	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.2	1.1	1.0	0.95	0.89	0.84	0.79	0.74	0.69	0.65	0.61	0.57	0.53	0.50	0.47
8.0	1.8	1.7	1.6	1.5	1.4	1.3	1.2	1.1	1.1	1.0	0.94	0.88	0.83	0.78	0.73	0.68	0.64	0.60	0.56	0.53	0.50	0.44	0.44	0.41
8.1 8.2	1.5 1.3	1.5 1.2	1.4	1.3	1.2	1.1 0.96	1.1 0.90	0.99	0.92	0.87	0.81	0.76	0.71 0.61	0.67	0.63	0.59 0.50	0.55	0.52	0.49	0.46	0.43	0.40	0.38	0.35
8.2	1.3	1.2	0.99	1.1 0.93	1.0	0.96	0.90	0.84	0.79	0.74	0.70	0.65	0.61	0.37	0.34	0.30	0.47	0.44	0.42	0.39	0.37	0.34	0.32	0.30
8.4	0.95	0.89	0.99	0.93	0.87	0.62	0.70	0.72	0.07	0.03	0.59	0.33	0.32	0.49	0.40	0.43	0.40	0.38	0.30	0.33	0.31	0.29	0.27	0.20
8.5	0.95	0.75	0.71	0.67	0.62	0.58	0.55	0.51	0.48	0.33	0.30	0.40	0.37	0.35	0.33	0.30	0.29	0.32	0.25	0.23	0.20	0.23	0.20	0.18
8.6	0.68	0.64	0.60	0.56	0.53	0.49	0.46	0.43	0.41	0.38	0.36	0.33	0.31	0.29	0.28	0.26	0.24	0.27	0.23	0.20	0.19	0.18	0.16	0.15
8.7	0.57	0.54	0.51	0.47	0.44	0.42	0.39	0.37	0.34	0.32	0.30	0.28	0.27	0.25	0.23	0.22	0.21	0.19	0.18	0.17	0.16	0.15	0.14	0.13
8.8	0.49	0.46	0.43	0.40	0.38	0.35	0.33	0.31	0.29	0.27	0.26	0.24	0.23	0.21	0.20	0.19	0.17	0.16	0.15	0.14	0.13	0.13	0.12	0.11
8.9	0.42	0.39	0.37	0.34	0.32	0.30	0.28	0.27	0.25	0.23	0.22	0.21	0.19	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11	0.10	0.09
9.0	0.36	0.34	0.32	0.30	0.28	0.26	0.24	0.23	0.21	0.20	0.19	0.18	0.17	0.16	0.15	0.14	0.13	0.12	0.11	0.11	0.10	0.09	0.09	0.08

OAR 340-041-8033 TABLE 31 Aquatic Life Water Quality Guidance Values for Toxic Pollutants

Effective April 18, 2014

Water Quality Guidance Values Summary A

The concentration for each compound listed in Table 31 is a guidance value that DEQ may use in application of Oregon's Toxic Substances Narrative (340-041-0033(2)) to waters of the state in order to protect aquatic life. All values are expressed as micrograms per liter (μ g/L) except where noted. Compounds are listed in alphabetical order with the corresponding EPA number (from National Recommended Water Quality Criteria: 2002, EPA-822-R-02-047), corresponding Chemical Abstract Service (CAS) number, aquatic life freshwater acute and chronic guidance values, and aquatic life saltwater acute and chronic guidance values.

Aqu	OAR 340-041-8033 Table 31 Aquatic Life Water Quality Guidance Values for Toxic Pollutants										
EPA	EPA Pollutant CAS Freshwater Saltwater										
No.	Ponutant	Number	Acute	Chronic	Acute	Chronic					
56	Acenaphthene	83329	1,700	520	970	710					
17	Acrolein	107028	68	21	55						
18	Acrylonitrile	107131	7,550	2,600							
4	Antimony	7440360	9,000	1,600							
19	Benzene	71432	5,300		5,100	700					
59	Benzidine	92875	2,500								
3	Beryllium	7440417	130	5.3							
19 B	BHC (Hexachlorocyclohexa ne-Technical)	319868	100		0.3 4						

Aqı	OAR 340-041-8033 Table 31 Aquatic Life Water Quality Guidance Values for Toxic Pollutants											
EPA			Frest	water	Salt	water						
No.	Pollutant	CAS Number	Acute	Chronic	Acute	Chronic						
21	Carbon Tetrachloride	56235	35,200		50,000							
	Chlorinated Benzenes		250	50	160	129						
	Chlorinated naphthalenes		1,600		7.5							
	Chloroalkyl Ethers		238,000									
26	Chloroform	67663	28,900	1,240								
4 5	Chlorophenol 2-	95578	4 ,380	2,000								
	Chlorophenol 4-	106489			29,700							
52	Methyl-4-chlorophenol 3-	59507	30									
5a	Chromium (III)	1606583 1			10,300							
109	DDE 4,4'-	72559	1,050		14							
110	DDD-4,4'-	72548	0.06		3.6							
	Diazinon	333415	0.08	0.05								
	Dichlorobenzenes		1,120	763	1,970							
29	Dichloroethane 1,2-	107062	118,000	20,000	113,000							
	Dichloroethylenes		11,600		224,000							
46	Dichlorophenol 2,4-	120832	2,020	365								
31	Dichloropropane 1,2-	78875	23,000	5,700	10,300	3,040						
32	Dichloropropene 1,3-	542756	6,060	2 44	790							
47	Dimethylphenol 2,4-	105679	2,120									
	Dinitrotoluene		330	230	590	370						

Aqu	Q I <mark>atic Life Water Qual</mark> i	AR 340-0 Table ty Guida	-31	es for To	xic Pollı	itants
EPA	Pollutant	CAS	Frest	water	Salt	water
No.	Fonutant	Number	Acute	Chronic	Acute	Chronic
16	Dioxin (2,3,7,8-TCDD)	1746016	0.01	38 pg/L		
85	Diphenylhydrazine 1,2-	122667	270			
33	Ethylbenzene	100414	32,000		4 30	
86	Fluoranthene	206440	3,980		40	16
	Haloethers		360	122		
	Halomethanes		11,000		12,000	6,400
89	Hexachlorobutadiene	87683	90	9.3	32	
90	Hexachlorocyclopenta diene	77474	7	5.2	7	
91	Hexachloroethane	67721	980	5 40	940	
93	Isophorone	78591	117,000		12,900	
9 4	Naphthalene	91203	2,300	620	2,350	
95	Nitrobenzene	98953	27,000		6,680	
	Nitrophenols		230	150	4,850	
26 B	Nitrosamines	3557691 +	5,850		3,300,00 θ	
	Pentachlorinated ethanes	_	7,240	1,100	390	281
5 4	Phenol	108952	10,200	2,560	5,800	-
	Phthalate esters	-	940	3	2,9 44	3.4
	Polynuclear Aromatic Hydrocarbons	-	_	_	300	_
	Tetrachlorinated Ethanes	_	9,320	_	-	_

Aqu	OAR 340-041-8033 Table 31 Aquatic Life Water Quality Guidance Values for Toxic Pollutants											
EPA	Dellutent	CAS	Frest	water	Salt	water						
No.	Number Acute Chronic Acute Chroni											
37	Tetrachloroethane 1,1,2,2-	79345	_	2,400	9,020	-						
	Tetrachloroethanes	-	9,320	-	-	-						
38	Tetrachloroethylene	127184	5,280	840	10,200	4 50						
	Tetrachlorophenol 2,3,5,6	-	-	-	-	440						
12	Thallium	7440280	1,400	40	2,130	-						
39	Toluene	108883	17,500	-	6,300	5,000						
	Trichlorinated ethanes	-	18,000		-	-						
41	Trichloroethane 1,1,1-	71556	-	_	31,200	-						
4 2	Trichloroethane 1,1,2-	79005	-	9,400	_	-						
43	Trichloroethylene	79016	4 5,000	21,900	2,000	-						
55	Trichlorophenol 2,4,6-	88062	-	970	_	-						

The following chemicals/compounds/classes are of concern due to the potential for toxic effects to aquatic organisms; however, no guidance values are designated. If these compounds are identified in the waste stream, then a review of the scientific literature may be appropriate for deriving guidance values.

Polybrominated diphenyl ethers (PBDE)

Polybrominated biphenyls (PBB)

Pharmaceuticals

Personal care products

Alkyl Phenols

□ Other chemicals with Toxic effects

Footnotes:

A Values in Table 31 are applicable to all basins.

B This number was assigned to the list of non-priority pollutants in National Recommended Water Quality Criteria: 2002 (EPA 822 R-02-047).

OAR 340-041-8033 TABLE 40 Human Health Water Quality Criteria for Toxic Pollutants

Effective April 18, 2014

Human Health Criteria Summary

The concentration for each pollutant listed in Table 40 was derived to protect Oregonians from potential adverse health impacts associated with long-term exposure to toxic substances associated with consumption of fish, shellfish, and water. The "organism only" criteria are established to protect fish and shellfish consumption and apply to waters of the state designated for fishing. The "water + organism" criteria are established to protect the consumption of drinking water, fish, and shellfish, and apply where both fishing and domestic water supply (public and private) are designated uses. All criteria are expressed as micrograms per liter ($\mu g/L$), unless otherwise noted. Pollutants are listed in alphabetical order. Additional information includes the Chemical Abstract Service (CAS) number, whether the criterion is based on carcinogenic effects (can cause cancer in humans), and whether there is an aquatic life criterion for the pollutant (i.e. "y"= yes, "n" = no). All the human health criteria were calculated using a fish consumption rate of 175 grams per day unless otherwise noted. A fish consumption rate of 175 grams per day is approximately equal to 23 8-ounce fish meals per month. For pollutants categorized as carcinogens, values represent a cancer risk of one additional case of cancer in one million people (i.e. 10⁻⁶), unless otherwise noted. All metals criteria are for total metal concentration, unless otherwise noted. Italicized pollutants represent non-priority pollutants. The human health criteria revisions established by OAR 340-041-0033 and shown in Table 40 do not become applicable for purposes of ORS chapter 468B or the federal Clean Water Act until approved by EPA pursuant to 40 CFR 131.21 (4/27/2000).

	OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants Human Health Criteria for the											
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Human Health C Consump Water + Organism (µg/L)							
1	Acenaphthene	83329	n	n	95	99						
2	Acrolein	107028	n	n	0.88	0.93						
3	Acrylonitrile	107131	у	n	0.018	0.025						
4	Aldrin	309002	у	у	0.0000050	0.0000050						
5	Anthracene	120127	n	n	2900	4000						
6	Antimony	7440360	n	n	5.1	64						
7	Arsenic (inorganic) ^A	7440382	у	у	2.1	2.1(freshwater) 1.0 (saltwater)						
^A The appro.	arsenic criteria are expressed as total in ximately 1 x 10^{-5} , and the "water + orga	organic arseni nism" criterior	c. The "organism o n is based on a risk	nly" freshwater level of 1 x 10 ⁻⁴	criterion is based on a ri	isk level of						
8	Asbestos ^B	1332214	y	n	7,000,000 fibers/L							
^B The l "wate	human health risks from asbestos are pri r + organism" criterion is based on the .	marily from dr Maximum Con	inking water, therej taminant Level (MC	fore no ''organi CL) established	sm only" criterion was de under the Safe Drinking V	eveloped. The Water Act.						
9	Barium ^c	7440393	n	n	1000							
metho Huma	human health criterion for barium is the dology and did not utilize the fish ingesti n health risks are primarily from drinkin on is based on the Maximum Contamina	on BCF appro g water, theref	ach. This same crite fore no ''organism c	erion value was	also published in the 198 was developed. The "wate	86 EPA Gold Book.						
10	Benzene	71432	у	n	0.44	1.4						
11	Benzidine	92875	у	n	0.000018	0.000020						
12	Benz(a)anthracene	56553	у	n	0.0013	0.0018						
13	Benzo(a)pyrene	50328	у	n	0.0013	0.0018						

	OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants											
					Human Health C Consump							
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Water + Organism (µg/L)	Organism Only (μg/L)						
14	Benzo(b)fluoranthene 3,4	205992	у	n	0.0013	0.0018						
15	Benzo(k)fluoranthene	207089	у	n	0.0013	0.0018						
16	BHC Alpha	319846	у	n	0.00045	0.00049						
17	BHC Beta	319857	у	n	0.0016	0.0017						
18	BHC Gamma (Lindane)	58899	n	у	0.17	0.18						
19	Bromoform	75252	у	n	3.3	14						
20	Butylbenzyl Phthalate	85687	n	n	190	190						
21	Carbon Tetrachloride	56235	у	n	0.10	0.16						
22	Chlordane	57749	у	У	0.000081	0.000081						
23	Chlorobenzene	108907	n	n	74	160						
24	Chlorodibromomethane	124481	у	n	0.31	1.3						
25	Chloroethyl Ether bis 2	111444	У	n	0.020	0.053						
26	Chloroform	67663	n	n	260	1100						
27	Chloroisopropyl Ether bis 2	108601	n	n	1200	6500						
28	Chloromethyl ether, bis	542881	у	n	0.000024	0.000029						
29	Chloronaphthalene 2	91587	n	n	150	160						
30	Chlorophenol 2	95578	n	n	14	15						
31	Chlorophenoxy Herbicide (2,4,5,-TP) ^D	93721	n	n	10							

	OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants Human Health Criteria for the											
					Human Health C Consump							
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Water + Organism (µg/L)	Organism Only (μg/L)						
metho Huma	Chlorophenoxy Herbicide (2,4,5,-TP) odology and did not utilize the fish ingo an health risks are primarily from drin ion is based on the Maximum Contam.	estion BCF appro aking water, therej	ach. This same crite fore no "organism c	erion value was only" criterion v	also published in the 198 was developed. The "wat	86 EPA Gold Book.						
32	Chlorophenoxy Herbicide (2,4-D) ^E	94757	n	n	100							
	Chlorophenoxy Herbicide (2,4-D) cri											
metho Huma	Chlorophenoxy Herbicide (2,4-D) cri odology and did not utilize the fish ingo an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene	estion BCF appro king water, therej	ach. This same crite fore no "organism c	erion value was only" criterion v	also published in the 198 was developed. The "wat	86 EPA Gold Book.						
metho Huma criter	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam	estion BCF appro iking water, therej inant Level (MCL	ach. This same crita fore no "organism c) established under	erion value was only" criterion v the Safe Drinki	also published in the 196 was developed. The "wa ng Water Act.	86 EPA Gold Book. ter + organism"						
metho Huma criter 33 34 F Hum	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene	estion BCF appro lking water, therej inant Level (MCL 218019 7440508 arily from drinkin	ach. This same crita fore no "organism of) established under y n ng water, therefore 1	erion value was only" criterion v the Safe Drinki n y o "organism o	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo	86 EPA Gold Book. ter + organism" 0.0018 pped. The "water +						
metho Huma criter 33 34 F Hum	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F nan health risks from copper are prim	estion BCF appro lking water, therej inant Level (MCL 218019 7440508 arily from drinkin	ach. This same crita fore no "organism of) established under y n ng water, therefore 1	erion value was only" criterion v the Safe Drinki n y o "organism o	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo	86 EPA Gold Book. ter + organism" 0.0018 pped. The "water +						
metho Huma criter 33 34 F Hum organ	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F nan health risks from copper are prim aism" criterion is based on the Maximu	estion BCF appro iking water, therey inant Level (MCL 218019 7440508 parily from drinkin um Contaminant 1 57125	ach. This same crita fore no "organism o) established under y n n g water, therefore r Level (MCL) establi	erion value was only" criterion w the Safe Drinki n y o "organism of shed under the y	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo Safe Drinking Water Act. 130	86 EPA Gold Book. ter + organism" 0.0018 pped. The "water +						
metho Huma criter 33 34 F Hum organ	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F nan health risks from copper are prim aism" criterion is based on the Maximu	estion BCF appro iking water, therey inant Level (MCL 218019 7440508 parily from drinkin um Contaminant 1 57125	ach. This same crita fore no "organism o) established under y n g water, therefore n Level (MCL) establi n	erion value was only" criterion w the Safe Drinki n y o "organism of shed under the y	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo Safe Drinking Water Act. 130	86 EPA Gold Book. ter + organism" 0.0018 pped. The "water +						
metho Huma criter 33 34 F Hun organ 35	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F nan health risks from copper are prima ism" criterion is based on the Maximu Cyanide ^G	estion BCF appro iking water, therey inant Level (MCL 218019 7440508 arily from drinkin um Contaminant 1 57125 ^G The cyanide cri	ach. This same crita fore no "organism of) established under y n g water, therefore n Level (MCL) establi n iterion is expressed	erion value was only" criterion w the Safe Drinki n y oo "organism of shed under the y as total cyanide	also published in the 196 was developed. The "war ng Water Act. 0.0013 1300 nly" criterion was develo Safe Drinking Water Act. 130 e (CN)/L.	86 EPA Gold Book. ter + organism" 0.0018 oped. The "water + 130						
metho Huma criter 33 34 F Hum organ 35 36	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F man health risks from copper are prima ism" criterion is based on the Maximu Cyanide ^G DDD 4,4'	estion BCF appro iking water, therey inant Level (MCL 218019 7440508 earily from drinkin um Contaminant I 57125 ^G The cyanide cru 72548	ach. This same crita fore no "organism of) established under y n g water, therefore r Level (MCL) establi n iterion is expressed y	erion value was only" criterion w the Safe Drinki n y o "organism of shed under the y as total cyanide n	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo Safe Drinking Water Act. 130 e (CN)/L. 0.000031	86 EPA Gold Book. ter + organism" 0.0018 pped. The "water + 130 0.000031						
metho Huma criter 33 34 F Hum organ 35 36 37	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F nan health risks from copper are prima ism" criterion is based on the Maximu Cyanide ^G DDD 4,4' DDE 4,4'	estion BCF appro iking water, therey inant Level (MCL 218019 7440508 varily from drinkin um Contaminant I 57125 G The cyanide cru 72548 72559	ach. This same crite fore no "organism of) established under y n g water, therefore n Level (MCL) establi n iterion is expressed y y	erion value was only" criterion v the Safe Drinki n y of "organism of shed under the y as total cyanide n n	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo Safe Drinking Water Act. 130 e (CN)/L. 0.000031 0.000022	86 EPA Gold Book. ter + organism" 0.0018 oped. The "water + 130 0.000031 0.000022						
metho Huma criter 33 34 F Hun organ 35 36 37 38	odology and did not utilize the fish ing an health risks are primarily from drin ion is based on the Maximum Contam. Chrysene Copper F nan health risks from copper are prima ism" criterion is based on the Maximu Cyanide ^G DDD 4,4' DDE 4,4' DDT 4,4'	estion BCF appro iking water, therey inant Level (MCL 218019 7440508 arily from drinkin um Contaminant I 57125 G The cyanide cru 72548 72559 50293	ach. This same crite fore no "organism of) established under y n g water, therefore r Level (MCL) establi n iterion is expressed y y y	erion value was only" criterion w the Safe Drinki n y no "organism on shed under the y as total cyanide n n y y	also published in the 196 was developed. The "was ng Water Act. 0.0013 1300 nly" criterion was develo Safe Drinking Water Act. 130 e (CN)/L. 0.000031 0.000022 0.000022	86 EPA Gold Book. ter + organism" 0.0018 ped. The "water + 130 0.000031 0.000022 0.000022						

	OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants Human Health Criteria for the										
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Human Health C Consump Water + Organism (µg/L)						
42	Dichlorobenzene(p) 1,4	106467	n	n	16	19					
43	Dichlorobenzidine 3,3'	91941	у	'n	0.0027	0.0028					
44	Dichlorobromomethane	75274	у	n	0.42	1.7					
45	Dichloroethane 1,2	107062	у	n	0.35	3.7					
46	Dichloroethylene 1,1	75354	n	n	230	710					
47	Dichloroethylene trans 1,2	156605	n	n	120	1000					
48	Dichlorophenol 2,4	120832	n	n	23	29					
49	Dichloropropane 1,2	78875	у	n	0.38	1.5					
50	Dichloropropene 1,3	542756	у	n	0.30	2.1					
51	Dieldrin	60571	у	у	0.0000053	0.0000054					
52	Diethyl Phthalate	84662	n	n	3800	4400					
53	Dimethyl Phthalate	131113	n	n	84000	110000					
54	Dimethylphenol 2,4	105679	n	n	76	85					
55	Di-n-butyl Phthalate	84742	n	n	400	450					
56	Dinitrophenol 2,4	51285	n	n	62	530					
57	Dinitrophenols	25550587	n	n	62	530					
58	Dinitrotoluene 2,4	121142	У	n	0.084	0.34					
59	Dioxin (2,3,7,8-TCDD)	1746016	у	n	0.00000000051	0.0000000051					

OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants						
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Human Health C Consump Water + Organism (µg/L)	
60	Diphenylhydrazine 1,2	122667	у	n	0.014	0.020
61	Endosulfan Alpha	959988	n	У	8.5	8.9
62	Endosulfan Beta	33213659	n	у	8.5	8.9
63	Endosulfan Sulfate	1031078	n	n	8.5	8.9
64	Endrin	72208	n	у	0.024	0.024
65	Endrin Aldehyde	7421934	n	n	0.030	0.030
66	Ethylbenzene	100414	n	n	160	210
67	Ethylhexyl Phthalate bis 2	117817	у	n	0.20	0.22
68	Fluoranthene	206440	n	n	14	14
69	Fluorene	86737	n	n	390	530
70	Heptachlor	76448	у	у	0.0000079	0.0000079
71	Heptachlor Epoxide	1024573	у	у	0.0000039	0.0000039
72	Hexachlorobenzene	118741	у	n	0.000029	0.000029
73	Hexachlorobutadiene	87683	у	n	0.36	1.8
74	Hexachlorocyclo-hexane- Technical	608731	У	n	0.0014	0.0015
75	Hexachlorocyclopentadiene	77474	n	n	30	110
76	Hexachloroethane	67721	У	n	0.29	0.33
77	Indeno(1,2,3-cd)pyrene	193395	У	n	0.0013	0.0018

OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants						
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Human Health (Consump Water + Organism (µg/L)	
78	Isophorone	78591	у	n	27	96
79	Manganese ^H	7439965	n	n	/	100
	"fish consumption only" criterion for ion predates the 1980 human health m					
80	Methoxychlor ^I	72435	n	У	100	
metho	human health criterion for methoxychl dology and did not utilize the fish inge	estion BCF appro	ach. This same crite	erion value was	also published in the 198	6 EPA Gold Book.
metho Huma		estion BCF appro king water, therej	ach. This same crite fore no "organism c	erion value was only" criterion v	also published in the198 was developed. The "wa	6 EPA Gold Book.
metho Humo criter	dology and did not utilize the fish inge in health risks are primarily from drin ion is based on the Maximum Contami	estion BCF appro king water, therej inant Level (MCL	ach. This same crite fore no "organism c) established under	erion value was only" criterion v the Safe Drinki	also published in the 198 was developed. The "wa ng Water Act.	86 EPA Gold Book. ter + organism"
metho Huma criter 81	dology and did not utilize the fish inge on health risks are primarily from drin ion is based on the Maximum Contami Methyl Bromide	estion BCF appro king water, therej inant Level (MCL 74839	ach. This same crite fore no "organism c) established under n	erion value was only" criterion v the Safe Drinki n	also published in the 198 was developed. The "wa ng Water Act. 37	86 EPA Gold Book. ter + organism" 150
metho Huma criter 81 82	odology and did not utilize the fish ingen in health risks are primarily from drin. ion is based on the Maximum Contami Methyl Bromide Methyl-4,6-dinitrophenol 2	estion BCF appro king water, therey inant Level (MCL) 74839 534521	ach. This same crite fore no "organism o) established under n n	erion value was only" criterion w the Safe Drinki n n	also published in the 198 was developed. The "wa ng Water Act. 37 9.2	36 EPA Gold Book. ter + organism" 150 28
metho Huma criter 81 82 83 84	odology and did not utilize the fish ingen in health risks are primarily from drin. ion is based on the Maximum Contami Methyl Bromide Methyl-4,6-dinitrophenol 2 Methylene Chloride	estion BCF appro king water, therej inant Level (MCL 74839 534521 75092 22967926 concentration of	ach. This same crita fore no "organism of) established under n n y n	erion value was only" criterion v the Safe Drinki n n n n n	also published in the 198 was developed. The "wa ng Water Act. 37 9.2 4.3 	86 EPA Gold Book. ter + organism" 150 28 59 0.040 mg/kg
metho Huma criter 81 82 83 84	dology and did not utilize the fish ingen in health risks are primarily from drin. ion is based on the Maximum Contami Methyl Bromide Methyl-4,6-dinitrophenol 2 Methylene Chloride Methylmercury (mg/kg) ^J	estion BCF appro king water, therej inant Level (MCL 74839 534521 75092 22967926 concentration of	ach. This same crite fore no "organism of) established under n y y n methylmercury. Cod	erion value was only" criterion v the Safe Drinki n n n n n	also published in the 198 was developed. The "wa ng Water Act. 37 9.2 4.3 	86 EPA Gold Book. ter + organism" 150 28 59 0.040 mg/kg
metho Huma criter 81 82 83 83 84 J Th	adology and did not utilize the fish ingen in health risks are primarily from drin. ion is based on the Maximum Contami Methyl Bromide Methyl-4,6-dinitrophenol 2 Methylene Chloride Methylmercury (mg/kg) ^J is value is expressed as the fish tissue	estion BCF appro king water, therey inant Level (MCL 74839 534521 75092 22967926 concentration of expo	ach. This same crite fore no "organism of) established under n y n methylmercury. Con osure to methylmerc	erion value was only" criterion v the Safe Drinki n n n n n n n n n n n n n	also published in the 198 was developed. The "wa ng Water Act. 37 9.2 4.3 and shellfish is the prime	86 EPA Gold Book. ter + organism" 150 28 59 0.040 mg/kg ary human route of
metho Huma criter 81 82 83 83 84 J Th 85 86 K The metho Huma	odology and did not utilize the fish ingen in health risks are primarily from drin. ion is based on the Maximum Contami Methyl Bromide Methyl-4,6-dinitrophenol 2 Methylene Chloride Methylmercury (mg/kg) ^J is value is expressed as the fish tissue Nickel	estion BCF appro king water, therey inant Level (MCL 74839 534521 75092 22967926 concentration of expo 7440020 14797558 the same as origi estion BCF appro king water, therey	ach. This same crite fore no "organism of) established under n n y n methylmercury. Con osure to methylmerco n n nally published in the ach. This same crite fore no "organism of	erion value was only" criterion w the Safe Drinki n n n n n ntaminated fish wry. y n he 1976 EPA Ra erion value was only" criterion w	also published in the 198 was developed. The "wa ng Water Act. 9.2 4.3 and shellfish is the prime 140 10000 ed Book which predates t also published in the 199 was developed. The "wat	86 EPA Gold Book. ter + organism" 150 28 59 0.040 mg/kg ary human route of 170 the 1980 86 EPA Gold Book.

OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants							
				Aquatic	Human Health Criteria for the Consumption of: Water +		
No.	Pollutant	CAS Number	Carcinogen	Life Criterion	Organism (µg/L)	Organism Only (μg/L)	
88	Nitrosamines	35576911	у	n	0.00079	0.046	
89	Nitrosodibutylamine, N	924163	у	n	0.0050	0.022	
90	Nitrosodiethylamine, N	55185	у	n	0.00079	0.046	
91	Nitrosodimethylamine, N	62759	у	n	0.00068	0.30	
92	Nitrosodi-n-propylamine, N	621647	у	n	0.0046	0.051	
93	Nitrosodiphenylamine, N	86306	у	n	0.55	0.60	
94	Nitrosopyrrolidine, N	930552	у	n	0.016	3.4	
95	Pentachlorobenzene	608935	n	n	0.15	0.15	
96	Pentachlorophenol	87865	у	у	0.15	0.30	
97	Phenol	108952	n	n	9400	86000	
98	Polychlorinated Biphenyls (PCBs) ^L	NA	у	у	0.0000064	0.0000064	
^L This criterion applies to total PCBs (e.g. determined as Aroclors or congeners).							
99	Pyrene	129000	n	n	290	400	
100	Selenium	7782492	n	у	120	420	
101	Tetrachlorobenzene, 1,2,4,5-	95943	n	n	0.11	0.11	
102	Tetrachloroethane 1,1,2,2	79345	у	n	0.12	0.40	
103	Tetrachloroethylene	127184	у	n	0.24	0.33	
104	Thallium	7440280	n	n	0.043	0.047	

OAR 340-041-8033 Table 40 Human Health Water Quality Criteria for Toxic Pollutants							
					Human Health Criteria for the Consumption of:		
No.	Pollutant	CAS Number	Carcinogen	Aquatic Life Criterion	Water + Organism (µg/L)	Organism Only (µg/L)	
105	Toluene	108883	n	n	720	1500	
106	Toxaphene	8001352	у	У	0.000028	0.000028	
107	Trichlorobenzene 1,2,4	120821	n	n	6.4	7.0	
108	Trichloroethane 1,1,2	79005	у	n	0.44	1.6	
109	Trichloroethylene	79016	у	n	1.4	3.0	
110	Trichlorophenol 2,4,6	88062	у	n	0.23	0.24	
111	Trichlorophenol, 2, 4, 5-	95954	n	n	330	360	
112	Vinyl Chloride	75014	у	n	0.023	0.24	
113	Zinc	7440666	n	у	2100	2600	

Alternative formats

<u>Español</u> | <u>한국어</u> | <u>繁體中文</u> | <u>Pyccкий</u> | <u>Tiếng Việt</u> | <u>L</u>

Contact: 800-452-4011 | TTY: 711 | deqinfo@deq.state.or.us

DEQ does not discriminate on the basis of race, color, national origin, disability, age or sex in administration of its programs or activities.

Visit DEQ's Civil Rights and Environmental Justice page.