Intergovernmental Agreement for Remedial Investigation and Source Control Measures

DEQ No. LQVC-NWR-03-10


Outfall Basin 52 Source Investigation Report

City of Portland Outfall Project ECSI No. 2425

May 2012

PREPARED BY

Contents

1	Introduction	1-1
	1.1 Purpose and Scope	1-1
	1.2 Report Organization	
2	Background	2-1
	2.1 Outfall Basin and Conveyance System	
	2.2 Contaminants of Interest	
	2.3 Potential Upland Sources	
3	Source Investigation Activities and Results	
J	-	
	3.1 Field Activities and Analytical Approach	
	3.1.1 2008 Inline Solids Investigation	
	3.1.1.2 Catch Basins	
	3.1.2 2010 Sediment Trap Investigation	
	3.1.3 2010 Inline Solids Investigation	
	3.1.4 2011 Surface Soil Investigation	3-4
	3.2 Summary of Results	3-4
4	Data Evaluation	4-1
	4.1 North Subbasin	4-1
	4.1.1 Subbasin Screening Results	
	4.1.2 Source Tracing	4-1
	4.1.2.1 Metals	
	4.1.2.2 PCBs	
	4.2 Central Subbasin	
	4.2.1 Subbasin Screening Results	
	4.2.2 Source Tracing	
	4.2.2.1 Metals	
	4.3 South Subbasin	
	4.3.1 Subbasin Screening Results	
	4.3.2 Source Tracing	
5	Source Control Activities	
	Conclusions and Next Steps	
7	References	7-1
T	ables	
Fi	igures	

Appendices

Appendix A – Field Photographs

Appendix B - Field Notes

Appendix C – Laboratory Reports (on CD only)

Appendix D – Industrial Source Control Memorandum

MAY 2012 PAGE iv

List of Tables

- Table 1. Basin 52 Inline Solids Results North Branch
- Table 2. Basin 52 Inline Solids Results Central Branch
- Table 3. Basin 52 Inline Solids Results South Branch
- Table 4. Basin 52 Inline Solids Results PCB Congeners
- Table 5. Basin 52 Surface Soil Results

List of Figures

- Figure 1. Outfall Basin 52 Drainage Basin Overview
- Figure 2a. Basin 52 North and Central Branches, Sampling Locations
- Figure 2b. Basin 52 South Branch, Sampling Locations
- Figure 2c. Basin 52 Surface Soil Sampling Locations
- Figure 3a. Basin 52 North and Central Branches, Total PCBs
- Figure 3b. Basin 52 South Branch, Total PCBs
- Figure 4. Basin 52 North and Central Branches, Metals (Cr, Cu, Ni)
- Figure 5. Basin 52 Vicinity of Peninsula Iron Works, Surface Soil and Inline Solids, PCBs and Metals (Cr, Cu, Ni)
- Figure 6. Basin 52 Source Control Line Cleaning

This page intentionally blank

MAY 2012 PAGE vi

Abbreviations and Acronyms

AOPC Area of Potential Concern

ASPP Accidental Spill Prevention Plan
BES Bureau of Environmental Services

BMP best management practice

City City of Portland

DEQ Oregon Department of Environmental Quality ECSI Environmental Cleanup Site Information

EPA Environmental Protection Agency IGA Intergovernmental Agreement

JSCS Joint Source Control Strategy

µg/Kg microgram(s) per kilogram

mg/Kg milligram(s) per kilogram

LWG Lower Willamette Group

NEC No Exposure Certification

NPDES National Pollutant Discharge Elimination System

ODOT Oregon Department of Transportation

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl PIW Peninsula Iron Works

SAP sampling and analysis plan
SIFT© Screened Inline Flow-Through

SLV screening level value

SOP standard operating procedure

TBT tributyltin

TOC total organic carbon

TS total solids

WPCL Water Pollution and Control Laboratory

MAY 2012 PAGE vii

The page left intentionally blank

MAY 2012 PAGE viii

Introduction

This report presents the results of the City of Portland (City) source investigation and source control activities in Outfall Basin 52. As part of its Portland Harbor stormwater screening effort, the City characterized stormwater from Basin 52 in 2007 at a location representing cumulative discharge from the entire basin. Based on preliminary review and subsequent statistical analyses of the Basin 52 stormwater results in relation to harborwide stormwater data, the City determined that further source tracing was needed to identify sources of polychlorinated biphenyls (PCBs) and copper within the basin (BES, 2010a). The City conducted source investigations in the basin between June 2008 and January 2011.

City source investigations in Basin 52 identified sources of PCBs and metals to the Basin 52 municipal storm system. The major sources of these contaminants appear to be located in the north and central subbasins of Basin 52. PCBs and certain metals (chromium, copper, and nickel) were detected in stormwater solids samples collected from the north branch at concentrations that are considered significantly elevated relative to data collected for upland sites discharging to the Portland Harbor Superfund site. All identified sources now are in the process of being evaluated and controlled under Oregon Department of Environmental Quality (DEQ) Cleanup Program oversight or through the City industrial stormwater program. No further City source tracing is warranted in this basin. The investigation results presented in this report and ongoing source control work at the properties identified as major upland sources to Basin 52 will support future DEQ decisions for this basin.

These investigations are part of the City's ongoing Remedial Investigation associated with the Portland Harbor City of Portland Outfalls Project being conducted pursuant to the August 13, 2003, Intergovernmental Agreement (IGA) between DEQ and the City. The data collected under this investigation support ongoing work by DEQ and the City to identify, characterize and control discharges to the Basin 52 municipal storm system.

1.1 Purpose and Scope

The purpose of this report is: 1) to evaluate source investigation data collected to identify sources of PCBs and copper to the Basin 52 stormwater conveyance system; and 2) to verify that no further City source tracing is warranted in the basin. The City source investigation activities described in this report include collection and analysis of inline solids samples in 2008, sediment trap and inline solids samples in 2010 and surface soil samples in 2011. The solids data are evaluated relative to the Joint Source Control Strategy (JSCS; DEQ/EPA, 2005, updated in 2007) screening level values (SLVs) and relative to the range of reference concentrations provided in DEQ's Stormwater Evaluation Guidance (DEQ, 2010).

1.2 Report Organization

The remainder of this report is organized as follows:

- *Section 2: Background* Summarizes the conveyance system configuration and drainage basin setting, contaminants of interest, and potential upland sources.
- Section 3: Source Investigation Activities and Results Describes the stormwater solids
 and surface soil sampling activities and analytical approaches, and
 summarizes the analytical results.
- *Section 4: Data Evaluation* Evaluates the results of the solids investigations to assess whether there are major current sources of contaminants in the basin.
- *Section 5: Source Control Activities* Summarizes source control actions completed by the City and others during the course of the source investigation.
- Section 6: Conclusions and Next Steps Summarizes the findings from the source investigation and identifies next steps that are needed in the basin.
- *Section 7: References*

SECTION 2

Background

The location of Outfall 52 within the Portland Harbor Study Area is shown on Figure 1, along with the approximate drainage basin delineation and the current configuration of the stormwater conveyance system. The stormwater basin setting, conveyance system configuration, contaminants identified for source tracing, and potential upland sources are summarized below.

2.1 Outfall Basin and Conveyance System

The Outfall 52 stormwater system collects and conveys stormwater runoff from a mixed land-use drainage area and discharges to the east side of the Willamette River at river mile 5.8, offshore of Cathedral Park and just downstream of the St. Johns Bridge. The current stormwater basin that drains to Outfall 52 encompasses approximately 26 acres of land zoned for commercial, general employment, residential, open space, and major transportation uses. Current land use includes some industrial operations. For the purposes of this report, the river will be considered as running south to north.

The Basin 52 stormwater conveyance system has three major branches that connect at manhole AAE519; these branches are identified on Figure 1. The "north branch" receives stormwater from industrial and residential properties along N. Baltimore and N. Alta Avenues, primarily east of the railroad lines running along N. Bradford Street. The drainage area for this branch is referred to as the north subbasin. The "central branch" receives runoff from a small residential area, a small area within Cathedral Park, and the majority of the St. Johns Bridge;¹ the associated drainage area is referred to as the central subbasin. The "south branch" extends to the southeast from manhole AAE519 and then to the north-northeast along N. Burlington Avenue and receives stormwater from industrial properties that discharge to a line along N. Crawford Street and from residential properties that discharge to points upstream of the connection for the N. Crawford Street line. The drainage area for this branch is referred to as the south subbasin.

2.2 Contaminants for Source Tracing

Outfall 52 discharges into an area of Portland Harbor identified by the U.S. Environmental Protection Agency (EPA) as an area of potential concern (AOPC 11) based on elevated concentrations of metals, tributyltin (TBT), polycyclic aromatic hydrocarbons (PAHs), benzyl alcohol, total PCBs, and pesticides in inriver sediment (EPA, 2010).

As part of its Portland Harbor stormwater screening effort, the City collected stormwater grab samples during four storm events in 2007 at a Basin 52 location representing cumulative

MAY 2012 PAGE 2-1

-

¹ The portion of Basin 52 comprising the drainage area associated with the St. Johns Bridge is not covered under the City's Municipal Separate Storm Sewer System (MS4) permit; it is within the Oregon Department of Transportation (ODOT) MS4 permit area, as shown on Figure 1.

discharge from the entire basin (manhole AAE519; see Figure 1). The stormwater samples were analyzed for a broad suite of chemicals to identify stormwater contaminants potentially warranting further source tracing in the basin. The stormwater sampling activities and results are described in detail in the City's *Stormwater Evaluation Report* (BES, 2010a). Based on statistical analyses of the Basin 52 stormwater results in relation to harborwide stormwater data, the City determined that total PCBs and copper potentially warranted further source tracing within the basin.

2.3 Potential Upland Sources

Upland facilities initially identified as potential sources to City stormwater conveyance systems include DEQ Cleanup Program sites as listed in DEQ's Environmental Cleanup Site Information (ECSI) database and facilities permitted by DEQ under the National Pollution Discharge Elimination System (NPDES) industrial stormwater discharge permit program. The only ECSI site located in Basin 52 at the time of the investigations was the Crawford Street Corporation site (ECSI No. 2363). The location of this site is shown on Figure 1 along with two sites recently added to the ECSI database. ² A portion of stormwater from the site (mostly roof drainage) discharges to the south branch of Basin 52 (N. Crawford Street line); site stormwater also discharges to Basin 50. DEQ added this site to the ECSI database in 1999 as a potential source of contamination to the Portland Harbor based on initial inriver sediment sampling results, and identifies the site as a possible TBT source (DEQ, 2001). A stormwater pathway evaluation is ongoing at the Crawford Street Corporation site under DEQ oversight; site stormwater contributions to Basin 52 have not been characterized.

Currently no NPDES-permitted facilities are located in Basin 52. The Peninsula Iron Works (PIW) facility located at 6618 N. Alta Avenue previously held an NPDES 1200-Z permit that was terminated in 2001. At that time, the facility met requirements for a No Exposure Certification (NEC), based on measures undertaken to remove stormwater exposures to potential contaminant sources at the site that were identified by the City's Industrial Stormwater Program. In 2008, the City inspected the PIW facility, noted industrial stormwater exposures, and notified PIW that an NPDES permit was required. In 2009, the City referred the PIW site to DEQ for enforcement in response to PIW's failure to apply for an NPDES permit. Following subsequent completion of measures to eliminate exposures of industrial operations to stormwater and the development of an Accidental Spill Prevention Plan, the NEC was reissued to PIW (see Section 5).

MAY 2012 PAGE 2-2

_

² DEQ has entered into an agreement with the Oregon Department of Transportation (ODOT) to evaluate ODOT stormwater discharges to Portland Harbor, including runoff from the St. Johns Bridge. Based on the source tracing efforts described in this report, DEQ added Peninsula Iron Works to the ECSI database in January 2012.

Source Investigation Activities and Results

Based on a preliminary review of the Basin 52 stormwater screening data, the City concluded that major current PCBs and copper sources are present within the basin (BES, 2010a). To trace possible sources of these contaminants, the City collected samples of stormwater solids (sediment trap and inline solids) and surface soil within the three subbasins during iterative field investigations between June 2008 and January 2011.

3.1 Field Activities and Analytical Approach

The Basin 52 solids sampling field activities and analytical approach are described below for each stage of the investigation, followed by a summary of results. Sample collection and handling procedures were conducted using the applicable standard operating procedures (SOPs)³ included in the City's *Amended Programmatic Sampling and Analysis Plan* for collection of water and solids samples for the City of Portland Outfalls Project (BES, 2007a) and in accordance with the *Amended Programmatic Quality Assurance Project Plan* for the project (BES, 2007b). Though copper was the only metal identified for source tracing in Basin 52, a broader suite of metals was analyzed during targeted investigations in the basin to assist with the identification of source areas.

The sampling locations for the Basin 52 source investigation are shown on Figures 2a – 2c. Photographs of the sampling locations and activities are provided in Appendix A. Field notes recorded during sampling activities discussed below are provided in Appendix B.

3.1.1 2008 Inline Solids Investigation

3.1.1.1 Branch Lines

The first round of inline solids investigation in Basin 52 was conducted in June 2008 in general accordance with the Basin 52 Inline Solids Sampling and Analysis Plan (SAP; BES, 2008a). The June 2008 solids sampling targeted manholes at the downstream ends of each of the three subbasins, to evaluate each drainage area for source tracing contaminants. The targeted location (manhole AAE516) in the central branch was not sampled due to a lack of solids and the alternate location (manhole AAE522) could not be located. Solids samples were collected from the following locations:

<u>Branch</u>	<u>Manhole ID</u>	Sampling Location	Area Represented
North	AAE513	Within manhole (solids perched on the eastern ledge of the manhole)	Cumulative discharge from north subbasin ⁴

³ The SOPs were established by the City's Field Operations section to standardize the data collection methodologies for a wide range of monitoring activities and thereby maintain comparability and representativeness of the data produced.

MAY 2012 PAGE 3-1

.

⁴ This sample was collected from a ledge within the manhole invert resulting in some uncertainty regarding sample representativeness of the north branch.

South	AAE553	Upstream of manhole in 24-inch line	Discharge from N. Crawford St. and N. Burlington Avenue lines
South	AAE569	Upstream of manhole in 12-inch line entering from southeast	Discharge from N. Crawford St. line upstream of connection with
		-	N. Burlington Ave. line

The samples were analyzed for PCB Aroclors, selected metals (arsenic, cadmium, copper, lead, zinc), total organic carbon (TOC), total solids (TS), and grain size. Findings suggested the potential presence of major PCBs and metals source in the north branch.

3.1.1.2 Catch Basins

Because inline solids investigation efforts in June 2008 were limited by available sample volumes at targeted locations, the City conducted a catch basin solids investigation to provide comprehensive screening of potential source areas within the basin. Given the basin topography and conveyance system orientation, stormwater from some properties migrates offsite via overland flows to catch basins in the adjacent streets that drain to OF 52.. The City therefore collected samples from catch basins adjacent to suspected sources during this phase of the investigation. Catch basin sampling locations were selected based on adjacent site uses, field observations from past City or DEQ inspections, and visual observations. Inline solids samples were collected from the following Basin 52 catch basins (see Figures 2a and 2b) on September 9 and 10, 2008, in accordance with the approach discussed in advance with DEQ (BES, 2008b):

North branch:	<u>Central branch</u> :	South branch:
ANE911	ANE921	ANE813
APA114	AAE673	ANE815
ANE910		AAE651
AAE694		

For locations where sufficient solids were available, the samples were analyzed for PCB Aroclors, metals (arsenic, cadmium, chromium, copper, lead, nickel, mercury, silver, and zinc), TS, TOC, and grain size. The samples from catch basins ANE910, ANE921, ANE813, ANE815, and AAE651, were not analyzed for metals and/or grain size because of insufficient sample volume. Findings indicated the potential presence of major current PCBs and metals sources in the north and central branches and a PCBs source in the south branch

3.1.2 2010 Sediment Trap Investigation

To verify the presence of contaminant source areas in Basin 52, the City cleaned portions of the Basin 52 conveyance system (see Section 5) and then deployed sediment traps in each of the three major branches during the 2010 winter/spring wet season. The sampling locations and objectives were reviewed and approved verbally by DEQ before sampling was initiated. The traps were installed and monitored in accordance with the City's standard sediment trap source investigation protocols. Sediment traps were installed at the following four locations in Basin 52 on February 2, 2010:

<u>Branch</u>	Manhole/Trap ID	Sampling Location	Area Represented
North	AAE498 / ST1	Downstream of manhole in 12-inch line	Discharge from N. Baltimore Avenue line
North	AAE513 / ST2	Upstream of manhole in 15-inch line	Cumulative discharge from north subbasin ⁵
Central	AAE516 / ST4	Downstream of manhole in 18-inch line	Cumulative discharge from central subbasin
South	AAE700 / ST3	Downstream of manhole in 28-inch line	Discharge from the majority of south subbasin

Screened Inline Flow-Through (SIFT©) ⁶ sediment traps were installed at all four locations, to accommodate the small pipe sizes at three of the four locations. At manhole AAE700, a standard sediment trap also was installed alongside the SIFT© trap to evaluate trap performance. The sediment traps were inspected periodically, and accumulated sediments were removed as needed during the field inspections and archived. The sediment traps were removed on June 16, 2010. Solids in each trap at the time of removal were combined and homogenized with the archived solids (if any) that had been removed from that trap during the interim field inspections. The total amount of solids collected in the SIFT© traps ranged from approximately 260 to 975 grams (total wet weight) and was approximately 17 grams for the standard sediment trap sample. Documents prepared during processing of the sediment trap samples are included in Appendix B.

The SIFT© trap samples were analyzed for PCB congeners, PCB Aroclors, metals, TOC and TS. Because the volume of solids collected in the standard sediment trap in manhole AAE700 was limited, this sample was analyzed only for PCB congeners and TS. Sediment trap investigation results confirmed the presence of current major PCBs and metals sources in the north and central branches.

3.1.3 2010 Inline Solids Investigation

During the course of the Basin 52 source investigation activities in 2010, the City became aware that ODOT drainage from the majority of the St. Johns Bridge connected to the central branch of the City's Basin 52 stormwater conveyance system, and not to an ODOT outfall as previously believed. ODOT provided the City with documentation regarding the configuration of the St. Johns Bridge drainage system and the connection to Basin 52 (at manhole AAE685). The City subsequently obtained authorization from ODOT to expand the source investigation to evaluate bridge drainage as a potential source of PCBs and metals to Basin 52.

Two ODOT manholes (designated ODOT Manholes 2 and 4) were selected for the investigation. Manhole 4 was constructed as a sedimentation manhole to reduce sediment load in stormwater discharging to the City system. Manhole 2 is downstream of Manhole 4 and represents the ODOT discharge to Basin 52 from the St. Johns Bridge.

⁵ Sampling location does not include drainage from a small parking area in Cathedral Park.

⁶ 2009. City of Portland. These traps are proprietary and patent pending. They were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

The City collected inline solids samples from within the two ODOT manholes on September 7 and 8, 2010, in accordance with the Summer 2010 SAP (BES, 2010b). In conjunction with sampling these manholes, the City also resampled solids from catch basin ANE911 (in the north subbasin) to verify the presence of a major current source to that inlet. In response to the elevated concentration of total PCB congeners detected in the September 2008 solids sample from this catch basin, the City cleaned out solids from this catch basin in January 2010 (see Section 5).

The three solids samples (and a duplicate sample from ODOT manhole 2) were analyzed for PCB congeners, PCB Aroclors, TOC and TS in accordance with the SAP (BES, 2010b). The samples were archived after initial laboratory analysis and (except for the duplicate sample) subsequently were analyzed for metals in November 2011. In conjunction with the metals analyses, the samples were reanalyzed for TS, to ensure accurate dry-weight correction for the metals analyses. Results confirmed a current source of PCBs and metals to catch basin ANE911 and indicated that PCBs and metals also are present in the ODOT drainage system that discharges to Basin 52.

3.1.4 2011 Surface Soil Investigation

Based on the source investigation results for catch basin ANE911, the City conducted an erodible soils investigation in the vicinity of this catch basin; nine surface soil composite samples (and one duplicate composite sample) were collected on January 6, 2011. The purpose of the investigation was to evaluate whether erodible surface soil that could be carried by overland flow into catch basin ANE911 is a likely major source of the PCBs and metals. The samples were collected within the N. Alta Avenue right-of-way, near the intersection with N. Bradford Street and in the N. Bradford Street right-of-way along the railroad corridor and adjacent to the PIW facility. For each surface soil sample, individual subsamples were collected from approximately the upper 2 inches of soil and homogenized into a final composite sample. The locations of the area represented by each composite surface soil sample are shown on Figure 2c. The samples were analyzed for PCB Aroclors, selected metals (chromium, copper, lead, nickel, and zinc), TOC, and TS. Results confirmed that PCBs and metals are elevated in erodible soils in this area.

3.2 Summary of Results

PCBs were detected in most of the solids samples and metals were detected in all samples for which metals were analyzed. The highest concentrations of total PCBs and metals were detected in samples from the north branch. PCBs and metals were detected in all of the surface soil samples.

Tables 1 through 5 summarize the laboratory analytical results for the solids samples and include the JSCS SLVs for reference. The total PCBs concentrations in stormwater solids are displayed on Figures 3a and 3b. Concentrations of selected metals (chromium, copper, and nickel) in the stormwater solids samples are shown on Figure 4. Results for PCBs and selected metals in the surface soil samples are displayed on Figure 5.7 The laboratory reports and data review memoranda are provided in Appendix C. The data are discussed in more detail in Section 4.

MAY 2012 PAGE 3-4

_

⁷ The data summary tables and figures for these samples were previously submitted to DEQ (BES, 2011a).

Data Evaluation

This section of the report presents a two-step evaluation of the solids source investigation results for each subbasin. The first step compares the sediment trap data collected at the downstream sampling location in each branch (shown on Figure 1) to JSCS SLVs and DEQ guidance regarding use of industrial reference concentrations (DEQ, 2010) to identify analytes for which there may be major current sources in the associated subbasin. These data were collected after the City cleaned portions of the Basin 52 conveyance system (see Section 5) and are considered representative of current discharges to Basin 52. The second step evaluates data collected at upstream locations within the subbasins to identify specific sources and pathways to Basin 52.

4.1 North Subbasin

4.1.1 Subbasin Screening Results

The sediment trap sample collected at manhole AAE513 represents all stormwater contributions from the north branch, with the exception of a small parking area in Cathedral Park. Results for this sample are summarized in Tables 1 and 4 and discussed below.

- Total PCBs: The total PCB congeners concentration in the sample (924 micrograms per kilogram [μ g/Kg]) exceeds the JSCS Toxicity SLV and is significantly elevated relative to the range of PCB concentrations in DEQ's guidance. The total PCB Aroclors concentration in this sample (130 μ g/Kg, consisting of Aroclor 1260) is not significantly elevated.
- *Metals*: Chromium, copper, nickel and zinc were detected at concentrations greater than JSCS Toxicity SLVs in this sample, though all concentrations were less than 10 times the SLVs. Chromium and nickel concentrations are moderately elevated relative to the ranges in DEQ's guidance. Concentrations of other metals analyzed are not significantly elevated.

4.1.2 Source Tracing

Results of the subbasin screening evaluation indicate that current sources of PCBs, chromium, and nickel are present in the north subbasin. These contaminants also were detected at elevated concentrations in inline solids samples collected upstream of manhole AAE513 (see Table 1) and in the surface soil samples collected from right-of-way areas in N. Alta Avenue and along N. Bradford Street (see Table 5). Possible sources are discussed below. Although the sediment trap results do not indicate that there is a current major source of copper in this subbasin, copper was detected at an elevated concentration in the ledge sample collected from manhole AAE513 and is carried forward for source tracing based on the Basin 52 stormwater screening results (BES, 2010a).

4.1.2.1 PCBs

Total PCB concentrations in north subbasin inline solids are presented on Figure 3a. Of the inline sampling locations upstream of the north subbasin screening location, only the samples from catch basin ANE911 had total PCB concentrations that exceed the JSCS Toxicity SLV (see Table 1). The total PCB concentrations detected at this location in the 2008 sample (8,160 $\mu g/Kg$, Aroclor 1260) and in the 2010 sample (2,860 $\mu g/Kg$, Aroclor 1260), collected after the catch basin had been cleaned (see Section 5), indicate a major current source to this catch basin. The total PCBs concentration in the sample from catch basin ANE910 also is elevated relative to the DEQ industrial reference concentrations but is below the Toxicity SLV. Sediment trap data collected downstream of this catch basin after it was cleaned does not indicate current major sources of PCBs in this portion of the north subbasin. Based on the spatial distribution of PCBs in inline solids, a primary pathway of current PCBs sources to the north branch appears to be through catch basin ANE911.8

Catch basin ANE911 has no piped connections from adjacent properties. The estimated drainage area to this inlet includes portions of: the PIW facility (roof drainage and outdoor operations), a parking area across from PIW, improved N. Alta and N. Crawford streets, and the railroad corridor along unimproved N. Bradford St. To investigate erodible surface soil as a possible source of the PCBs detected in catch basin ANE911, the City collected surface soil samples from locations near this catch basin, as discussed in Section 3.1.5. The results (listed in Table 5 and shown on Figure 5) confirm the presence of PCBs at elevated concentrations in erodible soils in this area. Total PCBs were detected at concentrations up to 11,900 μ g/Kg in composite surface soil samples collected from areas that currently drain to this catch basin, and at concentrations up to 21,700 μ g/Kg in composite surface soil samples collected in the N. Bradford Street right-of-way just outside the estimated drainage area for this catch basin. As with the solids samples from catch basin ANE911, the PCBs detected in the surface soil samples consist entirely of Aroclor 1260.

As noted above, catch basin ANE911 is located adjacent to the PIW facility (see Figure 2a). PIW has operated at this location for close to 100 years, based on review of historical Sanborn maps (BES, 2011b). The facility produced ship parts during World War I and has continued as a machine shop and manufacturer of metal parts and equipment to the present (PIW, 2011). Historical operations at the site are not well known but apparently included foundry and machining operations, along with oil storage, based on information shown on the Sanborn maps (BES, 2011b). These types of historical land uses can be linked to PCBs contamination. Two foundry sites in Portland have been investigated under DEQ Cleanup Program oversight, 9 and both properties identified PCBs in onsite soil at concentrations warranting control. Historical machine shop operations may have utilized PCB-containing cutting fluids.

Historical fate and transport of contaminants from the PIW site are not well understood; however, offsite migration via vehicle and equipment dragout, overland runoff, fugitive dusts, and direct releases may have contributed to PCBs concentrations observed in erodible soils and inline solids collected from the vicinity of the site. Aerial photographs and Sanborn maps

⁸ Inline solids were not collected from the N. Alta Street line.

⁹ PECO, Inc. (ECSI No. 1973) and SFI Property (ECSI No. 5103).

indicate that site operations also occurred on adjacent property to the southeast (BES, 2011b). In the period before this property was paved, erodible soils may have been impacted by site operations. This area is now paved and owned by the City and is utilized by the Bureau of Parks and Recreation for Cathedral Park parking.

Current PIW operations include the use of the parking area across N. Alta St. and the unpaved area between the PIW building and the railroad tracks in N. Bradford St. Recent inspection by City Industrial Stormwater Program representatives during wet weather indicates that stormwater from unpaved areas southwest of the PIW building discharges underneath the rail lines to Cathedral Park (see Appendix D). Elevated PCBs (7,120 μ g/Kg) were detected in surface soils on the opposite side of the tracks from PIW; more data are needed to characterize the nature and extent of PCBs in erodible soils in the vicinity of PIW.

In summary, residual PCBs contamination in surface soil in the vicinity of PIW and N. Bradford Street appears to be a major source of the PCBs detected at elevated concentrations in the samples from catch basin ANE911 and from the downstream sediment trap at manhole AAE513. The PCBs contamination in this area is suspected to be related to operations at the adjacent PIW site. These conclusions are based on the following lines of evidence:

- The high PCBs concentrations detected in samples from catch basin ANE911 and the generally low PCBs concentrations detected in other sample locations upstream of manhole AAE513;
- The high concentrations of PCBs in surface soil samples collected in the N. Alta Avenue and N. Bradford Streets, within and near the drainage area for catch basin ANE911; and
- The long-term presence of industrial operations (e.g., foundry and metals machine shop) that are commonly associated with potential use of PCBs.

4.1.2.2 Metals

Chromium, copper, and nickel concentrations in north subbasin inline solids are presented on Figure 4. The highest concentrations of these metals were detected at catch basin APA114. This inlet is located at the intersection of N. Crawford Street and N. Alta Avenue at the foot of the driveway for the Independent Marine Propeller facility -- a propeller repair and machine shop (see Figure 4).

Observations made by BES Field Operations staff during Basin 52 sampling activities ¹⁰ and complaints previously received by the City (as discussed in Section 5) indicate operations at the Independent Marine Propeller facility periodically have included grinding of large metal propellers in the outdoor area adjacent to the building and hosing down the area. These activities result in washwater discharges to catch basin APA114, adjacent streets, and catch basin AAE673 (see Appendix A, Photos 21, 22, and 25a/b). ¹¹ Based on these observations and

MAY 2012 PAGE 4-3

-

 $^{^{10}}$ Observations on September 9, 2008, as communicated in an internal email from L. Scheffler (BES) to A. Dirks (BES), dated September 10, 2008.

¹¹ In addition to the observations during the September 2008 sampling activities, the City's Industrial Stormwater Program received a complaint on April 6th, 2007, from the City's Spill Protection and Citizen Response section regarding observed grinding and spraying of propellers on the exterior asphalted work area at the Independent Marine Propeller site.

the high chromium, copper and nickel concentrations detected in catch basin APA114, the Independent Marine Propeller site is suspected to be a major source of the chromium, copper and nickel in the sediment trap sample from the downstream end of the north branch.

The samples from catch basin ANE911 also had elevated concentrations of chromium, copper and nickel, though much lower than the concentrations in the catch basin APA114 sample. Catch basin ANE911 is located at the western end of N. Alta Avenue, adjacent to the PIW facility, which was a suspected source of metals to this catch basin, based on observations of metals shavings on the ground surface in the immediate vicinity of the catch basin (BES, 2008c). Metals concentrations detected in the erodible soils samples in the vicinity of catch basin ANE911 were not appreciably elevated (see Table 5 and Figure 5). Catch basin ANE911 also captures runoff from portions of N. Alta Avenue and N. Crawford Street adjacent to Independent Marine Propeller. Offsite migration of metals from the Independent Marine Propeller site is a likely source to catch basin ANE911.

4.2 Central Subbasin

4.2.1 Subbasin Screening Results

Contributions from the central subbasin are represented by the sediment trap samples (parent and duplicate) collected at manhole AAE516. The results and parent/duplicate average results for these samples¹² are summarized in Tables 2 and 4 and discussed below.

- Total PCBs: The average total PCB congeners concentration (398 μ g/Kg) and average total PCB Aroclors concentration (356 μ g/Kg, a mix of Aroclors 1016/1242 and 1254) are less than the Toxicity SLV and are moderately elevated relative to the DEQ industrial reference concentrations.
- Metals: Average chromium, copper, lead, nickel and zinc concentrations are greater than
 the JSCS Toxicity SLVs, though all concentrations are less than 10 times the respective
 SLV. Relative to the DEQ industrial reference concentrations, the chromium
 concentration is significantly elevated and the nickel concentration is moderately
 elevated. Average concentrations of other metals detected in the sediment trap samples
 from this location are not elevated.

4.2.2 Source Tracing

Results of the subbasin screening evaluation indicate that current sources of PCBs, chromium, and nickel are present in the central subbasin. Possible sources of these contaminants (along with copper, which was identified for potential further source tracing in the stormwater screening evaluation) are discussed below.

4.2.2.1 PCBs

PCB congeners and/or PCB Aroclors were detected in all samples collected upstream of manhole AAE516 except catch basin AAE673¹³. The highest total PCBs concentration (281

MAY 2012 PAGE 4-4

-

¹² The average concentration for the parent and duplicate samples was calculated following guidelines used by the Lower Willamette Group for data reporting (Kennedy/Jenks, 2004).

 $\mu g/Kg$) was detected in the sample from ODOT manhole 4. Though this concentration is moderately elevated relative to DEQ industrial reference concentrations (DEQ, 2010), total PCBs concentrations in solids collected from the ODOT system downstream of manhole 4 were not as elevated (115 $\mu g/Kg$). Stormwater discharges from the western portion of the St. Johns Bridge were characterized by the Lower Willamette Group (LWG) in 2007 (Anchor and Integral, 2008). Total PCBs were detected in stormwater and sediment trap samples at low to moderate concentrations relative to DEQ industrial reference concentrations.

Inline solids data collected from the ODOT system discharging to Basin 52 confirms that ODOT bridge drainage increases loading of PCBs to the basin. Though solids concentrations are not high relative to DEQ guidance concentrations, more data may be needed from ODOT to verify that the ODOT bridge is not a major ongoing source of PCBs to Basin 52 via stormwater discharges.

4.2.2.2 Metals

Samples collected from three of the four sampling locations upstream of manhole AAE516 were analyzed for metals: catch basin AAE673 and ODOT manholes 2 and 4. The chromium and copper concentrations in the sample from ODOT manhole 4 exceed the Toxicity SLVs but are within an order-of-magnitude of the SLVs and are not elevated relative to DEQ guidance. Nickel concentrations in the ODOT samples were below the Toxicity SLV. Results indicate that St. Johns Bridge runoff is not a likely major source of chromium, copper and nickel to this branch.¹⁴

Chromium, copper, and nickel concentrations at catch basin AAE673 are higher than at the downstream sediment trap location, exceed Toxicity SLVs, and are elevated relative to the DEQ industrial reference concentrations. Copper and nickel concentrations are greater than 10 times the SLVs. The drainage area for this catch basin consists of a relatively short stretch of N. Crawford Street and also captures a portion of overland stormwater runoff from the Independent Marine Propeller facility driveway (see Appendix A, Photos 25a/b). As discussed in Section 4.1.2.2, illicit discharges from the Industrial Marine Propeller site to catch basin AAE673 have been observed and inlets near the facility may also be impacted by vehicle tracking from the site. This facility is the suspected source of the same metals at nearby catch basin APA114, as discussed in Section 4.1.2, and likely also accounts for the elevated detections of these metals in the sample from catch basin AAE673.

4.3 South Subbasin

4.3.1 Subbasin Screening Results

The two sediment trap samples collected at manhole AAE700 (standard trap and SIFT© trap) represent all contributions from the south subbasin, except for discharges into the short storm line along the N. Pittsburg Avenue spur in Cathedral Park. These samples were collected after

¹³ Method detection limits for this sample were elevated.

¹⁴ Chromium and zinc were detected at moderately elevated concentrations in LWG stormwater samples from the western portion of the St. Johns Bridge; metals were not analyzed in the LWG sediment trap sample (Anchor and Integral, 2008).

several catch basins and catch basin lateral lines were cleaned in the vicinity of manhole AAE700 (see Section 5). Results for these samples are summarized in Tables 3 and 4 and discussed below.

- Total PCBs: The total PCB congeners concentration detected in the SIFT© trap sample (196 μg/Kg) is moderately elevated relative to DEQ industrial reference concentrations. However, PCB Aroclors were not detected in this sample, and the total PCB congeners concentration in the paired standard sediment trap sample is low.
- Metals: Metals were analyzed only in the SIFT© trap sample; there was insufficient
 sample volume in the standard trap for metal analyses. Copper, nickel, and zinc
 concentrations in this sample exceeded the JSCS Toxicity SLVs, but are less than 10 times
 the SLV and are not significantly elevated relative to DEQ industrial reference
 concentrations (DEQ, 2010).

These results indicate that no major sources of metals or PCBs currently discharge to the south branch.

4.3.2 Source Tracing

Although the 2010 sediment trap screening results for this branch do not indicate any major current sources of PCBs or metals in the south subbasin, the 2008 inline solids sample from the closest upstream catch basin (AAE651; see Figure 3b) indicated a potential historical PCBs source(s) in this subbasin. The total PCB Aroclors concentration in the catch basin AAE651 solids sample is 348 μ g/Kg, which is moderately elevated relative to the DEQ industrial reference concentrations (DEQ, 2010). The lower sediment trap results (ND – 196 μ g/Kg) that followed line cleaning in this area indicate that the elevated concentration in CB AAE651 may have represented legacy contaminated solids in this rail corridor area. Total PCBs concentrations in the other inline solids samples from this branch are low (see Table 3). Results for the 2008 inline solids samples from this branch do not indicate major sources of copper or other metals discharging to the south branch.

Source Control Activities

Source control measures the City has completed in coordination with the Basin 52 source investigation are summarized below and shown on Figure 6. These measures were identified based on initial review of the stormwater solids data and were completed in January 2010, in preparation for the February 2010 sediment trap deployments (BES, 2010c).

- All catch basins and connecting catch basin lead lines discharging to the following manholes were cleaned:
 - o Manhole AAE498 (north branch)
 - o Manhole AAE510 (north branch)
 - o Manhole AAE700 (south branch)¹⁵
- The following north branch stormwater line segments were cleaned after the catch basins, laterals, and upgradient manholes were cleaned:
 - o AAE498 to AAE511
 - o AAE511 to AAE510
 - AAE510 to AAE513

In addition, the City has taken the following actions with regard to suspected sources in Basin 52:

Independent Marine Propeller (8675 N. Crawford Street): This facility has been the subject of multiple complaints regarding air emissions (fugitive paint fumes and dust) and surface runoff (BES, 2007c; DEQ, 2007). In response to a complaint that the facility was spraying and grinding propellers on their exterior asphalted work area, the City inspected the site in spring 2007. Based on observations during the site inspection, the City concluded that drainage from this property's exterior areas likely flows overland into the adjacent streets and enters the Willamette River via the City's Basin 52 stormwater conveyance system. Given the potential for the company's activities to contaminate stormwater runoff entering the river, the City formally requested that the site operators confine the industrial activities to the interior work areas and cease utilizing the exterior yard for the propeller grinding and spraying. The City also requested that the site operators complete an Industrial and Commercial Environmental Survey, provided them with technical assistance on appropriate best management practices (BMPs) for preventing stormwater contamination, and requested that BMPs be implemented at this facility. It also notified the site operators that the discharge of any wash or wastewaters to the City's storm sewers is strictly prohibited (BES, 2007d).

¹⁵ Cleaning of the lateral line between two of the four catch basins in this area could not be completed due to line damage beneath the railroad corridor along N. Bradford St.

In response, Independent Marine Propeller made operational changes to remove exposures of site industrial activities to stormwater. Following City inspection of the site on June 15, 2011, the City determined that site operations would qualify for NPDES 1200-Z Industrial Stormwater Permit coverage if exposures were present. Because no such exposures were observed, the City requested submittal of a request for an NEC and is working with the site to ensure that an NEC can be issued.

- Peninsula Iron Works (6618 N. Alta Avenue): The City has worked with PIW in recent years to reduce industrial exposures to stormwater at the site. During the September 2008 catch basin sampling in Basin 52, the City observed that the right-of-way areas adjacent to the site on N. Alta Avenue and N. Bradford Street (along the railroad tracks) were being used as outdoor operations areas for PIW. Abundant metal shavings that appeared to be related to site operations were observed within and surrounding catch basin ANE911 (BES, 2008c). Based on observations during a follow-up City stormwater inspection on October 15, 2008, the City confirmed that industrial exposures to stormwater were occurring (BES, 2008d). Specifically, the City identified the following industrial activities taking place on site in areas exposed to stormwater and notified PIW operators that they were required to apply for a 1200-Z permit (BES, 2008d):
 - Scrap metal was being transferred to a recycling dumpster/bin and material was being collected from the bin in a manner causing shavings to be deposited on the ground in close proximity to catch basin ANE911, resulting in exposure to stormwater;
 - Old railroad ties used for product transport, waste equipment with hydraulic fluid, finished products, slag pieces, and metal shavings were being stored in a manner that exposed these materials to stormwater; and
 - Waste steel (which can be contaminated with oily residue, slag residue or other materials) was being stored outside and exposed to stormwater.

After a period of no response, the City issued PIW a Notice of Noncompliance (BES, 2009a) and enforcement referral (BES, 2009b) for failure to apply for the 1200-Z permit. Under City oversight, PIW subsequently completed sufficient actions to remove industrial activity exposures to stormwater, thereby becoming eligible for an NEC in lieu of an NPDES 1200-Z permit. Actions completed at the site to remove exposures include (BES, 2009c, 2009d):

- Waste materials (including old equipment and hoppers) were moved into covered areas;
- The recycling dumpster/bin was moved from its former location adjacent to catch basin ANE911 to the southwest side of building (approximately 40 feet from the catch basin). An absorbent sock was placed around the bin, and a permanent awning was installed over the bin;
- Scrap wood was moved to a covered storage area or placed on an elevated platform and covered with a tarp to prevent contact with stormwater;
- The onsite stormwater trench drain was cleaned out; and

o PIW staff were trained on general environmental housekeeping practices.

The NEC requires the site to file an updated form every 5 years and to maintain an Accidental Spill Prevention Plan (ASPP) for the facility to maintain site cleanliness. The controls identified in PIW's ASPP¹6 include a preventative maintenance program with catch basin and trench drain cleanings to occur as needed, and sweeping of the loading/unloading areas and storage area twice weekly. The ASPP also includes procedures for transferring and storing materials/wastes and spill response.

In December 2011, the City submitted a request to DEQ for Site Assessment at the PIW site, based on the Basin 52 source investigation results and historical documentation of industrial operations at the site (BES, 2011b). DEQ added this site to the ECSI database (ECSI #5686) and is working with the site to enter into a DEQ Cleanup Program agreement.

ODOT

The City revised the Basin 52 drainage basin boundary to reflect the portion of the St. Johns Bridge that discharges to the basin and provided results of the City investigation of solids in the ODOT drainage system to ODOT. The ODOT stormwater conveyance system that drains the eastern portion of the St. Johns Bridge includes a sedimentation manhole to reduce solids loading to Basin 52. DEQ and ODOT have entered into an IGA for investigation of discharges to Portland Harbor, including discharges from the St. Johns Bridge.

MAY 2012 PAGE 5-3

.

¹⁶ The ASPP was submitted for City review on March 2, 2009, and approved by the City on August 21, 2009.

The page left intentionally blank.

Conclusions and Next Steps

The City source investigations in Basin 52 confirmed that all major sources of PCBs and certain metals have been identified and are now in appropriate programs to select and implement necessary source controls. Basin 52 data do not indicate that major current sources of other contaminants are discharging to the basin and further City source tracing is not warranted.

Concentrations of total PCBs and certain metals (chromium, copper and nickel) in stormwater solids collected from this basin are elevated relative to concentrations for basins and industrial sites discharging to Portland Harbor (DEQ, 2010). This finding is similar to results of the City's *Stormwater Evaluation Report*, which identified PCBs and copper as analytes warranting further source tracing in the basin. Basin data indicate the major current sources of these contaminants are located in the north and central subbasins.

Based on the spatial distribution of elevated detections and information on upland sites within the basin, residual PCBs in erodible surface soils adjacent to the PIW facility appear to be a major source of PCBs to the north subbasin system. Review of available historical information indicates foundry and/or machine shop operations have been active at the PIW site for approximately 100 years; the PCBs contamination in surface soil in the vicinity of this site is suspected to be related to these historical site operations (via offsite dispersal mechanisms such as vehicle and equipment dragout, overland runoff, fugitive dusts, and direct releases). Outdoor operations at the Independent Marine Propeller facility appear to be the major source of metals to the north and central subbasins. PCBs and metals were also detected in the central subbasin in the ODOT drainage system affiliated with the St. Johns Bridge. The south subbasin does not appear to contain major sources of PCBs or metals to the municipal storm system.

The City Industrial Stormwater Program has provided technical assistance to the PIW and Independent Marine Propeller facilities to reduce stormwater exposures, resulting in the issuance of an NEC certification at PIW and recommendation for an NEC at Independent Marine Propeller. Basin 52 source investigation results in the vicinity of PIW supported a City request to DEQ for Site Assessment at PIW. DEQ has been working with PIW to finalize a Cleanup Program Agreement for the site. The ODOT St. Johns Bridge drainage system includes a sedimentation manhole to reduce solids loading from the bridge to Basin 52, and ODOT may be collecting additional information on St. Johns Bridge drainage as part of an IGA with the DEQ Cleanup Program. Source control efforts at these three sites are expected to address the major current sources of PCBs and metals to the Basin 52 conveyance system.

As all major sources of PCBs and the metals to Basin 52 have been identified and are being controlled, no further source investigation in Basin 52 is warranted. The City will continue to provide technical assistance to PIW and Independent Marine Propeller and to coordinate with DEQ on the PIW and ODOT source investigation and control efforts in the basin. The source investigation results presented in this report and ongoing work at the properties identified as major upland sources to the City conveyance system will support future DEQ decisions for this basin.

The page left intentionally blank

References

- Anchor and Integral. 2008. Portland Harbor RI/FS. Round 3A and 3B Stormwater Data Report. Prepared for the Lower Willamette Group, Portland, OR. Anchor Environmental, L.L.C., Seattle, WA. September 2008.
- BES. 2007a. Amended Programmatic Quality Assurance Project Plan, City of Portland Outfalls Project, Revision to Programmatic Source Control Remedial Investigation Work Plan Appendix D. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2007b. Amended Programmatic Sampling and Analysis Plan, City of Portland Outfalls Remedial Investigation/Source Control Measures Project. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. August 2007.
- BES. 2007c. Subject: Independent Marine Propeller 8675 N. Crawford. Email to L. Scheffler and D. Sanders (BES Portland Harbor Superfund Program) from M. Hauser (BES Spill Protection & Citizen Response Section). April 9, 2007.
- BES. 2007d. RE: Site Activities at Independent Marine Propeller- 8675 N. Crawford St, Portland OR. Letter to S. Parsons (Independent Marine Propeller) from L. Shelley (City of Portland BES Industrial Stormwater Program). June 6, 2007.
- BES. 2008a. City of Portland Outfalls Project, Basin 52 Inline Solids Sampling and Analysis Plan. Letter from L. Scheffler (BES) to K. Tarnow (DEQ). June 18, 2008.
- BES. 2008b. Subject: Notification of Proposed Sampling Activities Basin 52. Email from L. Scheffler (BES) to K. Tarnow (DEQ). August 26, 2008.
- BES. 2008c. Subject: Peninsula Iron Works. Email from L. Scheffler (BES) to L. Johnson (BES Industrial Stormwater Program). September 10, 2008.
- BES. 2008d. RE: General NPDES Industrial Stormwater Discharge Permit Required, Stormwater Facility Inspection of Peninsula Iron Works, located at 6618 N Alta. Letter to D. Johnson (PIW) from L. Johnson (BES Industrial Stormwater Program). October 16, 2008.
- BES. 2009a. RE: Notice of Noncompliance Failure to Apply for NPDES Permit, Discharge of Wastes to Waters of the State: Oregon Revised Statute 468.B.025, Peninsual Iron Works, 6618 N Alta. Letter to D. Johnson (PIW) from L. Johnson (BES Industrial Stormwater Program). January 5, 2009.
- BES. 2009b. RE: Enforcement Referral Failure to Apply for NPDES Permit, Discharge of Wastes to Waters of the State: Oregon Revised Statute 468.B.025, Peninsula Iron Works, 6618

- N Alta. Letter to D. Johnson (PIW) from L. Johnson (BES Industrial Stormwater Program). February 2, 2009.
- BES. 2009c. Site notes from BES Industrial Stormwater Program staff site visit to Peninsula Iron Works on February 12, 2009.
- BES. 2009d. Site notes from BES Industrial Stormwater Program staff site visit to Peninsula Iron Works on February 26, 2009.
- BES. 2010a. *Stormwater Evaluation Report, City of Portland Outfall Project, ECSI No.* 2425. Prepared by the City of Portland, Bureau of Environmental Services, Portland Harbor Program. February 2010.
- BES. 2010b. Subject: City of Portland Outfall Project, Source Investigations for Basins 18, 19A, 52, 52C, 53, 53A, and S-1, Summer 2010 Sampling and Analysis Plan. Letter from L. Scheffler (BES) to K. Tarnow (DEQ). August 20, 2010.
- BES. 2010c. Subject: Maintenance Assistance. Internal memorandum from L. Scheffler (BES) to Mark Braun (BES, Maintenance Engineering). January 11, 2010.
- BES. 2011a. Re: Basin 52 Source Investigation. Data transmittal to K. Tarnow (DEQ) from L. Scheffler (BES). June 16, 2011.
- BES. 2011b. Subject: Request for DEQ Site Assessment of Peninsula Iron Works Property at 6618 N. Alta Avenue. Letter to A. Liverman (DEQ) from L. Scheffler (BES). December 13, 2011.
- DEQ. 2001. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 2363, Crawford Street Corporation. Last updated 2001. Website accessed on February 28, 2011. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=2363
- DEQ. 2007. RE: Air Quality Complaint, Multnomah County, 09-06-2007 @ 08:02. Letter to Independent Marine Propeller & Machine Shop from D. Murphy (DEQ). September 24, 2007.
- DEQ. 2010. "Tool for Evaluating Stormwater Data" Appendix E to *Guidance for Evaluating the Stormwater Pathway at Upland Sites*. January 2009 (updated October 2010).
- DEQ. 2012a. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 5686, Peninsula Iron Works. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=5686
- DEQ. 2012b. Environmental Cleanup Site Information (ECSI) Database Site Summary Report Details for Site ID 5437, Oregon Department of Transportation Portland Harbor Source Control Evaluation. Last updated 2010. Website accessed on April 4, 2012. http://www.deq.state.or.us/lq/ECSI/ecsidetail.asp?seqnbr=5437

- DEQ and EPA. 2005 (amended 2007). Portland Harbor Joint Source Control Strategy. Prepared by the Oregon Department of Environmental Quality and the U.S. Environmental Protection Agency. December 2005 (Table 3-1 updated July 2007). Available online at http://www.deq.state.or.us/lq/cu/nwr/PortlandHarbor/jointsource.htm.
- EPA. 2010. Portland Harbor Superfund Site; Administrative Order of Consent for Remedial Investigation and Feasibility Study; Docket No. CERCLA-10-2001-0240. Portland Harbor Feasibility Study Source Tables. Letter from EPA to Mr. Bob Wyatt, Chairman, Lower Willamette Group. November 23, 2010.
- Kennedy/Jenks. 2004. Portland Harbor RI/FS, Guidelines for Data Reporting, Data Averaging, and Treatment of Non-Detected Values for the Round 1 Database. June 10, 2004.
- PIW. 2011. Peninsula Iron Works website. http://peniron.com/html/aboutus.htm. Accessed June 1, 2011.

The page left intentionally blank.

Table 1 Basin 52 Inline Solids Results - North Branch

		Manhole A	AAE513	Catch Basi	n ANE911	Catch Basin APA114	Manhole AAE498	Catch Basin ANE910	Catch Basin AAE694		
		Inline Solids	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Inline Solids	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Inline Solids	Screen	JSCS ⁽²⁾ ing Level Value
		Within Manhole, on East Ledge of Manhole FO080842	Upstream in 15" Line FO105695	FO081104	FO105871 ⁽¹⁾	FO081105	Downstream in 12" Line FO105694	FO081108	FO081109		
Class Analyte	Units	6/26/2008	6/17/2010	9/9/2008	9/7/2010	9/9/2008	6/17/2010	9/10/2008	9/10/2008	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD)										-	
TOC	mg/Kg	120,000	81,000	32,400	28,600	60,800	46,000	85,400	40,700		
Total Solids (SM 2540 G)											
TS	%	53.1	48.2	90.3	84 (1)	62.9	58.2	97.5	95.6		
Grain Size (ASTM D421/422)											
Gravel (>4750 μm)	Fract %	4.32	NA	30.68	NA	7.84	NA	NA	46.31		
Coarse Sand (4750-2000 µm)	Fract %	21.47	NA	22.81	NA	13.3	NA	NA	14.44		
Medium Sand (2000-425 μm)	Fract %	28.05	NA	26.97	NA	28.91	NA	NA	14.31		
Fine Sand (425-75 μm)	Fract %	16.98	NA	13.6	NA	30.38	NA	NA	11.27		
Silt (3.2-75 μm)	Fract %	24.71	NA	4.58	NA	16.74	NA	NA	10.42		
Clay (<3.2 µm)	Fract %	4.46	NA	1.34	NA	2.81	NA	NA	3.25		
Metals (EPA 6020)											
Arsenic	mg/Kg	7.67	5.25	7.42	4.61 (1)	7.08	3.19	NA	2.61	33	7
Cadmium	mg/Kg	0.93	1.01	0.59	0.464 (1)	1.91	0.66	NA	0.51	4.98	1
Chromium	mg/Kg	NA	162	563	659 (1)	5,260	99.5	NA	46.4	111	
Copper	mg/Kg	1,240	254	5,000	873 (1)	13,500	97.3	NA	69.7	149	
Lead	mg/Kg	81.6	86.5	272	105 (1)	150	59.3	NA	39.1	128	17
Mercury	mg/Kg	NA	0.068	0.036	0.0173 (1)	0.087	0.048	NA	0.125	1.06	0.07
Nickel	mg/Kg	NA NA	99.2	321	431 (1)	3,050	43.2	NA	25.8	48.6	
Silver	mg/Kg	NA	0.39	0.84	0.235 (1)	1.36	0.21	NA	0.10	5	
Zinc	mg/Kg	649	462	437	316 (1)	3,120	350	NA	187	459	
Debukkaria atal Diakaral Carana (DCD											
Polychlorinated Biphenyl Congeners (PCB		27.4	924 (5)	NIA	2.250	NIA	55.4 ⁽⁵⁾	374	37.4	(7)	0.20
Total P	CBs ⁽³⁾⁽⁴⁾ µg/Kg	NA	924	NA	2,350	NA	55.4	NA	NA	676	0.39
Polychlorinated Biphenyls(PCBs) (EPA 80											
Aroclor 1016	μg/Kg	10 U	20 U	1,000 U	200 U	10 U	10 U	10 U	10 U	530	
Aroclor 1221	μg/Kg	20 U	40 U	2,000 U	400 U	20 U	20 U	20 U	20 U		
Aroclor 1232	μg/Kg	10 U	20 U	1,000 U	200 U	10 U	10 U	10 U	10 U		
Aroclor 1242	μg/Kg	10 U	20 U	1,000 U	200 U	10 U	10 U	10 U	10 U		
Aroclor 1248	μg/Kg	10 U	20 U	1,000 U	200 U	10 U	11	10 U	10 U	1,500	
Aroclor 1254	μg/Kg	10 U	20 U	1,000 U	200 U	60	10 U	123 J	10 U	300	
Aroclor 1260	μg/Kg	114	130	8,160	2,860	29 J	9 J	515	54	200	
Aroclor 1262	μg/Kg	10 U	20 U	1,000 U	200 U	10 U	10 U	10 U	10 U		
Aroclor 1268	μg/Kg	10 U	20 U	1,000 U	200	10 U	10 U	10 U	10 U		
Total	PCBs (4) µg/Kg	114	130	8,160	2,860	89 J	20 J	638 J	54	676	0.39

Notes:

MAY 2012 PAGE 1 of 1

J = The result is an estimated concentration. The value is less than the MRL but greater than or equal to the MDL, or, for some Aroclors, the value is estimated due to pattern overlap.

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available

 $[\]mu g/Kg = Micrograms \ per \ kilogram$

 $mg/Kg = Milligrams \ per \ kilogram$

 $^{^{(1)}}$ Sample was archived after initial laboratory analysis and subsequently analysed for metals on November 17, 2011 (under laboratory number W11K141-03). The recommended method-specific holding time was exceeded due to delayed request for metals analysis; however, because the samples were properly preserved, the results are acceptable for the purposes of this investigation. Percent total solids (TS) also was reanalyzed at this time to ensure accuracy of metals results; TS = 81.6%.

⁽²⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽³⁾ Refer to Table 4 for individual PCB congener results.

 $^{^{(4)}}$ Total PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

⁽⁵⁾ Total PCB concentration includes one or more estimated value(s). Because estimated values are not significant relative to the total value (i.e., < 1%), the total PCB concentration is only slightly biased.

⁼ Concentration exceeds JSCS Toxicity Screening Level Value

bold = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 2 Basin 52 Inline Solids Results - Central Branch

		·	Catch Basin Manhole AAE516 AAE673 Catch Basin ANE921		in ANE921	ODOT M	Manhole 2 ⁽¹⁾	ODOT Manhole 4 (1)					
		Sediment Trap Solids (SIFT© Trap)		Ггар)	Inline Solids	ids Inline Solids		Inline Solids		Inline Solids	$\mathbf{JSCS}^{(2)}$		
		Downstream in 18" Line FO105698	Downstream in 18" Line Duplicate FO105702	Parent/Duplicate Sample Average ⁽³⁾ FO105698 & FO105702	FO081106	FO081103	Duplicate FO081107	Within Manhole FO105870 ⁽⁴⁾	Within Manhole Duplicate FO105873	Within Manhole FO105872 (5)	Screen	Screening Level Value	
Class Analyte	Units	6/17/2010	6/17/2010	6/17/2010	9/9/2008	9/9/2008	9/9/2008	9/7/2010	9/7/2010	9/8/2010	Toxicity	Bioaccumulation	
Total Organic Carbon (EPA 9060) MOD)										·		
TOC	mg/Kg	g 35,000	40,000	37,500	113,000	64,100	77,200	8,710	7,580	20,100			
Total Solids (SM 2540 G)													
TS	%	66.6	NA	NA	64.9	47.3	50.5	86.9 (4)	85.7	77.5 ⁽⁵⁾			
Grain Size (ASTM D421/422)													
Gravel (>4750 μm)	Fract 9	% NA	NA	NA	20.36	6.32	5.5	NA	NA	NA			
Coarse Sand (4750-2000	μm) Fract 9		NA	NA	15.2	9.75	9.26	NA	NA	NA			
Medium Sand (2000-425	Fract 9	% NA	NA	NA	22.03	23.9	22.28	NA	NA	NA			
Fine Sand (425-75 μm)	Fract 9	% NA	NA	NA	14.88	30.16	29.95	NA	NA	NA			
Silt (3.2-75 μm)	Fract 9		NA	NA	20.06	24.47	27.82	NA	NA	NA			
Clay (<3.2 µm)	Fract 9	% NA	NA	NA	7.47	5.38	5.2	NA	NA	NA			
Metals (EPA 6020)													
Arsenic	mg/Kg	g 3.34	2.81	3.08	5.62	NA	NA	2.18 (4)	NA	4.03 (5)	33	7	
Cadmium	mg/Kg	g 1.18	1.05	1.12	1.22	NA	NA	0.351 (4)	NA	1.02 (5)	4.98	1	
Chromium	mg/Kg	g 243	280	262	954	NA	NA	89.8 (4)	NA	159 (5)	111		
Copper	mg/Kg	309	339	324	2,170	NA	NA	44.8 (4)	NA	188 (5)	149		
Lead	mg/Kg	g 89.8	204	147	110	NA	NA	40.3 (4)	NA	151 ⁽⁵⁾	128	17	
Mercury	mg/Kg	g 0.079	0.067	0.073	0.085	NA	NA	0.0168 (4)	NA	0.0466 (5)	1.06	0.07	
Nickel	mg/Kg	112	122	117	512	NA	NA	27.1 (4)	NA	41.8 (5)	48.6		
Silver	mg/Kg	g 0.21	0.19	0.2	0.35	NA	NA	0.100 U	NA	0.202 (5)	5		
Zinc	mg/K	692	613	653	1,160	NA	NA	332 (4)	NA	632 (5)	459		
Polychlorinated Biphenyl Conger	ners (PCBs) (EPA 1668A)											
	Total PCBs ⁽⁶⁾⁽⁷⁾ µg/Kg	g 400	396 ⁽⁸⁾	398	NA	NA	NA	115	67.5	281 ⁽⁸⁾	676	0.39	
Polychlorinated Biphenyls(PCBs)) (EPA 8082)												
Aroclor 1016/1242	μg/Kg	78 J	101 J	90 J	100 U	20 U	20 U	10 U	10 U	10 U	530 ⁽⁹⁾		
Aroclor 1221	μg/Kg		20 U	20 U	200 U	40 U	40 U	20 U	20 U	20 U			
Aroclor 1232	μg/Kg	g 10 U	10 U	10 U	100 U	20 U	20 U	10 U	10 U	10 U			
Aroclor 1248	μg/Kg		10 U	10 U	100 U	20 U	20 U	60	76	97	1,500		
Aroclor 1254	μg/Kg		422 J	266 J	100 U	33 J	61 J	35	26	66	300		
Aroclor 1260	μg/Kg		10 U	10 U	100 U	60	83	10 U	10 U	10 U	200		
Aroclor 1262	μg/Kg		10 U	10 U	100 U	20 U	20 U	10 U	10 U	10 U			
Aroclor 1268	μg/Kg	g 10 U	10 U	10 U	100 U	20 U	20 U	10 U	10 U	10 U			
	Total PCBs (7) µg/Kg	g 188 J	523 J	356 Ј	ND	93 J	144 J	95	102	163	676	0.39	

Notes

MAY 2012 PAGE 1 of 1

J = The result is an estimated concentration. For PCB Aroclors, the value is estimated due to pattern overlap of the detected Aroclors or inconsistent QC results that indicate non-homogenous sample matrix.

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available

 $[\]mu g/Kg = Micrograms per kilogram$

mg/Kg = Milligrams per kilogram

⁽¹⁾ ODOT manhole 2 and ODOT manhole 4 were initially identified as sampling locations SJB2 and SJB1, respectively.

⁽²⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽³⁾ The average concentration for the parent and duplicate samples was calculated following guidelines used by the LWG for data reporting (Kennedy/Jenks, 2004).

 $^{^{(4)}}$ Sample was archived after initial laboratory analysis and subsequently analyzed for metals on November 17, 2011 (under laboratory number W11K141-01); however, because the sample was properly preserved, the results are acceptable for the purposes of this investigation. Percent total solids (TS) also was reanalyzed at this time to ensure accuracy of metals results; TS = 83.2%.

 $^{^{(5)}}$ Sample was archived after initial laboratory analysis and subsequently analyzed for metals on November 17, 2011 (under laboratory number W11K141-03)); however, because the sample was properly preserved, the results are acceptable for the purposes of this investigation . TS also was reanalyzed at this time to ensure accuracy of metals results; TS = 77.9%.

⁽⁶⁾ Refer to Table 4 for individual PCB congener results.

⁽⁷⁾ Total PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

⁽⁸⁾ Total PCB concentration includes one or more estimated value(s). Because estimated values are not significant relative to the total value (i.e., < 1%), the total PCB concentration is only slightly biased.

⁽⁹⁾ Results for Aroclors 1016 and 1242 are reported by the analytical laboratory as a combined result. JSCS includes a screening level value for Aroclor 1242 only.

⁼ Concentration exceeds JSCS Toxicity Screening Level Value

bold = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 3
Basin 52 Inline Solids Results - South Branch

	_	Manhole AAE700				Manhole A	AAE553	Manhole AAE569	Catch Basin ANE815		
	_	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Inline Solids	Inline Solids	Inline Solids	Inline Solids	Inline Solids	JSCS ⁽¹⁾ Screening Level Value	
		Downstream in 28" Line FO105696	Downstream in 28" Line FO105697	FO081102	FO081100	Upstream in 24" Line FO080840	Upstream in 24" Line Duplicate FO080843	Upstream in 12" Line FO080841	FO081101		
Class Analyte	Units	6/17/2010	6/17/2010	9/9/2008	9/9/2008	6/26/2008	6/26/2008	6/26/2008	9/9/2008	Toxicity	Bioaccumulation
Total Organic Carbon (EPA 9060 MOD)											
TOC	mg/Kg	NA	84,000	63,800	22,500	36,000	35,000	5,500	35,900		
T-4-1 C-1: 1- (CM 2540 C)											
Total Solids (SM 2540 G) TS	%	54.1	46.6	95.1	98.9	82.1	83.1	84.9	91.3		
15	70	J 1 .1	40.0	73.1	76.7	02.1	03.1	04.7	71.5		
Grain Size (ASTM D421/422)											
Gravel (>4750 μm)	Fract %	NA	NA	NA	22.96	19.73	24.66	8.08	20.02		
Coarse Sand (4750-2000 µm)	Fract %	NA	NA	NA	19.98	21.86	19.36	3.06	16.88		
Medium Sand (2000-425 μm)	Fract %	NA	NA	NA	30.88	41.85	34.79	14.64	24.96		
Fine Sand (425-75 μm)	Fract %	NA	NA	NA	16.29	12.54	17.03	62.83	21.98		
Silt (3.2-75 μm)	Fract %	NA	NA	NA	7.71	2.26	2.92	9.41	13.06		
Clay (<3.2 μm)	Fract %	NA	NA	NA	2.18	1.78	1.25	1.97	3.1		
Metals (EPA 6020)											
Arsenic	mg/Kg	NA	4.57	NA	NA	1.94	1.39	2.09	NA	33	7
Cadmium	mg/Kg	NA	1.51	NA	NA	0.72	0.56	0.29	NA	4.98	1
Chromium	mg/Kg	NA	98.5	NA	NA	NA	NA	NA	NA	111	
Copper	mg/Kg	NA	150	NA	NA	106	117	33.6	NA	149	
Lead	mg/Kg	NA	104	NA	NA	23.7	22.0	70.7	NA	128	17
Mercury	mg/Kg	NA	0.112	NA	NA	NA	NA	NA	NA	1.06	0.07
Nickel	mg/Kg	NA	60.0	NA	NA	NA	NA	NA	NA	48.6	
Silver	mg/Kg	NA	0.25	NA	NA	NA	NA	NA	NA	5	
Zinc	mg/Kg	NA	730	NA	NA	588	431	109	NA	459	
Polychlorinated Biphenyl Congeners (PCBs) (EPA 1668A)										
Total PCBs	⁽²⁾⁽³⁾ μg/Kg	28.5 Ј	196 ⁽⁴⁾	NA	NA	NA	NA	NA	NA	676	0.39
Polychlorinated Biphenyls(PCBs) (EPA 8082)											
Aroclor 1016/1242 (5)	μg/Kg	NA	20 U	37 J	10 U	10 U	10 U	10 U	10 U	530	
Aroclor 1221	μg/Kg	NA	40 U	20 U	20 U	20 U	20 U	20 U	20 U		
Aroclor 1232	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1248	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U	1,500	
Aroclor 1254	μg/Kg	NA	20 U ⁽⁶⁾	108 J	29 J	26 J	22 Ј	27 Ј	30 J	300	
Aroclor 1260	μg/Kg	NA	20 U ⁽⁶⁾	203 J	38	29	21	23	28	200	
Aroclor 1262	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U		
Aroclor 1268	μg/Kg	NA	20 U	10 U	10 U	10 U	10 U	10 U	10 U		
Total PCE		NA	ND	348 J	67 J	55 J	43 J	50 J	58 J	676	0.39

Notes:

MAY 2012 PAGE 1 of 1

J = The result is an estimated concentration. For PCB Aroclors, the value is estimated due to high surrogate recoveries and/or pattern overlap. For PCB Congeners, the value is estimated due to poor internal standard recovery in the sample and the associated QC samples.

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available

 $[\]mu g/Kg = Micrograms \ per \ kilogram$

mg/Kg = Milligrams per kilogram

⁽¹⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)

⁽²⁾ Refer to Table 4 for individual PCB congener results.

⁽³⁾ Total PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

⁽⁴⁾ Total PCB concentration includes one or more estimated value(s). Because estimated values are not significant relative to the total value (i.e., < 1%), the total PCB concentration is only slightly biased.

⁽⁵⁾ Results for Aroclors 1016 and 1242 are reported by the analytical laboratory as a combined result. The JSCS includes a screening level value for Aroclor 1242 only.

⁽⁶⁾ WPCL reports that sample FO105697 exhibited trace levels of PCBs (less than laboratory method reporting limits) tentatively identified as mixed Aroclors 1254/1260.

⁼ Concentration exceeds JSCS Toxicity Screening Level Value

bold = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 4 Basin 52 Inline Solids Results - PCB Congeners

Basin 52 Inline Solids Results	- PCB Congeners				North Branch				Central Branch			South	Branch		
			_	Manhole AAE513	Catch Basin ANE911	Manhole AAE498	Manhole A	AAE516	ODOT M	MH2 ⁽¹⁾	ODOT MH 4 (1)	Manhole		-	
			_	Sediment Trap Solids (SIFT© Trap)	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Sediment Tr		Inline S	Solids	Inline Solids	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)	-	
				Upstream of Manhole in 15" line	FO105871	Downstream of Manhole in 12" Line FO105694	Downstream of Manhole in 18" Line	Downstream of Manhole in 18" Line (Duplicate)	Within Manhole FO105870	Within Manhole (Duplicate)	Within Manhole FO105872	Downstream of Manhole in 28" Line	Downstream of Manhole in 28" Line FO105697	Screen	JSCS ⁽³⁾ ning Level Value
IUPAC Number ⁽²⁾		Chemical Name	Units	FO105695 6/17/2010	9/7/2010	6/17/2010	FO105698 6/17/2010	FO105702 6/17/2010	9/7/2010	FO105873 9/7/2010	9/7/2010	FO105696 6/17/2010	6/17/2010	Toxicity	Bioaccumulation
Polychlorinated Biphenyl Congeners	`	Chemicai Name												-	
PCB 1 PCB 2	2-MoCB 3-MoCB		μg/Kg μg/Kg	0.0441 J 0.0256 J	0.0235 U 0.0244	0.0245 U 0.0245 U	0.2210 0.0399	0.2810 J 0.0504 J	0.0477 0.0248 U	0.0378 0.0242 U	0.0792 0.0252	0.8930 JB 0.1800 JB	0.0467 J 0.0318 J		
PCB 3 PCB 4	4-MoCB 2,2'-DiCB		μg/Kg	0.0566 0.246	0.0235 U 0.0788	0.0245 U 0.0275	0.1590 1.95	0.1800 2.26	0.0349 0.634	0.0306 0.479	0.0641 J 0.987	0.0875 JB 0.2 J	0.0759 0.237		
PCB 5	2,3-DiCB		μg/Kg μg/Kg	0.0246 U	0.0235 U	0.0275 0.0245 U	0.0987	0.1220	0.0296	0.0242 U	0.0358	0.0334 UJ	0.257 0.0250 U		
PCB 6	2,3'-DiCB		μg/Kg	0.1260	0.0446	0.0245 U	0.9570	1.1600	0.2790	0.2360	0.3990	0.0838 J	0.1350		
PCB 7 PCB 8	2,4-DiCB 2,4'-DiCB		μg/Kg μg/Kg	0.0249 0.581	0.0235 U 0.173	0.0245 U 0.0591	0.1910 4.72	0.2360 5.77	0.0533	0.0464	0.0716 1.91	0.0334 UJ 0.205 J	0.0258 0.602		
PCB 9	2,5-DiCB		μg/Kg	0.0396	0.0235 U	0.0245 U	0.3270	0.4020	0.0944	0.0789	0.1110	0.0334 U	0.0418		
PCB 10	2,6-DiCB 3,3'-DiCB		μg/Kg	0.0246 U 1.38	0.0235 U 0.168	0.0245 U 0.185	0.1020 0.768	0.1290 0.997	0.0433	0.0330 0.145 U	0.0624 0.401	0.0334 U 0.397 B	0.0250 U 0.751		
PCB 11 PCB 12/13	3,4-DiCB + 3,4'-Di	СВ	μg/Kg μg/Kg	0.0984	0.168 0.0470 U	0.185 0.0490 U	0.768	0.4380	0.149 U 0.1510	0.145 U 0.1170	0.401	0.397 B 0.0669 U	0.751		
PCB 14	3,5-DiCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0245 U	0.0244 U	0.0248 U	0.0242 U	0.0244 U	0.0334 U	0.0250 U		
PCB 15 PCB 16	4,4'-DiCB 2,2',3-TriCB		μg/Kg μg/Kg	0.81 0.463	0.13 0.158	0.0632 0.0464	3.28 3.33	3.61 4.15	1.18 1.25	0.921 0.938	3.33	0.441 0.174	0.919 0.501		
PCB 17	2,2',4-TriCB		μg/Kg	0.465	0.178	0.0466	3.3	4.16	1.35	1.01	3.45	0.365	0.493		
PCB 18/30	2,2',5-TriCB + 2,4,	5-TriCB	μg/Kg	0.62	0.38	0.0893 0.0245 U	6.33	7.74	2.75	2.02	6.03	0.723	0.666		
PCB 19 PCB 20/28	2,2',6-TriCB 2,3,3'-TriCB + 2,4,-	4'-TriCB	μg/Kg μg/Kg	0.134 2.14	0.054 0.697	0.0245 0	0.908 10.5	1.14	0.343 4.85	0.265 3.32	1.01	0.0813 J 1.68 J	0.136 2.08	 	<u></u>
PCB 21/33	2,3,4-TriCB + 2',3,	4-TriCB	μg/Kg	1.21	0.35	0.113	6.4	8.08	2.61	1.78	5.66	0.746 J	1.15		
PCB 22 PCB 23	2,3,4'-TriCB 2,3,5-TriCB		μg/Kg μg/Kg	0.872 0.0246 U	0.241 0.0235 U	0.0802 0.0245 U	4.15 0.0245 U	5.08 0.0244 U	1.72 0.0248 U	1.19 0.0242 U	4.07 0.0244 U	0.609 J 0.0334 UJ	0.861 0.0250 U		-
PCB 24	2,3,6-TriCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0243 0	0.1570	0.0756	0.0335	0.0244 U	0.0334 UJ	0.0250 U		
PCB 25	2,3',4-TriCB	T. (CD.	μg/Kg	0.157	0.0462	0.0245 U	0.823	1.02	0.348	0.235	0.877	0.119 J	0.159		
PCB 26/29 PCB 27	2,3',5-TriCB + 2,4, 2,3',6-TriCB	5-TriCB	μg/Kg μg/Kg	0.3730	0.1060 0.0345	0.0490 U 0.0245 U	2.0100 0.6160	2.4900 0.7630	0.8150 0.2370	0.5580 0.1820	1.9600 0.9450	0.2790 J 0.0616 J	0.3620 0.1040		
PCB 31	2,4',5-TriCB		μg/Kg	1.88	0.562	0.168 B	9.75	12.1	4.19	2.81	8.9	1.48	1.81		
PCB 32 PCB 34	2,4',6-TriCB 2',3,5-TriCB		μg/Kg μg/Kg	0.361 0.0246 U	0.154 0.0235 U	0.0338 0.0245 U	2.2 0.0378	2.64 0.0461	1.06 0.0248 U	0.787 0.0242 U	3.32 0.0344	0.294 0.0334 U	0.391 0.0250 U		
PCB 35	3,3',4-TriCB		μg/Kg μg/Kg	0.0968	0.0239	0.0245 U	0.183	0.239	0.0248 0	0.0605	0.233	0.0347	0.0250 0		
PCB 36	3,3',5-TriCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0245 U	0.0244 U	0.0248 U	0.0242 U	0.0244 U	0.0334 U	0.0250 U		
PCB 37 PCB 38	3,4,4'-TriCB 3,4,5-TriCB		μg/Kg μg/Kg	1.14 0.0246 U	0.223 0.0235 U	0.0911 0.0245 U	2.89 0.0245 U	3.44 0.0244 U	1.3 0.0248 U	0.816 0.0242 U	3.31 0.0244 U	0.387 0.0334 U	1.13 0.0250 U		
PCB 39	3,4',5-TriCB		μg/Kg	0.0246 U	0.0235 U	0.0245 U	0.0472	0.0622	0.0271	0.0242 U	0.0523	0.0334 U	0.0250 U		
PCB 40/41/71 PCB 42	2,2',3,3'-TeCB + 2,2',3,4'-TeCB	2',3,4-TeCB + 2,3',4',6-TeCB	μg/Kg μg/Kg	1.240 0.584	0.528 0.232	0.147 U 0.0613	5.610 2.64	6.470 3.07	2.310 1.07	1.380 0.649	8.110 3.88	0.580 0.296	1.580 0.671		<u></u>
PCB 43	2,2',3,5-TeCB		μg/Kg	0.0984 U	0.0941 U	0.0981 U	0.332	0.384	0.136	0.0969 U	0.423	0.134 U	0.0999 U		
PCB 44/47/65		2',4,4'-TeCB + 2,3,5,6-TeCB	μg/Kg	2.24	0.856	0.233	11.3	12	4.38	2.31	13.5	0.986	3.65		
PCB 45/51 PCB 46	2,2',3,6-TeCB + 2,2 2,2',3,6'-TeCB	r,4,6-TeCB	μg/Kg μg/Kg	0.375 0.143	0.163 0.0576	0.0981 U 0.049 U	2.1 0.721	2.48 0.851	0.763 0.256	0.515 0.175	3.16 1.04	0.21 0.0669 U	0.851 0.187	 	
PCB 48	2,2',4,5-TeCB		μg/Kg	0.440	0.171	0.049 U	2.130	2.550	0.868	0.539	2.830	0.237	0.479		
PCB 49/69 PCB 50/53	2,2',4,5'-TeCB + 2,2 2,2',4,6-TeCB + 2,2		μg/Kg μg/Kg	1.240 0.282	0.502 0.139	0.122 0.098 U	6.520 1.520	7.030 1.750	2.520 0.549	1.380 0.345	7.910 2.160	0.578	1.780 0.654		<u></u>
PCB 52	2,2',5,5'-TeCB	,J,0-16CB	μg/Kg μg/Kg	3.72	2.85	0.284 B	19.2	18.6	7.21	3.11	16.9	0.965	3.57		
PCB 54	2,2',6,6'-TeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 55 PCB 56	2,3,3',4-TeCB 2,3,3',4'-TeCB		μg/Kg μg/Kg	0.0492 U 0.976	0.0470 U 0.347	0.0490 U 0.0975	0.0489 U 2.39	0.0488 U 2.49	0.0695 1.23	0.0485 U 0.571	0.0487 U 2.99	0.0669 U 0.184	0.0499 U 0.779		
PCB 57	2,3,3',5-TeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 58 PCB 59/62/75	2,3,3',5'-TeCB	,4,6-TeCB + 2,4,4',6-TeCB	μg/Kg	0.0492 U 0.213	0.0470 U 0.141 U	0.0490 U 0.147 U	0.0489 U 0.888	0.0488 U 1.08	0.0496 U 0.338	0.0485 U 0.213	0.0487 U 1.4	0.0669 U 0.201 U	0.0499 U 0.244		<u></u>
PCB 60	2,3,4,4'-TeCB	,4,0-10CB + 2,4,4 ,0-10CB	μg/Kg μg/Kg	0.468	0.141 0	0.0507	1.22	1.29	0.699	0.334	1.59	0.111	0.369		=
PCB 61/70/74/76		',4',5-TeCB + 2,4,4',5-TeCB + 2',3,4,5-TeCB	μg/Kg	4.15	1.43	0.481	14.4	13.1	6.43	2.85	11.9	0.96	3.5		
PCB 63 PCB 64	2,3,4',5-TeCB 2,3,4',6-TeCB		μg/Kg μg/Kg	0.0768 1.000	0.0470 U 0.426	0.0490 U 0.106	0.2630 4.500	0.2800 4.940	0.1320 1.870	0.0678 1.040	0.3170 6.220	0.0669 U 0.458	0.0742 1.100		
PCB 66	2,3',4,4'-TeCB		μg/Kg	2	0.684	0.178	5.54	5.64	2.76	1.32	6.71	0.464	1.72		
PCB 67 PCB 68	2,3',4,5-TeCB 2,3',4,5'-TeCB		μg/Kg μg/Kg	0.0839 0.0492 U	0.0470 U 0.0470 U	0.0490 U 0.0490 U	0.2180 0.0489 U	0.2640 0.0488 U	0.1030 0.0496 U	0.0578 0.0485 U	0.3020 0.0487 U	0.0669 U 0.0669 U	0.0797 0.0499 U		
PCB 72	2,3',5,5'-TeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488	0.0496 U	0.0485 U	0.0519	0.0669 U	0.0499 U		
PCB 73	2,3',5',6-TeCB		μg/Kg	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U	0 U		
PCB 77 PCB 78	3,3',4,4'-TeCB 3,3',4,5-TeCB		μg/Kg μg/Kg	0.640 0.0492 U	0.366 0.0470 U	0.056 0.0490 U	0.421 0.1130	0.493 0.0488 U	0.206 0.0496 U	0.103 0.0485 U	0.571 0.0487 U	0.068 0.0669 U	0.413 0.0499 U		0.052
PCB 79	3,3',4,5'-TeCB		μg/Kg	0.0578	0.1100	0.0490 U	0.1360	0.0815	0.0496 U	0.0485 U	0.0735	0.0669 U	0.0499 U		
PCB 80 PCB 81	3,3',5,5'-TeCB 3,4,4',5-TeCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.0470 U 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.0499 U 0.0499 U		0.017
PCB 82	2,2',3,3',4-PeCB		μg/Kg	0.962	0.379	0.476	2.65	1.8	0.736	0.327	1.33	0.114	0.921		
PCB 83	2,2',3,3',5-PeCB		μg/Kg	0.597	0.913	0.194	1.39	0.973	0.32	0.142	0.699	0.0669 U	0.492		
PCB 84 PCB 85/116/117	2,2',3,3',6-PeCB 2 2' 3 4 4'-PeCB + 1	2,3,4,5,6-PeCB + 2,3,4',5,6-PeCB	μg/Kg μg/Kg	2.18 0.922	2.56 0.584	0.707	6.64 3.38	4.79 2.1	2.01 0.847	0.767 0.396	3.9 1.59	0.258 0.201 U	2.13 1.04		
PCB 86/87/97/108/119/125	2,2',3,4,5-PeCB + 2	,2',3,4,5'-PeCB + 2,2',3',4,5-PeCB + 2,3,3',4,5'-		8.11	11.2	2.17	15.9	11.2	4.34	1.88	9.47	0.597	5		
PCB 88/91	PeCB + 2,3',4,4',6-1 2,2',3,4,6-PeCB + 2	PeCB + 2',3,4,5,6'-PeCB	μg/Kg μg/Kg	0.935	0.688	0.202	2.9	2.15	0.854	0.361	1.95	0.172	1.63		
PCB 89/91	2,2',3,4,6'-PeCB + 2 2,2',3,4,6'-PeCB	, , , , , , , , , , , , , , , , , , ,	μg/Kg μg/Kg	0.933	0.1040	0.202 0.0490 U	0.2100	0.1700	0.834	0.0485 U	0.1900	0.172 0.0669 U	0.0730		
PCB 90/101/113		2,2',4,5,5'-PeCB + 2,3,3',5',6-PeCB	μg/Kg	23.9	58.3	2.16	22.9	17.3	5.86	2.5	13.1	0.821	8.39		
PCB 92	2,2',3,5,5'-PeCB 2,2',3,5,6-PeCB + 2	,2',3',4,6-PeCB + 2,2',4,4',6-PeCB + 2,2',4,5,6'-	μg/Kg	3.36	7.35	0.416	4.22	3.04	1.08	0.468	2.27	0.181	1.75		
PCB 93/98/100/102	PeCB		μg/Kg	0.274	0.278	0.196 U	0.628	0.59	0.24	0.194 U	0.515	0.268 U	0.518		
PCB 94 PCB 95	2,2',3,5,6'-PeCB 2,2',3,5',6-PeCB		μg/Kg μg/Kg	0.0492 U 15.1	0.0470 U 42.3	0.0490 U 1.44	0.0974 19.6	0.0821 15.5	0.0496 U 5.59	0.0485 U 2.17	0.0820 11.4	0.0669 U 0.835	0.1520 7.02		
1 OD /3	2,2,3,3,0°1 CCB		μ _Б / Ng	13.1	72.3	1.44	17.0	13.3	3.37	2.17	11.4	0.033	1.02	-	

MAY 2012 Page 1 of 3

Table 4 Basin 52 Inline Solids Results - PCB Congeners

Basin 52 Inline Solids Results -	- PCB Congeners				North Branch				Central Branch			South 1	Branch		
				Manhole AAE513	Catch Basin ANE911	Manhole AAE498	Manhole /	AAE516	ODOT I	MH2 ⁽¹⁾	ODOT MH 4 (1)	Manhole			
				Sediment Trap Solids (SIFT© Trap)	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Sediment To	rap Solids	Inline		Inline Solids	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)		
				Upstream of Manhole		Downstream of Manhole	Downstream of Manhole	Downstream of Manhole	Wid: W. I.I.	Within Manhole	Within Manhole	Downstream of Manhole	Downstream of Manhole		(3)
				in 15" line FO105695	FO105871	in 12" Line FO105694	in 18" Line FO105698	in 18" Line (Duplicate) FO105702	Within Manhole FO105870	(Duplicate) FO105873	FO105872	in 28" Line FO105696	in 28" Line FO105697	Screen	JSCS ⁽³⁾ ning Level Value
IUPAC Number ⁽²⁾	Chemic	al Name	Units	6/17/2010	9/7/2010	6/17/2010	6/17/2010	6/17/2010	9/7/2010	9/7/2010	9/7/2010	6/17/2010	6/17/2010	Toxicity	Bioaccumulation
PCB 96 PCB 99	2,2',3,6,6'-PeCB 2,2',4,4',5-PeCB		μg/Kg μg/Kg	0.0570 2.68	0.0563 1.94	0.0490 U 0.74	0.1730 7.82	0.1530 5.37	0.0496 U 2.19	0.0485 U 0.992	0.1530 4.73	0.0669 U 0.293	0.1100 2.82		
PCB 103	2,2',4,5',6-PeCB		μg/Kg μg/Kg	0.0675	0.101	0.049 U	0.103	0.0877	0.0496 U	0.0485 U	0.0743	0.0669 U	0.158		
PCB 104 PCB 105	2,2',4,6,6'-PeCB 2,3,3',4,4'-PeCB		μg/Kg μg/Kg	0.0492 U 4.11	0.0470 U 3.05	0.0490 U 1.57	0.0489 U 7.68	0.0488 U 5.02	0.0496 U 1.64	0.0485 U 1.03	0.0487 U 3.79	0.0669 U 0.36	0.0499 U 2.82		0.17
PCB 106	2,3,3,4,4-FCCB 2,3,3',4,5-PeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 107/124 PCB 109	2,3,3',4',5-PeCB + 2',3,4,5,5'-PeCB 2,3,3',4,6-PeCB		μg/Kg	0.526 0.804	0.516 1.05	0.136 0.201	0.775 1.09	0.498 0.698	0.18 0.26	0.103 0.165	0.323	0.134 U 0.0669 U	0.295 0.422		
PCB 110/115	2,3,3,4,6-PeCB + 2,3,4,4',6-PeCB		μg/Kg μg/Kg	18.9	37.9	3.99	24.5	17.6	6.39	2.94	11.1	1.19	10.2		
PCB 111	2,3,3',5,5'-PeCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U	-	
PCB 112 PCB 114	2,3,3',5,6-PeCB 2,3,4,4',5-PeCB		μg/Kg μg/Kg	0.0492 U 0.203	0.0470 U 0.189	0.0490 U 0.0955	0.0489 U 0.465	0.0488 U 0.321	0.0496 U 0.114	0.0485 U 0.0661	0.0487 U 0.236	0.0669 U 0.0669 U	0.0499 U 0.136		0.17
PCB 118	2,3',4,4',5-PeCB		μg/Kg	12	18	3.2	18.6	12.2	4.11	2.44	8.62	1	6.2		0.12
PCB 120 PCB 121	2,3',4,5,5'-PeCB 2,3',4,5',6-PeCB		μg/Kg μg/Kg	0.0492 U 0.0492 U	0.1620 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0 U 0.0669 U	0.0499 U 0.0499 U		<u></u>
PCB 122	2',3,3',4,5-PeCB		μg/Kg μg/Kg	0.1170	0.0821	0.0490 U	0.2150	0.1390	0.0577	0.0485 U	0.1040	0.0669 U	0.0929		
PCB 123	2',3,4,4',5-PeCB 3,3',4,4',5-PeCB		μg/Kg	0.124 0.3050 EMPC	0.184 0.5880 EMPC	0.0521 EMPC 0.0490 U	0.287 0.0489 U	0.21 0.0488 U	0.0931 0.0496 U	0.0485 U 0.0485 U	0.158 0.0487 U	0.0669 U 0.0669 U	0.127 0.0845 EMPC		0.21 0.00005
PCB 126 PCB 127	3,3',4,5,5'-PeCB		μg/Kg μg/Kg	0.0492 U	0.0565	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0583		0.00003
PCB 128/166	2,2',3,3',4,4'-HxCB + 2,3,4,4',5,6-H		μg/Kg	8.38	19.80	1.46	3.65	2.59	0.52	0.44	1.34	0.23	2.46		
PCB 129/138/163 PCB 130	2,2',3,3',4,5-HxCB + 2,2',3,4,4',5'-H 2,2',3,3',4,5'-HxCB	xCB + 2,3,3',4',5,6-HxCB	μg/Kg μg/Kg	102 4.19	284 10.1	7.69 0.527	21.8 1.54	20 1.11	3.5 0.235	2.86 0.183	8.76 0.534	1.35 0.0866	16.4 1.09		
PCB 131	2,2',3,3',4,6-HxCB		μg/Kg	0.659	1.66	0.122	0.43	0.311	0.0808	0.0485 U	0.166	0.0669 U	0.219		
PCB 132 PCB 133	2,2',3,3',4,6'-HxCB 2,2',3,3',5,5'-HxCB		μg/Kg μg/Kg	25.20 0.993	72.80 2.59	2.51 0.0806	7.60 0.26	6.36 0.214	1.41 0.0496 U	0.88 0.0485 U	3.00 0.0962	0.41 0.0669 U	5.25 0.0499 U		
PCB 134/143	2,2',3,3',5,6-HxCB + 2,2',3,4,5,6'-H	кСВ	μg/Kg μg/Kg	3.290	9.630	0.399	1.350	1.050	0.281	0.163	0.484	0.134 U	0.845		
PCB 135/151 PCB 136	2,2',3,3',5,6'-HxCB + 2,2',3,5,5',6-H 2,2',3,3',6,6'-HxCB	xCB	μg/Kg	34.6 10.8	96.4 30.3	1.27 0.52	5.82	6.49 2.81	1.11 0.584	0.632 0.278	2.46 1.45	0.341 0.144	5.68		-
PCB 137	2,2',3,4,4',5-HxCB		μg/Kg μg/Kg	1.1	1.07	0.455	1.41	0.846	0.384	0.278	0.457	0.0669 U	2.28 0.799		
PCB 139/140	2,2',3,4,4',6-HxCB + 2,2',3,4,4',6'-H	xCB	μg/Kg	0.548	0.862	0.102	0.447	0.291	0.0991 U	0.0969 U	0.154	0.134 U	0.256		
PCB 141 PCB 142	2,2',3,4,5,5'-HxCB 2,2',3,4,5,6-HxCB		μg/Kg μg/Kg	22.8 0.0492 U	69.2 0.0470 U	1.1 0.0490 U	3.49 0.0489 U	3.86 0.0488 U	0.586 0.0496 U	0.493 0.0485 U	1.39 0.0487 U	0.208 0.0669 U	2.77 0.0499 U		
PCB 144	2,2',3,4,5',6-HxCB		μg/Kg	5.69	15.9	0.209	1.07	1.14	0.196	0.112	0.37	0.0669 U	0.793		
PCB 145 PCB 146	2,2',3,4,6,6'-HxCB 2,2',3,4',5,5'-HxCB		μg/Kg	0.0492 U 13.2	0.0470 U 35	0.0490 U 0.689	0.0489 U 2.53	0.0488 U 2.35	0.0496 U 0.4	0.0485 U 0.314	0.0487 U 0.973	0.0669 U 0.148	0.0499 U		
PCB 147/149	2,2',3,4',5,6-HxCB + 2,2',3,4',5',6-H	xCB	μg/Kg μg/Kg	73.9	215	3.44	13.7	14.1	2.69	1.67	5.84	0.827	2.29 12.2		
PCB 148	2,2',3,4',5,6'-HxCB		μg/Kg	0.0637	0.0841	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U 0.0487 U	0.0669 U	0.0499 U		
PCB 150 PCB 152	2,2',3,4',6,6'-HxCB 2,2',3,5,6,6'-HxCB		μg/Kg μg/Kg	0.1110 0.0492 U	0.1810 0.0470 U	0.0490 U 0.0490 U	0.0489 U 0.0489 U	0.0488 U 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.0706 0.0499 U		
PCB 153/168	2,2',4,4',5,5'-HxCB + 2,3',4,4',5',6-F	IxCB	μg/Kg	93.9	269	3.75	13.8	16.1	2.34	1.86	6.16	0.881	12.2		
PCB 154 PCB 155	2,2',4,4',5,6'-HxCB 2,2',4,4',6,6'-HxCB		μg/Kg μg/Kg	0.571 0.0492 U	1.03 0.0470 U	0.049 U 0.0490 U	0.145 0.0489 U	0.0978 0.0488 U	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.0487 U	0.0669 U 0.0669 U	0.368 0.0499 U		
PCB 156/157	2,3,3',4,4',5-HxCB + 2,3,3',4,4',5'-H	xCB	μg/Kg	7.76	17.2	1.24	3.15	2.35	0.364	0.387	1.24	0.172	1.73		0.21
PCB 158 PCB 159	2,3,3',4,4',6-HxCB 2,3,3',4,5,5'-HxCB		μg/Kg μg/Kg	8.4 0.0673 EMPC	23.5 0.542 EMPC	0.797 0.049 U	2.24 0.0489 U	1.93 0.0488 U	0.348 0.0496 U	0.29 0.0485 U	0.87 0.0487 U	0.134 0.0669 U	1.47 0.0499 U		
PCB 160	2,3,3',4,5,6-HxCB		µg/Кg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 161 PCB 162	2,3,3',4,5',6-HxCB 2,3,3',4',5,5'-HxCB		μg/Kg	0.0492 U 0.298	0.0470 U 0.173 EMPC	0.0490 U 0.049 U	0.0489 U 0.0495	0.0488 U 0.084	0.0496 U 0.0496 U	0.0485 U 0.0485 U	0.0487 U 0.051	0.0669 U 0.0669 U	0.0499 U 0.0499 U		
PCB 164	2,3,3,4,5,5-HXCB 2,3,3',4',5',6-HxCB		μg/Kg μg/Kg	5.82	17.7	0.464	1.27	1.15	0.215	0.0483 0	0.482	0.0933	1.01		
PCB 165	2,3,3',5,5',6-HxCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 167 PCB 169	2,3',4,4',5,5'-HxCB 3,3',4,4',5,5'-HxCB		μg/Kg μg/Kg	3.46 0.1570 EMPC	8.22 0.4860	0.347 0.0490 U	0.93 0.0489 U	0.749 0.0488 U	0.108 0.0496 U	0.123 0.0485 U	0.369 0.0487 U	0.0669 U 0.0669 U	0.664 0.0499 U		0.21 0.00021
PCB 170	2,2',3,3',4,4',5-HpCB		μg/Kg	39.6	102	1.08	2.33	4.15	0.226	0.487	1.25	0.307	3.47		
PCB 171/173 PCB 172	2,2',3,3',4,4',6-HpCB + 2,2',3,3',4,5, 2,2',3,3',4,5,5'-HpCB	6-НрСВ	μg/Kg μg/Kg	12.1 6.69	35.7 17	0.364 0.174	0.815 0.383	1.39 0.677	0.1 0.0496 U	0.149 0.0817	0.417 0.207	0.134 U 0.0669 U	1.14 0.618		<u> </u>
PCB 174	2,2',3,3',4,5,6'-HpCB		μg/Kg	35.6	101	0.803	1.99	3.79	0.269	0.403	1.14	0.248	3.45		
PCB 175 PCB 176	2,2',3,3',4,5',6-HpCB 2,2',3,3',4,6,6'-HpCB		μg/Kg μg/Kg	1.77 4.85	4.91 14.5	0.049 U 0.097	0.109 0.34	0.21	0.0496 U 0.0537	0.0485 U 0.0528	0.0572 0.174	0.0669 U 0.0669 U	0.183 0.513		
PCB 177	2,2',3,3',4',5,6-HpCB		μg/Kg μg/Kg	20.8	61	0.513	1.18	2.17	0.162	0.0528	0.686	0.143	2.02		
PCB 178 PCB 179	2,2',3,3',5,5',6-HpCB 2,2',3,3',5,6,6'-HpCB		μg/Kg	7.18 13.9	19.2 40.4	0.135 0.249	0.404 0.893	0.774 1.67	0.0655 0.162	0.0772 0.139	0.232 0.528	0.0669 U 0.09	0.818 1.67		
PCB 180/193	2,2',3,4,4',5,5'-HpCB + 2,3,3',4',5,5'		μg/Kg μg/Kg	83.3	212	1.64	3.92	8.68	0.162	0.869	2.52	0.574	7.28		
PCB 181	2,2',3,4,4',5,6-HpCB		μg/Kg	0.0492 U	0.4390	0.0490 U	0.0533	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 182 PCB 183/185	2,2',3,4,4',5,6'-HpCB 2,2',3,4,4',5',6-HpCB + 2,2',3,4,5,5',	6-HpCB	μg/Kg μg/Kg	0.0492 U 26.8	0.0470 U 78.6	0.0490 U 0.542	0.0489 U 1.49	0.0488 U 3.09	0.0496 U 0.236	0.0485 U 0.282	0.0487 U 0.93	0.0669 U 0.166	0.0499 U 2.49		<u></u>
PCB 184	2,2',3,4,4',6,6'-HpCB	•	μg/Kg	0.0492 U	0.0780	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 186 PCB 187	2,2',3,4,5,6,6'-HpCB 2,2',3,4',5,5',6-HpCB		μg/Kg μg/Kg	0.0492 U 41	0.0470 U 108	0.0490 U 0.695	0.0489 U 2.16	0.0488 U 4.45	0.0496 U 0.356	0.0485 U 0.411	0.0487 U 1.27	0.0669 U 0.265	0.0499 U 4.39		
PCB 188	2,2',3,4',5,6,6'-НрСВ		μg/Kg μg/Kg	0.0605	0.0965	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 189 PCB 190	2,3,3',4,4',5,5'-HpCB		μg/Kg	1.68 7.91	4.21	0.0551 0.196	0.123 0.451	0.213 0.85	0.0496 U	0.0485 U 0.0712	0.059 0.252	0.0669 U 0.0669 U	0.173 0.733		1.2
PCB 190 PCB 191	2,3,3',4,4',5,6-HpCB 2,3,3',4,4',5',6-HpCB		μg/Kg μg/Kg	1.66	17.4 4.34	0.196 0.049 U	0.451	0.85	0.0496 U 0.0496 U	0.0712 0.0485 U	0.252	0.0669 U 0.0669 U	0.733		
PCB 192	2,3,3',4,5,5',6-HpCB		μg/Kg	0.0492 U	0.0470 U	0.0490 U	0.0489 U	0.0488 U	0.0496 U	0.0485 U	0.0487 U	0.0669 U	0.0499 U		
PCB 194 PCB 195	2,2',3,3',4,4',5,5'-OcCB 2,2',3,3',4,4',5,6-OcCB		μg/Kg μg/Kg	14.40 5.97	28.00 13.4	0.18 0.0853	0.56 0.226	1.62 0.631	0.07 U 0.0744 U	0.15 0.0727 U	0.55 0.202	0.12 0.1 U	1.61 0.612		<u></u>
PCB 196	2,2',3,3',4,4',5,6'-OcCB		μg/Kg	8.46	18.50	0.11	0.36	0.98	0.07 U	0.08	0.30	0.10 U	0.94		-
PCB 197/200 PCB 198/199	2,2',3,3',4,4',6,6'-OcCB + 2,2',3,3',4 2,2',3,3',4,5,5',6-OcCB + 2,2',3,3',4,		μg/Kg μg/Kg	2.40 13.00	5.94 28.60	0.15 U 0.21	0.15 U 0.69	0.29 1.54	0.15 U 0.15 U	0.15 U 0.16	0.15 U 0.66	0.20 U 0.20 U	0.29 1.79		
PCB 201	2,2',3,3',4,5',6,6'-OcCB + 2,2',3,3',4,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	μg/Kg	1.850	4.510	0.074 U	0.107	0.233	0.074 U	0.073 U	0.078	0.100 U	0.265		

MAY 2012 Page 2 of 3

Table 4 Basin 52 Inline Solids Results - PCB Congeners

Dasin 32 Innie Solius Results	TOD Congeners	_		North Branch				South	Branch	_				
		Manhole AAE513		Catch Basin ANE911	Manhole AAE498	Manhole AAE516 ODOT MH2 (1)			ODOT MH 4 (1)	Manhole AAE700		_		
	_		Sediment Trap Solids (SIFT© Trap)	Inline Solids	Sediment Trap Solids (SIFT© Trap)	Sediment Trap Solids (SIFT© Trap)		Inline Solids		Inline Solids	Sediment Trap Solids (Standard Trap)	Sediment Trap Solids (SIFT© Trap)	_	
			Upstream of Manhole in 15" line FO105695	FO105871	Downstream of Manhole in 12" Line FO105694	Downstream of Manhole in 18" Line FO105698	Downstream of Manhole in 18" Line (Duplicate) FO105702	Within Manhole FO105870	Within Manhole (Duplicate) FO105873	Within Manhole FO105872	Downstream of Manhole in 28" Line FO105696	Downstream of Manhole in 28" Line FO105697	Scree	JSCS ⁽³⁾ ning Level Value
IUPAC Number(2)	Chemical Name	Units	6/17/2010	9/7/2010	6/17/2010	6/17/2010	6/17/2010	9/7/2010	9/7/2010	9/7/2010	6/17/2010	6/17/2010	Toxicity	Bioaccumulation
PCB 202	2,2',3,3',5,5',6,6'-OcCB	μg/Kg	2.2	4.16	0.0736 U	0.152	0.29	0.0744 U	0.0727 U	0.144	0.1 U	0.361		
PCB 203	2,2',3,4,4',5,5',6-OcCB	μg/Kg	8.52	17.8	0.125	0.413	1.07	0.0744 U	0.0883	0.44	0.1 U	1.09		
PCB 204	2,2',3,4,4',5,6,6'-OcCB	μg/Kg	0.0738 U	0.0706 U	0.0736 U	0.0734 U	0.0732 U	0.0744 U	0.0727 U	0.0731 U	0.1 U	0.0749 U		
PCB 205	2,3,3',4,4',5,5',6-OcCB	μg/Kg	0.915	1.91	0.0736 U	0.0734 U	0.112	0.0744 U	0.0727 U	0.0731 U	0.1 U	0.116		
PCB 206	2,2',3,3',4,4',5,5',6-NoCB	μg/Kg	2.88	4.29	0.07 U	0.34	0.63	0.07 U	0.07 U	0.40	0.11	0.86		
PCB 207	2,2',3,3',4,4',5,6,6'-NoCB	μg/Kg	0.383	0.624	0.0736 U	0.0734 U	0.0873	0.0744 U	0.0727 U	0.0731 U	0.1 U	0.104		
PCB 208	2,2',3,3',4,5,5',6,6'-NoCB	μg/Kg	0.597	0.62	0.0736 U	0.0927	0.151	0.0744 U	0.0727 U	0.122	0.1 U	0.305		
PCB 209	Decachlorobiphenyl	μg/Kg	0.423	0.116	0.0736 U	0.119	0.194	0.0744 U	0.0727 U	0.137	0.116	0.76		
	Total Monochlorobiphenyls	μg/Kg	0.126 (4)	0.0244	ND	0.420	0.511 (4)	0.0826	0.0684	0.168 (4)	1.16 ^J	0.154 (4)		
	Total Dichlorobiphenyls	μg/Kg	3.31	0.594	0.335	12.8	15.1	3.80	3.00	7.62	1.33 J	2.82		
	Total Trichlorobiphenyls	μg/Kg	10.0	3.21	0.871 (4)	53.5	66.4	23.0	16.0	55.9	7.03 J	9.92		
	Total Tetrachlorobiphenyls	μg/Kg	19.9	9.02	1.67 (4)	82.1	84.8	33.9	17.0	92.0	6.26 J	21.7		
	Total Pentachlorobiphenyls	μg/Kg	96.1	188	18.1	142.0	102	37.0	16.7	763	5.53 J	52.5		
	Total Hexachlorobiphenyls	μg/Kg	427	1200	27.2	89.6	86.1	15.2	11.0	36.6	5.03 J	70.9		
	Total Heptachlorobiphenyls	μg/Kg	305	821	6.54	16.7	32.9	2.11	3.27	9.77	1.79 J	29.1		<u></u>
	Total Octachlorobiphenyls	μg/Kg	57.7	123	0.707	2.50	6.76	ND	0.468	2.36	0.121 J	7.07		
	Total Nonachlorobiphenyls	μg/Kg	3.86	5.53	ND	0.435	0.865	ND	ND	0.517	0.108 J	1.27		
	Total Decachlorobiphenyls	μg/Kg	0.423	0.116	ND	0.119	0.194	ND	ND	0.137	0.116 J	0.760		
	Total PCBs (5)	μg/Kg	924 ⁽⁴⁾	2,350	55.4 ⁽⁴⁾	400	396 (4)	115	67.5	281 (4)	28.5 J	196 ⁽⁴⁾	676	0.39

Notes: MH = manhole

MoCB = Monochlorobiphenyl

DiCB = Dichlorobiphenyl

TriCB = Trichlorobiphenyl

TeCB = Tetrachlorobiphenyl
PeCB = Pentachlorobiphenyl

HeCB = Hexachlorobiphenyl

HpCB = Heptachlorobiphenyl

OcCB = OctachlorobiphenylNoCB = Nonachlorobiphenyl

-- No JSCS screening level available.

B = The analyte was found in the associated method blank at a level that is significant relative to the sample result.

EMPC = Estimated Maximum Possible Concentration. Values are not included in total Homolog or total PCBs concentrations.

J=The result is an estimated concentration. For individual congeners, the value is estimated due to poor internal standard recovery in the sample and the associated QC samples. U=The analyte was not detected above the reported sample quantification limit.

UJ = The analyte was not detected above the reported sample quantification limit. However, the associated internal standard was recovered outside of method specified laboratory control limits, and the reported quantitation limit may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

 $\mu g/Kg = micrograms$ per kilogram ND = not detected

⁽¹⁾ ODOT MH2 and ODOT MH4 were initially identified as sampling locations SJB2 and SJB1, respectively.

(2) IUPAC - International Union of Pure and Applied Chemistry

(3) JSCS SLVs- Portland Harbor Joint Source Control Strategy Screening Level Values (DEQ/EPA Final December 2005, Amended July 2007)

(4) Total homolog and total congener values may be slightly biased due to congener detections in the laboratory method blank and/or internal standard recoveries outside of method control limits.

 ${}^{(5)}\!\text{Total}$ PCBs are calculated by assigning "0" to undetected constituents and to results flagged with "EMPC".

= Concentration exceeds JSCS Toxicity Screening Level Value **bold** = Concentration exceeds JSCS Bioaccumulation Screening Level Value

Table 5 Basin 52 Surface Soil Results

			Sample Location 52_15	Sample Location 52_16		Sample Location 52_17	Sample Location 52_18	Sample Location 52_19	Sample Location 52_20	Sample Location 52_21	Sample Location 52_22	Sample Location 52_23		
			Five-point Composite Between RR Track and Cathedral Park Parking Lot	Five-point Between RR T	Composite Frack and PIW	Five-point Composite Between RR Track and PIW	Five-point Composite Between RR Track and 6600 N Baltimore Ave	Five-point Composite Between RR Track and 6600 N Baltimore Ave	Five-point Composite Between RR Track and N Alta Ave	Two-point Composite From Potholes Northeast of CB ANE911	Discrete Sample From Pothole North-northwest of CB ANE911	Five-point Composite Between RR Track and Cathedral Park		
			W11A060-01	W11A060-02	Duplicate W11A060-09	W11A060-03	W11A060-04	W11A060-05	W11A060-06	W11A060-07	W11A060-08	W11A060-10		SCS ⁽¹⁾ Level Value
Class	Analyte	Units	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	Toxicity	Bioaccum- ulation
Total Organi	c Carbon (EPA 906	0 MOD)												
	TOC	mg/Kg	23,000	13,000	15,000	13,000	34,000	84,000	45,000	70,000	20,000	25,000		
Total Solids	(SM 2540 G)													
	TS	%	80.1	91.9	92.1	89.7	88.3	69.6	73.9	76.7	89.6	85.3		
Metals (EPA	. 6020)													
	Chromium	mg/Kg	131 J	296	104	549	31.1	57.1	136	216	304	40.0	111	
	Copper	mg/Kg		415	436	444	57.0	161	422	224	541	69.8	149	
	Lead	mg/Kg		84.2	96.7	56.3	172	149	113	75.9	47.1	101	128	17
	Nickel	mg/Kg		113	81.8	302	32.7	57.5	99.7	144	144	25.6	48.6	
	Zinc	mg/Kg	358	142	146	198	211	273	408	523	178	164	459	
Polychlorina	ted Biphenyls(PCBs	s) (EPA 8082)												
	Aroclor 1016	μg/Kg	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	530	
	Aroclor 1221	μg/Kg	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U	20.0 U		
	Aroclor 1232	μg/Kg	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U		
	Aroclor 1242	μg/Kg	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U		
	Aroclor 1248	μg/Kg	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	1,500	
	Aroclor 1254	μg/Kg	1,000 U	1,000 U	1,000 U	1,000 U	50.0 U	50.0 U	50.0 U	100 U	100 U	1,000 U	300	
	Aroclor 1260	μg/Kg		11,900	10,500	10,700	606	1,170	846	1,940	1,240	7,120	200	
	Aroclor 1262	μg/Kg		1,000 U	1,000 U	1,000 U	50.0 U	50.0 U	50.0 U	100 U	100 U	1,000 U		
	Aroclor 1268	μg/Kg	1,000 U	1,000 U	1,000 U	1,000 U	50.0 U	50.0 U	50.0 U	100 U	100 U	1,000 U		
		Total PCBs (2) µg/Kg	21,700	11,900	10,500	10,700	606	1,170	846	1,940	1,240	7,120	676	0.39

Notes:

 $\mu g/Kg = Micrograms \ per \ kilogram$

mg/Kg = Milligrams per kilogram

CB = catch basin

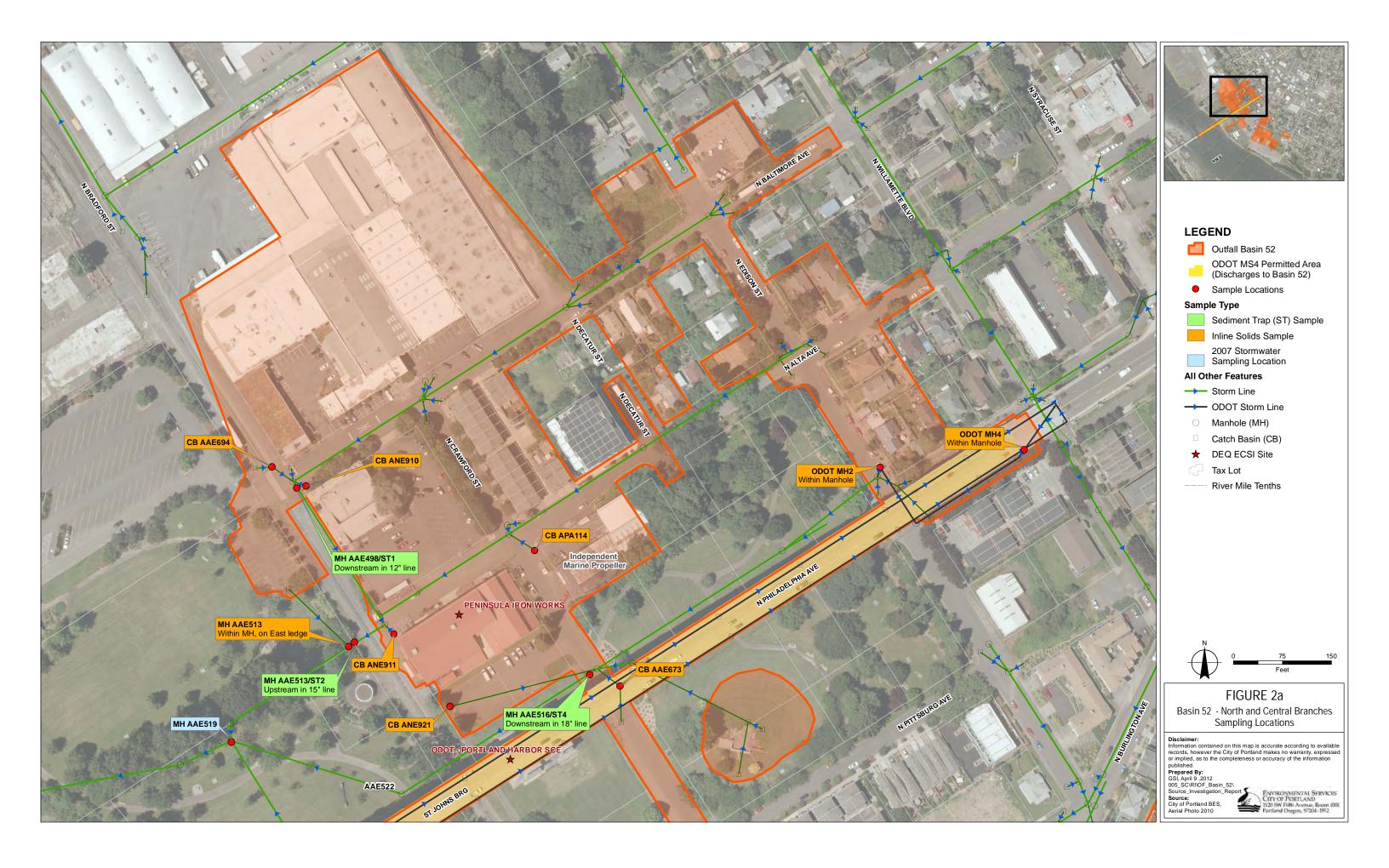
RR = Railroad

PIW = Peninsula Iron Works

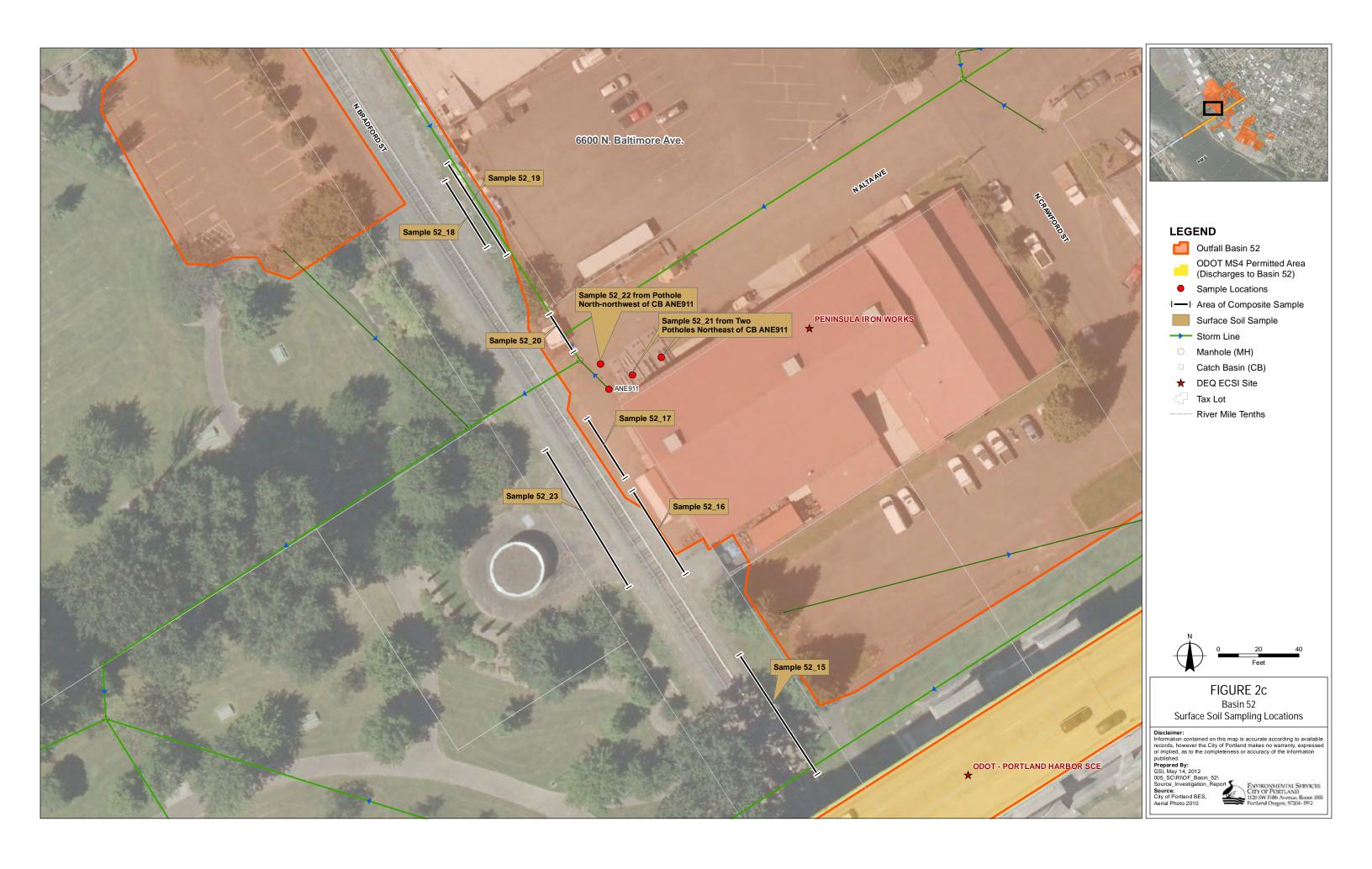
Concentration exceeds JSCS Toxicity SLV

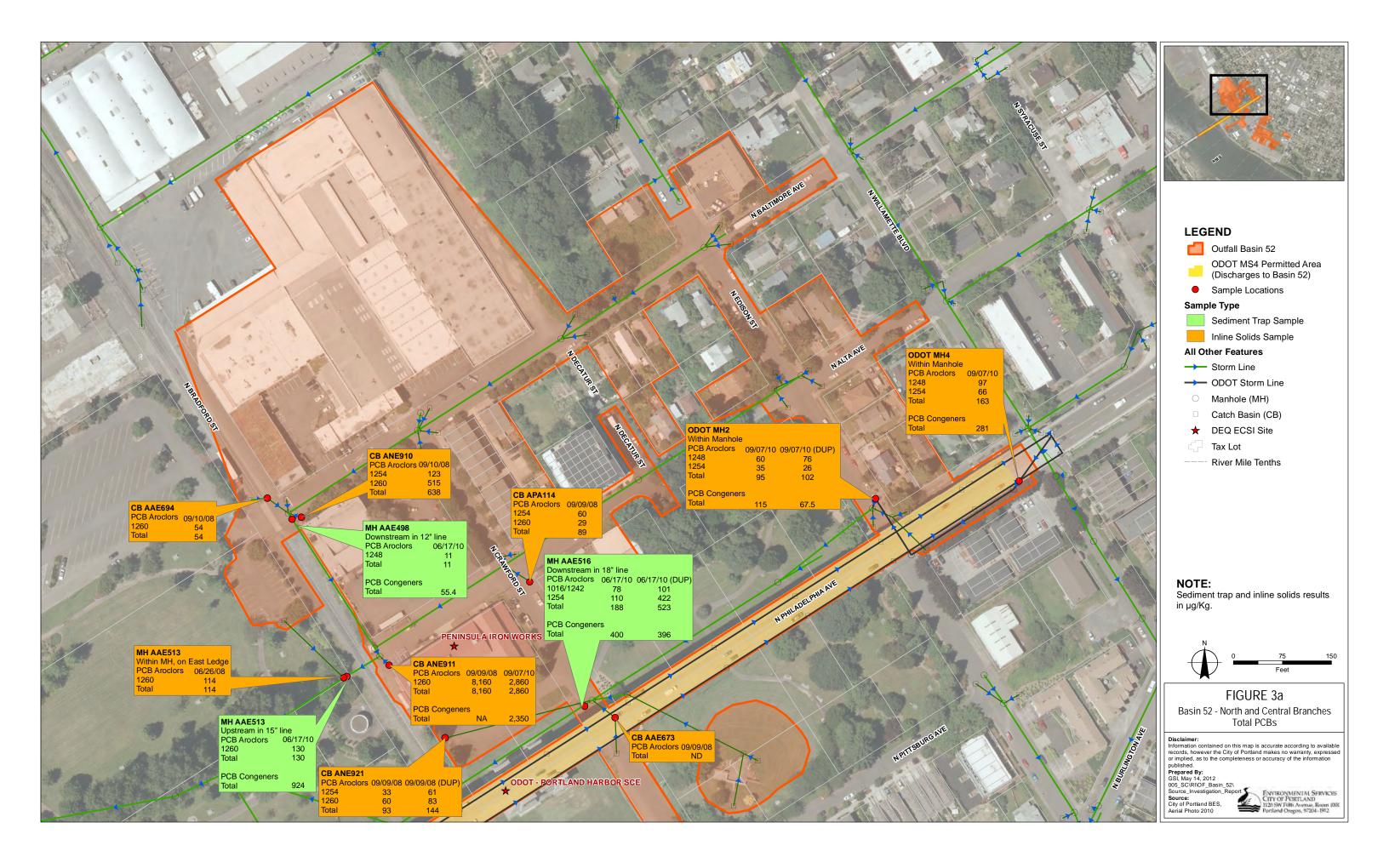
bold = Concentration exceeds JSCS Bioaccumulation screening level value

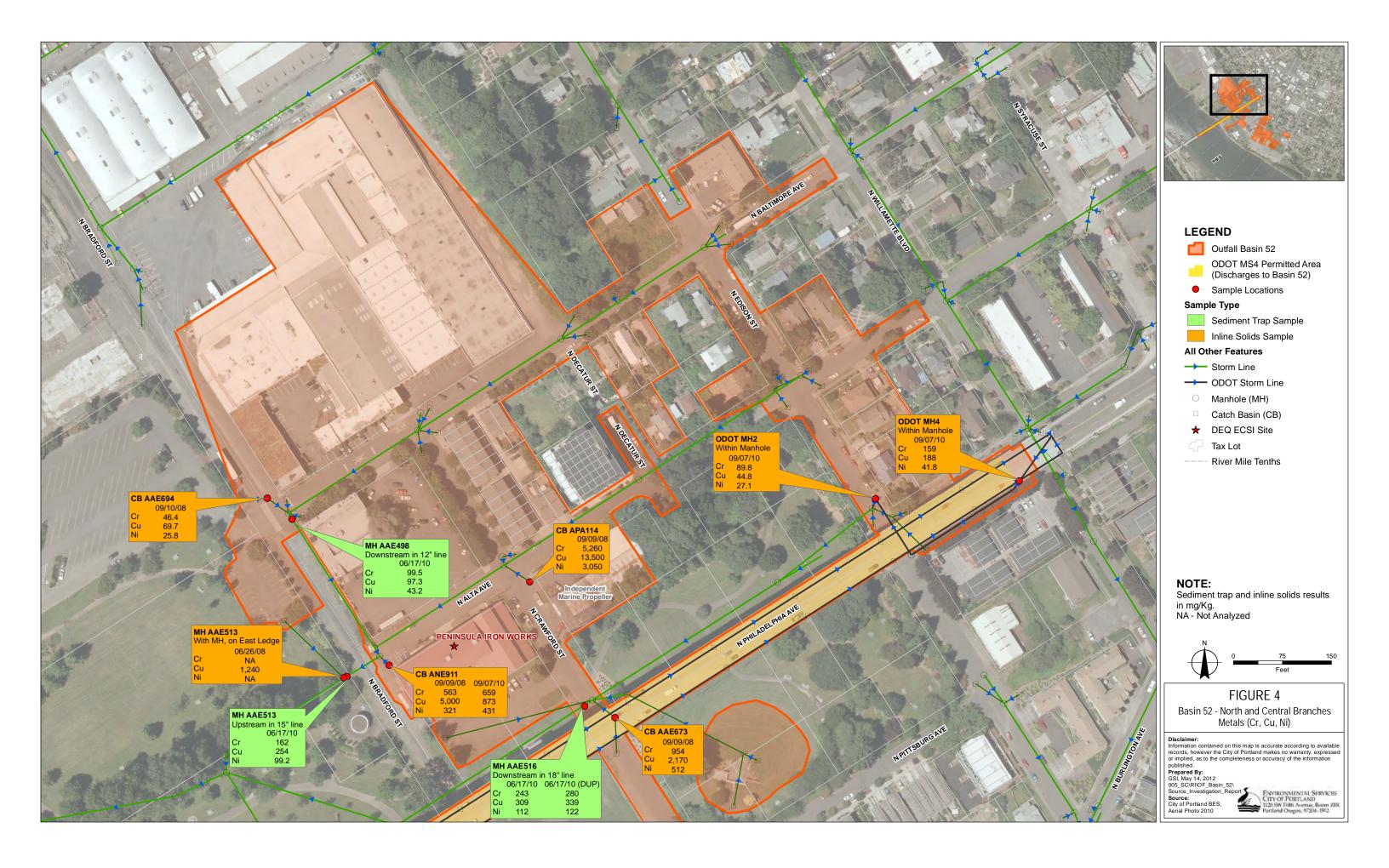
MAY 2012 PAGE 1 of 1

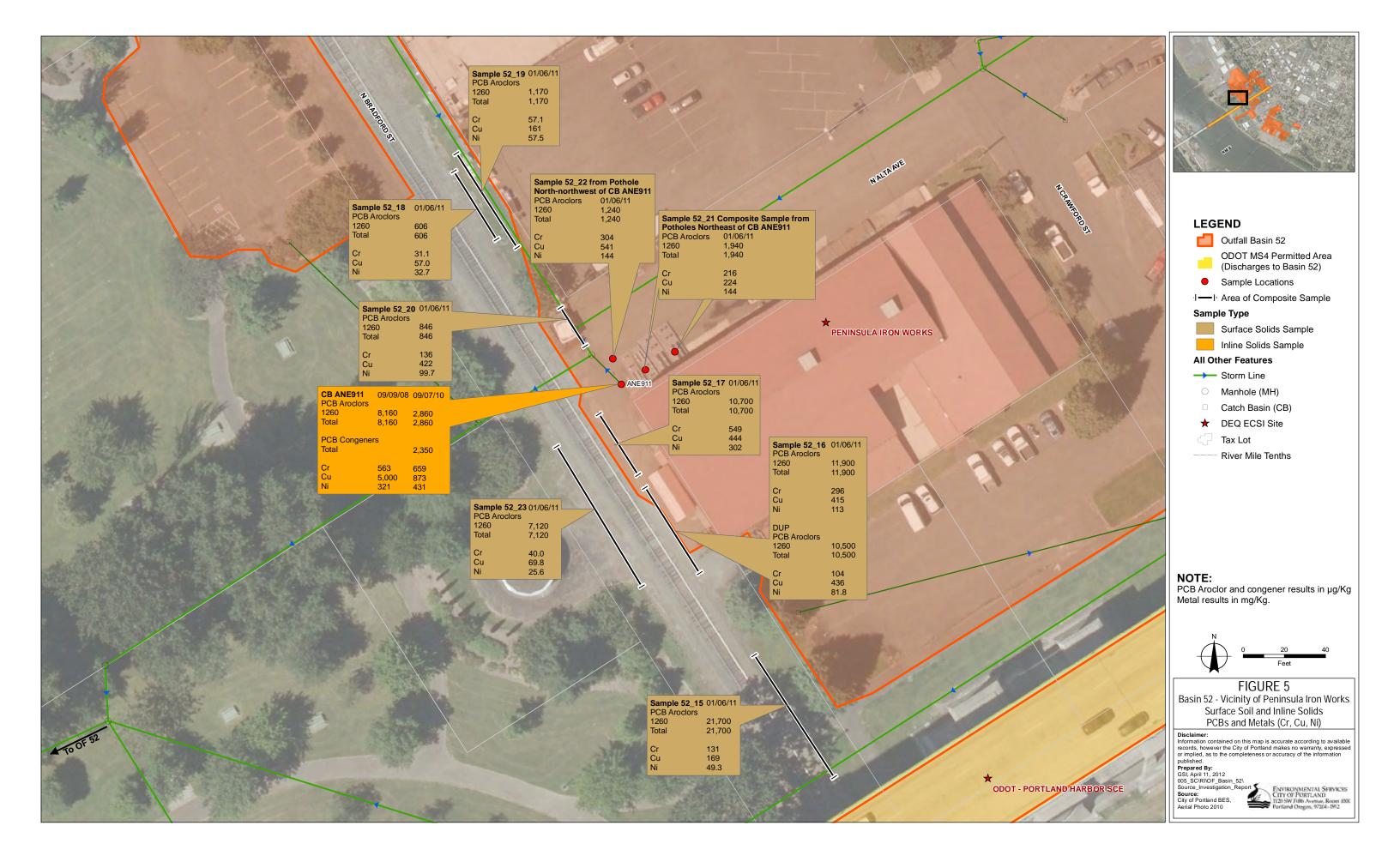

U = Analyte was not detected above the reported sample quantification limit

⁻⁻ No JSCS screening level value available


⁽¹⁾ JSCS - Portland Harbor Joint Source Control Strategy (DEQ/EPA Final December 2005, Amended July 2007)


 $^{^{\}left(2\right)}$ Total PCBs are calculated by assigning "0" to undetected constituents.







June 2008 Inline Solids Sampling

Photo 1 (June 26, 2008). View of solids accumulated on the eastern ledge in manhole AAE513.

Photo 2 (June 26, 2008). Final composited sample from manhole AAE513.

Photo 3 (June 26, 2008). Sampling location at manhole AAE553. View is to the northeast.

Photo 4 (June 26, 2008). Manhole AAE553 looking upstream; view of solids sampled.



Photo 5 (June 26, 2008). Final composited sample from manhole AAE553.

Photo 6 (June 26, 2008). Sampling location at manhole AAE569. View is to the east-southeast, up N. Crawford Street.

Photo 7 (June 26, 2008). 12-inch line entering manhole AAE569 from the east-southeast; view of solids sampled.

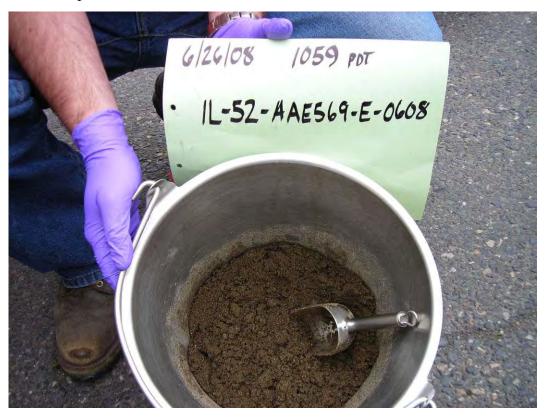


Photo 8 (June 26, 2008). Final composited sample from manhole AAE569, east-southeast line.

September 2008 Catch Basin Sampling

Photo 9 (September 9, 2008). Sampling location at catch basin ANE813. View is to the south-southwest.

Photo 10 (September 9, 2008). Final composited sample from catch basin ANE813.

Photo 11 (September 9, 2008). Sampling location at catch basin ANE815.

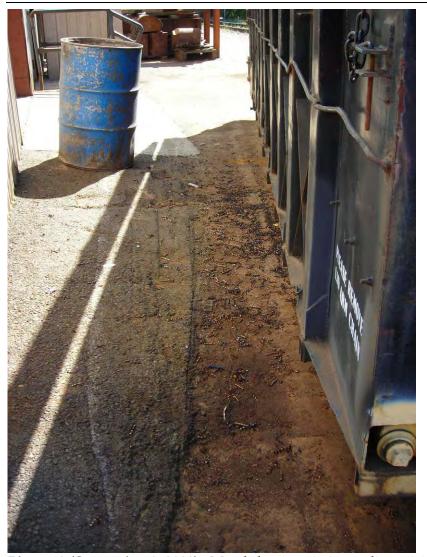
Photo 12 (September 9, 2008). Final composited sample from catch basin ANE815.

Photo 13 (September 9, 2008). Sampling location at catch basin AAE651. View is to the south-southeast.

Photo 14 (September 9, 2008). Final composited sample from catch basin AAE651.

Photo 15 (September 9, 2008). Preparing to sample at catch basin ANE921. View is to the south.

Photo 16 (September 9, 2008). Final composited sample from catch basin ANE921.



Peninsula Iron Works

Photo 17 (September 9, 2008). Sampling location at catch basin ANE911. View is to the east.

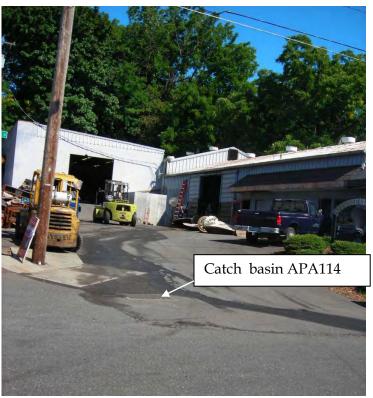

Photo 18 (September 9, 2008). View of part of drainage area for at catch basin ANE911. View is to the east-northeast.

Photo 19 (September 9, 2008). Metal shavings in immediate vicinity of catch basin ANE911, between Peninsula Iron Works building and the recycling dumpster.

Photo 20 (September 9, 2008). Final composited sample from catch basin ANE911.

Photo 21 (September 9, 2008). Sampling location at catch basin APA114, adjacent to Independent Marine Propeller facility; note runoff from washing in facility's driveway into catch basin APA114 and continuing on N. Crawford Street toward catch basin AAE673.

Photo 22 (September 9, 2008). View to the south-southeast on N. Crawford Street, just south-southeast of intersection with N. Alta Avenue. Wash water runoff from Independent Marine Propeller facility driveway is visible along northeast side of roadway, flowing toward catch basin AAE673.

Photo 23 (September 9, 2008). Catch basin APA114.

Photo 24 (September 9, 2008). Final composited sample from catch basin APA114.

Photo 25a/b (September 9, 2008). Sampling location at catch basin AAE673. Water flowing into catch basin is wash water runoff from Independent Marine Propeller driveway (see Photos 21, 22).

Photo 26 (September 9, 2008). Final composited sample from catch basin AAE673.

Photo 27 (September 10, 2008). Sampling location at catch basin ANE910. View is to the northeast, up N. Baltimore Avenue.

Photo 28 (September 10, 2008). Final composited sample from catch basin ANE910.

Photo 29 (September 10, 2008). Sampling location at catch basin AAE694. View is to the northwest.

Photo 30 (September 10, 2008). Final composited sample from catch basin AAE694.

2010 Sediment Trap Sampling

ST1 (Manhole AAE498)

Photo 31 (March 5, 2010). Location of sediment trap ST1 (manhole AAE498). View is to the northwest.

Photo 32 (February 2, 2010). SIFT©¹ sediment trap installed in the 12-inch line exiting manhole AAE498.

MAY 2012 PAGE A-16

.

¹ 2009 City of Portland. These traps are proprietary and patent pending. These traps were designed by the City for use in smaller pipe diameters and low-flow depth conditions.

Photo 33 (April 6, 2010). Primary and secondary sediment trap chambers at monthly field check.

Photo 34 (June 16, 2010). Primary and secondary sediment trap chambers at time of removal.

Photo 35 (June 17, 2010). Final homogenized composite sediment trap sample from ST1 / manhole AAE498.

ST2 (Manhole AAE513)

Photo 36(March 5, 2010). Location of sediment trap ST2 (manhole AAE513). View is to the northeast.

Photo 37 (February 2, 2010). SIFT© sediment trap installed in the 15-inch line entering manhole AAE513.

Photo 38 (April 6, 2010). Primary and secondary sediment trap chambers at monthly field check.

Photo 39 (June 16, 2010). Close-up view of solids in secondary chamber at time of removal.

Photo 40 (June 17, 2010). Final homogenized composite sediment trap sample from ST2 / manhole AAE513.

ST3 (Manhole AAE700)

Photo 41 (March 5, 2010). Location of sediment trap ST3 (manhole AAE700). View is to the southwest.

Photo 42 (February 2, 2010). SIFT© and standard sediment trap installed side by side in the 28-inch line exiting manhole AAE700).

Photo 43 (April 6, 2010). Secondary chamber of SIFT© sediment trap, with solids present at time of monthly field check.

Photo 44 (June 16, 2010). Sediment traps in installed location at time of removal.

Photo 45 (June 16, 2010). Primary and secondary chambers of SIFT© sediment trap at time of removal.

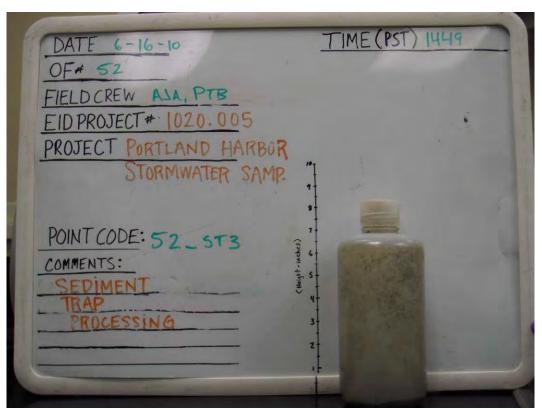


Photo 46 (June 16, 2010). Standard sediment trap bottle prior to filtration.

Photo 47 (June 17, 2010). Final homogenized composite sediment trap sample from ST3 / manhole AAE700 SIFT© trap.

ST4 (Manhole AAE516)

Photo 48 (March 5, 2010). Location of sediment trap ST4 (manhole AAE516). View is to the southwest.

Photo 49 (February 2, 2010). SIFT© sediment trap installed in the 27-inch line exiting manhole AAE516.

Photo 50 (April 6, 2010). Primary and secondary sediment trap chambers at monthly field check.

Photo 51 (June 16, 2010). Accumulated sediment in secondary chamber at time of removal.

Photo 52 (June 17, 2010). Composite sample (including bacterial growth) from first archived jar prior to homogenization.

Photo 53 (June 17, 2010). Final homogenized composite sample from ST4 / manhole AAE516.

September 2010 Inline Solids Sampling

Photo 54 (September 7, 2010). Catch basin ANE911 and surrounding drainage area. View is to the northeast.

Photo 55 (September 7, 2010). View inside catch basin ANE911 prior to sampling.

Photo 56 (September 7, 2010). Final homogenized sample from catch basin ANE911.

Photo 57 (September 7, 2010). Drainage area for ODOT manhole 2 (discharges to manhole AAE685), adjacent to St. Johns Bridge. View is to the east.

Photo 58 (September 7, 2010). Sediment and standing water inside ODOT manhole 2.

Photo 59 (September 7, 2010). Final homogenized sample from ODOT manhole 2.

Photo 60 (September 8, 2010). ODOT manhole 4 beneath St. Johns Bridge. View is to the northeast.

Photo 61 (September 8, 2010). Accumulated solids in ODOT manhole 4. Manhole is constructed as a sedimentation chamber.

Photo 62 (September 8, 2010). Final homogenized sample from ODOT manhole 4.

2011 Surface Soil Sampling

Photo 63 (January 6, 2011). Sampling Area 1 (52_15), looking south.

Photo 64 (January 6, 2011). Collection of subsample A from Area 1.

Photo 65 (January 6, 2011). Sampling Area 2 (52_16), looking to the southeast.

Photo 66 (January 6, 2011). Collecting subsample B from sample Area 2.

Photo 67 (January 6, 2011). Sample Area 3 (52_17), looking northwest.

Photo 68 (January 6, 2011). Sample Area 3 (52_17), looking southeast.

Photo 69 (January 6, 2011). Collecting subsample B from sample Area 3.

Photo 70 (January 6, 2011). Sample Area 4 (52_18), looking southwest.

Photo 71 (January 6, 2011). Sample Area 4 (52_18), looking south-southeast.

Photo 72 (January 6, 2011). Collecting subsample B from sample Area 4.

Photo 73 (January 6, 2011). Sample Area 5 (52_19), looking northwest.

Photo 74 (January 6, 2011). Collecting subsample D from sample Area 5.

Photo 75 (January 6, 2011). Sample Area 6 (52_20), looking northwest.

Photo 76 (January 6, 2011). Collecting subsample E from sample Area 6.

Photo 77 (January 6, 2011). Location of subsample A from sample Area 7 (52_21). Erodible soils were collected from pocket of erodible soils underneath iron slabs.

Photo 78 (January 6, 2011). Location of subsample B from sample Area 7 (52_21).

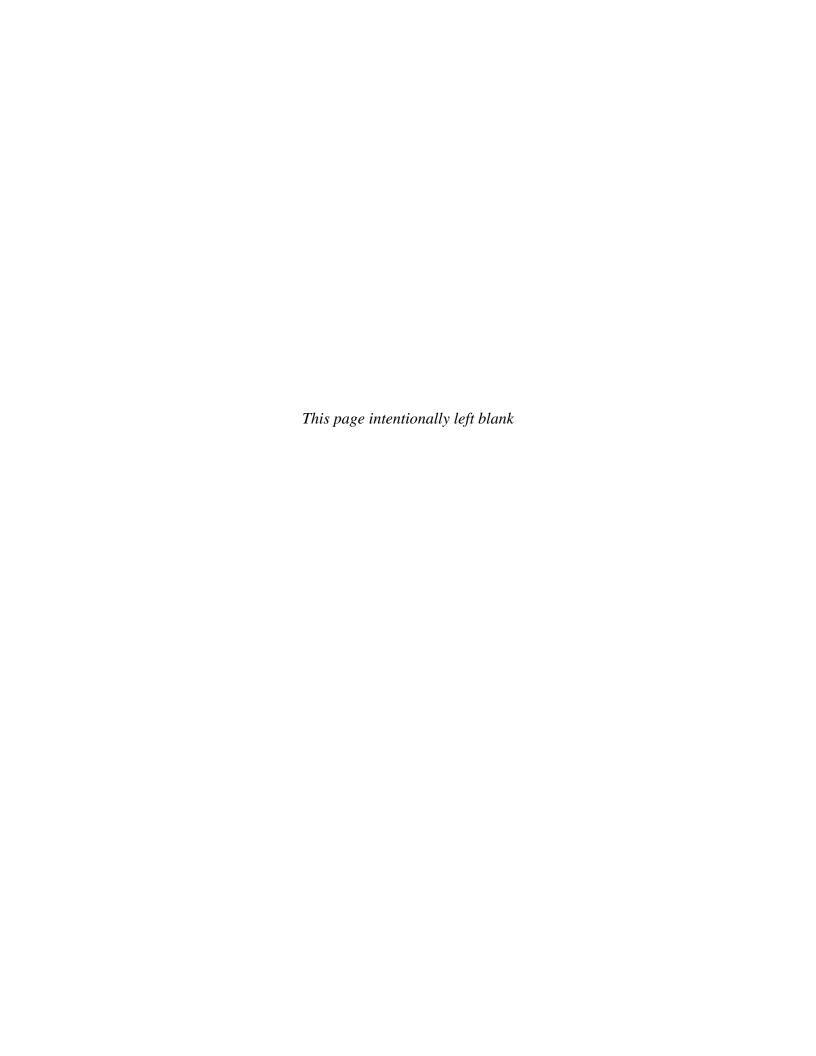


Photo 79 (January 6, 2011). Sample Area 9 (52_22), looking northwest.

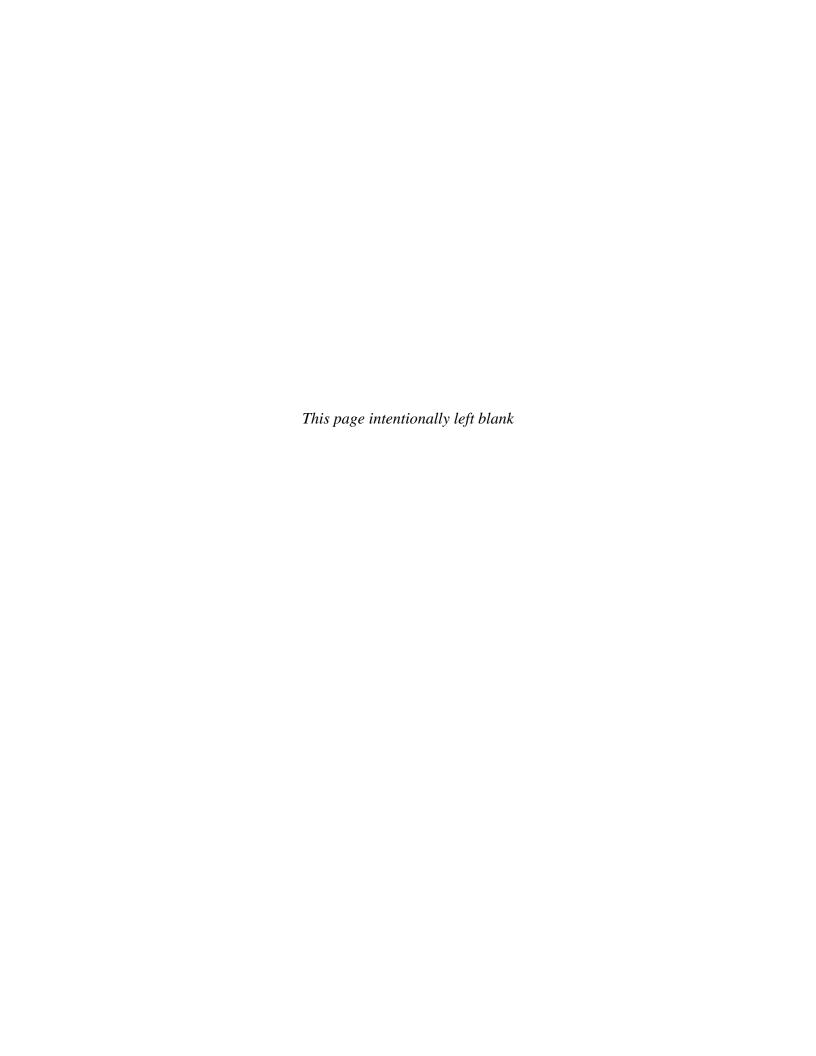


Photo 80 (January 6, 2011). Sample Area 8 (52_23), looking northwest.

APPENDIX B Field Notes

June 2008 Inline Solids Sampling

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Chain-of-Custody City of Portland

Bureau of Environmental Services

| 유

Collected By:

RCB/WCR/LAP

Page: 6/26/2008

TILAND HARBOR INLINE SAMP SEDIMENT Se	Date:	Printed Name:	Care		'						OC.xls	s:\eid\1000\1020.001\Sampdoc\Lbwer Harbor Sed COC.xls	s:\eid\1000\1020.001\S
COUTFALL SZ						rinted Name		Date:			inted Name:	7	7
Requested Analyses Requested Analyses Requested Analyses	4	Received By: Signature:	e same	-		Received lignature:	S 1=	Time:			gnature:	71	ignature:
Number: 1020.001 Mathix SEDIMENT Control Metals		Printed Name:	Date		8.	Printed Nam		Date:			one Name:	6/2608	
Number: 1020.001 Netals		Signature:				Signature:		Tme:			ignature:	155 /	
Total Tota	r.	Relinguished By			hed By: 3.	Relinquis					<u>celinquishe</u>		Sentiquisited by: 1.
No.			and the state of t							16			o de la companya de l
mple Sample Type Office Tool Tool Solids C C Figure Type General Metals C Total Metals (As, Cd, Cu, Pb, Zn)		• :								<u> </u>			
Requested Analyses Sed Marie Metals													
Requested Analyses SEDIMENT General Metals										ļ			
Requested Analyses C C C C C C		·	er glossfarmengetildeler - 1995 - 1995 - 2007 - 1995 - 2007 - 1995	,									
Requested Analyses SEDIMENT Requested Analyses													
Requested Analyses SEDIMIENT Requested Analyses			SHEEDS AND A STATE OF THE STATE	•			•	O .		6/26/08	DUP	DUPLICATE	000843
Requested Analyses SEDIMENT General Requested Analyses			3807-480 6. 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	•		•	-	ဂ	1458	6/26/08	52_3	IL-52-AAE513-0608 N ALTA & BRADFORD	FO 080842
Requested Analyses Sediment Figure Figure				•		•	•	0	1108	6/26/08	52_2	IL-52-AAE569-E-0608 N BURLINGTON & CRAWFORD	FO 080841
Requested Analyses Total Metals (As, Cd, Cu, Pb, Zn) Total Metals (As, Cd, Cu, Pb, Zn)			Market communities	• 1		•	•	С	0921	6/26/08	52_1	IL-52-AAE553-0608 N BURLINGTON & RR	FO 080840
Requested Analyses Stors - LL ds e als als als als als als als					Oralli 312			sample Type		Sample Date	Point Code	Location	WPCL Sample I.D.
IX: SEDIMENT Requested Analyses General Metals	· ·		en e	•	· · · · · · · · · · · · · · · · · · ·		olors - LL				*		
ix: SEDIMENT Requested Analyses General Metals)						,	110	OUTFALL 5:	
ix: SEDIMENT	ld Comments	. 1	24.00	Metals		eneral					'		
Project Name: PORTLAND HARBOR INLINE SAMP		nalyses	rested Ar	Requ					SEDIMENT	Matrix:			File Number: 1020.001
										MP	LINE S/	AND HARBOR IN	Project Name: PORT

Page _____ of _

Project Location _ Subject	Project No. 100.001 Basin 52 Date 6/26/08 By LEB/LAP/WCK	
0831	Arrive & node AAE 553. Some solids present in MH as well as standing water. Will attempt to collect sediments from upstream of the IMH.	
0846	Enter MIT. O'bserved seds upstream of node. Took measurements and photos of 24" line up & downstream, as well as two laterale coming in from NW + S. Took photos.	
0921	Sample collected from 0-1.5' upstream of node. Will also collect a Dill from this site due to large sediment volume.	
0951	Arrive & node AAE 569. This node is the MH that has the intersection wi the Crawford St. Line. We will enter the MH (unknown two MHs NE of AAE 569 up the Burlington Itill. Our maps do not accurately depict what is actually happening on the street. The middle MH is full of dirt I fill? but appears to have active CBs a trackhed to it. 1010: Entered Hattiand found unknown I connectes to AAE 569. Not much sediment in line. Measured pipes leading in and out of Unknown MH I. Took photos.	n4)
Attachme	ents	

Page 2 of 4

Dote 6/20/08 Subject Dote 6/20/08 By LAPIWCK FREB 1029: Began collecting sample from 0-3' upstream. Sediment at truly appears to be biotilm and not actual sediment. Makerial is gelathous to the truch and just actual sediment. Makerial is gelathous to the truch and took additional photo of outh from street. Also took photos of dirt filled Mit & ALE 569. 1044: Will enters ATE 369. Lateral to the east has abundant sediment. Took photos from inside ATE 569. Upstream firster than downstream? than 12" day literal ((van ford Eastern)), flum 10" lekval. 1055: Sampling equipment used for Unknown Mtt 1 sent down ATE 569 to aftempt to collect solids from the upstream 20" line only. No sample oble solids found. Abandoned sampling effort from N. Burlington 20" line. 1051: Lowered fresh sampling equipment down ATE 569 to collect solids from 12" lakval corning in from Crawford Street east Grathered sandy sediments from 6"-32" up the 12" line. Seds are hornogeness and brown in color and is approximately 3.75" in depth. Took three photos of sample avea. 1108 Sample composited and placed in jars. 1109 Photo taken of site looking up crawford St to the East.	Project Portland Itarbor In- Line Sed Samp	Project No. 1070.001
Subject By LAP/WCK FEB 1029: Began Collecting sample brown 0-3' upstream. Sediment actually appears to be biotilm and not actual sediment. Malerial is getalmous to the touch and is gray in color. Took photo of out from street. Also look photos of dirt filled mit & ARE569. 1040: Will enters AttEB69. Lateral to the east has abundant sediment. Took photos from inside ARE569. Upstream first, then downstream? Thun 12" clay literal (Crawford Eastern), thun 10" jakral. 1055: Sampling equipment used for Unknown MH 1 sent down AttE569 to attempt to collect solids from the upstream 20" line only. No sample able solids found. Abundand sampling effort from N. Burlington 20" line. 1059: Lowered fresh sampling equipment down AttE569 to collect solids from 12" lakral coming in from Crawford Street east Gratheved sandy sediments from 6"-32" up the 12" line. Seds are prinagenous and brown in color and is approximately 3.75" in depth. Toole three photos of sample area.		Date 6/26/08
1040: WCR exits Unknown MH1 and tock additional photo of out from street. Also took photos of dirt filled MH & AHE569. 1044: WCR enters Affe B69, Lateral to the East has abundant sediment. Took photos from inside AHE569. Upstream first, then downstream, then 12" day literal (Crawford Easterne), then 10" leival. 1055: Sampling equipment used for Unknown MH 1 sent down AHE569 to attempt to collect solids from the upstream 20" line only. No sample able solids found. Abundaned sampling effort from N. Burlington 20" line. 1051: Lowered fresh sampling equipment down AAE569 to collect solids from 12" lakval coming in Grom Crawford Street east Grathered sample soliments from 6"-32" up the 12" line. Seds are promogeness and brown in color and is approximately 3.75" in depth. Took three photos of sample area.		
1044: Will enters ATE 569: Lateral to the east has abundant Schinent. Took shotes from inside ARE 569. Upstream first? then downstream? then 12" day lateral (Crawford Eastern), then 10" Jakral. 1055: Sampling equipment used for Unknown MH 1 Sent down ATE 569 to attempt to collect solids from the upstream 20" line only. No sample able solids found. Abandoned sampling effort from N. Burlington 20" line. 1059: Lowered fresh sampling equipment down ATE 569 to collect solids from 12" lakral coming in from Crawford Street east Grathered sandy sodiments from 6"-32" up the 12" line. Seds are homogenous and brown in color and is approximately 3.75" in depth. Took three photos of sample area.	1029: Began collecting sample from 0-3' upstream actually appears to be biofilm and not actually gelatinous to the touch and is gray in a	ran. Sediment nal sediment. Material color. Took photo of saytea
1055: Sauphing equipment used for UnknownMH 1 sent down AME 569 to attempt to collect solids from the upstream 20" line only- No sample able solids found. Abandoned sampling elbort from N. Burlington 20" line. 1059: Lowered fresh sampling equipment down AME 569 to collect solids from 12" lakval coming in from Crawford Street east Grathered sandy sodiments from 6"-32" up the 12" line. Seds are homogenous and brown in color and is approximately 3.75" in depth. Took three photos of sample area.		
1051: Loweved Evesh sampling equipment down AAE 569 to collect solids from 12" lakeval coming in from Crawford Street east Gratheved sandy sediments from 6"-32" up the 12" line. Seds are promogenous and brown in color and is approximately 3.75" in depth. Took three photos of sample area.	1044: WCR enters AAE 569, Lateral to the En sediment. Took photos from inside , then downstream; thun 12" clay lateral (Cinateral).	AAE 569. Upstream first, z van ford Eastline), flun 10"
solids from 12" Takval coming in from Crawford Street east, Gratheved sandy sediments from 6"-32" up the 12" line. Seds are promogenous and brown in color and is approximately 3.75" in depth. Took three photos of sample area.	1055: Saupling equipment used for Unknown M to attempt to collect solids from the w No sample able solids found. Abandoned N. Burlington 20" line.	1H 1 sent down ANE 569 upstream 20" line only. I sampling effort from
1108 Sauple composited and placed in jars. 1109 Photo taken of site looking up crawford st to the East.	solids from 12" lakeral coming in the east Grathered sandy sediments from 12" line. Seds are homogenous and by approximately 3.75" in depth. Took	rom Crawford Street 6"-32" up the rown in color and is
Attachments		St to the East.

Page __3 of __4

Subject Date 6/26/08 By PUBLIA PLUCE/LAS
1308 Arrived on site @ pade AME 516. Bureau of Maintenance has uncovered this MH for us to do our work. New asphalt was put down around MH and some residual asphalt was present in MH cellar. Also absorbent sandy material left surrounding the surface of the MH. It is likely that these solids may have been inadvertently sweet into the MH during maintenance. No solids yisible from street level. 1320 LAP enters MH. No visible solids observed upstream or downstream in main line. Very little solids in NW lateral but this lateral only drains nearly parking let, so no samples collected. No sample able solids observed in MH. Pa entered MH to check pipe diameters due to discovery of MH upstream (ME093) in Calumbar Park.
Attachments

Page

4

of 4

Project	Portland Harbor In Line Sed saux Project No. 1020 Basin 52 Date 6/26/08 By LOR/LAP/	
1340	Exited MH to investigate up stream MH AAE 693.	
1353	Arrived at AAE 693. LAP enters MH. No sample-abit upstream or downstream in main line No solids in I	le solids
	upstream or downstream in main line. No solids in I	ateral
	either. Offsite @ 1409.	
	1. 1. 1. 1. 1. 2. 1. 4.1. 1.0. 1. 1.1.	//:
1426	Arrived at MAE 513 in lower Cathedral Park near the pa	
	Emergency samilary bypass lines visible in MH. No VIS from surface. LAP enters MH. Some standing water	ible solies
	mana live iver milevel No counter able makerial unchargement	i main line
	Some material in downstream main line, but only enough to	fill a 403
	jar MH collar is above grade so Hely hard likelihood	of surface
	material falling in is tow.	alla w
inca	Collected sample from AAE 513 from seds catteded on ledge	0.1
1458	Collected sample from AAE 513 From seds collected on ledge	. SW of invert.
1510	Melled out me more MH at intersection of N. Ret	timore
1	Checked out one more mit at intersection of N. Bat and RR tracks. No visible solids from street ferel. N	o entry
	made.	
1516	Return to WPLL to relinquish samples.	
Attachments	nts	

Pretos Taken

6" lateral 12" lateral

upstream laterals

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Por Haw	Harbor In-Line	Sed Sawy	Project Number: 1020.001
Sampling Team:	Date: 6/26/08	Arrival Time:	Current Weather Conditions/Last Rain: *Dieveas 55° F
Basin: 52	Node: AHE 5	53	Subbasin:

Sampling Location Description/Address: N. Burlington & RK crossing

SECTION 1 - PR	E-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	0.75" @ 0.05 fps
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	Yes 3.5.3.15"
Describe lateral extent of sample-able sediments present in the line:	sediment extends about 5'-6' then a small pocket of gravel @ 10' upstream, standing water pooled up to ~20'

SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

24" pipe upstream

is in short segments
and is "wavy" as it goes
upstream

24" clay in 24" segments

was to served

24" clay in 24" segments

24" clay in 24" segments

25"

25"

27" clay in 24" segments

25"

25"

27 Laterals to but
observed
ret measured
ret measured
ret measured

Date: 6/26/08	SECTIO	ON 2 - SAME	PLE COL	LECTION REPORT	Node: AAL 553	
Sampling Equipme		Stainless steel sp Other (Describe)	nless steel spoon & stainless steel bucket her (Describe)			
Equipment Deconta		Per SOP7.01a Other (Describe)	(
Sample date:	Sample time: S	Sample Identifi	cation: (IL-X	(X-NNNNN-mmyy) - 0608		
Sample location de	scription: (number of feet	from node of e	entry) 0- . ¹	5' ups tream		
Sample collection to	echnique:	55 spoon	d buck	et		
Describe Color of s		gray brow				
Describe Texture/P	article size:	fine to	course so	ands o small grave	15	
	olfactory evidence of conta ole (odor, sheen, discolora	amination in	no she	en, decomposingorg	ances oder	
Describe depth of s	olids in area where sampl	le collected:	3.5"-	3.75"		
Describe amount ar	nd type of debris in sample	e:	No de	bris except a few m	etal shards	
Amount and type of	debris removed from fina	al sample:		g venived		
Compositing notes:	composited using	SS SPOOT	n; saup	leis ~ 5% water		
	ted (number, size, full or p					
collected and relate	le to fill all of the jars, list jet analytes sampled (as pen work order).	er		JoS		
Lab ID FO	08040	Duplicat	te sample co	ollected? Dupe ID	1	
Duplicate sample id	entification # on COC:	FO de	08430	ns FO 088	1843	
Any deviations from	standard procedures:	lone				
	SECT	TION 3 - P	нотоб	RAPH LOG		
Overview of node s	howing drainage area					
Plan view of sedime	ents inline					
Homogenized samp	ple (sediment in bowl)					
Other?						

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET Portland Harbor In-Like Sauple Project Name: Project Number: 1020.001 Sampling Team: Date Arrival Time: Current Weather Conditions/Last Rain: Overcast 570F 0951 LAP/WUR RUB Subbasin: Upstream of Crawford St. Node: Unknown Mikeer AAE569 Basin: Sampling Location Description/Address: Intersection of N. Burlington & N. Cvawford

SECTION 1 - PF	RE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	Very small pool of standing water
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	very little
Are sample-able quantities of sediments present in the line?	Yes (in 12" clay lateral in MH AAE 569)
Describe lateral extent of sample-able sediments present in the line:	
SITE DIAGRAM: Include street intersection	Sampled Seds about 1/10" deep extending 3" upsto (did not collect sample for lab from this location. Seds turned out to be bis film)

Photos

20" upstream

20" downstream

8" west

8" SW

D" East upper

8" East lover

MH filled wiseds (fill)

What filled wiseds (fill)

What step

10" clay

12" down stream

Date: 6 26 0	8 SEC	CTION 2 - SAM	IPLE COLLECTION REPORT	Node: Unknown near
Sampling Equipm	ent:	Stainless steel s Other (Describe	spoon & stainless steel bucket	71-1
Equipment Decon	tamination process:	Per SOP7.01a Other (Describe	e)	
Sample date:	Sample time:		fication: (IL-XX-NNNNNN-mmyy) -52 - AAES69 - 0608	
Sample location d	lescription: (number of	feet from node of	entry)	
Sample collection	technique:	35 Sp10	n & bucket	
Describe Color of	sample:	light bron	wn	
Describe Texture/	Particle size:	homogen	wn eous fine to medium so	rnds
	olfactory evidence of nple (odor, sheen, disc	contamination in	none	
Describe depth of	solids in area where s	ample collected:	SEE FOS FOR AAES	569
Describe amount	and type of debris in sa	ample:		
Amount and type	of debris removed from	n final sample:		
Compositing notes	s:		1	
Sample Jars Colle	ected (number, size, fu	ll or partial)?	1	
	ple to fill all of the jars, ted analytes sampled (in work order).	as per	SAMPLE	
Lab ID		Duplica	ate sample collected? Y/N Dupe ID	
Duplicate sample	identification # on CO	D:		
Any deviations fro	m standard procedure	s:		
	SI	ECTION 3 - F	PHOTOGRAPH LOG	
Overview of node	showing drainage are	a		
Plan view of sedin	nents inline			

Homogenized sample (sediment in bowl)

Other?

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Portland	d Harbor In-Line S	d Saup	Project Number: 1020, 00 I
Sampling Team:	Date: 6 26 08	Arrival Time:	Current Weather Conditions/Last Rain: Overcast ~60° F
Basin: 52	Node: AAE56	9	Subbasin: Crawford St East
Compling Location Descript	ion/Address: 0 /	11 1 1 0	10111: 1 14-0/0

Sampling Location Description/Address: Sample cellected from 12" line coming into MAES69 from Crawford St. East.

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT

Describe any flowing or standing water observed in the line?	Very little in MH AAE 569
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	Yes
Describe lateral extent of sample-able sediments present in the line:	6"-32" upstream of node in 12" line
	20" 12" lateral from Crownerd 5t Sample area Crownerd Crownerd

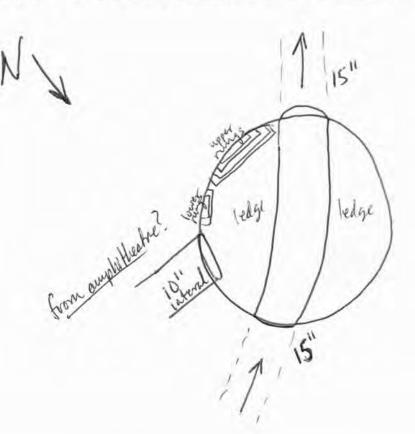
Date: 6/26/08 SECTION		CTION 2 - SAN	IPLE CO	Node: ANE 569			
Sampling Equipment:		Stainless steel spoon & stainless steel bucket Other (Describe)					
Equipment Decontamination process:		Per SOP7.01a Other (Describe)					
Sample date:	Sample time:			fication: (IL-XX-NNNNN-mmyy) 2-AAE 569=E-0668			
Sample location de	escription: (number of		entry)				
Sample collection technique:		ss spoon into ss bucket					
Describe Color of sample:		prown					
Describe Texture/F	Particle size:	Pine to me	A Company of the Comp				
Describe visual or olfactory evidence of control bulk sediment sample (odor, sheen, discolor			no obvious visual or offactory evidence of contamination				
Describe depth of solids in area where sam		ample collected:		3.75"			
Describe amount a	ample:	none					
Amount and type o	final sample:	none					
Compositing notes	: composited in be	icket, photo	taken,	placed in jar.			
Sample Jars Collection	cted (number, size, ful	l or partial)? 니	402	1-802 all full			
If not enough sample to fill all of the jars, list collected and related analytes sampled (as panalyte priority list in work order).							
Lab ID FO	080841 Duplica		te sample collected? Y/Ø Dupe ID				
Duplicate sample in	dentification # on COC	:					
Any deviations from	n standard procedures	:: None					
	SI	ECTION 3 - I	РНОТО	GRAPH LOG			
Overview of node	showing drainage area	a					
Plan view of sedim	nents inline						

Homogenized sample (sediment in bowl)

Other?

CITY OF PORTLAND

ENVIRONMENTAL SERVICES


Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

Project Name: Partland Hawbor In Line Scd Saup Project Number: 1020,001 Sampling Team: LAP RUB | WCK | LAS Date: Arrival Time: Current Weather Conditions/Last Rain: LAP RUB | WCK | LAS Date: Arrival Time: Partly Sunny 64° F Basin: 52 Node: AAE 693 Subbasin: Cathedral Park Sampling Location Description/Address: Cathedral Park just north east of Craw Ford.

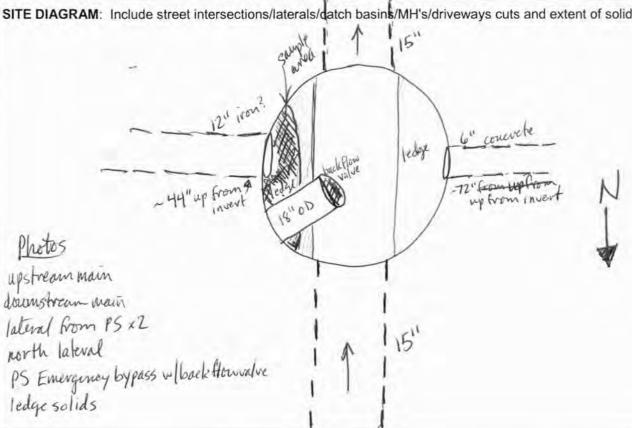
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT		
Describe any flowing or standing water observed in the line?	None	
Does river appear to back up to this location? Describe rate/color/odor of flow:	No	
Are sediments observed in the line?	No	
Are sample-able quantities of sediments present in the line?	No	
Describe lateral extent of sample-able sediments present in the line:	None	

SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent of solids accumulation.

MH in Cathedral Park.
No Sample.
For mapping
purposes only.

CITY OF PORTLAND

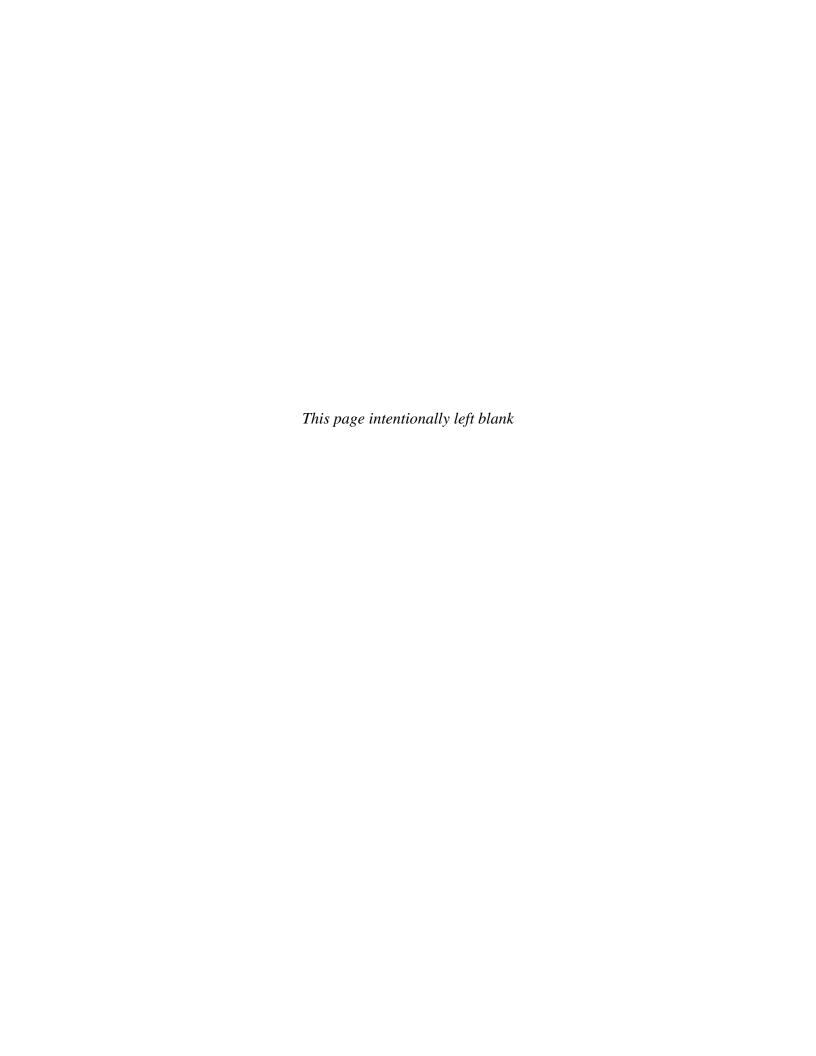
ENVIRONMENTAL SERVICES


Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: Por Hum	d Havbor In Line S	SCH SCOTT	Project Number: 1020,001
Sampling Team:	Date:	Arrival Time:	Current Weather Conditions/Last Rain:
LAP WOR RUBLAS	6/26/08	1426	Sunny low 705
Basin: 52	Node: AAES	13	Subbasin: Lower Cathedral Park

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT			
Describe any flowing or standing water observed in the line?	0.01" standing water		
Does river appear to back up to this location? Describe rate/color/odor of flow:	Not normally Imaybe during 96 flood		
Are sediments observed in the line?	Yes		
Are sample-able quantities of sediments present in the line?	Yes		
Describe lateral extent of sample-able sediments present in the line:	solids not present in line, but on west east ledge		



Date: 6 26 0	§ SEC	CTION 2 - SAM	IPLE CO	LLECTION REPOR	RT	Node: AAE 513	
Sampling Equipme	ent:	ostainless steel s	spoon & stain	less steel bucket			
Equipment Decon	tamination process:	Per SOP7.01a	e)				
Sample date:	Sample time:	11-	fication: (IL-XX-NNNNN-mmyy) -52-HAE513-0608				
Sample location d	escription: (number of	feet from node of	entry) //	ost solids collecti	ed fir	om ledge on west	
Sample collection	technique:	55 Spoo	nintu	ss bucket			
Describe Color of	sample:	dark bron	wn/gra	1			
Describe Texture/F	Particle size:	70% organi	is t fives	ilts, 25% fine forme	edum	savels, 5% coarse se	
Describe visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.):			Non			,	
Describe depth of solids in area where sample collected:			1/2"	to 2"			
Describe amount and type of debris in sample:			some organic debris, cig butts				
Amount and type of debris removed from final sample:			none				
Compositing notes	s: composited in s	ss bucket w	1555p	oon			
Sample Jars Colle	cted (number, size, ful	l or partial)? 4	-407	jars 1-80	z		
	ple to fill all of the jars, ed analytes sampled (in work order).						
Lab ID FO	080842	Duplica	ate sample	ate sample collected? Y/N Dupe ID			
	dentification # on COC	:					
Any deviations from	m standard procedures	s: No					
	SI	ECTION 3 - I	РНОТО	GRAPH LOG			
Overview of node	showing drainage area	a					
Plan view of sedim	nents inline						

Homogenized sample (sediment in bowl)

Other?

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services Chain-of-Custody cty of Portana

Date: 9/10/2008

Page: 요 | |-

Collected By: RCB/JXB/LAS

		(İs	ג(8-27-08) 52	amp COC - OF	ırbor Inline Sa	Portland Ha	p\Sampdoc	S:\E.ID\1000\1020.001 - Portland Harbor Inline Samp\Sampdoc\Portland Harbor Inline Samp COC - OF 52 (8-27-08).xls	S:\EiD\1000\1020.00
Printed Name: Date:	Date:	Printed Name:		Date:	•		r mileo name.	A/MENTIONS	戊
Signature: Time:	Time:	Signature:		Time:			Ogliatui c.	0.35	inted Name: 1500 1000
Received By: 4.		Received By: 3.		I		7.	Neceived By:	<u>`</u>	ignature: /
Printed Name: Date:	Date:	Tilled Maine:		-			Doning I	8/10 Q	Received By: 1.
ниф				Date			Printed Name:	A Date: [[]	rinted Name: PALICY POEI
;	Time:	Signature;		Time:			Signature:	1035 1035	Kandy C Belo
Relinguished By: 4.		Relinquished By: 3.				ed By: 2.	Relinguished By:		ignature: 1 / // //
700	•	•	•	Ċ	0905	9/10/08	52_12	N Bradford & RR Tracks	0001109
2 jars only - no grain size analysis	2 jars	•	•	C	0820	9/10/08	52_11	N Baltimore & Bradford	FO 081108
		•	•	0		9/9/08	DUP	DUPLICATE	FO 081107
Vode # changed back to original-PHA	Po(1	•	•	C	1449	9/9/08	52_10	IL-52-MNZ-162-0908 V Crawford & St Johns Br	FO 081106
	•	•	•	C	1415	9/9/08	10 2 6 52 9	11-52-8675NCRAWFORD-0909 () N 8675 N Crawford / 10 0	FO 081105
	•	•	•	С	1336	9/9/08	52_8	IL-52-ANE911-0908 N Alta & RR Tracks	FO 081104
		•	•	C .	1153	9/9/08	52_7	IL-52-ANE921-0908 PIW Parking Lot	FO 081103
2 jars only - no grain size analysis	2 jars	•	•	C	1116	9/9/08	52_6	IL-52-AAE651-0908 N Pittsburg & RR Tracks	FO 081102
-		•	•	С	1010	9/9/08	52_5	IL-52-ANE815-0908 N Burlington & Crawford	FO 081101
		•	•	С	0925	9/9/08	52_4	IL-52-ANE813-0908 N Burlington & RR Tracks	FO 081100
	Total Meta	Total Soli Grain Size	PCB Aroo	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
	als (As, Cd i, Ag, Zn)		olors - LL						
	, Cr, Cu,		·			LING	SIN SAMP	OUTFALL 52 CATCH BASIN SAMPLING	
Field Comments	Metals	General							
nalyses	Requested Analyses			NT	SEDIMENT	Matrix:			File Number: 1020.001
						AMP	LINE S	LAND HARBOR IN	Project Name: PURILAND HARBOR INLINE SAMP

ENVIRONMENTALSERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Portland Harbor Stormwater - Inline Samp Project Name:

Project Number: 1020.001

Sampling Team: JXB/RCB/LAS

Date:

Arrival Time:

Basin:

Node: ANE 813 Address: N. Burlington & WPCL (RR Tracks

Current weather and last known rainfall:

Sunny, clear 650

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT

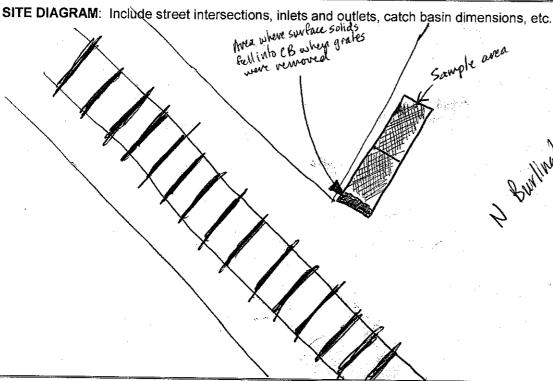
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):

CB is adjacent to a steel plate distrubutor that loads and unload large steel plates on and off frucks - CB is also adjacent to Union Pacific RR tracks.

Describe debris and/or clogging around, or in catch basin grate/cover:

some plastic debris and other trash on CB grate, also some sediments stack in grate.

Is there standing water in catch basin?


No

Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)

No

Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:

Depth is ~ 0.5" to 1.0", but most of CB was closer to 0.5" deep.

9 Baylander Ha,

Sampling Equipment:		□ Stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)				
Equipment decontamination pro	cedure:	Ø Per SOP7.01a □ OTHER (DESCRIBE)				
Sample date: 09/09/0%		Sample time: 0925				
Sample Identification Code: L-52-AME&I3_0	0908	Sample collection technique and if/how overlying water was removed: per SOP 5, 01e				
Subsample number and location	•	All solids in CB				
Color of sample:		Gray				
Texture/particle size:		fine silt tolargerocks				
Visual or olfactory evidence of contamination in bulk sediment s (odor, sheen, discoloration, etc.)	ample	None				
Amount and type of debris in bull	k sample:	Some plastic 21% large rocks/gravel ~10%				
Amount and type of debris remover final sample:	ed from	Some plastic 21% large rocks/gravel ~10% erganic debris ~ 5% large rocks and organic debris = 15% of bulk sample removed				
Compositing notes:						
Sample jars collected (number, s	ize, full or p	artial)? 3-402 1-802				
If not enough sample to fill all of t ars collected and related analyte as per analyte priority list in work	s sampled					
-ab ID FO 081100		Duplicate sample collected? Y/N Dupe ID				
Duplicate	on COC:	N/A-				
Any deviations from standard pro	cedures:	Jo '				

SECTION 3 -	РНОТС)GRAF	PH LO	G				
Overview of CB showing drainage area	1		v.					Charles Triber
Catch basin plan view prior to sampling showing solids	V				· · · · · · · · · · · · · · · · · · ·			
Lateral connections to/from CB	V		* * *				-	
Homogenized sample (sediment in bowl)	. 🗸	,, <u>,, .</u>		·			·	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor II	Vine Samp	Project Number: /020.001	230-01-00-15-00-00-
Sampling Team: JXB/RUK/LAS	Date: 9/9/08	Arrival Time: 0950	
Basin: 52	Node: ANE 815	Address: NBurlington & N. Crawford	1
Current weather and last known rainfa	II:		

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Parked cars, neighboring industrial properties
Describe debris and/or clogging around, or in catch basin grate/cover:	Cedar biobag decomposing just upstream of CB. Leaf & sediment debris clogging CB
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	No
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	3/4" - 23/8" averaging ~ 1" throughout.
SITE DIAGRAM: Include street intersections, include street interse	Outlet that has a vertical drop from SED N Craw ford

Equipment decontamination procedure: Sample date: 9/4/08	Sampling Equipment:	
Sample date: $q/q/d$ Sample time: IDID Sample Identification Code: Sample collection technique and if/how overlying water was removed: $per 50P5.01e$ Subsample number and location: Atl & Solids Color of sample: Dark brown Texture/particle size: primartly sills and sands w come small grants and organic clabris Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.) Amount and type of debris in bulk sample: $10-157e$ organic debris $1-24e$ grants $219e$ final. Amount and type of debris removed from final type of debris removed from final sample: $10-157e$ organic debris $1-24e$ grants $219e$ final. Compositing notes: $1-24e$ grants $219e$ final composite sample, $10-157e$ organic matter $10-157e$ organic ma	Equipment decentemination present use	
Sample Identification Code: \$\int \text{TL} - 5\frac{2}{2} - \text{ANEBIS} - 0908\$ Subsample number and location: All \$\int \text{BS} \text{Solids}\$ Color of sample: \$\int \text{Pure brown}\$ Texture/particle size: \$\int \text{Primarity} \text{ sills and sands} \text{ w some small gravits and arganic clabris}\$ Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.) Amount and type of debris in bulk sample: \$\int \text{Amount and type of debris removed from linal sample:}\$ \$\int \text{2\% 50 i ds removed from linal sample:}\$ \$\int \text{2\% 50 i ds removed from linal sample:}\$ \$\int \text{Compositing notes:}\$ \$\int \text{primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular gravits } \text{\frac{1}{1} in line primarity consisting of 5 ub-angular grav	Equipment decontainination procedure:	
Subsample number and location: All CB solids Color of sample: Dank brown Texture/particle size: Disual or olfactory evidence of contamination in bulk sediment sample odor, sheen, discoloration, etc.) Amount and type of debris in bulk sample: Amount and type of debris removed from inal sample: Compositing notes: Dank brown NonL NonL NonL 10-15% organic debris 1-2% growels 21% frash Compositing notes: Dank brown NonL NonL 10-15% organic debris 1-2% growels 21% frash Compositing notes: Compositing notes: Dank brown NonL NonL 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash Compositing notes: 10-15% organic debris 1-2% growels 21% frash 10-15% org	Sample date: $q/q/\delta \bar{\delta}$	Sample time: 1010
Subsample number and location: All elb solids Color of sample: Dent brown Texture/particle size: Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.) Amount and type of debris in bulk sample: Amount and type of debris removed from final sample: Compositing notes: Compositing notes: Compositing notes: Duplicate sample collected? YN Dupe ID	Sample Identification Code:	Sample collection technique and if/how overlying water was removed:
Subsample number and location: All UB solids Color of sample: Dark brown Texture/particle size: Primarily sills and sands w come small gravits and organic debris Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.) Amount and type of debris in bulk sample: Amount and type of debris removed from final sample: Compositing notes: Compositing not	IL-52-ANE815-0908	
Texture/particle size: Primarily Silts and Sands Prome small grants and organic clebris	Subsample number and location:	
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.) Amount and type of debris in bulk sample: Amount and type of debris removed from final sample: Compositing notes: Com	Color of sample:	Part brown
Amount and type of debris in bulk sample: Amount and type of debris removed from final sample: Compositing notes: Compositing notes: Cample jars collected (number, size, full or partial)? Another and type of debris removed from final sample: Compositing notes:	Texture/particle size:	primarily silts and sands w/ some small gravels and organic clebris
Amount and type of debris removed from final sample: Callo 501 ids removed from final composite sample. Primarily consisting of 546-angular gravels? I'll in diam placences, large organic matter of metal with a nails. Sample jars collected (number, size, full or partial)? The following position of 546-angular gravels? I'll in diam placences, large organic matter of metal with a nails. The following position of 546-angular gravels? I'll in diam placences, large organic matter of metal with a nails. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels? I'll in diam placences. The following position of 546-angular gravels. The	contamination in bulk sediment sample	None
final sample: Callo solids removed from final composite sample, primarily consisting of sub-angular gravels / i'in diam plashis, large organic matter a metal wite finalis. Sample jars collected (number, size, full or partial)? In other enough sample to fill all of the jars, list ars collected and related analytes sampled as per analyte priority list in work order). Duplicate sample collected? YN Dupe ID	Amount and type of debris in bulk sample:	10-15% organic debris 1-2% gravels 21% trash
Sample jars collected (number, size, full or partial)? 3 - Hoz 1 - 8 oz f not enough sample to fill all of the jars, list ars collected and related analytes sampled as per analyte priority list in work order). FO 081101 Duplicate sample collected? YN Dupe ID	Amount and type of debris removed from inal sample:	62% 501ids removed from final composite sample,
f not enough sample to fill all of the jars, list ars collected and related analytes sampled as per analyte priority list in work order). FO 081101 Duplicate sample collected? YN Dupe ID	Compositing notes:	plastics, large organic matter of metal wive of nails.
f not enough sample to fill all of the jars, list ars collected and related analytes sampled as per analyte priority list in work order). FO 081101 Duplicate sample collected? YN Dupe ID	Sample jars collected (number, size, full or pa	artial)? 3-4oz 1-8oz
as per analyte priority list in work order). FO 081101 Duplicate sample collected? YN Dupe ID	f not enough sample to fill all of the jars, list	
Duplicate sample collected? Y/N Dupe ID	as per analyte priority list in work order).	
Duplicate sample collected? Y/N Dupe ID		
— · · · · · · · · · · · · · · · · · · ·	FO 081101	Duplicate sample collected? Y/N Dupe ID
	Duplicate sample identification # on COC:	

SECTION 3 -	РНОТОС	RAPH LOG	
Overview of CB showing drainage area	I		
Catch basin plan view prior to sampling showing solids	/		
Lateral connections to/from CB	/		
Homogenized sample (sediment in bowl)	V		

ENVIRONMENTAL SERVICES

Nater Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor In Line Samp.

Project Number:

1020.001

Sampling Team: JXB /RCB / LAS

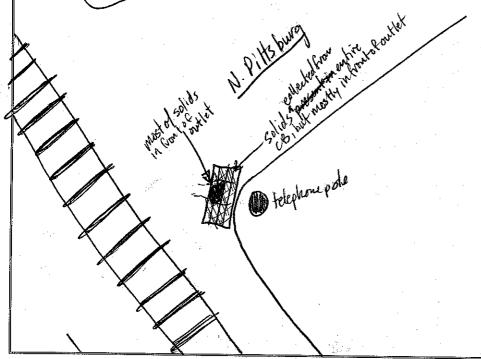
Date: 9/9/08

Arrival Time:

1106

Basin: 52

Node: AAE 651


Address: N. Pittsburg & RRtvacks

Current weather and last known rainfall:

lear, surmy 680 F

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Parked vehicles, RR right of Way, industrial area.
Describe debris and/or clogging around, or in catch basin grate/cover:	vegetation and sediments caked in and around grate
Is there standing water in catch basin?	NO
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	0-3/4" Mostly collected in Front of outlet pipe as very little asseds accumulated in corners

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Date: 9/9/08 SECTION	12 - SAMPLE COLLECTION REPORT	Node: AAE 651
Sampling Equipment:	ங்கீtainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)	
Equipment decontamination procedure:		
Sample date: 9/9/08	Sample time: ///6	
Sample Identification Code: IL -52-AAE651_0908	No water / 55 scoop + 55 bow	•
Subsample number and location:	all solids in CB	
Color of sample:	grayish, reddish brown fine silts and sands w/ some gravel	
Texture/particle size:	fine silts and sands w/ some gravel	s torganic debris
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None	
Amount and type of debris in bulk sample:	20% organies + trash	
Amount and type of debris removed from final sample:	35% of bulk removed	
Compositing notes:		<u> </u>
Sample jars collected (number, size, full or pa	artial)? 2-402 Javs	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	PCB Total Solids TOC	
	NO GURAIN SIZE COLLECTED	
^{Lab ID} FO 081102	Duplicate sample collected? Y/M Dupe ID	
Duplice # on COC:		
Any deviations from standard procedures:	Jo	-1//

SECTION 3 - I	PHOTOGRAPH LOG
Overview of CB showing drainage area	J
Catch basin plan view prior to sampling showing solids	/
Lateral connections to/from CB	✓
Homogenized sample (sediment in bowl)	/

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING

Project Name: Portland Harbor	Inline	Project Number:
Sampling Team: JXB/RCB/LAS	Date: 9/9/08	Arrival Time: 1142
Basin: 52	Node: ANE 921	Address: PIW Parking Lot
Current weather and last known rain clear, swm y 70°F	fall:	

Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	SAMPLING VISUAL OBSERVATION REPORT parking lot runoff, (parking lotis adjacent to Peninsula Iron Works)
Describe debris and/or clogging around, or in catch basin grate/cover:	10ts of vege tation and sediment in and around CB grate
Is there standing water in catch basin?	yes, agmall puddle in Sty corner ~ 2" deep
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	Depth ranges between 1"-5" w/ an average depth of 4".
Pountable Side of the street intersections, inl	extransl sont

Date: 9/9/08 SECTION	N 2 - SAMPLE COLLECTION REPORT Node:		
Sampling Equipment:			
Equipment decontamination procedure:			
Sample date: 9/9/08	Sample time: 1153		
Sample Identification Code: 1L-52-AAE ANE 921-090%	Sample collection technique and if/how overlying water was removed: NO OVER 14 MAN NEMOVED. Sample collected w/ 55 5000p and bowl		
Subsample number and location:	Mostly from the middle of the CB.		
Color of sample:	Dark brown		
Texture/particle size:	saturated fire silts and sands w/ some small gravels trouversome and abundant organic debris		
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None		
Amount and type of debris in bulk sample:	Sample is ~ 5% organics		
Amount and type of debris removed from final sample:	~ 1% removed		
Compositing notes:			
Sample jars collected (number, size, full or pa	artial)? 6-402 javs 2-802 javs		
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).			
Lab ID FO 081103	Duplicate sample collected? N Dupe I FO 081107		
Duplica. # on COC: Any deviations from standard procedures:			
	No .		
SECT	ION 3 - PHOTOGRAPH LOG		
Overview of CB showing drainage area			
Catch basin plan view prior to sampling showi	ing solids		
Lateral connections to/from CB			
Homogenized sample (sediment in bowl)			

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Harbor In Line Saup.

Project Number:

1020.001

Sampling Team: JXB/RUB/LAS

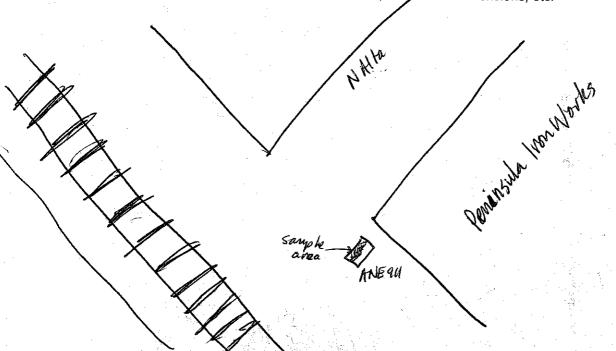
Date:

Arrival Time:

1326

Basin:

52


Node: ANE 911

Address: NAIta & RR fracks

Current weather and last known rainfall:

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Lots of steel stoved outside in the area. Parked vehicles
Describe debris and/or clogging around, or in catch basin grate/cover:	Some sediment rgravel wedged in a few of the slots in the grate
Is there standing water in catch basin?	40
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	Sediments are ovange prown in color, potential from steel rust runoff
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	1/2"-3" in depth, averaging 1.5" throughout,

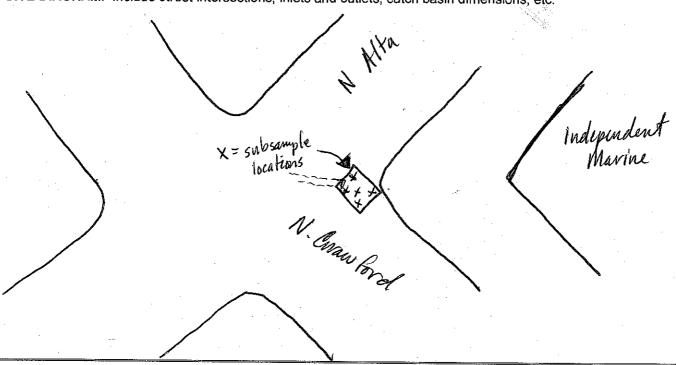
SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Sampling Equipment:	##Stainless steel spoon & stainless steel bucket			
Equipment decontamination procedure:	o OTHER (DESCRIBE)			
Sample date: 9/9/08	Sample time: 1336			
Sample Identification Code: L - 52 - ANE 9II - D908	Sample collection technique and if/how overlying water was removed: 55 Spoon [bow] no water			
Subsample number and location:	sampled across entire Ploor of CB.			
Color of sample:	orange to dark brown w/ some			
Texture/particle size:	Five silts, sands, w some gravels			
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	Orange color likely due to iron rust from steel plates and metal debris in the area.			
Amount and type of debris in bulk sample:	bots of metal shavings, bolts, muts, scrows in CB somple			
Amount and type of debris removed from final sample:	Less Hom 1% metal debris			
Compositing notes:				
Sample jars collected (number, size, full or pa	rtial)? $4-402$ jans $6-802$ jans			
f not enough sample to fill all of the jars, list ars collected and related analytes sampled as per analyte priority list in work order).	Extrajar collected for consultant per LAB.			
^{ab ID} FO 081104	Duplicate sample collected? Y(N) Dupe ID			
Ouplicaten COC:				

SECTION 3 -	PHOTOG	RAPH LOG		
Overview of CB showing drainage area	d			
Catch basin plan view prior to sampling showing solids	J			
Lateral connections to/from CB	V			
Homogenized sample (sediment in bowl)	V			

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452



CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

roject Name: Portland Havbor	-Inhine Samp	Project Number: 1020.001
ampling Team: JXB RUB LAS	Date: 9/9/08	Arrival Time: 1304
asin: 5Z	Node: WKCBI	Address: No corner of NAMa & Novaw fore 8675 N. Crawford St.

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Independent Marine grinds ship propellers outside in an uncovered area. Parked vehicles
Describe debris and/or clogging around, or in catch basin grate/cover:	Grate mostly clear of debrts
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	No edor
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	1-2 1/2"
MOCC. MARKET MAR	

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Date: 9/9/88 SECTION	12 - SAMPLE COLLECTION REPORT Node: WKCB1				
Sampling Equipment:	or stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)				
Equipment decontamination procedure:	d/Per SOP7.01a □ OTHER (DESCRIBE)				
Sample date: 9/9/08	Sample time: 1415				
Sample Identification Code: 1L-52-UNKCH-0908 8675NCRAWFORD	Sample collection technique and if/how overlying water was removed:				
Subsample number and location:	5 subsamples: each corner + middle				
Color of sample:	Dark gray / black				
Texture/particle size:	five silts w/ med to course sands				
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	metal Plakes visible in sample very small				
Amount and type of debris in bulk sample:	21% organic debris, abundant tiny metal flakes				
Amount and type of debris removed from final sample:	2/% organic debris, abundant tray metal Plakes 2/% organic debris removed				
Compositing notes:					
Sample jars collected (number, size, full or pa	rtial)? 4-402 jars* 1-802 jor				
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).					
	* one extra jar for consultant par LAS				
Lab ID FO 081105	Duplicate sample collected? Y/ Dupe ID				
Duplicate sample identification # on COC:					
Any deviations from standard procedures:					

SECTION 3 -	PHOTOGRAPH LOG
Overview of CB showing drainage area	
Catch basin plan view prior to sampling showing solids	
Lateral connections to/from CB	
Homogenized sample (sediment in bowl)	V

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name:	Portland	Harbor	Inline	Saug

Project Number:

1020.001

Sampling Team: 0XB/REB/LAS

Date:

Arrival Time:

Basin:

Node:

Address: N Crawbood under St Johns Eridge

Current weather and last known rainfall:

sumy dear

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	Gravel road row. no curbs. Runoff from Independent Marine outers this CB.
Describe debris and/or clogging around, or in catch basin grate/cover:	Lots of sediment built up around CB and in quate.
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	None
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	0.1"-0.5"

SITE DIAGRAM: Include street intersections, inlets and outlets, catch basin dimensions, etc.

Cathedral Rout

Date: 9/9/08 SECTIO	ON 2 - SAMPLE COLLECTION REPORT	Node: AN Z 152			
Sampling Equipment:	pÉtainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)				
Equipment decontamination procedure:	□ OTHER (DESCRIBE)				
Sample date: 9/9/08	Sample time: 1449				
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:				
Subsample number and location:	all CB solids				
Color of sample:	Dark brown				
Texture/particle size:					
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	decomposing organic odor but no obvious	us signs of contumnation			
Amount and type of debris in bulk sample:	50% organic debris				
Amount and type of debris removed from final sample:	50% organic debris 21% removed lorganic)				
Compositing notes:					
Sample jars collected (number, size, full or p	artial)?				
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).					
FO 00445					
Lab ID FO 081106	Duplicate sample collected? Y/N Dupe ID	1			
Du plicate sample identification # on CO €:					
Any deviations from standard procedures: 🔥	Jo				

SECTION 3 -	PHOTOGRAPH LOG
Overview of CB showing drainage area	
Catch basin plan view prior to sampling showing solids	
Lateral connections to/from CB	
Homogenized sample (sediment in bowl)	/

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING

Sampling Team: TXB/RCB Date: 9/10/08 Arrival Time: 08/5 Basin: 52 Node: ANE910 Address: N. Balfimore Ave \$1 Current weather and last known rainfall:	ject Name: <u>Portland Harbor</u>	Inline Samp.		Project Number:	
Current weather and last known rainfall:	npling Team: TXB/RCB	Date: 9/10/08	Arriva	al Time: 08/5	
out one weather and last known railian.	<u> </u>		Addre	ess: N. Baltimore Ave & Bray And	F
Clear, Cool 58°F	rent weather and last known rainfa lear , Cool 58°F	all:		331 30 30 30 30 30 30 30 30 30 30 30 30 30	

	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	CB is downstream of industrial of residential areas, adjacent to Moonstruck copporate Headquarter CB is also perpendicular to Union Pacific Rail Road tracks.
Describe debris and/or clogging around, or in catch basin grate/cover:	Area around CB is fairly clean of TXB Organic leaf litter of sediments stuck in grate (<10%)
Is there standing water in catch basin?	No punged
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	No
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	Depth is ~0.1" to 0.3" with an average depth of approx. 0.1"
ANE 909 AAEGAY AAEGAY AAEGAY AAEGAY	ets and outlets, catch basin dimensions, etc.

Date: 9/10/0% SECTIO	N 2 - SAMPLE COLLECTION REPORT Node:
Sampling Equipment:	©Stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)
Equipment decontamination procedure:	⊅Per SOP7.01a □ OTHER (DESCRIBE)
Sample date: 9/10/08	Sample time: 0820
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:
IL-52-ANE910-0908	per sof 5.01e
Subsample number and location:	All CB solids
Color of sample:	bray
Texture/particle size:	Primarily fine silts of medium to coarse sands
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	Primarily fine silts of medium to coarse sands Wlarge percentage of organic leaf debris None
Amount and type of debris in bulk sample:	60% organic debos 20% silts of 20% medium to
Amount and type of debris removed from final sample:	Colo organic debris 20% 5/1ts of 20% medium to Pemored applas 50% of organic leaf litter from bulk solid sample (~50% of bulk sample)
Compositing notes:	The sample
Sample jars collected (number, size, full or pa	artial)? 2-407-
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	Did not collect brain size - only PCBs, TOX of percent Dids were collected (total)
FO 081108	
Duplicate sample identification # on COC:	Duplicate sample collected? Y/N Dupe ID
A)) (1
	V U

SECTION 3 -	PHOTOGR	APH LOG
Overview of CB showing drainage area	V	
Catch basin plan view prior to sampling showing solids	V	
Lateral connections to/from CB	V	
Homogenized sample (sediment in bowl)	V	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

CATCH BASIN SOLIDS SAMPLING FIELD DATA SHEET

Project Name: Portland Itayb.	or Inline Samp.	Project Number:
Sampling Team; JXB/RCB	Date: 9/10/08	Arrival Time: 0900
Basin: 52	Node: AAE694	Address: RR Tracks@N. Baltimore & Bradford
Current weather and last known in Clear Cool \$ 58°F	ainfall:	

SECTION 1 - PRE-	SAMPLING VISUAL OBSERVATION REPORT
Describe potential solids or contaminant sources that could impact catch basin (const. activities, erosion, vehicles, material storage, onsite processes, etc.):	CB is adjacent to RR tracks (Union Pacific) intercepting drainage from RR tracks of other heavy industrial areas (Toyota, etc.).
Describe debris and/or clogging around, or in catch basin grate/cover:	Coarse gravels near CB drainage area. CB grate is free of debris & sediments.
Is there standing water in catch basin?	No
Describe visual or olfactory observations of contamination at catch basin if any (odor, sheen, discoloration, etc.)	
Describe depth of sediments present in catch basin and the total depth of the catch basin or sump:	Depth of solids ranges between 0.0"-3.0". A majority of the solids in the CB are comented y coarse (3/4 minus) gravels & five silts & sands
Solids material only Sampled From center of Bestending to south wall of ca AAE694 AAE694 AAE694 AAE694 AAE694 AAE694 AAE694 AAE694	AAE 498 N. Bradford ST. Which Pacific RR Tracks

Sampling Equipment:	⇒Stainless steel spoon & stainless steel bucket □ OTHER (DESCRIBE)
Equipment decontamination procedure:	Per SOP7.01a OTHER (DESCRIBE)
Sample date: 9/10/08	Sample time: 0905
Sample Identification Code:	Sample collection technique and if/how overlying water was removed:
IL-52-AAE694-0908	Per SOP 5.01 e. Collected solids from centerof
Subsample number and location:	Center of CB extending to south wall of
Color of sample:	Gray
Texture/particle size:	Fine silts & sands w/ coarse gravels
Visual or olfactory evidence of contamination in bulk sediment sample (odor, sheen, discoloration, etc.)	None
Amount and type of debris in bulk sample:	~70% five sitts & sands ~30% course gravels, metals of rub
Amount and type of debris removed from final sample:	~70% five sitts & sands ~30% coarse gravels, metals & null material from Removed approx. 5% of bulk sample, primarily Consisting of coarse 3/4 gravels & nubber chunks.
Compositing notes:	1 - 3.51 My 3. Course 14 gravers 4 Mober Chunks,
Sample jars collected (number, size, full or pa	irtial)? 4-407 1-807
f not enough sample to fill all of the jars, list ars collected and related analytes sampled (as per analyte priority list in work order).	
FO 081109	Duplicate sample collected? YN Dupe ID
Ouplicate sample identification # on COC:	
Any deviations from standard procedures:	0

SECTION 3 -	PHOTOGRAPH LOG
Overview of CB showing drainage area	V
Catch basin plan view prior to sampling showing solids	V
Lateral connections to/from CB	V
Homogenized sample (sediment in bowl)	

City of Portland Environmental Services

DAILY FIELD REPORT

4.40
Project Portland Harbor Stormwater In Line Samp Project No.
Location Basin 52 Date $9/9/08$
Subject Catch Basin Sed Samp By JKB, RCB, LAS
0900: Arrived on site at N Burlington & RR tracks to inspect CBs.
0900: Arrived on site at N Burlington & Rf tracks to inspect CBs. Referred to Archismages and located ANE 813. Took photo. Also
located and inspected a CB in grass just upst of RR hacksand
located and inspected a CB in grass just west of RR hacksand determined it to be in Basin 50.
0915: Prepared to surple ANE 813 by removing CB grates. Some
solids from the surface of the grate fell into the CB during
grate removal, but will not be collected for the composite sample.
solids from the surface of the grate fell into the CB during grate removal, but will not be collected for the compasite sample. Sediments range from The sitt to coarse (1"+) gravel.
135 spoon
0925 Sample collected from entire floor of CBrand composited in
0925 Sample collected from entire floor of CBrand composited in 55 bowl. Large rocks removed. 3-402 jars, 1-802 jar collected.
13949 offsite
8950 On site at ANE 815, located at the corner of N Burlington &
0950 On site at ANE 815, located at the corner of N Burlington & N. Crawford. Two photos of site and CB prior to removing the grate
1006 Breate removed
1010 Sample collected from entire floor of CB w/ SSSCOOP & placed in SS bowl for compositing. 3-402, 1-802 jar filled.
for compositing. 5-902, 1-802 jar tilled.
1025 Investigated nutlet from ANERIS to determine which of the 3 clustered
Mts in the interscetion of N. Burlington & N. Crawford its flow goes in to. Powed water into ANESIS and found that it was connected to the
middle MH, which we perviously thought was abandoned and filled in place
Attachments but now appears to be a set MIT. This MIT has an outlet w/a
I may now them content to be a 201 that I had now the an on the miles of

City of Portland Environmental Services

Attachments

DAILY FIELD REPORT

Page Project Portland Harbor In Line Project No. , 1020.001 Location Basin 52 Date 9/9/08 Subject Catch Basin Solids Sampling By JXB/PEB/LAS vertical drop into AAE 569. ANE 815 Linknown MHID unknown connection Evertical outlets le main channel in mit AMESLA Crawford Stline Refer to 6/08 sampling AAE569

DAILY FIELD REPORT

Page <u>3</u> of ____

18. 3 1 1 10.0	
Project	Portland Harbor In Line Project No. 1020.001
Location_	Basin 52 Date 9/9/08
Subject	catch basin solld samp By RCB/JNB/LAS
1106	
TIVE	to remove. CB located at NE corner of N. Pittsburg and RR tracks.
1116	Sample collected from AAE 651. Limited sediment affected from this
	location. 0-3/4" of sed in CB floor, but most of the sediment
	present is in Front of the outlet pipe Enough sediment to Fill
	2-402 jars. No grain size awalysis from this location.
	2-402 jars. No grain size awalysis from this location. Sample had ~ 35% organics/trash/large pocks which were removed
	prior to filling jars.
1138	Offsite.
1142	Arrived at ANE921. Lots of vegetation and sediment in and around
	CB grate. Took photos. Removed CB grate. Some standing water
	in SE corner of CB, approx 2" deep. 100 CB has loss of scalment
	predominately in the middle and vost ends of the CB, and less in the
	'St end where the water has collected.
147	
1153_	Collected Sample + DUP.
100]	Broke for lunch
1/4	유민들은 사람들은 얼굴하는 살을 모르는 유민들은 가장 모든 사람들은 사람들이 나는 사람들은 사람들이 가장 나는 사람들이 되었다.
1304	Arrived on site at the ME corner of N Crawford and NA1/2 in front of Independent Marine, 8675 N Crawford Street. No node number known
	of Independent Marine 8675 N Crawford Attacet Marine Lawrence
	because it is not shown on the man just oring to sounds callection
	because it is not shown on the map. Just prior to sample collection we were asked to leave the site so Independent Marine could load
	and unload a truck. We WIN check out ANE 911 and return later
Attachmei	

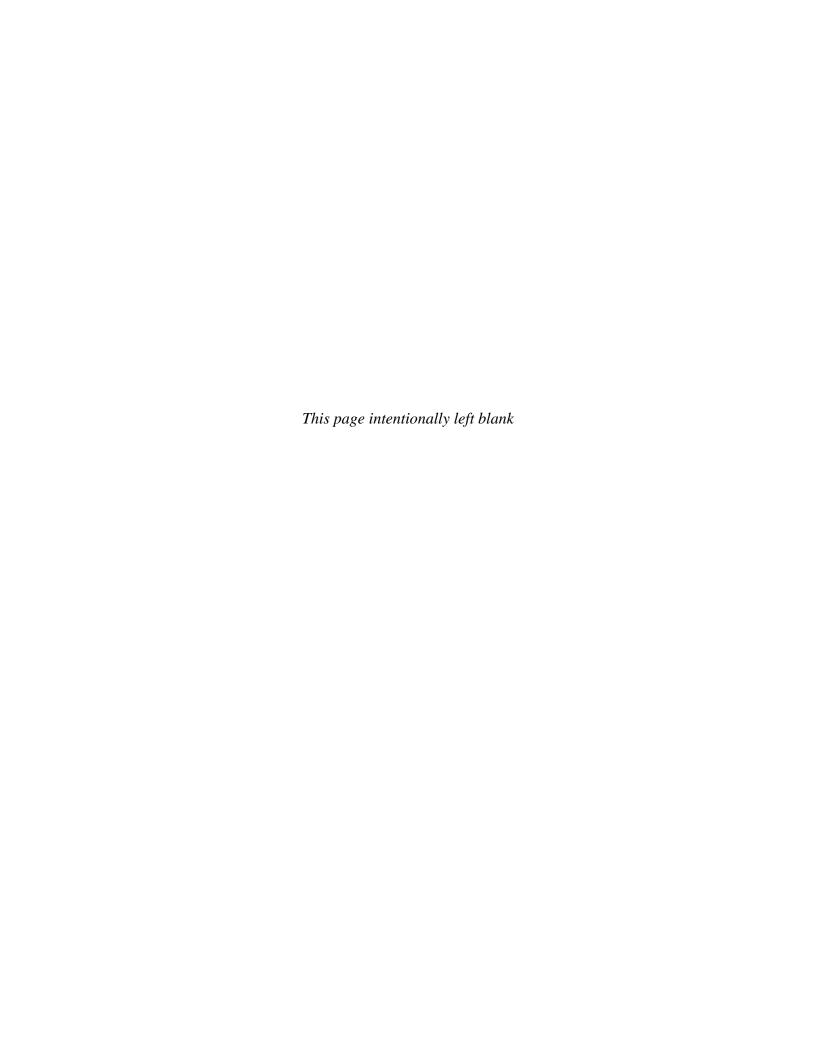
DAILY FIELD REPORT

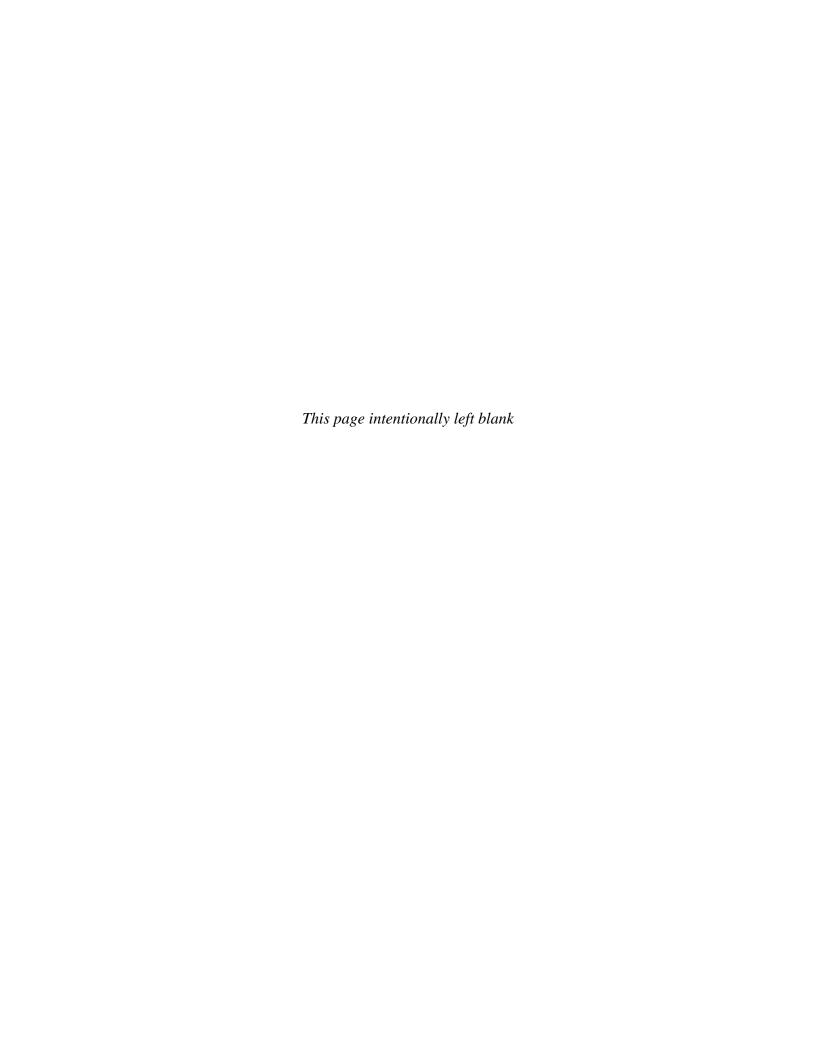
Page _ Project Portland Harbor In Line Project No. 1020.001 Date <u>9/9/08</u> Location <u>Basin 52</u> Subject <u>Catch basin</u> solids samp. By fub/JXB/LAS 1326 Arrived at ANE 911 located on the NW side of Peninsula Iron Works (PIW near the RR tracks. Took photos. Removed grate w trypod owinch During sampling REB 1336 Starting Started collecting sample. Abundant metal debris - filings, drilling cuttings, bolts, sevens, nuts. Also some chunks of what appears to On extre jer collected for consultant (no tyresunt) peel 15. Movived back at 8675 N. Cranford White we were gone, independent 1411 Marire Employees discharged water in to the CB during propeller grinding operations. LHS directed them to stop and notified SPCR 1415 Sample callected from 4 corners and middle of CB sampling the total depth at each subsample location. Arrived at Att 673 at N. Crawford under StJohns Bridge. Took photos, Seds in CB are wet from werent runoff from Independent 1440 Marine (see notes above) Saughe collected @ AREG73. Not much schwent here, to most of material in CB is organic debris. Extra jor Alled for consultant per 1449 . Offsite to WPCL. 1507 **Attachments**

DAILY FIELD REPORT

Page $\underline{1}$ of $\underline{2}$
Project PORTLAND HARBOR INLINE SAMP. Project No. 1020.001
Location BASIN 52 Date 9/10/08
Subject CATCH BASIN SED. SAMP. By JXB/RCB
0315 - Arnved on site at N. Baltimore Ave of Bradford ST, near Union Pacific RR Tracks, to inspect CBs. Referenced ArcoIS Mobile Mapper of Localed CB ANE 910 on east corner of N. Baltimore. Took photo of CB grate of drainage area.
0820 - Prepared to sample CB ANEGIO. Removed CB grate Grate was portially clagged by minor organic debris. Depth of solids material in floor of CB ranged between 0.1" to 0.3" W/an average depth of approx. 0.1". Solids material primarily consisted of fine silts to medium/coarse sands talarge percentage of organic debris. Collected solids material w/a stainless spoon of placed Solids in stainless bowl. Determined that solids
material was primarily 60% organics of leaf litter. Removed organic material of filled 2-402 sample jars.
0835 - Arrived on site at CB ANE 909 (west CB) located at N. Baltimore of Bradford ST. (perpendicular to Union Pacific RR Trads Inspected CB. CB grate was free of Jebn's & sediment. Removed
Inspected CB. CB grate was free of debris & sediment. Removed groute. Depth of solids material in floor of CB ranged between O.1" to 1.0". Began to sample ANEGOG. After Quing initial sampling of CB it was determined that solids material was primarily organic debris (making up ~98% of bulk material) As a result sampleable quantities of solids material were not present. Did not sample CB ANE 909.
0900 - Arrived on site at CB AAE 694 located adjacent to PR tracks on N. Bradford ST. Teck a photo of CB of draining e area

City of Portland Environmental Services


DAILY FIELD REPORT



Page 2 of 2

0. <u></u>
Project PORTLAND HARBOR INLINE SAMP. Project No. 1020.001
Location BASIN 52 Date 9/10/08
Subject CATCH BASTN SED. SAMP By JXB/RCB
CBAAEBY (cont.) - Fook photo of CB & drainage area
CBAAEBY (cont.) - Fook photo of CB of drainage area of CB grate was free of debrist sediment Removed grate
0905 - Prepared to sample CB AAE694. Depth of solids
material in floor of 08 was between 0,0" to 3,0" W/an
average depth of approx. 3.0.1. Attempted to sample solids
material in CB using stainless spoon solids are remented
in CB (primarily on the CB corners). Able to remove solids
material at an average total depth of 3,0" from the
center of the CR, extending to the south want of the CB.
solids material primarily consisted of fine silts of sands
w/coarse (3/4 minus) gravels. Coarse gravels made up
approx. 30% of the material in the bulk solids sample
From bulk sample (accounting for 15% of bulk sample)
from bulk sample (accounting for "5% of bulk sample)
Composited bulk material in stainless steel bowl & filled
4-407 & 1-807 sample jars
0977- Left Basin 52 for WPCL
[보통] 경우 1일
마스트 등의 경기로 보고 있다. 그런 그런 그런 그런 그리고 있다면 하는 것이다. 그런
. 선생들 왕이고 그는 그들은 이번 돌면 보고 말한 경로를 가면 한다면 한다면 되었다. 그는 것은 사람이 있는 것을 받는 것을 가장 말로 함께 되는 것을 하는 것 하게 되었다. 그 집에 하고 있는 것을 하는 것을 하는 것을 하는 것을 하고 있다. 그 그런데 말로 살아보는 것을 하는 것
Attachments

2010 Sediment Trap Sampling

Water Pollution Control Laboratory 6543 N. Burlington Ave.
Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 6/17/2010 Page: 1 of 1

Page: 1 of

Collected By: AJA, PTB

	Requested Analyses	Comments	Analyses colled per PHA-6/21/10	(no Mx)		75=58, 2 273.1 g Total Wet Weight	75=48.2 258.9 g Total Wet Weight	75-54. 16.7 g Total Wet Weight	S= りん。	[S = (ω(ω (φ 974.4 g Total Wet Weight	75=66.6				Relinquished By: 4.	ne:	
	Requeste	Metals	As, Cd Cr, Zn) + Hg		Total Me	•	0		•	(\$)			9		ien L	Date:	
	÷	General		97	Grain Siz TOC TS*	•	•	•	•	•					<u> By:</u> 3.		
	-	Organics	sə; (۲ολ-Jevel)	tsisidi	\$∧OC₹ b¥H+bµ	•	•		•	•	9				Relinquished By: Signature:	Printed Name:	
Г	15.10	L	를 (All 209)	әиәби		•	•	8	9	. 🖘	•		•		Time:	Date:	
	SEDIMENT/ware	-	retain sam		e Sample Type	S	. O	S	· U	ပ)		્ડ		. iĒ	å	
₽ P	SEDIM		ossible to		Sample Time	943	1026	1548	1038	1142			0221	,			
ATER SAI	Matrix:		custody D 0 allest aliquot p		Sample Date	6/17/10	6/17/10	6/16/10	6/17/10	6/17/10	C (17/10		0/17/10		d By: 2.		
ORMW,			Chain-of- led: 2/2/2010 ed: 6/16/201 use the smaly		Point Code	52_ST1	52_ST2	52_ST3	52_ST3	52_ST4	Dup		EagramK		Relinquished By: Signature:	Printed Name:	
TLAND HARBOR ST	05		Basin 52 Sediment Trap Chain-of-custody Sediment traps installed: 2/2/2010 Sediment traps removed: 6/16/2010 VPCL, care should be taken to use the smallest aliqu volume for additional follow-up analyses.		Location	ST-52-AAE498-0610 N BALTIMORE & BRADFORD	ST-52-AAE513-0610 N BRADFORD & ALTA	ST-52-AAE700-0610 N PITTSBURG, SW OF RR TRACKS STANDARD BOTTLE	ST-52-AAE700-0610 N PITSBURG, SW OF RR TRACKS SIFT SED TRAP	ST-52-AAE516-0610 8675 N CRAWFORD ST	Duplicate		SIFT Equipment Blank		Time: 17 C.7 8	Date: / /17/10	
Project Name: PORTLAND HARBOR STORMWATER SAMP	File Number: 1020,005		Basin 52 Sediment Trap Chain-of-custody Sediment traps installed: 2/2/2010 Sediment traps removed: 6/16/2010 * Total Solids to be done at WPCL, care should be taken to use the smallest aliquot possible to retain sample volume for additional follow-up analyses.		WPCL Sample 1.D.	FO105694	FO105695	FO105696	FO105697	FO105698	FO105702		FO105699		Signature:	Printed Name: Do Lo A	合うっと思い
Project Name:	File Number: 1(* Total Solids to be do		WPCL Sample	FO10569	FO10569	FO10569	FO10568	FO10569	FO1057(FO10569		Signature:	うしてい	\

Тіте:

Received By:

Received By

Received By

Received By Signature:

Signature:

Signature:

ENVIRONMENTAL SERVICES

Field Operations 6543 N Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET

Project Name:	Project No.:	Date:	By: JXB
Portland Harbor Stormwater Samp.	1020.005	2/2/10	PIB
Site Address: N BALTIMORE + BEADFORD	Sample Pt Code: 52-57	Basin: 52	Hansen ID:

SECTION 1 - INSTALLATION INFORMATION

Traffic control and/or site access concerns:

MH is on N side of RL trucks at entrance of
St Lohns Boat Rump. Can have heavy traffic
due to fisherman. Large semis use this road
to access industry N on Brad for 15T.

Describe flow conditions and depth and/or any standing water at time of install (does river appear to back up into this line intermittently?):

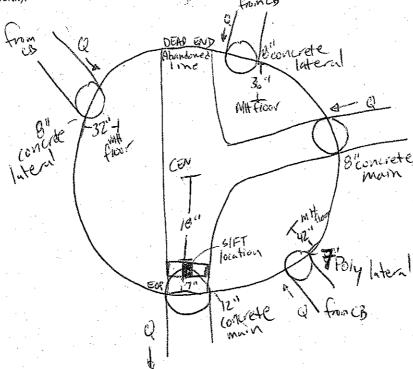
Base flow at 0.1 in t 0.5 fps No over much up to here.

Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.):

No sample-able sediments present in pipe

Sed trap bottles installed on:
DownsriteAux

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):


SIFT'IS Trated in MH chamber due to restrictions of equipment for use
in this size pipe. SIFT is still positioned near enough the downstream top (7"
) hes from EOP) to capture all inputs into this MH chamber. SIFT is 18" downstream
of center of node. Upstream angle of SIFT is 16°

Pipe diameter (inches): 12

Distance from MH node (feet): 7,5

SED TRAP SITE DIAGRAM

(Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing using the top of the page as north):

Battle Stimated sed depth per bottle (% by yolder of the provided placed? (VIN the provided plac			
SISID US Bottle - Towar BS Bottle - 20,5" By JO Bottle - Towar BS Bottle - 20,5" Final Removal? YMD Society of all of the SIFT Ly Op Society of the SIFT Ly Op Society of all of the SIFT Ly Op Society Ly O	Pt Code 511	SECTION 2 - MONTHLY FIELD CHECK INFORMATION	ON Hansen ID: AAE U94
Bottle - 195 Bottle - 195 Bottle - 195 Final Removal? YN) Bottle - Bottle - 195 Final Removal? YN) Comments: Our site to conduct First check of SIFT following the install date of 1/2/10 for the F109-10 storm assess. This will be the first check of all of the SIFT they be seen when through the selection of the site	li "	volume & inches): If removed which one(s)?	Archived ID:
Comments the site to conduct Prior cheek of SIFT following the instrant date of e/e/to for the FYOT-10 stern season. This will be the first cheek of all of the SIFT type is earnest traps in Busin S2. SIFT was stiffed in the inter about the will place of the inter about the way in busin S2. SIFT was stiffed in or shading water shading water shading the season the representation of socials, primarily along the bottom free chambers mover. Primary Chamber - Trace accumulation of solids, primarily along the bottom of recommendation in the north interfect the primary along the bottom secondary Chamber - Tored areas of captured solids was on average 20.5" in axis dept by 3:0" in width - along the hottom interfect the flowing to the solids. Photos Taken? M. Appointed a back of item screeck solids were primarily fine sites. Prainage catchment area - 1495, jpg Describe. Prainage catchment area - 1495, jpg Describe. Achived solids in primary of secondary chambers - 1496, jpg of 1497, jpg Solids - 10" Describe - 0.15" Bottle: By Tim PB, 185 Bottle - 10" Describe - 0.15" Bottle: Comments: Obside to 2" Chook. Entrand rates presented of supple saids Alexander for the supple of the supple o	By: JXB	Bottle - Bottle - ムペー Final Removal? Y/N)	#53月45年代明年4年20月5日 1995年 1
Photos Taken? M. Photos Taken? M. Photos Taken? M. Photos Taken? M. Prainage catehment area. 1975. jpg Describe. Drainage catehment area. 1975. jpg Describe. Prainage catehment area. 1975. jpg Describe. Estimated sed. depth per bottle (% by yolume & inches): Describe. Estimated sed. depth per bottle (% by yolume & inches): Describe. Bottle - 10" DS-Bottle - 0 15" Bottle - Bottle - 10 "Bottle - 10" Bottle removed which one(s)? removed from 1970. Promoter of the primary processes of simple cause asserted to compected to allow the promoter of simple cause asserted in primary is distributed throughout entire popular of cylinder. R. Installed STFT at an 18" angle Describe. Processes above. Discorded primary coarse solids, not representative. Secondary of the primary isoproduced throughout entire popular tentire popular and primary coarse solids in the cylinder before. Nothed fines adhering to secondary screen. Photos Taken? M. Occi Rimary isoproducy challiber occi Coarse material in primary Describe. 1002 - close op of coarse material in primary Describe. 1002 - close op of coarse material in primary Describe. 1002 - close op of coarse material in primary Describe. 1002 - close op of coarse material in primary Describe. 1002 - close op of coarse material in primary Describe. 1003 - close op of coarse material in primary Describe. 1004 - close inches): Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 - close op of coarse material in primary Describe. 1006 -	Comments: On for the FYO Type season Weir of the US-Bottle	esite to conduct first check of SIFT following the install date 09-10 storm season. This will be the first check of all of the ent traps in Basin 52. SIFT was indicated & the inlet about trap was un-obstructed pipe was wetted no standing wallation of leaves on traphousing has wetted no standing wa	of 2/2/10 SIFT ove the Her. Small rd 18 angle. 41.59
Describe: Drainage catchment avec - 1495, jpg Date: Archived soilas in primary of secondary chambers - 1496, jpg of 1497, jpg sathle 160.7 Date: Achived soilas in primary of secondary chambers - 1496, jpg of 1497, jpg sathle 160.7 By JDM, DB Bottle - 10" Ds. Bottle - (average) Final Removal? YNV competition in primary is secondary to Bottle - (average) Final Removal? YNV competition in primary is devis and wise plastics on sift boosing yet never in chamber, Activities in primary is exclusively coarse maferiol. Secondary to competition in primary is exclusively coarse maferiol. Secondary secondary to the primary coarse solids, not representable. Secondary of the primary coarse solids politically in primary is anyle. US-Bottle - See comments above. Discussed primary coarse solids, not representable. Secondary of the primary coarse solids politically in primary. Secondary servers. Photos Taken? Vin CCCI Binary: Secondary servers. Photos Taken? Vin CCCI Binary: Secondary servers. Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). CCOMMENS. The proposed of the primary. Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in primary). CCOMMENS. The proposed of the primary of the primary. Describe: 0002 - close-up of coarse washered (in primary). Describe: 0002 - close-up of coarse washered (in pr	Photos Taken?	n by 13.0" in width-along the northern invert of the chamber. The deposited on back filter screen. Solids were primarily	resolids finesits
Estimated sed. depth per bottle (% by volume & inches): By JIM PTB Bottle - 10" Bottle - 0" Bottle - 0" Bottle - 0" Bottle - 0 TS* Secondary to covere of ample gease Meterial in primary is covered to the move in the primary is covered to the move the fire potent in primary of cylinder. As installed SFT at an 15° angle US Bottle - See commerts above. Disearch primary cearse solids, not represented to the move of the cylinder bottlen. Noted from Noted the fire apprimary of the primary is conducted to the throughout continued to primary to the cylinder bottlen. Noted from primary Describe: 0002 - close up of cearse material in primary Describe: 0002 - close up of cearse material in primary Describe: 0002 - close up of cearse material in primary Describe: 0002 - close up of cearse material in primary Describe: 0002 - close up of cearse material in primary Describe: 0002 - close up of cearse material in primary Bottles-removed/Leplaced? (IN) If removed which one(s)? Bottles-removed/Leplaced? (IN) If removed which one(s)? Final Removal? YM Comments: 0 TS* Bottle - 1 Taze DS Bottle - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D_{ra}	ainage catchment area - 1495, pg	A Construction
Describe: 6002 - close up of coarse material in primary ocarse solids, not representative. Describe: 6002 - close up of coarse material in primary Date: Estimated sed. depth per bottle (% by volume & inches): By: US Bottle - Trace DS Bottle - 6.44 Bottle - fine grands Bottle - 6.44 Final Removal? YM Comments: Orbite for removal fer extract request . 0.25" water in pipe flowing final county strend for the debt is, some leaf build up around housing final county by primary has only a few fine gravel pieces, these US Bottle - of fines sand + silt sleping from about 0.25" at the U/S 2013 Descondary Accumulation of fines and Silt along Screen. Invert has accumulated to about 0.5" at the U/S 2015 Descondary Accumulation of fines and Silt along Screen. Invert has accumulated to about 0.5" at the U/S 2015 Descondary Accumulation of Silts and Silt along Screen. Invert has accumulated to about 0.5" at the U/S 2015 Descondary Accumulation of Silts sleping from about 0.25" at the U/S 2015 Descondary Accumulation of Silts and Silt along Screen. Invert has accumulated to about 0.5" at the Gack d/S 2015	#6/20/0 By: JJM, PTB,	volume & inches): Secondary US Bottle - 10" DS Bottle - 0 75" Bottles removed/replaced? YN site of the secondary France of the secondary Secondary Secondary Secondary	tion Archived ID lary to
Describe: 6002 - close-up of coarse material in primary Describe: 6002 - close-up of coarse material in primary Date: Estimated sed. depth per bottle (% by 6.16-10 PSBottle -0.4" By: US Bottle - Trace Describe: -0.4" Bottle - Fine grands Bottle - 6.49 Final Removal? YMD Comments: Onsite for removal fer ostoner request . 0.25" water in fife flowing slowly. SIFT in free from debris, some leaf build up around horsing plantic also present. Primary has only a few fine grand pieces, these will be discarded. Secondary Accumulatio of fines and Silt along screen. Invert has accumulated to about 0.5" at the Gack dis and. Potos Taken? MN	oppome - ^{Se}	the for 2nd cheek. Entrant notes presence of ample coarse Material in primary, use. plastics on sift housing yet none in chamber. Accomplation in primary coarse material. Secondary accomplation is distributed throughout entitled significant and see angle comments above. Discorded primary coarse solids not representative.	early is 19610 196
Describe: 0002 - closo-up of coarse makerial in primary 0003 close-up of discarded pile from primary Date: Estimated sed depth per bottle (% by volume & inches): 6-16-10 Volume & inches): By: US-Bottle - Trace DS-Bottle - 0.4 " FTB AJA Bottle - Fine grands Bottle - (avg) Final Removal? Y/R) Comments: Onsite for removal per ostoner request . 0.25" water in pipe, flowing slowly, SIFT is free from debris, Some leaf build up around housing plastic also present. Primary has only a few fine grand pieces, these standard discarded. US Bottle - Decondary Accumulation of fines and sitt along screen. Invert has accumulated to about 0.5" at the back discarded and the coach d	DS Bottle / - Acc	adhering to secondary screen.	Velled
Date: 6-16-10 By: DS. Bottle - Trace DS. Bottle - 0.4 " Bottle - fix grands Bottle - (avg) Final Removal? Y/ND Comments: Onsite for removal perastoner request . 0.25" water in pipe flowing slowly, SIFT is free from debris, some leaf build up around housing plastic also present. Princery has only a few fine gravel pieces, these US Bottle - DS. Bottle - Tecondary Accumulatio of fires and sitt along Screen. Invert has accumulated by Bottle of fires; sand + Silt, sloping from about 0.25" at the U/s end to about 0.5" at the Gack d/s and.			
Comments: Onsite for removal percustoner request. 0.25" water in pipe flowing slowly. SIFT is free from debris, some leaf build up around housing plastic also present. primary has only a few fine gravel pieces, these will be discarded. US Bottle - Secondary Accumulation of fines and Silt along screen. Invert has accumulated DS-Bottle - of fines; sand + Silt, sloping from about 0.25" at +he u/s end +o about 0.5" at the back d/s and. Totos Taken? MIN	Date: 6-16-10 By:	Estimated sed depth per bottle (% by volume & inches): US Bottle - Trace DS Bottle - 0.4 " Bottles removed/replaced? If removed which one(s)?	
Secondary Accumulation of fines and sittology screen. Invert has accumulated DS-Bottle - of fines; sand + sitt, sloping from about 0.25" at + we u/s end to about 0.5" at the back d/s end. Totos Taken? WIN	Comments: יה בלפטל אור אינו אור אי	site for removal perastoner regrest. 0.25" water in pipe by SIFT is free from debris, some leaf build up around also present. primary has only a few fine gravel piece	housing 1015/10 es, Mess 52-577
of fires; sand + Silt; sloping from about 0,25" at + we u/s end to about 0.5" at the loack d/s end.	i my a i	the Sins and Elthor Screen Transition	
otos Taken? MIN	Do-Pottie - © #	fires , sand + Silt , sloping from about 0.25" at the u/s	s end
Describe: 3-2 overview, 1 closeup of Secondary chamber.		ŽN	
	Describe: 3 -	- 2 overview, I closely of Secondary cham	ber.

Pt. Code:	SEC	TION 2 – MONTH	LY FIELD CHECK INFORMATION	Hansen ID
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID.
ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	A CONTRACTOR OF THE PARTY OF TH
Comments:				Holding
US Bottle				Sticker
-	· ,			
DS Bottle -				
Photos Taken?	Y/N	/ 45-04		
Describe:				
Date:	Estimated sed. depth volume & inches);	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
Bottle -				Sticker
DS Bottle -				i i
Photos Taken?	Y/N			
Describe:				·
Date:	Estimated sed. depth volume & inches):	er bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
US Bottle -	J.			Sticker
DS Bottle -				
Photos Taken?	YN			
scribe:				

Pt Code:	SE	CTION 2 - MONTI	ILY FIELD CHECK INFORMATION	Hansen ID;
Date:	Estimated sed. dep volume & inches):	th per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID.
திy:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
US Bottle -				
DS Bottle -				
Photos Taken	? Y/N			, ,
Describe:	•			
Date:	Estimated sed. dep volume & inches):	th per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
Bottle -				
DS Bottle ~				
Photos Taken	refek			
Describe:	A.O. (A.O. (
Pt. Code:		SECTION 3 =	COMPOSITE SAMPLE	Hansen ID:

Pt Code:	SECTION 3 – COMPOSITE SA	MPLE Hansen ID: ARE 498			
Sample ID: FO 105 694 affix FO number sticker	Duplicate sample collected at this site? YN	LICATE ID:			
Duplicate Sample ID on COC: affix FO number sticker	Any deviations from standard operating procedures? Y				
Comments:					

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET

	Project Name:	Project No.:	Date:	By: ECH,
•	Portland Harbor Stormwater Samp.	1020.005	2/2/10	JXB, MB
	Site Address: NEAR ST JOHNS N BRADFORD & ALTA, PUMP STATION	Sample Pt Code: 52-5T2	Basin: 52	Hansen ID: AAビラ13

SECTION 1 - INSTALLATION INFORMATION

Traffic control and/or site access concerns: Te required. Site access limited to either approaching alongside tracks from s Describe flow conditions and depth and/or any standing water at time of install (does river appear to back up into this line intermittently?):

Base flow & Orlin. and 0.4 fps Liver does not aylear to back up to here

The trucky of This location has a sinitary, emergency SHOULD NOT BE ACCESSED DURING AT Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.):

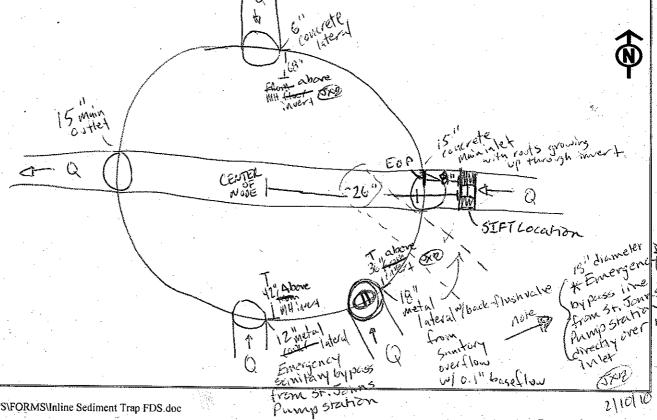
Sed trap bottles

Trace fine sediments in invert are not ample enough to samples

installed on: UPSTYLEAM

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):

51FT is installed ufstream of MH Chamber in a 15" pipe in from EOP


Pipe diameter (inches): رخ

MH chamber 1 2 A. from center of mH Chamber (node). Upstream Single et 16

Distance from MH node (feet): 🎣 🧷

SED TRAP SITE DIAGRAM

(Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing using the top of the page as north):

Pt. Code: 572_572	SECTION 2 - MONTHLY FIELD		Hansen ID: みみをうしる
ate:	Estimated sed, depth per bottle (% by Bottles to	emoved/replaced?�/N	
3/5 10 By: 5x3	yolume & inches): J'Ormany We Bottle Trace Bottle	ed which one(s)?	Archived ID:
ms/ maw	Bottle - Bottle - Arg Final Re	moval? Y(N)	
		e wer was free of obstruct	12452-512
water in	nain pipe or in SIFT, Re-installed	was wetted - no standing	2/2/10-
US Bottle -	retinterin check of SIFT. Trap inlet abore a plastics collected on trap housing. Pipe nain pipe or in SIFT, Re-inotalled sourd 100 angle.	strifype sediment trap	1044
Primary Cl	amber - Trace amounts of solids p	resent, primarily five silts	36.39
DS Bottle - Secondary	Chamber - Total agreen of captured solids		
ina	on back of filter screen. captured	aber. Trace solids accumulate	<u> </u>
Photos Taken?	yn silts.	or octobrition the	Tave weight
Describe:	Overview of draining eathment area - collected archived solids in primary & &	1992, pg	20-jew(t) 1d 188, 74
Date:	Estimated sed. depth per bottle (% by Bettles re	emoved/replaced? (Y/N solids removed	
By: JTM, PTB	volume & inches): Secondary US-Bottle - 1747e DS-Bottle - Sie helout	ed which one(s)? from orimary and secondary	Archived ID:
M75	Bottle - Final Rei	moval? Y(Ñ)	, , , , , , , , , , , , , , , , , , ,
Comments:	trant notes presence of leafy debris on SIFT base et abovecuoir Approx. 0.5" flowing water in pipe	yet no obstructions to trap	मृश्रिक
	Prince of the second se	these desired see o per 10. whole.	52-317
Primary US-Bottle - Ti	aie solids accomulation		80.75
Societar			-
DS Bottle - ₼	pox. 0.5" water in seconday, drained through scopers. Solids (find 18" of fine adhering to screen.	ies, sand) 0.25° in invert of cylinder	
	7	4	
Photos Taken?	Y/N 0004 primary and secondary chambers	·	
Describe:			
Date:	Estimated sed. depth per bottle (% by volume & inches): **Grand of the set o	emoved/r oplaced? Ø/N ed which one(s)?	Archived ID
BA:	US Bottle - /4 see DS Bottle - ~ 0.8	·	
	site for final removal per clist. regrest		
band, but	not impacting SIFT. Pipe is well	ed, but no flow.	6/16/10
Primary F	not impacting STFT. Pipe is well the replacement within the last we me silts and sand on invert, about organics were excluded (Mected	eck - strong creosote ador	2n 52-5+2 510 52-5299
Do Bottle -	organics were excluded (dected	seds into composite jar,	Tace IMA
Secondory Ve	ine sands and cilts. Variance in Lost	h from 3/4" to 1"	
(fire	ine sands and silts, Varying in dept to back). 1/8" files along face (screen)	
otos Taken?	ON 76 - overview 77 - closenp of Secondary Chamber		
Describe:	78- Photo of meld		

***		SATELOPH THE SHAPE AND A STATE OF THE STATE	
Pt Code:		HLY FIELD CHECK INFORMATION	Hansen ID
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
By:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:			Holding
US Bottle -			Sticker
DS Bottle -			
Photos Taken?	Y/N		
Describe:			
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottle - Bottle - Bottle -	Final Removal? Y/N	
Comments:			
Bottle -			Holding Sticker
DS Bottle -			
Photos Taken?	Y/N	And the second s	
Describe:			·.
Date:	Estimated sed. depth per bottle (% by volume & inches).	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
Ву:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:			TIALE
US Bottle -			Holding Sticker
DS Bottle -			
Photos Taken?	4/N		
scribe:			

Pt. Code:	SEC	TION 2 - MONTH	HLY FIELD CHECK INFORMATION	Hansen ID:
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived I
-திy: 	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
US Bottle -		×.		Sticker
OS Bottle -				
Photos Taken	? Y/N		<u>/ </u>	
Describe:				
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived I
Ву:	US Bottle - Bottle -	D6 Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
Bottle -				Sticker
OS Bottle -				
os bottle -				
hotos Taken?	Y/N			
escribe:				

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP FIELD DATA SHEET

Project Name: Portland Harbor Stormwater Samp.	Project No.: 1020.005	Date: 2/2/10	By: JXB, ECH, PTB
Site Address:	Sample Pt Code:	Basin: 52	Hansen ID:
N Pittsburgh SW of RR Tracks	52 - ST 3		AAE 700

SECTION 1 - INSTALLATION INFORMATION

Traffic control and/or site access concerns:
Low traffic street between park and
WPCL. MH is located ~ 30 ft. from RR
tracks:

Describe flow conditions and depth and/or any standing water at time of install (does river appear to back up into this line intermittently?):

Base flow @ 0.1" and 34 fps. River does not appear to back up here

Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.): SAMPLEABLE Avg. depth of 2" in upstream line (10% five sands). Its, 70% large and with a set of pipe sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):

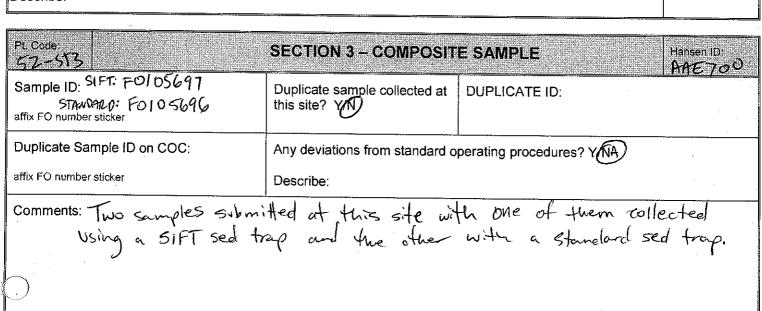
Sed trap bottles installed on:

DOWNSTREAM

Pipe diameter (inches): 📆 🚓

Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.):

Band is installed 16" ds of outlet EOD and 4" ds of center of node in a
20" pipe, immediately upstream of a seam in the fipe that is businaire to
separate. The SIFT is on the left side of the band-facing downstream with
an upward angle of 18 and due to the band is pitched slightly. The Standard buttle is on the right.


Distance from MH node (feet): 21

SED TRAP SITE DIAGRAM Center of sift is 6.5 in from invert. Top of bottle is 10.5 in above invert. (Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing using the top of the page as north):

Pt. Code:	SECTION 2 – MONTHL	Y FIELD CHECK INFORMATION	Hansen ID:
ate: 3 5 10 By: JXB MJ5 Maw	Estimated sed. depth per bottle (% by volume & inches): Primary US-Bottle Bottle Bottle Bottle - **I/16" BS-Bottle - **Bottle - **B	Bottles-removed/replaced? (V/N 40). Grow If removed which one(s)? primary a gecondary composited. Final Removal? Y/N	Archived ID:
Primary Chan Calon US-Bottle Secondary Ch the bottomic captured soli	ober Trace amounts of solids according the bottom of the chamber's invertament of the chamber's invertament of the chamber with trace accumulation of a ly "et so never of the chamber with trace accumulation of the chamber with the sends of sitts of in height - bottle was not complete of the Orainage overview - 1480 ina	main pipe was wetted - no standing un-obstructed. Peinstalled SIFT at an mulated in chamber, primarily deposited solids in average depit by "4" in width ale alation of solids on face of back filter so had observations. Captured stormwater ely full. Trace accumulation of solids Primary chamber Wisolids - 1481.jpg	52.5B 2/2/10- 3/5/10 0940
Describe:	Primary & secondary chambers -1	nber - 1482 jpg 483-jpg	Tare weight wild 140.2
Date: 4/6/zo10 By: JOTM, PTB, MJS	Estimated sed. depth per bottle (% by volume & inches): Primary US Bottle - recy minimal Bottle - cave.)	If removed which one(s)? Gerardany: primary Composited Final Removal? Y(N)	Archived ID:
Promiery US Bottle - Prosecondary Boss Bottle - En	ant notes presence of leafy debvis on spec. Reinstalled sift at an approximate 18 lmary is free of any accomulation has very very fine silts, a 0.3" deep an average with screen light vemoved bottle, bette is full mostly will walle.	minimal fines in invest of chamber in very fine welled organics depocited on	11610 1141 52-573 76-69
	ON No photo taken of bottle secondary chamber		
Date:	Estimated sed. depth per bottle (% by volume & inches): DS Bottle Bottle Sold Bottle Bottle Sold Bottle	Bottles removed/replaced? YN If removed which one(s)? Final Removal? YN	Archived ID:
Comments: bacte housing Primary - Thin US Bottle - The Secondary - The France of France of the Comments of the	ria present. No obstructions of solutions of solutions of solutions of layer of very the solltone sold and sold and the layer of time sound and sold and 14" thick at back. Ve	Some sand. About 18" thick the about 3/4" thick toward try thin caper of fines on screen fac	161.89
around	the removed full of water, a outside edge of bottom of	60 Hle. ~ 1/4 to 1/2" depth.	
ি otos Taken?(গ্র Describe:	983 - overview 84 - Close up of Seco	95-Mord	

Pt. Code:	SE	CTION 2 - MONTH	ILY FIELD CHECK INFORMATION	Hansen ID:
Date:	Estimated sed. dep volume & inches):	th per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
US Bottle -				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. dept volume & inches):	h per bottle (% by	Bottles removed/replaced? Y/N f removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding Sticker
Bottle -				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. depti volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
US Bottle -				Sticker
DS Bottle -				
Photos Taken?	//N			
cribe:				

Pt Code	SECTION 2 – MONTH	ILY FIELD CHECK INFORMATION	Harrisen ID:
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
ਰy:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	**************************************
Comments:			Holding Sticker
US Bottle -			
DS Bottle -			
Photos Taken	? Y/N		
Describe:			
Date:	Estimated sed. depth per bottle (% by volume & inches):	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - DS Bottle - Bottle -	Final Removal? Y/N	
Comments:			Holding
Bottle -			Sticker
OS Bottle -			
hotos Taken?	Y/N		
De sc ribe:			

ENVIRONMENTAL SERVICES

Field Operations 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAPFIELD DATA SHEET

Project Name: Portland Harbor Stormwater Samp.	Project No.: 1020.005	Date: 2/2/10	By: JXB
Site Address: 8675 N Crawford St	Sample Pt Code:	Basin: 52	Hansen ID:

SECTION 1 - INSTALLATION INFORMATION Traffic control and/or site access concerns: Describe flow conditions and depth and/or any standing Light traffic control on quiet street under water at time of install (does river appear to back up into this St. Johns Bridge. line intermittently?): This site is downstream of a granted (B) overflow there that enters MH directly shope where the SIFT is installed challed No active flow or standing water. However pipe is wested. No evidence of river backup. SHOULD NOT BE ACCESSED DURING RAIN. Describe sediments in pipe if present (depth, sampleable quantities, lateral extent, etc.): Strong FADLE, None in main invert. Lateral directly above outlet has 1-2" of sediment excounting that extends as for as can be seen of piper but starts "12" from EOP in MH Chamber. Sed trap bottles installed on: DOWN 5 THEAM Sediment trap location(s) (pipe size, distance from center of node, proximity to laterals, etc.): Pipe diameter SIFT is installed on downstream side of MH chamber - 2 ft from center of (inches): 18

SED TRAP SITE DIAGRAM

gode out of in from EOP in main ontiet SIFT is ayled upstream at 22° ande. Distance from MH node (feet): 🤈 (Sketch map of the lateral(s) and layout of manhole, showing approx sed. trap location, manhole elevation and inline sediment if present. Orient drawing m EOD) Lunmapped using the top of the page as north): convet 2 .Concrete

Pt C	Ship to you have now had my had proceed the company	SEC	TION 2 – MONTHL	Y FIELD CHECK INF	ORMATION	Hansen ID:
Ate By:	52 <u>-614</u> e: 6 10 Jxb 3] maw	Estimated sed. depth		Bottles removed/replace If removed which one(s) Final Removal? Y	ed? BIN Composited	Archived ID:
in The Cha	onstruct tre Wius www.loers	c significant ac Remotated trap	cumulation of ca o at an ~24°upn	***	round trap housi	52-ST4 19, 212/10- 3151/10 1007
DS B Sam tola	ottle -500 des des la missa	invert was a 0,5% condary chamber— t. Average depth a along the bottoming the back fi	indicate of fine-to-vinaverage depth Solids accumulated of solids deposited vert of the chambi iter screen.	nedium sands depasi by ~2.0" in total n ted in chamber wer in chamber was "1 or "/fine silt adher	ted in bottom of ridth. e jorimarily fine 5" by ~ 30" in ed to the face of	287.49
Desci Date	ribe: Co Co Col 2010 NTM, PTB	overview of dresphared solids in princed solids in series sed. depth produced with the solume & inches): Primary US Bottle - < 0.1"	onage area - 1484. nary chamber - 1490. condary chamber per bottle (% by Secondary DS-Bottle - ave. 2.0°	Bottles removed/replace If removed which one(s)	ed to SIFT 186. jpg d? (VN composited	Tan weighter jew (1) he issa. 9 Archived 10:
Comr	mavl ottle - Sm Idarv	all coarse grovels, organi	¹ 15	Final Removal? Y/N e, yet nething obstruction approximate 18 cmgl ands fow ands screen when to composition	ug inlet above E. Installed at an arrangle originally skg (1610	THESE SOLIPS WERE COLLECTED IN A SEPARATE SECOND JAP APART FROM THE FIRST
Descr	s Taken?(ON 0005 primary	is secondary (w/water close-up of fell 80	r) chambers		MONITHLY CHECK SOLIDS. PTB Y/6/10
	16 (10 B AJA	Estimated sed. depth p volume & inches): US Bottle - Small Bottle - Sand		Bottles removed/replace If removed which one(s) Final Removal?		Archived ID:
Comm Priv US Be	nents: 0 n around nam ottle - 3	band, not attectionall accumulationall accumulationallected into Jar	n of sands	request. Consideral Pipe is wolfed in invert agains	t screen	1150 19 253.19
DS Bo		ice accumulation front (u/s) to along screen for		silts and fine k. Very fine si	s. Approx. 1" It accumulation	ATHESE SOLIOS WERE COLLECTE IN A SEPARATE JAK FLOM MODITALY CHEC 1+2 SLAVE THEY WERE
Descri		- Overview - Closenp of S	reandary		· ·	FULL.

Pt. Code:		ECTION 2 - MONT	HLY FIELD CHECK INFORMATION	Hansen ID:
Date:	Estimated sed. d	epth per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Arghived ID:
ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:	3	,	/	
;				(Holding Sticker
US Bottle -				
20.5				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. de volume & inches)	epth per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				
				(Holding) Sticker
Bottle -				
DS Bottle -				
Photos Taken?	Y/N			
Describe:				
Date:	Estimated sed. de volume & inches):	pth per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID:
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				Holding
US Bottle -				Sticker
DS Bottle -				
Photos Taken?	Y/N			
scribe:		y.		
/				

Pt. Code:	SEC	TION 2 - MONTH	HLY FIELD CHECK INFORMATION	Hansep tD;
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived IE
த்y:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				
				Holding Sticker
US Bottle -				
DS Bottle -				
Photos Taken?	² Y/N	4.00		
Describe:				
Date:	Estimated sed. depth volume & inches):	per bottle (% by	Bottles removed/replaced? Y/N If removed which one(s)?	Archived ID
Ву:	US Bottle - Bottle -	DS Bottle - Bottle -	Final Removal? Y/N	
Comments:				
				Holding Sticker
Bottle -				
DS Bottle -				
Photos Taken?	Y/N		·	
Describe:				

Pt. Code: 52-STY	SECTION 3 – COMPOSIT	E SAMPLE	Hansen ID AAES/6
Sample ID: FO 105698 affix FO number sticker	Duplicate sample collected at this site?	DUPLICATE ID: DUP	
Duplicate Sample ID on COC: Any deviations from standard operating procedures? YNA Describe:			
Comments: An Equipment on this cha	Blank on the SIFT	- was also conclucted a	nd submitted

Pageof	
Project POLITLAND HARBOR STORMWATER SAMP Project No. 1020.005	
Location <u>BASIN</u> 52 Date <u>2/2/10</u>	
Location <u>6ASIN</u> DZ Date <u>212/10</u> Subject <u>8IFT NStalls</u> By <u>FTB, JXB, ECH</u>	
0942-Arrive on-site AAE700. Set-up TC and entry equipment.]
Top-side observations indicate some sediment accomulation.	
During set-up a Parks Bureau employee informed us there	
During set-up a Parks Bureau employee informed is there was vortine affrontiete application scheduled at the WPCL	
(adjacent to this site). We agreed they would not apply	
at this time to avoid potential air borne contamination of	
campling equipment prior to installation.	
0958-Entrant confirms gipe sizes and takes photos (1372,pg Upsteam).	الد
1054-Completed installation (1374, jpg) Photo of finished installation of SIFT+ standard bottle set side-by-side in-situ (1375-jpg)	1
of SIFT+ Hendard bottle set side-by-side in-situ (1375-jpg)	
and the first of the	
1106-Arrive on-site at AAE STG. Set up TC + entry equipment This profe has an lateral that can become very with santing flow during stored events directly above outlet dust be usited during	
This prote has an lateral that can become lactive with sand	
flow during storal events. This site should not be visited during	- E
rainy conditions. lalet photo (1376), downstream photo (1377)	
Sediment in lateral inlet (1378).	
1158-Completed installation of single SIFT in downstream outlet	
of AAte 516. Photo M-situ (1379)	
l nesk it bestrigt i die de en einstellichte Mit der Bilden in der die der der der des des die kant der der de Der der der der der der der der der der d	
1315 - Arrive on-site at AAE513, to install a screened Inline Flow-through	
(SIFT) sediment trap. This node has a perched 18" diameter sanitary	
over from lateral w/ back-flush value from St. Johns Pump Station	4
Visits to this site during storm events should not occur due to incress	4
potential for sanitary over flows from pump station of subsequens	7
engulfment of entrant. Inlet photo (1380.jpg), downstream outlet	_
engulfment of entrant. Inlet photo (1380-jpg), downstream outlet (1351-jpg), overflow lateral (1385-jpg), Intrusion of roots into inlet (1386-jpg), Affachments 1418 - Completed installation of a single SIFT in upstream	ᡣ
Affachments 1418 - Completed installation of a single SIFT in upstream	
inlet at node AAE 573 (52-572). Photo in-situ (+357.00) OF SIFT	

DAILY FIELD REPORT

Page 2 of Z

Project Portland Harbor Stormwater Samp.	Project No. 1020.005
	Date 2/2/10
Location <u>Basin</u> 52 Subject <u>SIFT Installs</u>	By PIBIDXBIECH
1434- Arrive on site at AAE498 to install a	第二十分 化氯化丁二烷 医二十二烷 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
Multiple percined CB laterals. Visits during sto	
be conducted at this site due to cascading	Flow From Jaterias OVITO
downstream order (1392 as) and abandon	
downstream outlet (1392.jpg), and abandon the west (1393.jpg).	
1511 - Completed installation of singles	TET in downstream
1511 - Completed installation of single s and of manhole valuet (77" upstream from	noutlet man pipe EOP)
Photo in-situ (1394.jpg) of SIFT.	pipe diamole
	pipe diameter
[발발] 전하는 역사 발문 - 전환문한 발문을 보고 하는 것은 말라고 한 경험을 받는 것으로 했다. 그는 것은 함께 [발발] 전환문한 경험 전환문에 보고 말라고 한 경험에 하는 것은 함께 함께 함께 함께 함께 되었다.	(5x)
	2/10/4
	2016년 원인 1일
<u>도 하는 것이 되었다. 현실 등 경기를 하는 것이 되었다. 그런 그런 것이 되었다. 그런데 그런데 그런데 그런데 그런데 그런데 그런데 그런데 그런데 그런데</u>	<u>등로 있다고 하고 있는 이번 하는 것이 되어 있는데 하다.</u> 1일 하는 중요한 11일 12일 12일 기를 하는 것이다.
Attachments	

Page <u>1</u> of <u>2</u>

Desirat On the State of the Sta	D-1+N- 1020 005
Project Portland Harbor Stermwater Samp	Project No. 1020 005
Location Basin OFS	Date <u>3/5/10</u>
Subject Daily Notes	By JXB MJS / MAW
0909 - Arrive on site at AAE 700 (52-573) local	ed at N. P. Hsburgh, Just
southwest of RXR tracks. This will be the first	
in Basin 52 for the F409-10 Storm season. To	raps were installed on 2/2/10
Site 52_ST3 was installed w/a SIFT and a standard	sediment trap for a side-
by-side comparison of traps for analytical purpose	ces. Both trap types were
in tacked upon (SE & fun obstructed. Main pipe was	metted - no standing water.
Standard sed, trip bottle was capped & remared fo	
then re-installed. Collected captured solids from SI	FT & archived in a 802
dark amber sediment jar/0940). [52-573 Photos	1480-jpg-1483.jpg
0458 - On-site at ANF516 (52_514) located at 867	5 N. Crawford ST. SIFT was
interior of the inlet opening of the trop was unobstructed a plastics adhered to trap housing Removed captured	ied. Significant leafdebris
Into an archived 8 02 sediment jan Large quantit	y of solids, primarily films
Sands & silts captured in both chambers of trap. Re-in	istalled SIFT at Haus ande
Into an archived 8 02 sediment jan Large quantity temedium Large quantity Sands & silts captured in both chambers of trap. Re-in [52-STY Photos Catchment area-1484.jpg collected	solids from born chambers - 1411.10
1038 - On-site at AAES13 (52-ST2) located at N. B	rendford of Alta - Near St.
Johns Pump Station. SIFT was in Facted & unobstructed	to the first of the first of the contract of t
leaf debn's and plastics on trap housing. Cleared debni	s. Main pipe was welled -no
Standing water. Captured solids in SIFT are frimer	rily Pine silts. Archived
	stalled SIFT at 16° us angle.
52-572 Photos overview of catchment area 1492 jog	secondary chambers 1499.jpg
the state of the s	Itimme & Bradford, SIFT
Was intacked & inlet opening of primary chamber was	unobstructed. Minor build up
Attachments	

DAILY FIELD REPORT

Page 2 of 2

Project O. sitt			Droingt No. 167 a. a.m.
	and Harbor Stormwaters		Project No. 1020.005
Location <u>گدے)</u>			Date 3/5-110
Subject <u>Dan N</u>	I Notes		By JXB/MJS/MAW
1111 - 52-ST	1 (cont.) of leaf debris o	n trap housing. I	Main pipe was notted -
no standing	, water. Removed capture	d Solids from	SIFT of archived in a
	sent jar (1117), Collected		
Re-installed	1 SIFT at an upward 180	USamole	
152-STIP)	1 SIFT at an upnion 180 otos Prairage catchment evea	1495, 105 Arch	ived solids in primary &
	(OD		
	3/3/110		
	ed each Basin 52 archive	The state of the s	shock at the WACL to
	he amount of solids ca		
			3/5/10
	Total weight of jux (+)	Tave weight of Jar (+) Lid /q)	3/5/10 Total weight of captured solids(g)
52-STI	2₹2,2g =	190.7	= '41.5 %
52-5T2	725.5g -	- 188,7	= 36.8 /
52-573	Z18, q <u> </u>	190.2	<u>= 24.7- </u>
52-STY	477.35	189,9	= 287.4 /
Attachments			

DAILY FIELD REPORT

Page Project Parland Harbor Strawer Samp. Project No. 1020.005 Date 46/2010 Location N. Portland Subject SIFT checks BY JUM, PTB, MJS 0959 Arrive on site at 52 STI after approximately 0.1" of vain this morning. Minimal curb/lateral Entrant measured 1.2" of Flowing water in pipe. Ample large grave. in primary chamber. Took photo of primary gravel and secondary chamber of coarse material in material falled TXB to determine fate primary - no fine in primary exclusively course material. Composited fines, sands from secondary into composite lar. consulting wiTXB, discarded primary solick since size is not usually included for inline samples. Re-installed sill ans angle Departed site 1035 52-512 Entrant notes leaty debuts ground STFT base, 1040 obstructions to trap intel above welv. Approx 05 flowing water in pipe Trace solids in primary 0.5" water in secondary. Surpod botton to drain water 450 Composited solids from secondary into composite jar as well as trace solids from 1050 promund angle Departed sile Rejustabled self e ~ 160 109 Avolve @ 52-514. Entrant notes presence of leady debris trastion base Composified small gravels from primary and fines from secondary into a second 800 jur, This inv is nearly full. Reinstalled 31th departed site 1127 52-513. Entrant notes land debuts, 7.0" flowing water 1137 Composited fine sitts from secondary and minimal accomulation from primary 1141 Removed bottle adjacent to SIFT. Bottle is full, mostly withouter and a 1/50 trace amount of solids Reinstalled SIFT a ~ 18° angle. Departed site 1158 Weaphed composite jars, recorded weights on jurs. Gee PAGE 1239 **Attachments**

					POPLTLAND
57 - st (\$72-ST3	57_512	52-51	SITE	PORTLAND HARBOR STORMWATER
676.3	295.5	305.7	363.2	JAX+LID +SEDU (3)	SEMMATER
212.4	190.2	188.7	1907	JARTUS (9)	SAMP 102
463.9	105.3	117.0	172.5	COLLECTED SEDS	1020.005 0
	267	36.8	1.5	WEIGHT SEDS	OUTFAIL SI ME
463.9	76.6	80,2	131.0	WEIGHT PAGE 2 & 2 COLLECTED PAGE 2 & 2	1/6/10

100

Maria.

Page _____ of ____

Project Portland Harbor Stormwater Sump Project No. 1020,005 Location N. Baltimeret Bradford basin 52 Date 6-16-10 Subject 52-571 Daily field notes By PTB AJA
1000 On site at 52_STI for removal of
Sed SIFT per customer regnest.
Sed SIFT per constoner regnest. Weather has been cold and rainy for all of June. SIFT should have soon ample flow in recent weeks
of Jun STET 51 11 hours als
[레마리티 1] [기타 전라고 있다는 경향 프랑크로 보고 그 그 하는 그 그 때문에는 그 그리고 있는 그리고 되었습니다.] [레마리크로 라스트로 보다 스트로 프라스트로 (프라스트로 프라스트로
1015 SIFT removed Three protos taken
Collected arrumalated seds from secondary chamber
Collected arrammlated seds from secondary Chambor into composite jar. Discarded fine gravels
from primary Chamber.
그는 사용을 하는 것이 되었다. 그는 그 전에 가장 하는 것이 되었다. 그는 그 전에 가장 그는 것이 되었다. 그는 그들은 것이 되었다. 그는 것이 되었다. 그는 것이 없는 것이 없는 것이 없는 것 그는 것이 되었다. (1985년 - 1987년 - 19
Kemored all equipment from manhole
그리다 그리다 하는 것도 있습니다. 하는 하는 하는 하는 하는 하는 하는데 하는데 하는데 하는데 하는데 하
1045 Departed site.
1058 On site of FR 52-ST2 for removal of
Section STFT
115 Removed SIFT Processed Collected material from
both chambers Removed all gear from node
MATE MAIL OF ASSESSION OF A SECOND OF A SE
Month's actumulation
1133 Departed Site
and the Control of the Control of the American Control of the Control of the Control of the Control of the Cont The Control of the Control of
Attachments

DAILY FIELD REPORT

Page $\frac{2}{2}$ of $\frac{2}{2}$

2DV 1/1 0 C	
Project PDX Harbor Semuter Samp	Project No. <u>1020.095</u>
Location Basin 52	Date 6-16-10
Location Basin 52 Subject 52 - ST4, ST3 daily notes	ву <u>РТВ, АГА</u>
1140 Arnue at 52-ST4, 8675 N To remove sift per asstoner	. Crawford St
To remove sift per customer	request
	<u> - 1일 시작하는 그 나는 중요한 원호를 발표하다고 말했다.</u>
** using new jar because pre full **	vions jars are
full *	
1150 Removed Set trap processed ma jar, Removed all equipment	nterial into new
yas Removed all equipment	from bode
[4차 25 - 화진 14 - 14 - 14 - 15 - 15 - 15 - 15 - 15 -	
1205 departed site.	
[발표하는 현기는 하는 방향, 기반 등 기기를 만드는 것을 하고 있을 때 하는 것을 했다.	내용시민은 이 보는 문화를 하면 하는 말로 즐겁다.
1208 Arrival at 52-5t3	
[하시 4] 사이트 그들의 학생님은 이 학생님은 그리는 그리는 그들은 하는 사람들은 이 집에 가장 집에 되었다.	
1215 Entrant notes lots of sedimen	+ in line
1215 Entrant notes lots of sedimeni with some kind of film or rold taken. Removed sed trap and all	on it Photo
taken. Removed sed trap and all	other equipment
per customer request NOTE Archived seds	in jor had moldy film on surface
from to addition	in of this month's accumulation.
1305 Depart site.	
Attachments	

Portland Harbor Sampling - EID 1020 00S Basin 52

Date: $\frac{\mathcal{E}/1\mathcal{E}}{\mathbb{A}_3 \mathcal{A}_1}$

						. *					
THIS MONTH'S SED ACCUMULATION (g)	१८०.८९	= 142.3g	= 161.89	= 253.19	II	11	II	11	H		II
WEIGHT OF PREVIOUSLY COLLECTED SEDS (g)	- 172.59	- [17.009	- 105.33	¥ 7 -							
TOTAL COLLECTED WEIGHT (9)	=273.39	9-188.7g = 259.3g	= 267,13	= 253.19	II	II		=	11	=	=
TARE WEIGHT OF JAR + LID (g)	- 190.79	- 490-89-188.79	- 190.29	- 190.8g							
TOTAL WEIGHT SEDS + JAR + LID (g)	464.0 g	448.03	457.39	443,99) . "						
SITE	57.1	52 - 572	52 - 57 3	- 25 ST4				¥			

Number of Filters Used:

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Project Name: For Fland Har	ber Stormunter Samp	·	Project Num	ber: 1020-005		
Sample Processing Conducted	By: Sample Pt. Code:	Removal Date	e: [Processing Date:		
AJA, PTB	SZ-ST1	6/16/10	· .	6/17/10		
Basin: 52	Hansen ID: AAEY	98	Subbasin: № A			
Sediment Trap Location Descri						
N Baltimore + Bradfor	N Baltimore + Bradford. SIFT located 18" downstream of center of node.					
,	SEDIMENT TRAP PROCI	ESSING/FILTR	ATION NO	OTES		
Filter Equipment/Method: Portland Harber, 90-millimeter (mm) stainless steel filter support w/conical glass-microfiltration system [Eield Operations (FO) Standard Operating Procedure (SOP) 5.01b. & Evaluation of Microfiltration Equipment for Phthalates Technical Memorandum — September 18, 2007]						
Filter brand, grade, peresity in micrometers (µm) and material (e.g., Fisher Scientific, qualitative F2, 1-5 µm cellulose filter paper):						
SIFT Sediment Trap Bottle ID: 57	어느 바이 생각하다 하는 것이 나는 사람이 나가를 되었다.	Sediment Trap	Bottle ID:			
Total Est. Depth of Accumulate P&E- นะคง ษะม	d Sed in Bottle (inches) 464.09	Total Est. Depth	of Accumulat	ted Sed in Bottle (inches):		
Sample Processing Start	Sample Processing End Time: 0947	Sample Process Time:	ng Start	Sample Processing End Time:		

Est, total volume of Ultra Pure DI used to remobilize adhered	Est. total volume of Ultra Pure DI used to remobilize adhered
stormwater-solids-within-bottle in milliliters (ml.):	stormwater solids within bottle in milliliters (mL):
Tare Weight [empty jar in grams (g)]: 190,75 OST HOMOGENIZATION Weight of Seds in jury 1/18/9):463.89	Tare Weight [jar and filtered sed. from Bottle1 in grams (g)]:
Downstered/Eiltored Sed. Weight (g): 273.19	Dewatered/Filtered Sed Weight (g):
Sample Processing Notes/Comments:	Sample Processing Notes/Comments:
Itomogenized composite sub-samples in the archive collection jour using a	
decontaminated stainless steel spatula.	

Number of Filters Used:

Visual Description of Final Compo	site Sample: V	ery dock gray, sand,	FaioM Eflial
COC Time (time composite jar is capped): ე 9 ქ პ	and 1416年1月2日 中華科学中心社会	ed/Filtered-Sed. Weight in	Sample Jars Collected (number, size, full or partial): 34 Partial B oz . jev
Sample ID: FO105694 affix FO numbe		Duplicate sample collected?	
Duplicate Sample ID on COC: affix FO number sticker		Any deviations from standard Describe:	operating procedures? YNA

4th filterseds = 3a

Page _ of Project Portland Harbor Stormwater Somp Project No. 1020.005 Location WPCL Date 6/16/10 subject Standard Sed Trap Processing Notes BY PTB, ASA 1437 Set up filter apporatus for filtration of the standard sediment bothe from site 52-St3. This bottle was deployed alongside SIFT sediment trap for comparability 1449 Took photo and began processing. Weight to- Weight of UPDI bottle prior to processing 1st Filter applied. Began porring off expernate filter. Notable anaerobic decomposing odor. Trace recoverable solids and very few coarse organic particulates. 1505 2nd filter applied. Resumed filtration with 13 of water/supernate remaining in bottle. Znd filter has recoverable solids by "in depth very dark The weight fine silts with some coarse organic wood fragments. Scraper off filter and added to composite jar. Weight of jor +1id + 2nd filter scds = 198.64 Thre weight = - 190.4 Weight of secs from 2nd filter = 8. Zg 515 3rd filter applied. Weighed upol bottle prior to ringing bottle = 297.5 q. Resumed filtration. 524 3rd filter has recoverable solids of very fine silts with particulates solids added to composite for weight of proflict 3 filtersels = 204 Twe Weight = - 190.40 1532 4th fifter applied. Resumed 543 yth fifter has recoverable solids tine sands with Some coase organic pricles (mostly wood). Solids added to composite jour #3 Weight of in+lid+ ALL seds = 207-10 Attachments Weight of UPDI bottle post rinsing = 135.59 297.5g - 135.5g = 162 mL of UPDI water used

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Project Name: Portland	tar bor	Stormwater San	ne.	Project Nu	mber: 10 ZO. 005
Sample Processing Conducte	d By:	Sample Pt. Code:	Removal Dat	J	Processing Date:
ASA, PTB		52-STZ	6/16/1	O	6/17/10
Basin: 52		Hansen ID: AAE 51	3	Subbasin:	NA
Sediment Trap Location Desc	ription/Ad				
N BRADFORD & ALTA NEC	v St Jeh	WS RUMP STATION SIFT	located 9" up	stream from	EOP in MH chamber.
	SEDIM	ENT TRAP PROCE	SSING/FILTI	RATION N	OTES
Filter Equipment/Method:	Portland	Harbor, 90-millimeter (m	m) stainless steel	filter support v	w/conical-glass-microfiltration-system th & Evaluation of Microfiltration
	Е дшрт	ent for Phthalates Technic	al Memerandum -	- September 1	1 8-2007 1
+-liter prand, grade, porosity in	<u>microme</u>	iers (µm) and material (O.g., Fisher-Sci en	illic <u>-qualitativ</u>	io P2, 1-5 µm collulose filter paper):
Sediment Trap Bottle ID: 5	4.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sediment Trap	Bottle ID:	
Total-Est. Depth of Accumulate	ed Sed in	Bottle (inches): 448.04	Total Est. Depti	of Accumul	lated Sed in Bottle (inches);
Sample Processing Start Time: 1020		Processing End	Sample Proces Time:	sing Start	Sample Processing End Time:
Number of Filters Used:			Number of Filte	rs Used:	
Est, total volume of Ultra Pure DI used to remobilize adhered stormwater solids within bottle in milliliters (mL):			Est. total volume DI used to remob stormwater solids milliliters (mL):	ilize adhered within bottle	•
Tare Weight [empty jar in grams () FOT HOMOGEN) ZATION WEIGHT O	Ceale in in	Eurista Withe	Tare Weight [jar a	and filtered se	d. from Bottle1 in grams (g)]:
Dewatered/Filtered Sed. Weight (9): 258.4			Dewatered/Filtere	ed Sed. Weigh	nt (g):
Sample Processing Notes/Con	nments:	,	Sample Process	sing Notes/C	Comments
Homogenized composi	te sub	-samples in			
Homogenized composit active jour using de Steel sporn.	connel	Stainless		•	
Steel spoun.	, , ,				

Visual Description of Final Composite Sam	iple: Very lak brown save	ly silt. Moist
	lewatered/Filtered- Sed. Weight in	Sample Jars Collected (number, size, full or partial): にいめのこと
Sample ID: FO105695 affix FO number	Duplicate sample collected	
Duplicate Sample ID on COC:	Any deviations from standa Describe:	ard operating procedures? Y(NA)

Project Name:

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

Project Number: 1020.005

INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Sample Processing Conducted	d By: Sample Pt. Code:	Removal Da	te:	Processing Date:
AJA, PTB	52-553	6/16	110	6/16/10
Basin: 5 Z	Hansen ID: AAE 7	00	Subbasin:	***************************************
Sediment Trap Location Descr	iption/Address:			
N P. Hisburgh SW of	PL Tracks. SIFT+Star	dard traps loca	steel in-pipe	16 downstream of Eopin change
	SEDIMENT TRAP PROC	ESSING/FILT	RATION N	OTES
Filter Equipment/Method:	Portland Harbor, 90-millimeter (r [Field Operations (FO) Standard Equipment for Phthalates Techn	l Operating Procedu	ure (SOP) 5.01	w/conical glass microfiltration system 1b & Evaluation of Microfiltration 18, 2007
Tisher scientific, gralit	micrometers (µm) and material hative P5, 5-10.4m ce	(0.g., Fisher Scien Uniose filter	ntific, qualitativ popev	re P2, 1-5 μm cellulose filter paper):
Sediment Trap Bottle ID: ൃ	2-ST3 - + STAN DATED BOTTLE	Sediment Trap	Bottle ID:	52_573_*SIFT
Total Est. Depth of Accumulate	d Sed in Bottle (inches): 0.25	Total Est. Dept	Fof Accumul	lated Sed in Bottle (inches): 457.3
Sample Processing Start Time: リリータ	Sample Processing End Time: \543	Sample Proces	sing Start	Sample Processing End
Number of Filters Used: 니		Number of Filte	rs-Used:	
Est. total volume of Ultra Pure DI used to remobilize adhered stormwater solids within bottle in milliliters (mL): 162		Est. total volume DI-used to remot stormwater solid: milliliters (mL):	oilize adhered s within bottle-i	· · · · · · · · · · · · · · · · · · ·
Tare Weight [empty jar in grams (g // i.d Dewatered/Filtered Sed. Weight (g		Tare Weight [jar fcst-liomocrent Dewatered/Filter	ZATTUM Weigh	d from Bottle1 in grams (g)]:190-2 it of seds in jor w/13/g):457.1 it (g): 266-9
Sample Processing Notes/Com Liquid has Strong and odor. Filtrate water is a pu	aerobic decomposing	Sample Proces Homogenia archive ja Steel Sp	red compo	comments: site sub-samples in deconved stainless
STANDAVLD BOTTLE Visual Description of Final Com	posite Sample: Dorke ໄກວ.ນ	n with Rice	ر ۾ ان جي ار	with some coarse organics
	A ST TOTAL BUT THE TOTAL PROPERTY.			

Total Dewatered/Filtered Sed. Weight in

Describe:

Duplicate sample collected? Y(N)

grams (g): 16.7q

COC Time (time composite jar is

Duplicate Sample ID on COC:

FO105696

capped):

Sample ID

affix FO numb

affix FO number sticker

DUPLICATE ID

partial): Partial

Any deviations from standard operating procedures? Y/

Sample Jars Collected (number, size, full or

SIEL

SIFT VISUAL DESCRIPTION OF FINAL COMPOSITE SAMPLE: Very furl brown Wet silt.

DATE: 417/10 PPL: ASA, PTB PRES NAME: POX HARBOR

TOTAL WEIGHT OF SEDS IN GRAMS: 266.99 SAMPLE JARS COLLECTED: 7/8 Full 8 02 jor SAMPLE ID:

FO105697

CITY OF PORTLAND ENVIRONMENTAL SERVICES

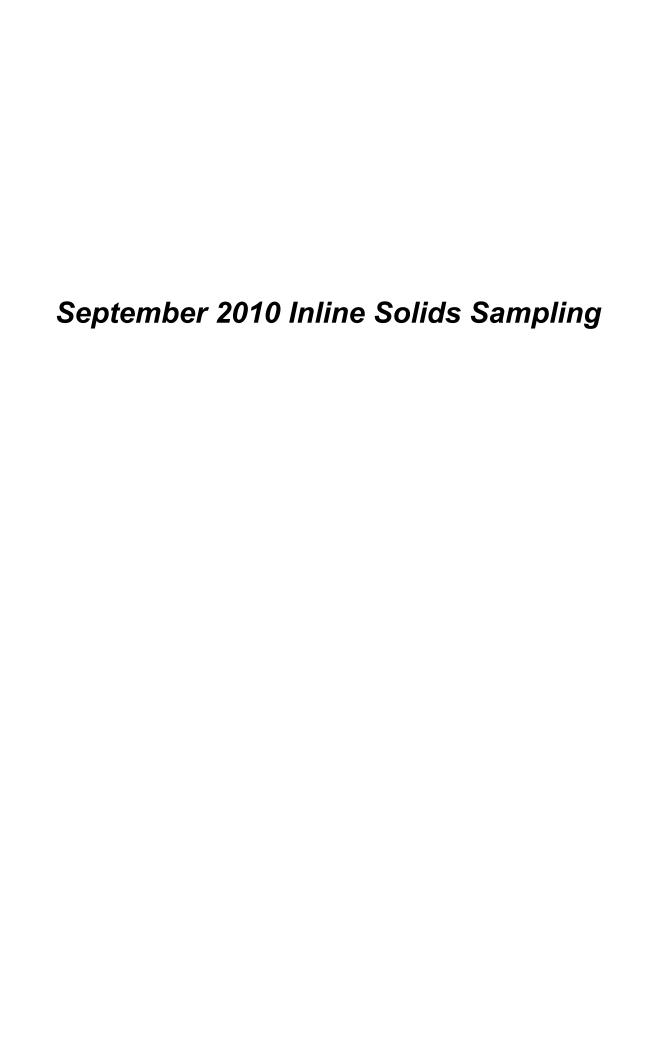
Water Pollution Control Laboratory 6543 N. Burlington Ave Portland, OR 97203-5452

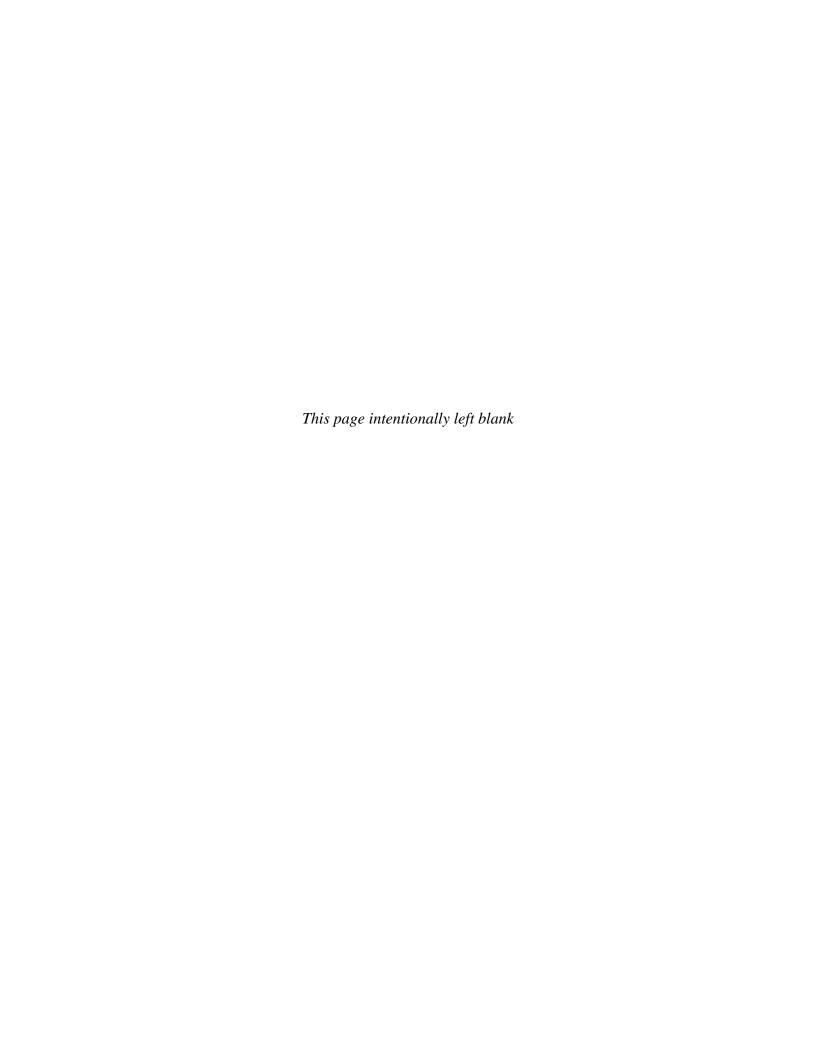
INLINE SEDIMENT TRAP SAMPLE PROCESSING DATA SHEET

Project Name: Portland Harbor	Stormunter Samp		Project Nur	mber: 1020.005
Sample Processing Conducted By:	Sample Pt. Code:	Removal Dat		Processing Date:
AJA, PTB	52-5+4	6/16/10)	6/17/10
Basin: 52	Hansen ID: AAES	16	Subbasin:	NA
Sediment Trap Location Description/Ad	dress:			
8675 N Crawfor St/	SIFT located 2	feet upst	-clown street	m of center of rode.
SEDIM	ENT TRAP PROCES	SSING/FILTE	RATION N	OTES
Eilter-Equipment/Method: Portland	d Harber, 90 millimeter (mm) stainless steel t	filter support w	//conical-glass-microfiltration-system
[Field C	Pperations (FO)-Standard Op Lent for Phthalates Technica	erating-Procedu I-Memorandum	re (SOP) 5:01 -September 1	b-8-Evaluation of Microfiltratio n 8-20071—
Filter brand, grade, porosity in microme	ters (µm) and material (⇔	g., Fisher Scien	tifie, quelitativ	e P2, 1-5 µm cellulose-filter paper):
SIFT				
Sediment Trap Bottle ID: 52_514		Sediment Trap	Bottle ID:	
Total Est Depth of Accumulated Sed in	Bottle (inches) 443,	otal Est. Depth	of Accumul	ated Sed in Bottle (inches):
Sample Processing Start Sample	Processing End S	Sample Proces	sing Start	Sample Processing End
Time: 1042 Time:	1142	ime:		Time:
Number of Filters Used SED WELL HE	S (4) POST SED WEIGHTS N	lumber of Filter	rs Used:	
Jack total volume of Hitro Duros 1940 \ 7/37	A CCC IN PART 12 10 A F	st. total volume		/-
DI used to remobilize adhered JAR 2: 763 stormwater solids within bottle in JAR3: 253 milliliters (ml.): EMP TY BUNL: 380		tormwater solids		P.
Tare Weight [empty jar in grams (g)]: 56	E ABOVE POST J J J J J J	nilliliters (mL): are Weight [jar a	and filtered sec	d. from Bottle1 in grams (g)]:
PoST-Honote N'724776N Weight of acids in Dewatered/Eiltered Sed. Weight (g):	my w tides	ewatered/Filtere		
Sample Processing Notes/Comments: been collected into three seper	otal solids have sate jars over	Sample Process	/	
the duration of desloyment. C	ontents & were			
combined and homogenized in	to three claim			
Sample Jars,				

Visual Description of Final Compo	site Sample: Dark brownvery sandy s	il+ with <3% organic purticles. Moist
COC Time (time composite jar is capped): 1142	Total Dewatered/Filtered Sed. Weight in grams (g): 익거나 나	Sample Jars Collected (number, size, full or partial): 3 % (JN 802-1645
Sample ID: FO105698	Duplicate sample collected?	PYN DUPLICATE ID DVP
Duplicate Sample ID on COC: affix FO number sticker FO / 0 5	Any deviations from standar 702 Describe:	d operating procedures? Y(N)

Page __ Project Portland Harbor Stormwater Sump Project No. 1020.005 Location WPCL Date 6/17/10 Subject SIFT Composite homogenication/processing By AJA, PTB 0930 Homogenizing all solids collected into archive jars throughout deployment prior to submittal Beginning with 52-STI took photo after monogranication. Used a decontaminated stabless Steel Spatila (w/ soupy, tap, OI, Acetone, Methouse, upoi) to homogenize the composite sub-samples in the archive collection jar. 0943 Capped composite jar. heady for submittal. 1020 Began honogenization". Hotel Strong anaerobic decomposition ador. 1035 Began homogenization! Strong ancerabil decomposition del 103B Capped composite jal. 042 52-514 was collected into three separate jars over the duration of the SIFT deployment Contents of all 3 jars combined into a deconned stainless steel bowl and humigenized. first in collected with solids from 2/2/10-3/5/10 has an orange jelly like substance congented on the surface sediment. Upon removal substance is remarkably compsive. Homogenized using stainless steel spoon. Weighed seds in bowl=1,370, 1142 Scroped composite from bowl into 3 8 oz jurs as with each scrop into a different for to have them all be exal in amount Weight of bowl after scoping into jors = 389.49 hrs labeled 4,5 +6. that composite was added to. lar 4 Tare = 190.79 w/ seels = 532.89 Sed weight = 342.19 Sed weight = 314.49 or 5 Ture = 190.69 w/ seds = 505.09 Sor 6 Ture = 191.0, w/ seds = 508.9; Seel weight = 317.94 **Attachments**


DAILY FIELD REPORT



Page 2 of 2

	1 age
Project Portland Harbor Stormwater Samp	Project No. 10:20:005
Location WRC	Date 6/17//0
Subject SIFT Composite homogenization/processing	BY ASA PTB
1203 Prepared for SIFT equipment blank.	
1230 Performed equipment blank on dec	onned stainless
steel SIFT sediment trap using UPDI.	water ran two, h
the SIFT. Blank to be performed on PC	Barrers
toll Mells he with a many part	
total Metals per astomer regrest.	
	요. 하고
	하는 사람이 하는 이 사람들이 마음하는 것이라는 생각이 살을 보았다. 하는 사람들은 사람들은 사람들이 가장 사람들은 사람들이 되었다.
는 동안된 전에 하고 함께 하는 이번에 보고 되었다. 이번에 되는 것이 되었다. 그런	
Attachments	

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 9/9/0

Collected By: ASA, PB

Project Name: PORTLAND HARBOR INLINE SAMP	LAND HARBOR INI	INE SA	₽									٠.																
File Number: 1020.001			Matrix:	SEDIMENT											Reque	Requested Analyses	Ąna	lys	es									l
						,		Organics	nic	S		ଦୁ	General		Metals					-ield	Con	Field Comments	nts					لبا
	Basin 52 Inline	ne)														•							
		:		•.		clors - LL	igeners (All 209					dis						•		4								
WPCL Sample î.D.	Location	Point Code	Sample Date	Sample Time	Sample Type	PCB Aro	PCB Cor	TOC				Total Sol				,			. •									
FO105870	IL-52-SJB2-0910 DISCHARGE TO AAE685	52_13	9/7/10	1145	C	•	•	•				•																
FO105871	IL-52-ANE911-0910 N ALTA & RR TRACKS	52_8	9/7/10	1214	C	•	•	•				•														·		
FO105872	IL-52-SJB1-0910 ODOT-SJB-WQMH	52_14	9/8/10	1001	С	•	•	•				•																
	·																											
																			·									
										·																		<u> </u>
			,	0.										· · · · · · · · · · · · · · · · · · ·														
				æ																							-	
FO105873	DUPLICATE	DUP	9/7/10		C	•	•	•				.•				•												
(Relinquished By: 2. Signature:	ad By: 2		Time:				Relinqu Signature:	Relinquished By: Signature:	led B	ر. ب				Time:		Relinquished By: Signature:	<u>juish</u> re:	ad By	4.			ם	Пme:			
drew	trasborg Date: 9/8/10-	Printed Name:			Date:	ŀ			Printe	Printed Name:		د				Date:		Printed Name:	Name:					D.	Date:			
Signature:	Time:	Signature:	!		Time:		•		Signature:	Signature:	. 1	٤				Ilme:		Signature:	e. Ked	ļ:	3			≢	Time:			
Printed Name:	Date:	Printed Name:			Date:	-			Printe	Printed Name:						Date:		Printed Name:	Name:					٦	Date:			

DAILY FIELD REPORT

	Page of
Project PORTLAWD HARBOR INLINE SAMP Location BASIN 52 Subject St. Johns Bridge Draining Sumpling	Project No. <u>1020.001</u> Date <u>4/7/10</u> By PTB, MJS, JJM
1129 Arrive on-site SJBZ, ODOT My dis Top-side observations show water has p and soffered showers. Water level app still be able to get representative saw	
1145 Sample collected & jurs filled. Site given po	int code 52_13 with
1145 Sample collected & just filled. Site given po location code 1L-52-5182-0910. Duplicate	collected here.
1200 Arrive on-site CB ANE911.	
■ 사용하는 이 제품을 모음을 하는데 시간에 되는 사용으로 함께 되는 것 된 것도 하는데 되었다.	
1214 Collected sample. Given code 52-8, same samples from this CB.	as previously collected
Sumples from the CB.	
Attachments	

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

Project Name: PORTLAND	HARBOR INLINI	= SAMP	Project Number: 10 Zo.00
Sampling Team:	Date:	Arrival Time	Current Weather Conditions/Last Rain
JUM, MJS, PTB	9/7/10	1129	overcast/A comple hours ago
Basin: 52	Node: 60ot mH	hischorging to AAEGOS	

Sampling Location Description/Address:

NEDISON STREET AT NPHILADELPHIA AVE

SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Standing water at 3" at its deepest. Sheen on Describe any flowing or standing water weter's surface observed in the line? Does river appear to back up to this No location? Describe rate/color/odor of flow: Are sediments observed in the line? Yes Are sample-able quantities of sediments Yes present in the line? Describe lateral extent of sample-able SEDS ABOVE WATER 4.5" DEEP X LONG X 18" WIDE. SEDS DISTRIBUTED ACROSS MH sediments present in the line: SITE DIAGRAM: Include street intersections/laterals/catch basins/MH's/driveways cuts and extent a solids accumulation. 4.5" DEEP 18" HOPE 12" HOPE LOCATIONS = SEDS AT 1-3" IN DEPTH

NEDISON

Date: 9/7/10	144.	SEC	ΓΙΟΝ 2 - S	AMF	PLE COLLECTION REPORT Node: O'DOT MH ANTERS
Sampling Equipment:			Stainless s □ Other (De:		poon & stainless steel bucket)
Equipment Decontami	ination p	rocess:	Per SOP7)
917/10	Sample t	145	11-5	:フー	ication: (IL-XX-NNNNN-mmyy) ららしは、こののでは、
Sample location descr	ription; (r	number of fe	eet from nod	e of e	entry) 3 SUB SAMPLES FROM MH CHAMBER
Sample collection tech	nique:		Per so	P 5.	. Ula
Describe Color of sam	ple:	,	Browni	sh g	gray.
Describe Texture/Parti	icle size:		70% Seu	ds,	20% course gravel, 5% fines, 5% anyolar gravels
Describe visual or olfa- bulk sediment sample					Sheen on water's surface becomposed hydrocarbon odor
Describe depth of solid	ds in are	a where sar	nple collecte	ed:	Ranged from 1"-4.5"
Describe amount and t	type of d	lebris in san	nple:		< 1% glass + plastic
Amount and type of de	ebris rem	oved from f	inal sample		None
Compositing notes:	omogen	ized sa	mple in a	alei	ction breket
Sample Jars Collected	l (numbe	er, size, full o	or partial)?	5 f	Ull 402. jars (3for analysis, 2for archive)
If not enough sample to collected and related a analyte priority list in w	inalytes	sampled (as			
		:			
FO10	5870				
Lab ID		· 	Du	plicat	ite sample collected? N Dupe ID
Duplicate sample ident					FO105873
Any deviations from sta	andard p	orocedures:	None	: : : :	

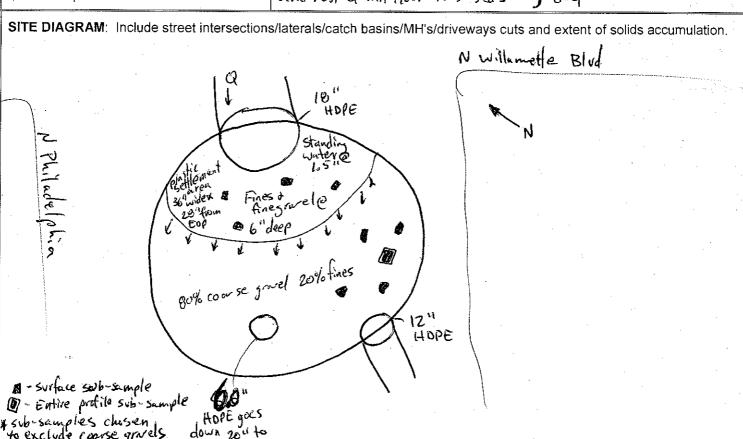
SECTION	3 - PHOTOGRAPH LOG
Overview of node showing drainage area	6
Plan view of sediments inline	Photos it 2 of Berns on NE half 3 from Whalf
Homogenized sample (sediment in bowl)	4+5
Other?	

DAILY FIELD REPORT

	ruge
■たまりがた。 だめにも こうさい かいこう とうしょう せいかい かいかい こうしょうががただい にっしょうだい ちゅうかん かっき かいさん かんしょか あんだん	Project No. 122000i
Location BASIN 52	Date 9/8/10
Subject St. Johns Bridge Drainage Sampling	BY AJA, PTB
0940 Arrive on-site SUBI St. Johns Bridge Water	Quality Manhale
at Al Philadelphia Aug & N will amothe Blod. Atlant of &	a access MH meterolan
Howarted by purhed on on MAH lid. MH is clear to	day Tourise Braces
of 40 Arrive on-site SJBI, St. Johns Bridge Water at N Philadelphia Ave & N Williamette Blud. Attempt & thwarted by purhed or on MH lid. MH is clear to no standing vater. & Scample-able solids. Will do entr	
1001 Collected com ale Com SIGI Ilmorenizad consola	I gahaamoles
1001 Collected sample from 5181, Homogenized sample Filled jars + gave point code 52-14.	of 1 store and the store and t
Attachments	

ENVIRONMENTAL SERVICES

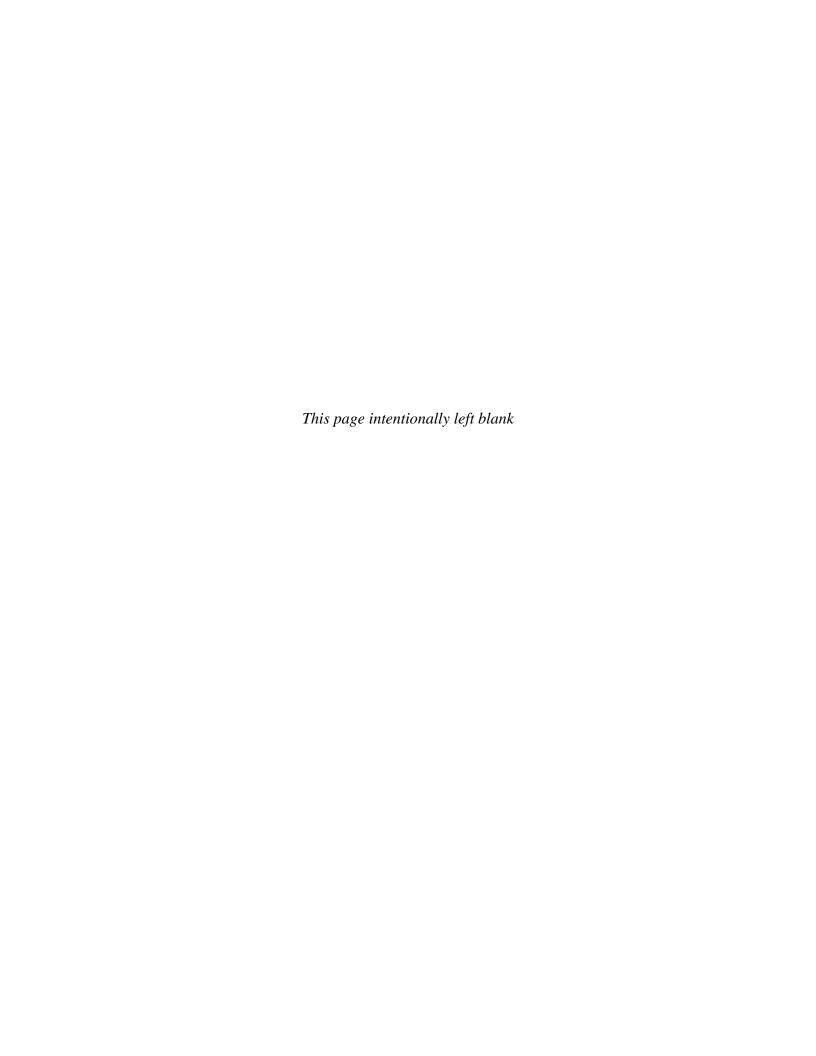
Vater Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

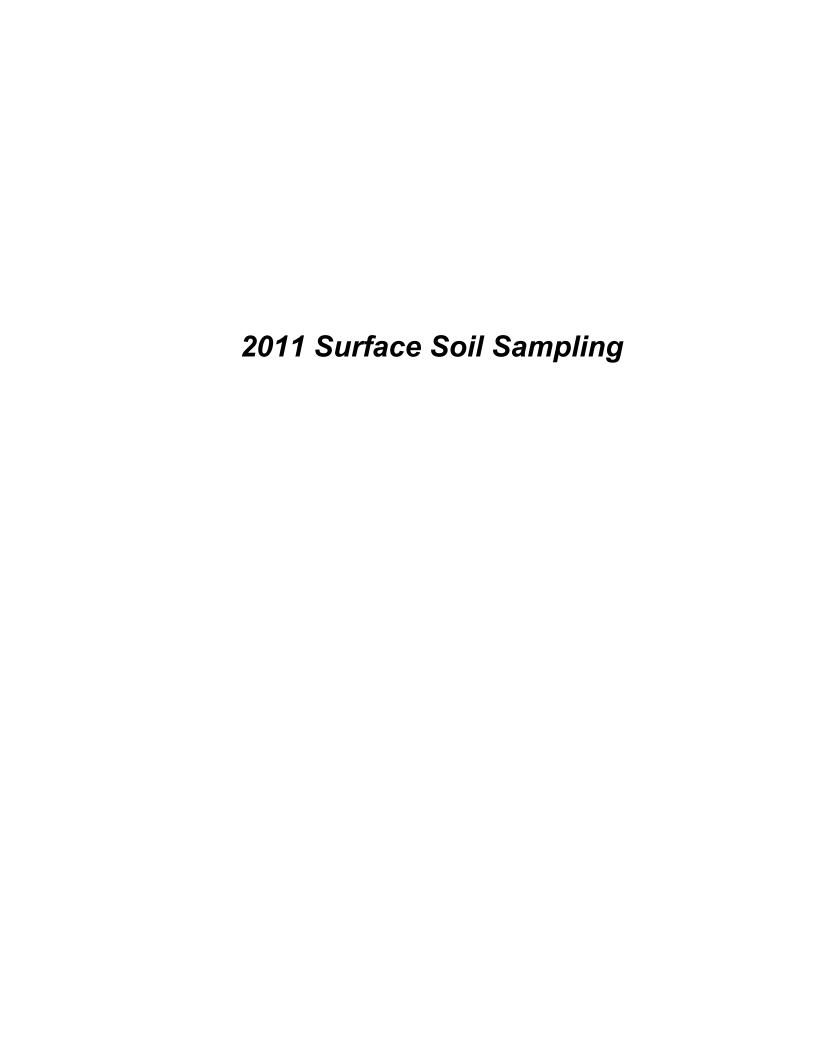

INLINE SEDIMENT SAMPLING FIELD DATA SHEET

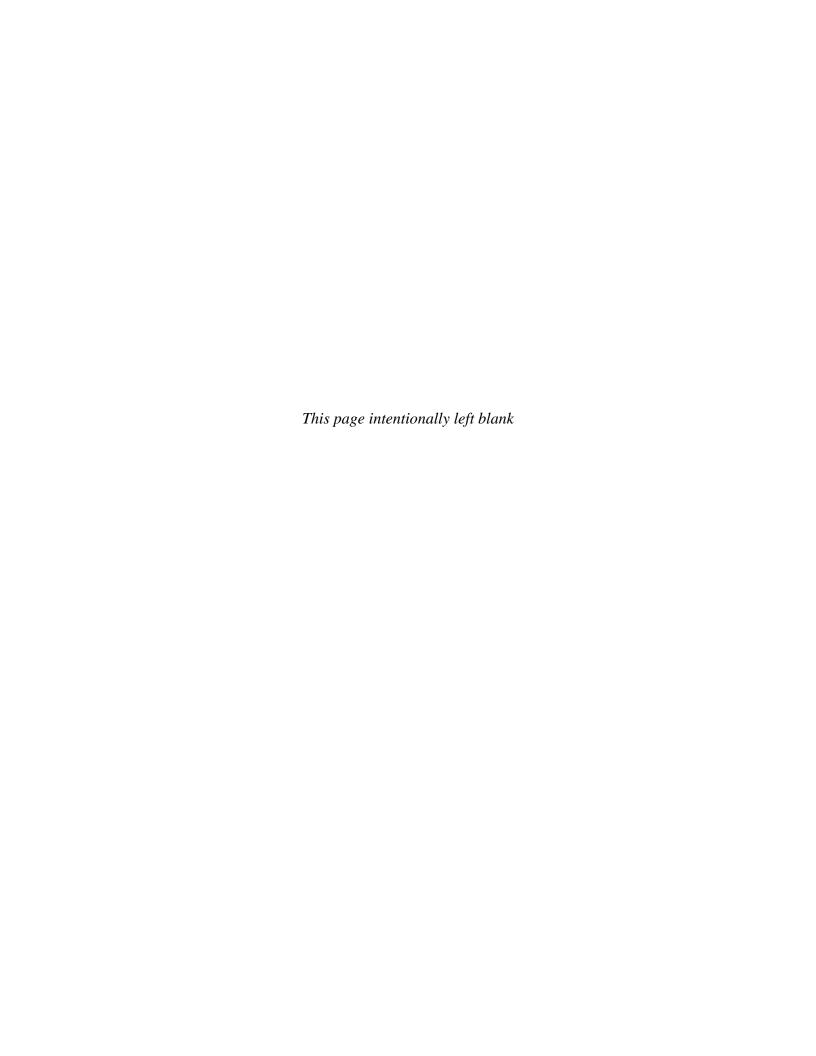
Project Name: PARTA	ND HARBOR INLINE	Same	Project Number: 10 Zo. 001
Sampling Team: ASA, PT 8	Date: 9/8/(0	Arrival Time:	Current Weather Conditions/Last Rain: Sun ny/ Yesterday afternoon ~0.252
Basin: 52	Node: ODOT 5.	78 mg wH	Subbasin: NA

Sampling Location Description/Address:

N Philadelphia Ave + N Willamette Blud under st. Johns Bridge


SECTION 1 - PF	RE-SAMPLING VISUAL OBSERVATION REPORT
Describe any flowing or standing water observed in the line?	Standing water in settlement over 1.5" deep
Does river appear to back up to this location? Describe rate/color/odor of flow:	No
Are sediments observed in the line?	Yes
Are sample-able quantities of sediments present in the line?	Yes
Describe lateral extent of sample-able sediments present in the line:	entire MH floor has seds. Settlement area has seds no deep and rest of MH floor has seds ng deep.




standing water

Date: 9/8/10	SEC1	ΓΙΟΝ 2 - \$	SAMP	LE COL	LECTION RE	PORT	Node: ぐ	TOQC Suum	+(
Sampling Equipment:		Stainless □ Other (De	steel spo escribe)	oon & stainle	ss steel bucket				
Equipment Decontami	nation process:	Per SOP							ř
Sample date: S	Sample time:	Sample I			XX-NNNNNN-mr 3 38) - 091 6				MANAGE STATE OF STATE
Sample location descr	iption: (number of fe	et from no	de of e	ntry) 🌠	sub-samples	s. 4from 5f	Settling from cha	area t mber.	
Sample collection tech		Per 50(·····			
Describe Color of sam	ple:	Brown							
Describe Texture/Parti	cle size:	90% 5	and,	5% f	he gravel, 5	% Fine	5		
Describe visual or olface bulk sediment sample		ntaminatio	n in	Non					
Describe depth of solid	ls in area where sar	nple collect	ted:	Mange	from 5 -6	ri P			
Describe amount and t	ype of debris in san	nple:		< 14.	paper, plastic	o organ	ics		
Amount and type of de	bris removed from f	inal sample	e:	None					
Compositing notes:	omogenized go	imple in	n Co	lection	bucket			-	
Sample Jars Collected	(number, size, full o	or partial)?	5 f	JII 4	02. jar 5				
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).				-	V				
FO105	872			- · · · · ·		5	:		
Lab ID		, Di	uplicate	sample o	collected? Y	Dupe ID	<u> </u>		
Duplicate sample ident	ification # on COC:								
Any deviations from sta	andard procedures:	None							

SECTION	3 - PHOTOGRAPH LOG	
Overview of node showing drainage area	52	
Plan view of sediments inline	48-50	
Homogenized sample (sediment in bowl)	51	
Other?		

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Work Order #: ₩ # 060 Date: 1 6 [[[

Collected By:

Soil

Matrix:

Director's Office Portland Harbor	Office	bor
	ector's Of	tland Ha
	Client Name: Director's Offic	Project Name:

. [מצ	Requested Analyses	sted	Anal	SOS/								
	Special Instructions:	.sı			-									-		-				٠	
	Basin 52 Surface Soils	Soils									· · · · · · · · · · · · · · · · · · ·		Par - Market and Amban - Amban	 							
ирец							stol:							 · · · · · · · · · · · · · · · · · · ·				٠			
пу дет	Location ID	Sample Date	Sample Time	Sample Type	TOC	Totals Me Cr, Cu, Pl	оотА ВЭс				· · · · ·			 			ато	# of	ſ		
9	52_15	1/6/2011	1400	·U	'	1 •	•										Н	Colleginers	Remarks Area 1	Remarks Area 1	
02	52_16	1/6/2011	1435	U	•	•	•	-						- i-)	Are	Area 2	
8	52_17	1/6/2011	1330	. · · · ·	. •	•	•												Are	Area 3	
요	52_18	1/6/2011	1200	0	•	•	•						ļ						Area 4	4	
	52_19	1/6/2011	1230	· · · ·	•	•	•												Area 5	95	
99		1/6/2011	1258	U	•	•	•						-	-					Area 6	9 8	
- 20	52_21	1/6/2011	1518	O	•	•	•			-			-	 -					Area 7	7 E	
8	52_22	1/6/2011	1535	U	•	•	•	ļ						 		; 			Area 9	0 0	
ව	DUP	1/6/2011		U	•	•	•				ļ		-	 							
9	52_23	1/6/2011	1500	0										 	ļ		•	7	Area 8 TO BE ARCHIVED	a 8 CHIVED	
<u>ι ω</u>	Relinquished By: Signature:	My) Date: 1 [10] 1:		Received By: Signature:	1 By:	Z			Date:) [0		Relinquished By: Signature:	ad By:		Date:		Received By: Signature:	ed By:	Date:		7

Portland Harbor - Basin 52 Surface Soil COC (12-22-10).xls

Page

Printed Name:

DAILY FIELD REPORT

Page of 7

Project FORTAND HARSOR Project No.
Location $\frac{BASIN}{52}$ Date $\frac{16/11}{1}$
subject Gurface Soil Gampling Around ANEGII. By MJS, PTB
105 Met with Andrew Davidson, 651 who lived us cut on sample location areas, including an additional spot after CB ANE 911.
location areas, including an additional spot offer CB ANE 911.
보이는 경기들에 하는 학생님은 악하는 남의 회사 대통령 학생에는 숙하를 하고 있었다. 학생님은 학생님은 학생님은 학생님 학생님 학생님 학생님 기계를 가지 않는데 다른데 다른데 다른데 다른데 다른데 다른데 다른데 다른데 다른데 다른
1135 Began sampling of 52-18. Geored away course the gravellour to collection into composite bowl.
to collection into composite bowl.
[15] 전기 12 10 공원 전 기계 12 등의 기계 1일 전환적으로 한 14 10 등은 사람이 가득하는 기계 2점을 모든 전환기 되어 가득하는 기계 기계 기계 1점을
1200 Began humagenization and filled sangle jus for 52-13
1210 Began sampling 52-19
[[- 프로그 스트를 발표하는 교통한 교통 기능/사람들은 기를 하게 하는 기를 하는 기를 하는 기를 하는 기를 하는 것이다. 그는 일이 기를 하는 것이다. 그는 일이 기를 하는 것이다.
1230 Homgenicial samples and filled jurs for 52-19.
1245 Began Sampling 52-20
上面,"你是你就是一个,我们,我们还是一个,我们的人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就会一个人的,我们就是一个人
1258 Homogenized samples hadfilled jars for 58-200
1310 Began sampling 52.75 17 1330 Honogenizea gamples of Alled jus 52-17.
1330 Hover Lea Jam Hier Just 2
1340 Bergen ganoling 52-15.
1400 Homogenized completes & filled ins. 52-15.
100 11800 1100 1100 1100 1100 1100 1100
1415 Becan sampling 52_16
1435 Homenized Sumples & tilled sample jons and dualtrate.
1445 Beean Sanding 52-23.
1500 Hamogenized Gungles & filled jors.
Attachments

City of Portland Environmental Services

DAILY FIELD REPORT

Page ______ of _____

Project PORTZAND HARBOR Project No.	
Location DASIN 57 Date 1/6/11	
Subject Surface soil sumpling near AVE911 By MIS, PTB	
1510 Began sampling 52-21. 1518 Homogenized sample of filled jars.	
1516 Homogenized Europe of tilled jars.	
1526 Regan sampling 52-22. Site added by Andrew Davidson while on-site. This site is NW of CB ANEGII At base of N Alta between	
on-she this site is Must CB ANEGIT HE base of N Alfa between	
composites 52-21 0 52-20. See m-SITE DIAGRAM ON FOS For	
more defail.	
1535 Completed rollection, homogenized sample a filled jours.	
1545 Returned to WPCL	
사용 기본 경험 등 기본 경험 기본 등 기본	
- Parks - 마스트 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	
그는 문제가 가는 그림 전, 동안에는 현실 사고 있는데 그는 하기에는 그림 그런데 그리고 있다. 이 아르를 하는데 하는데 그는데 이 아르를 하고 수 한 것이다. 그리고 있다. 물론 등로 그렇게 하는데 하면 하게 되었다. 이 그리고 있는데 그런데 그런데 그런데 그리고 있는데 그런데 하는데 하를 하는데 되었다.	
하다. 하고 하면도 보여 한다. 한다. 전에 발한 한다. 이 사람들은 사람들이 되었는데 하는데 하는데 되었다. 그 사람들이 되고 된 하여 하는데 그 사람들이 되었다. 아니라 그 사람들은 사람들은 사람들은 사람들은 사람들이 하는데 하는데 아니라 아니라 하는데	
	1 1
Attachments	

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203 5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET Project Name: Portand Harber Sample ID: WIIA 060 - 01 Sampling Team: WS, FTB Date: 1611 Arrival Time: 1340 Point Code: 52-15 Basin: 52 Node: Area Address: NE of Ef Tracks adjucent to Cathedral Rayk Current weather: Overcast Date and time of last known rainfall: Last wight SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fps Does river back up to this location? Yes or No If river is backed up: Water Color Brown Grey Water Odor Hydrocarbon Sanitary Other Are sediments observed in the line? Yes or No Are recoverable quantities of sediments present in the line? Yes or No If sediments present: Avg Depth of seds = in Sed Depth Range = in. to in. to in. Estimated dimensions of sediment deposit: in. by in. OR As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH*s/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations.
Sampling Team: WS, TB Date:
Sampling Team: Date: Date: Date: Date: Date: Dat
Current weather: Overlast Date and time of last known rainfall: Last wight SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No
Current weather: Overlast Date and time of last known rainfall: Last wight SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fps Does river back up to this location? Yes or No If river is backed up: Water Color
Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fps Does river back up to this location? Yes or No If river is backed up: Water Color
Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fps Does river back up to this location? Yes or No If river is backed up: Water Color
Does river back up to this location? Yes or No If river is backed up: Water Color Grey Clear Water Odor Sanitary Clear Are sediments observed in the line? Yes or No Are recoverable quantities of sediments present in the line? Yes or No If sediments present: Avg Depth of seds = in Sed Depth Range = in. to in. Estimated dimensions of sediment deposit: in. OR As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts
If sediments present: Avg Depth of seds = in Sed Depth Range = in. to in. Estimated dimensions of sediment deposit: in. by in. OR □ As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts
Estimated dimensions of sediment deposit: in. by in. OR □ As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts
SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts
SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations.
CATHEDRAL PARKING PARKING A-E-Gob hungle locations of linensions RETIMENS PARKING LOT RETIMENS PRETIMENS PRETIME

						1	
Date: , [/(g/II	SECTIO	ON 2 - SAM	PLE CO	LLECTION REF	PORT	Node: AICA	Point Code: 5Z - 15
Sampling Equipment:	Stainless steel ute	ensil & stainles	ss steel re	ceptacle Other	(Describe)		
Equipment Decontaminatio	n process: 政	er SOP7.01a	□ Devi	ations (Describe)			
1/6/11 1340	1-1400 5	Sample Identifi	ication Cod	de (IL-XX-NNNNI site - Area 1 - 1	N-mmyy) VE of PAL	Tracks ad	incent to p
Sample location: NA From		□ From line		line, segment is F		·	•
Sample collection technique	e: □ Per SOP5.0°	1e Dev	riations (de	escribe below)			
Visual and olfactory observ	/ations: /√Q //t□	Odor Sheen Discoloration		Color of sample	Browr Grey □ Other	n (describe)	
Sample composition/part distribution (estimated per	Contagos).	Clay <u>65</u> Somposed Orga	and <u>10</u> anics	Fine Gravel <u>10</u> _ Other (describe)	Coarse (Gravel 15	Debris
If present, type of debris in	•			Removed debris?	, □ Yes (¯	Гуре & Amou	ınt) □ No
				1508 5,01a	***************************************		
Sample Jars Collected (num	iber, size, full or p	artial)? 나 (J11 402	jors Harly	TIB 1 K	11 8 0Z	jar
f not enough sample to fill all collected and related analyte nalyte priority list in work ord	s sampled (as per	Jar	Size	Amount Full		Target Anal	yses
* Yoz. Archive	-			21			,
\$ 180% Archiv							
W11A060-01		Duplicate	e sample (collected? Y/(
Portland Harbor 52_15	n COC:	Dup ID I	· · · · · · · · · · · · · · · · · · ·				
Sampled: 01706/11 14:00 Field Data Sheet							
	SECT	ION 3 - PI	НОТОС	RAPH LOG			
Overview of node showing di	rainage area		Filename	e(s): 52-15 Area	Overview (or	hing S 01961	
Plan view of sediments inline)		Filename				· · · · · · · · · · · · · · · · · · ·
Homogenized sample (sedim	nent in bowl)	-	Filename	:52-15 Aven Hooks	geniced co.	rposite olas	11
Other?		-	Filename	(s): 50/-Sample A	famp 15mg	ruto	

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

	INLINE SE	DIMENT SAMPLING FIE	LD DATA SHEET
	Project Name: Postland H.	orber	Sample ID: WII 4060 - 02
	Sampling Team: Date:		Detail On 1
	Basin: 52 Node	Area 2 Mss	Address: NE of RR tracks behind
	Current weather:	001	6618 N Alta
	Date and time of last known rainfall:	esterday evening	
۹ در	SECTION 1 -	PRE-SAMPLING VISUAL C	DBSERVATION REPORT
	Is there water inline? Yes or No	esent, water is: Flowing or Standing	Depth of water = in Rate of flow = fps
MA	Does river back up to this location? Yes or N	o If river is backed up: Water Colo	□ Brown □ Hydrocarbon r □ Grey Water Odor □ Sanitary □ Clear □ Other
la su	Are sediments observed in the line? Yes or	No Are recoverable quantities	of sediments present in the line? Yes or No
	If sediments present: Avg Depth of seds	= in Sed Depth Range =	in. toin.
	Estimated dimensions of sediment deposit:	in byin. OR [☐ As far as can be seen
	SITE DIAGRAM: Include street intersect and extent of solids accumulation as well have done	tions/main lines/laterals/catch basing as subsample locations.	ns/MH's/pipe sizes/ flow direction/ driveways cuts
	pared area	Camppy of Cultings d	Ner rop box
-	nen-pared	@ 8"x8" (3) 10" x 3"deep 1" de	8" © 10"x8" D8"x8" eef 1/h"deef D3"deef @ 8"x9" 3"deep

Date: 1/6/11	SECTION	2 - SAM	PLE CO	LLECTION REP	ORT	Node: Aren Z	Point Code:
Sampling Equipment: 1 S	ainless steel utensil	& stainles	ss steel re	ceptacle Other	(Describe)		
Equipment Decontamination	process: Per S	SOP7.01a	□ Devi	ations (Describe)			
Sample date: Sample	time: Sam	ple Identifi	ication Co	de (IL-XX-NNNNN -Avea Z- WE of 1	-mmyy) UL-Tracks	s behind h	suilding at
Sample location: From I	MH chamber □ Fr W/ά	rom line	If from	i line, segment is Fr	om Node_	To N	lode
Sample collection technique:	□ Per SOP5.01e	⊠ Dev	iations (de	escribe below)	5.01q		
Visual and olfactory observa	tions: ⊔ Sne	or en coloration		Color of sample		(describe) _	·
Sample composition/partion distribution (estimated percentage)	-t Unit Clay	<u>55</u> sosed Orga	and <u>15</u> anics	Fine Gravel <u>I D</u> Other (describe)	Coarse G	Gravel <u>20</u>	Debris
If present, type of debris in s	•			Removed debris?	dYes (T	ype & Amo	unt) 🗆 No
Compositing notes Per	SOP5.01e 🗹 Devi	ations (de	scribe)	5.019			44.
Sample Jars Collected (numb	er, size, full or partia	al)? Ц	-402,	1-80%; f	h //		
f not enough sample to fill all o collected and related analytes malyte priority list in work orde	sampled (as per	1	Size	Amount Full		Target Ana	lyses
# n:	tor archive						
W11A060-02 Portland Harbor		Duplicat	e sample	collected? (Y/N	W1	11A060-6	09
52_16 Sampled: 01/06/11 14:35 Field Data Sheet	COC:	Dup 10 i	iere		Samp	ortland Harbor DUP led: 01/06/11 0 ield Data Sheet	0:00
	SECTIO	N 3 - P	НОТОС	SRAPH LOG		-	
Overview of node showing dra	inage area		Filenam	e(s): 52-16 Aver 20) kepilen lu	cki'ng 5 0101	61(
Plan view of sediments inline			Filename				
Homogenized sample (sedime	ent in bowl)		Filename	e: 52-16 Aven 2 Ho	ngenized co.	mposite 010	611
Other?	-		Filename	e(s): Sub-Sample B	Samplin	1 shoto	

MA

CITY OF PORTLAND

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave.; Portland, OR 97203-5452

AND THE PROPERTY OF THE PERSON		AMPLING FIELD D	ATA SHEET
Project Name: Portland H.	aibor		Sample ID: WILA060 - 03
Sampling Team:	Date:	Arrival Time:	Point Code:
MJO, PTB	1/6/11	1310	52-17
Basin: 52	Node: Area 3		Address: NE of RR tracks behind blds at 6618 N Alta Rd
Current weather: Cool on			blds at 6618 N Alta Rd
Date and time of last known rainfal	II: last night		
SECTIO	9	PLING VISUAL OBSER	RVATION REPORT
Is there water inline? Yes or No	If present, water is:	Flowing or Standing Depth o	of water = in Rate of flow = fps
Does river back up to this location? Ye	es or No If river is bac		Brown ☐ Hydrocarbon Grey Water Odor ☐ Sanitary Clear ☐ Other
Are sediments observed in the line?	Yes or No Are r	ecoverable quantities of sedim	nents present in the line? Yes or No
If sediments present: Avg Depth o	f seds = in	Sed Depth Range =	in. toin.
Estimated dimensions of sediment dep	oosit:in. by	in. OR 🗆 As f	ar as can be seen
SITE DIAGRAM: Include street in and extent of solids accumulation a	tersections/main line as well as subsample	s/laterals/catch basins/MH' locations.	s/pipe sizes/ flow direction/ driveways cuts
Bush ANEqui		peninsula isc paydoos mondoos	~ works
			conopy over shavings bin
among coalse og	M 18"24" BB 1/g/deep 6 immy coase (rave) Henpted to stoy	8"x 9" 1" deep	all samp sub-samples collected off. the sw
+++++++	t of pudales but	6" × 6"	edge of driveway in grave!
	1 7 1 1	7	

Date: 1/6/11	SECTION 2	2 - SAM	PLE CO	LLECTION REP	ORT	Node: Area 3	Point Code:
Sampling Equipment: Stainle	ss steel utensil	& stainles	ss steel re	ceptacle □ Other	(Describe)	MOGS	52-17
Equipment Decontamination proc	ess: 🛱 Per S	OP7.01a	□ Dev	ations (Describe)			<u> </u>
Sample date: Sample time	1 N	ole Identifi دو کمآل (م	cation Co	de (IL-XX-NNNNN rea 3 - NE of RC	I-mmyy) Truchs bel	aind building	at 6618 NAIL
Sample location ☐ From MH c		om line		line, segment is Fr		0	
Sample collection technique: □ F	er SOP5.01e	⊠ Dev	iations (de	escribe below)			
Visual and olfactory observations	□ Odo : □ Shed NE □ Disc	en		Color of sample	-	(describe)	·
Sample composition/particle si distribution (estimated percentag	Silv Clay	<u>55</u> Saosed Orga	and <u>5</u> anics	Fine Gravel <u>2 0</u> Other (describe)	Coarse G	ravel 20	Debris
If present, type of debris in samp		trics ⊡ Pa		Removed debris?	Yes (T	ype & Amóu	nt) □ No
Compositing notes Per SOP	5.01e 🗹 Devia			5.01a			
Sample Jars Collected (number, s	ze, full or partia	ıl)? 🛂 –	Hozi	1-802 411	Full		
If not enough sample to fill all of the collected and related analytes sam analyte priority list in work order).	jars, list jars oled (as per	Jar	Size	Amount Full		Farget Analy	/ses
1-402 1-802 0	rchive						·
 W11A060-03		Durling					
Portland Harbor 52 17	DOC:	DupilCate	···	collected? Y(N)			
Sampled: 01/06/11 13:30 Field Data Sheet							
	SECTION	N 3 - PI	НОТО	RAPH LOG			
Overview of node showing drainag			Filenam	(a). Overyou lookis	y NW		
Plan view of sediments inline			Filenam	Overview loste	<u>rry</u> se		
Homogenized sample (sediment in	bowl)		Filename	: 52-17 Aven 3	Homogeniza	ed composite	oio6l(
Other?				(s) Sub-Gamile Co			

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

			AIAUILLI
	HARBOR		Sample ID: W114060-04
Sampling Team: MJS, PTB	Date: \/ \(\/ \/ / / /	Arrival Time:	Point Code: 52-18
Basin: 52	Node: ALEAY		Address: NE of REF Tracks believed
Current weather: Cloudy			poor v and c not
Date and time of last known rainfa	all: Last night.		
SECTIO	N 1 - PRE-SAMI	PLING VISUAL OBSER	RVATION REPORT
Is there water inline? Yes or No	If present, water is:	Flowing or Standing Depth of	of water =in Rate of flow =fps
Does river back up to this location? Y	es or No If river is bac	cked up:' * Water Color 🛮 🗅 🤆	Brown □ Hydrocarbon Grey Water Odor □ Sanitary Clear □ Other
Are sediments observed in the line?	Yes or No Are	recoverable quantities of sedim	nents present in the line? (res) or No
If sediments present: MAAvg Depth	of seds = in	Sed Depth Range =	in. to in.
Estimated dimensions of sediment de	Δια	yin, OR □ As f	
SITE DIAGRAM: Include street in and extent of solids accumulation CORNER A-6:"46" + 5" delt dent of solids accumulation Corner Minister Include street in and extent of solids accumulation Corner Corne	as well as subsample Why B-6'x6'x3'' From Exignize MARCH	Diklixsiane) Gixlixy Mosty a	
	PAKKING LOT		BUILDING
•			

							•
Date: (SECTION	2 - SAM	PLE CO	LLECTION RE	PORT	Node: AREAY	Point Code:
Sampling Equipment: 🌣 Stainle	ess steel utensil	& stainles	s steel re	ceptacle □ Othe	r (Describe)		
Equipment Decontamination proc	ess: f≘(PerS	SOP7.01a	□ Devi	ations (Describe)			
Sample date: Sample time 1 1 1 20 Sample location: DA - See SITE in the sample location: Description in the sample location	Sam Surfa MAGRAM hamber Fr	ple Identifi ピタル(G om line	mposite-	de (IL-XX-NNNN Area U-NE of p line, segment is F	L Tracks b		
Sample collection technique: Par 50/ 5, 0/ a * Memore femore Visual and olfactory observations	ed overying ed all larg Odo She Disc	loge and e gove r	iations (de John M 15 (ell	escribe below) Lyrwels Mi ected 11to Color of sample	o: to coli <u>(o:1400 5</u> _by Brown e □ Grey	**********	· ps .
Sample composition/particle sidistribution (estimated percentage) If present, type of debris in samp	es): Decomp U Wood Metal	□ Pla	anics rge rocks astic	Fine Gravel 5 Other (describe Removed debris)	Gravel <u>75</u> D	
Compositing notes Per SOP Sample Jars Collected (number, si	5.01e 🛓 Devia		scribe) (E	2. jars. 1	Full 9	A72	
f not enough sample to fill all of the collected and related analytes sam analyte priority list in work order).	jars, list jars oled (as per		Size	Amount Full		Target Analy	
\$ 1402 jar + 1802 to be archived	, Jos						
W11A060-04	:	Duplicate	e sample	collected? YN	1		
DI Portland Harbor 52_18 Sampled: 01/06/11 12:00 Field Data Sheet	POC:	Dup 10 1	lere				
	SECTIO	N 3 - Pi	ЮТОС	RAPH LOG			
Overview of node showing drainag	e area		Filename	e(s): 52-18 Area 4	Overview o	10611 locking 1074h w	est nim (1
Plan view of sediments inline			Filename		V V		-ज ए। १७११
Homogenized sample (sediment in	bowl)		Filename	: 52-10 Area	4 Homoger	rized compos	He.
Other?			Filonamo	(a) Sampling pho	hus		

NA

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, OR 97203-5452

Project Name: Rolling Team: MSC TB Date:			DATA OFFICE
Sampling Team: MS, TB Date:			Sample ID: WII A 060 - 05
Current weather: Overleast Date and time of last known rainfall: CAST NIGHT SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water infline? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fpx Does river back up to this location? Yes or No If river is backed up: Water Color Grey Water Odor Hydrocarbon Other	Sampling Team: MSG, FTB		Point Code: 52-19
Date and time of last known rainfall: LAST NIGHT SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No	Basin: 52	Node: AILEA 5	Address: SW EDGE OF PAPKING LOT
SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT	Current weather: OVENCAST		T. MOSERIN TO GOOD TO GITTING TO AVE
Is there water infine? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fpx	Date and time of last known rainfall	: LAST NIGHT	
Is there water inline? Yes or No If present, water is: Flowing or Standing Depth of water = in Rate of flow = fp. Does river back up to this location? Yes or No If river is backed up: Water Color			
Does river back up to this location? Yes or No If river is backed up: Water Color Grey Water Odor Sanitary Other Are sediments observed in the line? Yes or No Are recoverable quantities of sediments present in the line? Yes or No If sediments present: Avg Depth of seds = in Sed Depth Range = in. to in. Estimated dimensions of sediment deposit: in. by in. OR As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cut and extent of solids accumulation as well as subsample locations. AVE Q 11 CHARCE THE TOTAL AND THE TOTAL	SECTION	N 1 - PRE-SAMPLING VISUAL OBSE	RVATION REPORT
Are sediments observed in the line? Yes or No If river is backed up: Water Color	Is there water inline? Yes or No	If present, water is: Flowing or Standing Depth	of water = in Rate of flow = fps
If sediments present: Avg Depth of seds = in _ Sed Depth Range = in. to in. Estimated dimensions of sediment deposit: in. by in. OR As far as can be seen SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cut and extent of solids accumulation as well as subsample locations. Compared Comp	Does river back up to this location? Yes	s or No If river is backed up; Water Color	Grey Water Odor ☐ Sanitary
SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cut and extent of solids accumulation as well as subsample locations. Continued Contin	Are sediments observed in the line? Y	es or No Are recoverable quantities of sedi	ments present in the line? Yes or No
SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cut and extent of solids accumulation as well as subsample locations. Continued Contin	If sediments present: Avg Depth of	seds = in Sed Depth Range =	in. to in.
CHASH CHACK CHASH CH			
en kan di kanan di k Kanan di kanan di ka	CLASSY RACE Cleaved grass of to collect	REPLANTED SUBSEMPLE TOCATIONS. REPLANTED SUBSEPTED SUBS	ed grass ALTA ANEq11

5. 70 to 1 to							
Date: 1/6/11	SECTION	2 - SAM	PLE CO	LLECTION RE	PORT	Node:	Point Code:
Sampling Equipment: Stainle	ss steel utensi	l & stainles	ss steel re	ceptacle Othe	r (Describe)		
Equipment Decontamination process	ess: in Per	SOP7.01a	□ Dev	iations (Describe)			
Sample date: Sample time 1230 Sample location: From MH cl	Surf	nce Soil	(omposi	de (IL-XX-NNNN He - Afen 5- SWe n line, segment is F	dge of fac	kinglot adju	cen'l to blood
Sample collection technique: □ P				escribe below)			
Visual and olfactory observations い	□ She	oreen coloration _		Color of sample		n (describe)	
Sample composition/particle size distribution (estimated percentage		1 <u>70</u> S	and <u>10</u> anics <u>5</u>	Fine Gravel 5	_ Coarse (Gravel <u>Í Ø</u> D	Debris
If present, type of debris in sampl			rge rocks astic iper	Removed debris	? ArYes (Type & Amou	nt) □ No
Compositing notes	5.01e 🗷 Devi	ations (de	scribe) (er 6015.01a		<u> </u>	
Sample Jars Collected (number, size	ze, full or partia	al)? 4 (311 40	12. jars 1 1	full 8	07 1005	•
If not enough sample to fill all of the collected and related analytes sample analyte priority list in work order). **I Jor (Hoz.) Archived ** &cz. jor order ed ** W11A060-05	jars, list jars led (as per	Jar	Size	Ámount Full		Target Analy	/ses
Portland Harbor		Duplicate	e sample	collected? YAN	-		
52_19 Du Sampled: 01706/11 12:30 Field Data Sheet	OC:	Oup 10 F	icre				
	SECTIO	N 3 - PI	НОТО	GRAPH LOG			
Overview of node showing drainage			Filenam		50 vervio	20 0106 H	ale N ains 1
Plan view of sediments inline			Filenam		100001-7 11-0	7000 705 Sun	gre y 01061(
Homogenized sample (sediment in	bowl)		Filenam	e: 52-19 Aven 5 1	lonogenized	composite wi	th label 1010611
Other?	·			or Sub-sample	ampline	obotos	

ENVIRONMENTAL SERVICES Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

	L SEDIMENT (SAMPLING FIELD	DATA SHEET	
Project Name: Partland	Harbon		Sample ID: WIIA060	-06
Sampling Team: M J 5, PTB	Date: 1/1/2/11	Arrival Time:	Point Code: 52-20	
Basin: 5 }	Node: ALEA (2		101 - 6
Current weather: Overcas	+	***************************************	Address: Area 6 - Su parking lot adjacent N. saltimore Are	to be os
Date and time of last known raint		Y	W. Fall More The	
SECTIO	DN 1 - PRE-SAM	PLING VISUAL OBSE	RVATION REPORT	
Is there water inline? Yes or No	If present, water is:	Flowing or Standing Depth	of water = in Rate of t	flow = fps
Does river back up to this location?	es or No If river is ba	icked up: Water Color 🛛	.Grey Water Odor 🗆 S	lydrocarbon Sanitary Other
Are sediments observed in the line?	Yes or No Are	recoverable quantities of sedi	ments present in the line? Yes	or No
If sediments present: Avg Depth	of seds = ir	n Sed Depth Range =	in. to in.	-
Estimated dimensions of sediment de	eposit: in. b	yin. OR 🛭 As	far as can be seen	
SITE DIAGRAM: Include street and extent of solids accumulation	as well as subsample Shipping	e locations.		unveways cuts
		(E)6"x6"x1"deep		And the second s
		() 6x6"1"deef	CB ZNE911 [[[]] cep c" 1"deep	
	Total	Plad steel	A 4.6" 2" deep abandont coarse gr	
			1	AR frack

Date: 1/6/11	SECTION	2 - SAMF	PLE CO	LECTION REI	PORT	Node: AREA 6	Point Code: 52-28
Sampling Equipment: Stail	nless steel utens	il & stainles	s steel red	eptacle Other	r (Describe)	— t	,
Equipment Decontamination pr	ocess: Per	SOP7.01a	□ Devi	ations (Describe)			
Sample date: Sample tii	me: San	nple Identific	cation Co	le (IL-XX-NNNNNI L- Area G-GWel	N-mmyy) se of parks	ng lot adjacent	+ + 6600
Sample location:						To No	N Ballimure
Sample collection technique: 2	Per SOP5.01e	√Z Devi	ations (de	scribe below)	-		
	□ Od	or			□ Brow	n	
Visual and olfactory observatio ∧	ns: 📁 🗆 Sh	een scoloration _		_ Color of sample	e □ Grey	(describe)	
Sample composition/particle distribution (estimated percent	Olivoia	y <u>65</u> Sa posed Orga	and <u>10</u> inics< <u>8</u> %	Fine Gravel 5 Other (describe)	_ Coarse () φ las (a	Gravel <u>∫ 5</u> [Debris <u>5</u>
If present, type of debris in san		d □ Lar il ⊡ Pla inics □ Pap		Removed debris?	Σ <u>ανν</u>	Type & Amou	nt) □ No
Compositing notes Per SC	DP5.01e □ Dev	riations (des	cribe)				
Sample Jars Collected (number	size, full or part	ial)? 4 G1	1402.	iars + 1 full	8 oz. V	a.	
f not enough sample to fill all of to collected and related analytes sa analyte priority list in work order).	the jars, list jars mpled (as per	Jar	Size	Amount Full	. J	Target Analy	/ses
1802 and 14	or jar						
to be archved							
W11A060-06 Portland Harbor		Duplicate	sample o	collected? Y/N			
Du 52_20 Sampled: 01/06/11 12:58 Field Data Sheet	OC:	Dup 10 H	ene .				
						,	
	SECTIO	N 3 - PF	ЮТОС	RAPH LOG			
Overview of node showing drain	age area		Filename	e(s): 52-20 Area 6 92-20 Area(Overview	leoking 10 wi	
Plan view of sediments inline			Filename	:			
Homogenized sample (sediment	in bowl)			: 52.20 Aven 6 1			010611
Other? Filename(s): 501-6ample Garyling plots							

MA

CITY OF PORTLAND

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

INLINE SEDIMENT SAMPLING FIELD DATA SHEET PORTAND HARBOR Sample ID: WILA060 -07 Project Name: t Point Code: 52-21Sampling Team: Date: Arrival Time: 116/11 MJS, PTB 1510 Basin: 52 Node: AREA Address: Pothole East of ANEGII Current weather: Overcast Date and time of last known rainfall: Last night SECTION 1 - PRE-SAMPLING VISUAL OBSERVATION REPORT Is there water inline? Yes or No. If present, water is: Flowing or Standing Depth of water = ____ in Rate of flow = ____ fps □ Brown ☐ Hydrocarbon Does river back up to this location? Yes or No | If river is backed up: Water Color ☐ Grev Water Odor ☐ Sanitary Other □ Clear Are sediments observed in the line? Yes or No. Are recoverable quantities of sediments present in the line? Yes or No Avg Depth of seds = _____ in Sed Depth Range = ____ in. to _____ in. If sediments present: SITE DIAGRAM: Include street intersections/main lines/laterals/catch basins/MH's/pipe sizes/ flow direction/ driveways cuts and extent of solids accumulation as well as subsample locations. 538-54MPLE B. 3'x6"+"E IRON WORKS SUB-SAMPLE A - 8"X 10" X 4" ANEGII RUP TRACKS

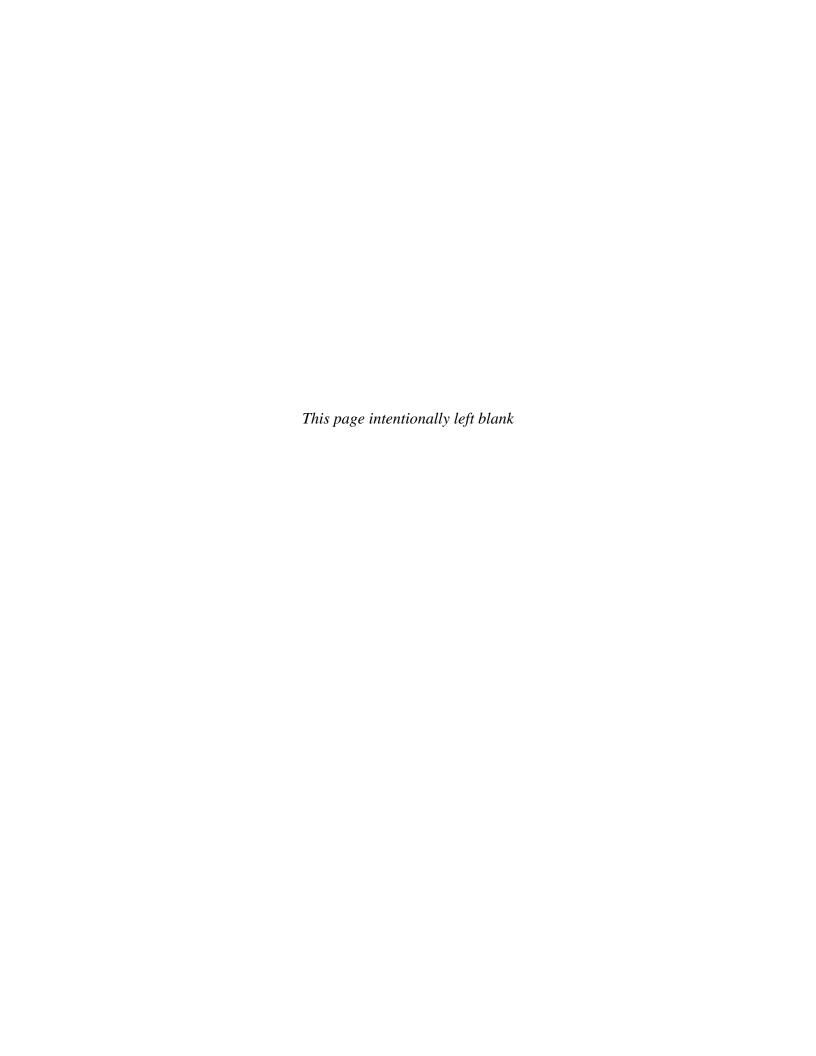
Date: 1/6/11 SECTION 2 - SA	AMPLE CO	LLECTION REPO	ORT	Node:	Point Code: 52-21
Sampling Equipment: A Stainless steel utensil & stai	nless steel re	ceptacle Other (Describe)	* (Married)	- Serve
Equipment Decontamination process: ** Per SOP7.0)1a □ Dev	ations (Describe)			
		de (IL-XX-NNNNN-r Aren 7- Pothole Ea		WE 911	
Sample location: From MH chamber ☐ From line		line, segment is Fro			ode
Sample collection technique: □ Per SOP5.01e Per 50 8 5.0 a	Deviations (d	escribe below)			
Usual and olfactory observations: ☐ Odor ☐ Sheen <u>N+</u> ☐ Discolorati		_ Color of sample		describe)	
Sample composition/particle size Silt/Clay 16 distribution (estimated percentages): Decomposed (Sand <u>20</u> Organics	Fine Gravel 5 (Other (describe)	Coarse Gr	avel <u>5</u> D	ebris
If present, type of debris in sample ⊠Metal □ □ □ ○ □ ○ □ ○ □ ○ □ ○ □ ○ □ ○ □ □ □ □		Removed debris? بأ	Yes (Ty Metal 5 xcluded	pe & Amour	nt) INO
Compositing notes ☐ Per SOP5.01e ☐ Deviations	(describe) 🖟	1509 5-01 a			
Sample Jars Collected (number, size, full or partial)?	Fill 40	Z. jws. 1 All Amount Full	8 02	just	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	Jar Size	Amount Full	Т	arget Analy	'ses
1 full 9 02 jor >ARCHIVED					
Lab W11A060-07 Dupli	cate sample	collected? Y/N			
Dup Portland Harbor 52 21 C:	ab liero				
SECTION 3 -	РНОТО	SRAPH LOG			
Overview of node showing drainage area	Filenam	e(s):			
Plan view of sediments inline	Filenam	e:			
Homogenized sample (sediment in bowl) Filename:					
Other? Filename(s):					

ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

II .	The control of the co			
Project Name: PORTZANO	HARBOR		Sample ID: WHA 060 - 0	8
Sampling Team:	Date: 1/6/11	Arrival Time: 526	Point Code: 5Z - ZZ	
Basin: 52	Node: Avea 9		Address: Pathole NW of Aw	E911
Current weather: Overcust				- (1)
Date and time of last known rainfa	III: last night			
PECTIO	N.4. DDE CAM			
SECTIO	IN 1 - PRE-SAIVI	PLING VISUAL OBSE	RVATION REPORT	——————————————————————————————————————
Is there water inline? Yes or No	If present, water is:	Flowing or Standing Dept	n of water = in Rate of flow =	fps
Does river back up to this location? You	es or No If river is ba	cked up: Water Color 🛭 🗀	l Brown □ Hydrod l Grey Water Odor □ Sanital l Clear □ Other	
Are sediments observed in the line?	Yes or No Are	recoverable quantities of sed	iments present in the line? Yes or N	lo
If sediments present: Avg Depth of	of seds = ir	n Sed Depth Range =	in. toin.	
Estimated dimensions of sediment de	posit: in. b	yin. OR 🛘 As	s far as can be seen	****
STACK OF WOON GLANDS MAH COVERS	as well as subsampl	PREA INDIVINES		ways outs

Date: 1/6/11 SECTION 2 - SAN	IPLE CO	LLECTION REPORT	Node: AREA 9	Point Code: 52 - 22
Sampling Equipment:	ess steel red	ceptacle Other (Descrit		
Equipment Decontamination process: Per SOP7.01a	a □ Devi	ations (Describe)		
		de (IL-XX-NNNNN-mmyy - Aven 9 - Pothcole Niv		
Sample location N ^A □ From MH chamber □ From line	If from	line, segment is From Noo	deTo N	lode
Sample collection technique: Per SOP5.01e Per SOP5.01e	viations (de	scribe below)		
□ Odor		_ kt Bro	wn	
Note: □ Discoloration		_ Color of sample □ Gre	er (describe) _	
Sample composition/particle size Silt/Clay 25 silt/clay Decomposed Organization	Sand 40 ganics	Fine Gravel <u>25</u> Coars Other (describe)	e Gravel 10	Debris
	arge rocks lastic aper	Removed debris?	s (Type & Amou	unt) □ No
Compositing notes ☐ Per SOP5.01e ♣ Deviations (de	escribe) 🏳	15.00		
Sample Jars Collected (number, size, full or partial)? 니 (Ul 402.	jors 1 full 8 02. j.	W	
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).	r Size	Amount Full	Target Anal	lyses
* 1802 just 1402, or to be excluded				
Lab W11A060-08 Duplica	te sample o	collected? Y/Ñ\		
Portland Harbor 52_22 Sampled: 01/06/11 15:35 Field Data Sheet	Larer			
SECTION 3 - P	НОТОС	RAPH LOG	·	
Overview of node showing drainage area	Filename	e(s):		
Plan view of sediments inline	Filename	9:		
Homogenized sample (sediment in bowl)	Filename	e:		
Other? Filename(s):				


ENVIRONMENTAL SERVICES

Water Pollution Control Laboratory 6543 N. Burlington Ave., Portland, OR 97203-5452

Project Name: PORTLAND H	ARBOR		Sample ID:	W 11/A060-10
	Date: 1/6///	Arrival Time:	Point Code:	W/1A060-10 2-23
	Node: AKA &			CLTRACKS OHNS PS. EGGEN BRANTER
Current weather: FOGIOVER	CAST		THIS ACCOUNT TO STOR	areas 12. Code to however
Date and time of last known rainfa	III: LAST NIGHT			
SECTIO	NA DDE CAM			
1		IPLING VISUAL OBSI	1	
Is there water inline? Yes or No	If present, water is:	Flowing or Standing Dept	h of water = in	Rate of flow = fps
Does river back up to this location? Y	es or No If river is ba	acked up: Water Color - D] Brown] Grey Water Oo] Clear	☐ Hydrocarbon dor ☐ Sanitary ☐ Other
Are sediments observed in the line?	Yes or No Are	recoverable quantities of sec	liments present in the lin	ne? Yes or No
If sediments present: Avg Depth of	of seds =i	n Sed Depth Range =	in. to	in.
Estimated dimensions of sediment de	posit: in. b	pyin. OR 🗆 As	s far as can be seen	
SITE DIAGRAM: Include street in and extent of solids accumulation with the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in and extent of solids accumulation. White the street in an accumulation. White the street in a street in	g'x8'x2' cleved We gravel	PUMP GRATION Jest State of the state of th	FEARED ADEA	VRTPacks

Date: 1/6/11 SECTION	2 - SAMI	PLE CO	LLECTION REF	PORT	Node: ANEA &	Point Code: 52-23
Sampling Equipment: KStainless steel utens	il & stainles	s steel red	ceptacle □ Other	(Describe)		
Equipment Decontamination process: Equipment Decontamination process: Equipment	SOP7.01a	□ Devi	ations (Describe)			
Sample date: Sample time: Sam	nple Identifi	cation Co	de (IL-XX-NNNNN	N-mmyy)		4
1/6/11 1445-1500 501	face Soil 6	mposite-	Aven 8-9Wif pc	Trucks ad	arent to St.	Johns Pump
Sample location: □ From MH chamber □ F	rom line	If from	line, segment is F	rom Node	, To No	Station ode
Sample collection technique: ☐ Per SOP5.01e	i ≰ Dev	iations (de	scribe below)			
Visual and olfactory observations	or een _ coloration _				n (describe)	
Sample composition/particle size Silt/Cla distribution (estimated percentages): Decom	y <u>60 </u> Sa posed Orga	and <u>/ O</u> anics	Fine Gravel <u>/O</u> Other (describe)	Coarse (Gravel <u>20</u> [)ebris
☐ Wood If present, type of debris in sample ☐ Meta ☐ Orga			Removed debris?	, □ Yes (1	Гуре & Атои	nt) - □ No
Compositing notes □ Per SOP5.01e 被 Dev	riations (des	scribe) Pe	v 508 5-01	~		
Sample Jars Collected (number, size, full or parti			, jors / f		JW ALL ARE	TO BE
If not enough sample to fill all of the jars, list jars collected and related analytes sampled (as per analyte priority list in work order).		Size	Amount Full		Target Analy	
	·					
W11A060-10						
Portland Harbor 52_23		V-1				
Sampled: 01/06/11 15:00 Field Data Sheet	Duplicate	icate sample collected? Y/N)				
Duplicate sample identification # on COC:	Dup ID Here			<u> </u>		
			-			
SECTIO	N 3 - PI	НОТОС	RAPH LOG			
Overview of node showing drainage area		Filename	e(s): 52-23 Area 8	Overview	locking NW	oiWy
Plan view of sediments inline		Filename			<u> </u>	
Homogenized sample (sediment in bowl)		Filename	: 52-23 Area 8	Homogenice	d composite o	i 0611
Other?		Filename	e(s):			

June 2008 Inline Solids Sampling

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review June 2008 Inline Solids Sampling City Outfall Basin 52

To: File

From: Karen Demsey, GSI Water Solutions, Inc. (GSI)

Date: November 17, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source investigation sampling event conducted by the City of Portland (City). Three inline solids samples (FO 080840, FO 080841 and FO 080842) and one duplicate inline solids sample (FO 080843) were collected in Outfall Basin 52 on June 26, 2008, and submitted for analyses.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed below:

- BES WPCL
 - o Total Solids SM 2540G
 - o Metals EPA 6020
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 (Modified)
- Analytical Resources, Inc.
 - o Grain Size ASTM D421/422

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Laboratory duplicate precision within laboratory control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the laboratory analyses are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

No analytes were detected in the method blanks.

Surrogate Recoveries

No surrogate recovery exceptions are noted in the WPCL report.

Matrix Spike/Matrix Spike Duplicate

TA reports that the MS or MSD result exceeds the control limits for TOC analysis. The laboratory did not indicate this QC exception impacted the analytical results. No MS/MSD recovery exceptions are noted in the WPCL report.

Laboratory Control Samples

An LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit. No LC recovery exceptions are noted in the WPCL report.

Other

The WPCL report includes the following notes in relation to PCB analysis:

• For samples FO 080840, FO 080841 and FO 080843, the report states that non-PCB components interfered with quantitation of Aroclor 1254 at the low concentrations detected; the detected concentrations of Aroclor 1254 in these samples are therefore reported as estimated values.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody

| 유 |

Page: 6/26/2008

Bureau of Environmental Services

Collected By:

RCB/WCR/LAP

		erre a				ļ)C.xls	s:\eid\1000\1020.001\Sampdoc\L6wer Harbor Sed COC.xls	s:\eid\1000\1020.001\Sai	
Date:	Printed Name:		Date:			Vame:	Printed Name:		Date:			Printed Name:	6/26/0P-Prin	Rona Kluch	
Time:	Signature:	- Facegore	Time		5	e e	Signature:		Time:			Signature:		ignature: Joral and	
					۵	Received Rv-	Recei				2	Received By:	-	Received By: 1.	1.2
Date:	Printed Name:	STATE OF	Date	-		Name:	Printed Name:		Date:			Printed Name:	Date: 6/2668	PETNOYCIBELS TOOL	22
Time:	.1	esektrion	Time			2	Signature:		Tme:			Signature:	<u>. </u>	Thread Name Tally Market	u
	Relinguished By: -4.				By: 3	Relinquished By:	Reline				By: 2:	Relinquished By:		Kelinguished By: 1.	n
		a in without a se													THE PERSON NAMED IN
						<u> </u>				 		-			SOMEON CONTRACTOR OF THE PARTY
											<u> </u>				rough St. The Comment
						 					ļ	<u> </u>			Comment of the last
		e deselarmentation				<u> </u>						<u> </u>			
				•		•	•	•	റ		6/26/08	DUP	DUPLICATE	. 0 000843	_
		# - F		•		•	•	•	C	1458	6/26/08	52_3	IL-52-AAE513-0608 N ALTA & BRADFORD	FO 080842	
		-ozaces		•		•	•	•	n	1108	6/26/08	52_2	IL-52-AAE569-E-0608 NBURLINGTON & CRAWFORD	FO 080841	
		Market Company				•	•	•	С	0921	6/26/08	52_1	IL-52-AAE553-0608 N BURLINGTON & RR	FO 080840	
	and the second s			Total Mei (As, Cd, (Grain Siz	Total Sol	PCB Aro	Sample Type	Sample (Time	Sample Date	Point Code	Location	WPCL Sample I.D.	
•				als Cu, Pb, Zn)		e	ids	clors - LL			·	*			
							<u> </u>					,	OUTFALL 52		
	Field Comments	Take State of the	tals	Metals		ra	General								
	Requested Analyses	sted A	Reques							SEDIMENT	Matrix:			File Number: 1020.001	
		::::::::::::::::::::::::::::::::::::::									MP	INE SA	AND HARBOR INL	Project Name: PORTLAND HARBOR INLINE SAMP	

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080840

Sample Collected: 06/26/08 Sample Received: 06/26/08 09:21

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page: Page 1 of 2

Address/Location:

IL-52-AAE553-0608

AM06039

Sample Point Code:

N BURLINGTON & RR CROSSING

System ID: EID File #:

Sample Type:

52_1 **GRAB**

LocCode:

1020.001 **PORTHARI**

Sample Matrix:

SEDIMENT

Collected By: RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	82.1	% W/W	0.01	SM 2540 G	07/01/08
METALS					
ARSENIC	1.94	mg/Kg dry wt	0.50	EPA 6020	07/03/08
CADMIUM	0.72	mg/Kg dry wt	0.10	EPA 6020	07/03/08
COPPER	106	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	23.7	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	588	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)		•		•	
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1254	EST 26	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	29	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS		•			
TOTAL ORGANIC CARBON	36000	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 μm)	1.78	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 μm)	21.86	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μm)	0.91	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 μm)	2.54	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 μm)	9.09	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 μm)	19.73	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	25.09	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (850-425 μm)	16.76	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 μm)	0.45	Fract %	0.01	ASTM D421/422	07/16/08
Silt (32-22 μm)	< 0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (7-3.2 μm)	0.89	Fract %	0.01	ASTM D421/422	07/16/08

Report Date: 08/26/08

Validated By:

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO080840	Sample Collected: 06/26/08	09:21	Sample Status:	COMPLETE AND
1 0000010	Sample Received: 06/26/08		·	VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 2 of 2

Address/Location: IL-52-AAE553-0608

N BURLINGTON & RR CROSSING System ID: AM06039

Sample Point Code:52_1EID File #:1020.001Sample Type:GRABLocCode:PORTHARI

Sample Type: GHAB LocCode: PORTHARI
Sample Matrix: SEDIMENT Collected By: RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (75-32 μm)	0.92	Fract %	0.01	ASTM D421/422	07/16/08
Silt (9-7 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08

End of Report for Sample ID: FO080840

Â

Report Date: 08/26/08

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080841

Sample Collected: 06/26/08 Sample Received: 06/26/08 11:08

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-AAE569-E-0608

AM06040

N BURLINGTON & CRAWFORD

System ID:

Sample Point Code: Sample Type:

52_2

EID File #:

1020.001

GRAB

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	84.9	% W/W	0.01	SM 2540 G	07/01/08
METALS					
ARSENIC	2.09	mg/Kg dry wt	0.50	EPA 6020	07/03/08
CADMIUM	0.29	mg/Kg dry wt	0.10	EPA 6020	07/03/08
COPPER	33.6	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	70.7	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	109	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)	•				
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1254	EST 27	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	23	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS					÷
TOTAL ORGANIC CARBON	5500	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI			<i>i</i>		
Cla y (<3.2 μm)	1.97	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 μm)	3.06	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μm)	10.80	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 μm)	20.91	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 μm)	31.12	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 μm)	8.08	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	2.85	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (850-425 μm)	11.79	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 μ m)	0.66	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 μm)	1.32	Fract %	0.01	ASTM D421/422	07/16/08
Silt (32-22 μm)	0.66	Fract %	0.01	ASTM D421/422	07/16/08
Silt (7-3.2 μm)	1.97	Fract %	0.01	ASTM D421/422	07/16/08

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO080841

Sample Collected: 06/26/08 Sample Received: 06/26/08 11:08

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-AAE569-E-0608

N BURLINGTON & CRAWFORD

System ID:

AM06040

Sample Point Code:

52_2

EID File #:

1020.001

Sample Type:

GRAB

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (75-32 μm)	4.80	Fract %	0.01	ASTM D421/422	07/16/08
Silt (9-7 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08

End of Report for Sample ID: FO080841

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080842

Sample Collected: 06/26/08 Sample Received: 06/26/08 14:58

COMPLETE AND Sample Status:

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-AAE513-0608

System ID:

AM06041

N ALTA & BRADFORD

EID File #:

1020.001

Sample Point Code:

52_3

LocCode:

PORTHARI

Sample Type:

GRAB

Collected By:

RCB/WCR

Sample Matrix:

SEDIMENT

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL TOTAL SOLIDS	53.1	%W/W	0.01	SM 2540 G	07/01/08
METALS	7.67	mg/Kg dry wt	0.50	EPA 6020	07/03/08
ARSENIC CADMIUM	0.93	mg/Kg dry wt	0.10	EPA 6020	07/03/08
COPPER	1240	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	81.6	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC	649	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PCB)				ED 4 0000	07/02/08
Aroclor 1016/1242	<10	μ g/Kg dry wt	. 10	EPA 8082	07/02/08
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1254	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	114	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS	100000		2000	EPA 9060 MOD	07/08/08
TOTAL ORGANIC CARBON	120000	mg/Kg dry wt	2000	El A 3000 MOD	07700.00
GRAIN SIZE BY ASTM - ARI				40TM D 404/400	07/16/08
Clay (<3.2 μm)	4.46	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 μm)	21.47	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μ m)	4.89	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 µm)	4.25	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 µm)	7.84	Fract %	0.01	ASTM D421/422	
Gravel (>4750 μm)	4.32	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	16.73	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (850-425 μm)	11.32	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 μm)	2.55	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 μm)	3.83	Fract %	0.01	ASTM D421/422	07/16/08
Silt (32-22 µm)	7.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (7-3.2 μm)	2.55	Fract %	0.01	ASTM D421/422	07/16/08
Silt (75-32 µm)	8.13	Fract %	0.01	ASTM D421/422	07/16/08

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

14:58

Sample ID: FO080842

Sample Collected: 06/26/08

Sample Received: 06/26/08

Sample Status: COMPLETE AND

VALIDATED

Address/Location:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

IL-52-AAE513-0608

N ALTA & BRADFORD

Sample Point Code:

52 3 GRAB

Sample Type: Sample Matrix:

SEDIMENT

System ID:

Report Page:

AM06041

Page 2 of 2

EID File #:

1020.001

LocCode:

PORTHARI

Collected By:

RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (9-7 μm)	0.64	Fract %	0.01	ASTM D421/422	07/16/08

End of Report for Sample ID: FO080842

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO080843

Sample Collected: 06/26/08 Sample Received: 06/26/08 00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

DUPLICATE

System ID:

AM06042

Sample Point Code:

DUP

1020.001

Sample Type:

GRAB

EID File #: LocCode:

PORTHARI

Collected By:

RCB/WCR

Sample Matrix:

SEDIMENT

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

•					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL				01105100	07/04/00
TOTAL SOLIDS	83.1	% W/W	0.01	SM 2540 G	07/01/08
METALS				ED. 0000	07/09/09
ARSENIC	1.39	mg/Kg dry wt	0.50	EPA 6020	07/03/08 07/03/08
CADMIUM	0.56	mg/Kg dr y wt	0.10	EPA 6020	
COPPER	117	mg/Kg dry wt	0.25	EPA 6020	07/03/08
LEAD	22.0	mg/Kg dry wt	0.10	EPA 6020	07/03/08
ZINC .	431	mg/Kg dry wt	0.50	EPA 6020	07/03/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)		•	•	-D. 0000	07/00/00
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	07/02/08
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1248	<10	μ g/Kg dry wt	. 10	EPA 8082	07/02/08
Aroclor 1254	EST 22	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1260	21	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1262	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	07/02/08
OUTSIDE ANALYSIS	-				07/00/00
TOTAL ORGANIC CARBON	35000	mg/Kg dry wt	2000	EPA 9060 MOD	07/08/08
GRAIN SIZE BY ASTM - ARI					07400
Clay (<3.2 \(\mu \m)	1.25	Fract %	0.01	ASTM D421/422	07/16/08
Coarse Sand (4750-2000 µm)	19.36	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (150-75 μm)	. 1.35	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (250-150 µm)	3.81	Fract %	0.01	ASTM D421/422	07/16/08
Fine Sand (425-250 μm)	11.87	Fract %	0.01	ASTM D421/422	07/16/08
Gravel (>4750 µm)	24.66	Fract %	0.01	ASTM D421/422	07/16/08
Medium Sand (2000-850 μm)	17.46	Fract %	0.01	ASTM D421/422	
Medium Sand (850-425 μm)	17.33	Fract %	0.01	ASTM D421/422	07/16/08
Silt (13-9 µm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (22-13 μm)	1.25	Fract %	0.01	ASTM D421/422	07/16/0
Silt (32-22 μm)	0.83	Fract %	0.01	ASTM D421/422	07/16/0
Silt (7-3.2 μm)	0.83	Fract %	0.01	ASTM D421/422	07/16/0

Report Date: 08/26/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

00:00

Sample ID: FO080843

Sample Collected: 06/26/08

Sample Received: 06/26/08

Sample Status: COMPLETE AND

Report Page: Page 2 of 2

VALIDATED

Sample Point Code:

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Address/Location:

DUPLICATE

System ID:

DUP

EID File #:

AM06042 1020.001

Sample Type:

GRAB

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By:

RCB/WCR

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB in this sample appears to a mixture of Aroclors 1260 and 1254; non-PCB components interfere with quantitation of 1254 at the low concentration detected.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (75-32 μm)	0.01	Fract %	0.01	ASTM D421/422	07/16/08
Silt (9-7 μm)	<0.01	Fract %	0.01	ASTM D421/422	07/16/08

End of Report for Sample ID: FO080843

Report Date: 08/26/08

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

July 30, 2008

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 06/26/08 17:45. The following list is a summary of the Work Orders contained in this report, generated on 07/30/08 16:04.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PRF0963	Portland Harbor	36238

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.

Project Number: 36238

Report Created:
Portland, OR 97203

Project Manager: Jennifer Shackelford

07/30/08 16:04

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 080840	PRF0963-01	Soil	06/26/08 09:21	06/26/08 17:45
FO 080841	PRF0963-02	Soil	06/26/08 11:08	06/26/08 17:45
FO 080842	PRF0963-03	Soil	06/26/08 14:58	06/26/08 17:45
FO 080843	PRF0963-04	Soil	06/26/08 00:00	06/26/08 17:45

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave.

Portland, OR 97203

Project Name: Project Number: **Portland Harbor**

Project Manager: Jennifer Shackelford

36238

Report Created: 07/30/08 16:04

Total Organic Carbon

TestAmerica Tacoma

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRF0963-01 (FO 080840)			Soil			Samp	oled: 06/26	/08 09:21		
Total Organic Carbon	9060	36000		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	
			~			~				
PRF0963-02 (FO 080841)			Soil			Samp	oled: 06/26	/08 11:08		
Total Organic Carbon	9060	5500		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	
PRF0963-03 (FO 080842)			Soil			Samp	oled: 06/26	/08 14:58		
Total Organic Carbon	9060	120000		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	
PRF0963-04 (FO 080843)			Soil			Samp	oled: 06/26	/08 00:00		
Total Organic Carbon	9060	35000		2000	mg/Kg	1x	33831	07/08/08 11:21	07/08/08 11:21	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

9060

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

5500

6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 07/30/08 16:04

Total Organic Carbon - Laboratory Quality Control Results TestAmerica Tacoma QC Batch: 33831 Soil Preparation Method: NA REC (Limits) RPD MDL* MRL Source Spike Analyte Method Result Units Dil (Limits) Analyzed Notes Result QC Source: PRF0963-01 Matrix Spike (104901S) Extracted: 07/08/08 11:21 Total Organic Carbon 9060 50600 2000 mg/Kg 1x 36000 10000 146% (76-128) 07/08/08 11:21 QC Source: PRF0963-01 Duplicate (104901X) Extracted: 07/08/08 11:21 Total Organic Carbon 9060 35300 2000 mg/Kg 1x 36000 (20) 07/08/08 11:21 Blank (580-33831-1) QC Source: Extracted: 07/08/08 11:21 Total Organic Carbon 9060 ND 2000 mg/Kg 1x 07/08/08 11:21 QC Source: Extracted: 07/08/08 11:21 LCS (580-33831-2)

2000

mg/Kg

1x

3400

162%

07/08/08 11:21

TestAmerica Portland

Total Organic Carbon

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford07/30/08 16:04

Notes and Definitions

Report Specific Notes:

F - MS or MSD exceeds the control limits

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

 Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

Electronic

- Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory.

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

11720 North Creek Pkwy N Stitte 400, Bothell, WA 98011-8244 11722 F. First Ave. Spokane, WA 99206-5302

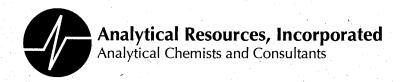
9405 SW Numbus Ave, Beaverton, OR 97008 7145 Sufficient Companies Agreement St., Vict. Vincholage, AK 90802(1) for

Work Order,#:

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

PRF0963

CHAIN OF CUSTODY REPORT


CLIENT: City of Portland	INVOICE TO:	TU	RNAROUND RI	EQUEST
CHENT CAT TOTAL COMM	-d Charles Lytte		in Business Day	s *
REPORT TO Jennifer Shackelfor	-d Charles Colle	-\-X	ganic & Inorganic Ana	dyses
		<u> </u>	5 4 3 moleum Hydrocarbon	Analyses
PHONE: FAX:	P.O. NUMBER. 36 238 PRESERVATIVE		*	
PROJECT NAME: Portland Harbor	TRESTRY ATTAIN	STD.		
PROJECT NUMBER: Inline Sump	REQUESTED ANALYSES	отн		
	., , ,	urnaround Requ	uests less than standard	I may incur Rush Charges
CLIENT SAMPLE SAMPLING IDENTIFICATION DATE:TIME			# OF LOCAL CONT. COMM	
FO 080840 6/26/08 0921 X	X		2	
) 841) 1103 X	X	S :	2	
			2	
842 1458 \times				
		<u>S</u> .	2	
5				
6				
7				
8				
9				
		i i],
RELEASED BY: Amel Chul	DATE 6/26/08 RECEIVED BY START		0	DATE: 6/26/18
PRINT NAME: Roma Kinch FIRM: City of	it Partland TIME: 16:30 PRINT NAME: Political	FIRM: 7	T41/	TIME: 6 3 0
RELEASED BY: SML 4 322	0/20/00, $=$	FIRM:	THP	TIME:
PRINT NAME: Poly FIRM: FIRM: ADDITIONAL REMARKS:	16.300		TEM!	1 (1 - 2
T. 1000.0002	17:45		<u> </u>	PAGE OF

TestAmerica Sample Receipt Checklist Work Order No. Received by: Unpacked by: Logged-in by: Client: "(section B) *(section A) Date:(¿ Project: Initials: Time: L Temperature out of range: Not enough Ice No Ice Ice Melted ***ESI Clients (see Section C) W/in 4 Hours Other. plastic glass NA (oil/air OR ESI client) Temperature Blank: Cooler Temperature (IR): Sample Status: Custody Seals: (# (If N circled, see NOD) Signature: Y N Dated: Received from: General: None Intact? Ν TA Courier Container Type: Senvoy # Containers Match COC? Υ Ν none given #Cooler(s) UPS IDs Match COC? Ν #Box(s) Fed Ex For Analyses Requested: None (#Other: Client Cyanide checked? Υ Ν TDP Coolant Type: Correct Type-& Preservation? Ν **USPS** Gel/ Blue Ice Adequate Volume? Υ Ν SDS Loose Ice Mid-Valley Within Hold Time? Ν None GS/TA Volatiles/ Oil Quality: Packing Material: GS/Senvov VOAs/ Syringes free of Headspace? Υ Ν **Bubble Bags** Other: TB on COC? not provided Υ Ν NΑ Styrofoam Cubbies Metals: Peanuts HNO3 Preserved? Υ Ν NA Other: None (Dissolved Metals Filtered? Υ Ν NA *ESI Clients Only: FED EX/ UPS: Was the tracking paper keepable? YES Temperature Blank: °C not provided DIGI #1 #2 If circled NO, what is the Tracking number? All preserved bottles checked NA (voas/soils/all unp.) FED EX Goldstreak **UPS** DHL Other: All preserved accordingly? N (see NOD) NA (voas/soils/all unp.) **Project Managers:**

(Initial/Date)

PM Reviewed:

Comments:

July 16, 2008

Mr. Howard Holmes Test America, Inc. 9405 SW Nimbus Ave. Beaverton, OR 97008

Subject: Project No.: PRF0963;

ARI Project No.: ND94

Dear Mr. Holmes,

The following pages provide the information you requested. Please call me to discuss any questions or comments you may have on the data or its presentation.

Best Regards,

Analytical Resources Incorporated

taylor Mckenzie for Harold Benny Harold Benny

Geotechnical Division Manager

206-695-6246

haroldb@arilabs.com

Enclosures

cc: File ND94

Client: Test America, Inc. ARI Project No.: ND94

Client Project No.: PRF0963

Case Narrative

- 1. Four samples were submitted for grain size distribution according to ASTM D421/D422.
- 2. A standard "milkshake" mixer was used to disperse the samples.
- 3. An assumed specific gravity of 2.65 was used in the calculations.
- 4. Sample PRF0963-03 contained abundant organic material, which may have broken down during the sieving process, affecting grain size analysis.

Date: 7/16/08

- 5. The data is provided in summary tables and plots.
- 6. There were no further anomalies in this project.

Approved by: <u>Fuylor McKenzre</u>
Title: Lead Technician

SUBCONTRACT ORDER

ND 94

TestAmerica Portland PRF0963

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Howard Holmes

RECEIVING LABORATORY:

Analytical Resources, Inc. (ARI) 4611 S 134th Place, Suite 100

Tukwilla, WA 98168 Phone :(206) 621-6490 Fax: 206-621-7523 Project Location:

Receipt Temperature:_

°C

Y / N

Ice:

Analysis	Units	Due	Expires	Comments
Sample ID: PRF0963-01	Soil		Sampled: 06/26/08 09:21	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 09:21	sub to Analytical Resources Inc (ARI)
Containers Supplied: 8 oz. jar (A)			:	
Sample ID: PRF0963-02	Soil		Sampled: 06/26/08 11:08	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 11:08	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)				
Sample ID: PRF0963-03	Soil		Sampled: 06/26/08 14:58	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 14:58	sub to Analytical Resources Inc (ARI)
Containers Supplied: 8 oz. jar (A)				
Sample ID: PRF0963-04	Soil		Sampled: 06/26/08 00:00	
Grain Size (ASTM) - SUB	ug/l	07/11/08	12/23/08 00:00	sub to Analytical Resources Inc (ARI)
Containers Supplied: 8 oz. jar (A)				4.

7- 2-08 3:15
Released By Date/Time

Date/Time

Released By

Received By

7/3/cv 1000

Page 1 of 1

Received By Date/Time

Test America, Inc. PRF0963


		T	<u> </u>	<u> </u>	
	1.3	1.8		3.2	1.2
	3.2	1.8	2.0	4.5	1.2
	7	2.7	3.9	7.0	2.1
	6	2.7	3.9	7.7	2.1
٠	13	2.7	4.6	10.2	2.1
	22	3.1	5.9	14.0	3.3
	32	3.1	9.9	21.0	4.2
ø.	#200 (75)	4.0	11.4	29.2	4.2
Percent Finer (Passing) Than the Indicated Size	#100 (150)	4.9	22.2	34.1	5.5
the Indic	#60 (250)	7.5	1	38.3	9.3
g) Than	#40 (425)	33.3 16.6 7.5	74.2 43.1	46.2	38.5 21.2
. (Passin	#20 (850)	33.3	86.0	57.5	38.5
ent Finer	#10 (2000)	58.4	91.9 88.9	95.7 74.2	75.3 56.0
Perc	#4 (4750)	80.3	٠,۱	95.7	75.3
	3/8"	94.5	95.8	9.66	90.2
	3/4" 1/2" 3/8"	97.3	100.0	100.0	94.7
	3/4"	100.0	100.0	100.0	100.0
	1"	100.0	100.0	100.0 100.0 100.0 100.0 99.6	100.0
	2".	100.0 100.0 100.0 97.3 94.5	100.0 100.0 100.0 100.0 95.8	100.0	100.0
	Sieve Size (microns)	PRF0963-01	PRF0963-02	PRF0963-03	PRF0963-04 100.0 100.0 100.0 94.7 90.2

Testing performed according to ASTM D421/D422

Test America, Inc. PRF0963

Percent Retained in Each Size Fraction

Description	Ö%	%Coarse Gravel	ē		% Gravel		% Coarse Sand	% Mediur	Medium Sand	%	% Fine Sand		% Very Coarse Silt	% Coarse %	% Medium Silt	% Fine	% Fine Silt	% Fine Silt % Very Fine %	% Clay
Particle Size (microns)	3-2"	2-1"	1-3/4"	3/4-1/2"	1/2-3/8"	3/8"-4750	3/4-1/2" 1/2-3/8" 3/8"-4750 4750-2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	2-6	7-3.2	<3.2
PRF0963-01	0.00	0.00	0.00	2.75	2.76 14.22	14.22	21.86	25.09	16.76	60.6	2.54	0.91	0.92	0.00	0.45	0.00	00.0	0.89	1 78
PRF0963-02	0.00	0.00	0.00	0.00	4.24	3.84	3.06	2.85	11.79	31.12	20.91	10.80	4.80	99.0	1.32	0.66	000	1 97	1 07
PRF0963-03	0.00	0.00	0.00	0.00	0.40	3.92	21.47	16.73	11.32	7.84	4.25	4.89	8.13	7.01	3.83	2.55	0.64	2.55	97
PRF0963-04	0.00	0.00	0.00	5.25	4.57	14.84		17.46	17.33	11.87	3.81	1.35	0.01	0.83	1.25	00.0	0.00	0.83	2, 1, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
PRF0963-04	0.00	0.00	0.00	5.25	4.57	14.84		17.46	17.33	11.87	3.81	1.35	0.01		0.83		1.25	3.83 2.55 1.25 0.00	3.83 2.55 U.64 1.25 0.00 0.00

September 2008 Catch Basin Sampling

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review September 2008 Inline Solids Sampling City Outfall Basin 52

To: File

From: Julia Fowler, GSI Water Solutions, Inc. (GSI)

Date: November 11, 2008

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source investigation sampling event conducted by the City of Portland (City) in September 2008. Nine inline solids samples (FO081100 through FO081106, FO081108, and FO081109) and one duplicate sample (FO091107) were collected in Outfall Basin 52 on September 9 and 10, 2008.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - o Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
 - o Total Metals EPA 6020
- TestAmerica (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Analytical Resources, Incorporated (ARI)
 - o Grain size ASTM D421/422

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Laboratory duplicate precision within laboratory control limits.
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

A method blank was processed during the subcontracted laboratory analysis of TOC. TOC was detected at 5.9 milligrams per a kilogram (mg/Kg) in the blank sample. This value is greater than the method detection limit but below the method reporting limit of 100 mg/Kg. The laboratory did not indicate this detection impacted the analytical results. No issues with regard to method blank detections are noted in the WPCL report.

Surrogate Recoveries

No surrogate recovery exceptions are noted in the WPCL report.

Matrix Spike/Matrix Spike Duplicate

No MS/MSD recovery exceptions are noted in the WPCL report. MS/MSD samples were not utilized as part of the subcontracted laboratory analysis.

GSI WATER SOLUTIONS, INC.

Laboratory Control Samples

An LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit. No LC recovery exceptions are noted in the WPCL report.

Other

The WPCL report includes the following notes in relation to PCB analysis:

- FO081100 (52_4), FO081101 (52_5), FO081105 (52_9), FO081108 (52_11): "Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap)."
- FO081102 (52_6): "Detected PCB appears to be a mix of Aroclors, predominantly Arclor 1260 with some 1016/1242 and 1254; concentrations are flagged as estimates due to high surrogate recoveries and pattern overlap."
- FO081103 (52_7), FO081107 (DUP): "Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap); MRLs are raised due to low percent solids."
- FO081104 (52_8): "PCB Aroclor MRLs are raised due to dilution required for high concentration of target analyte."
- FO081106 (52_10): "MRLs are raised for PCB Aroclors due to high concentrations of non-target interferences; multiple clean-up procedures did not remove the interferences."

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services Chain-of-Custody cty of Portana

Date: 9/10/2008

Page: 요 | |-

Collected By: RCB/JXB/LAS

		(İs	ג(8-27-08) 52	amp COC - OF	ırbor Inline Sa	Portland Ha	p\Sampdoc	S:\E.ID\1000\1020.001 - Portland Harbor Inline Samp\Sampdoc\Portland Harbor Inline Samp COC - OF 52 (8-27-08).xls	S:\EiD\1000\1020.00
Printed Name: Date:	Date:	Printed Name:		Date:	•		r mileo name.	A/MENTIONS	戊
Signature: Time:	Time:	Signature:		Time:			Ogliatui c.	0.35	inted Name: 1500 1000
Received By: 4.		Received By: 3.		I		7.	Neceived By:	<u>`</u>	ignature: /
Printed Name: Date:	Date:	Tilled Maine:		-			Doning I	8/10 Q	Received By: 1.
ниф				Date			Printed Name:	A Date: [[]	rinted Name: PALICY POEI
;	Time:	Signature;		Time:			Signature:	1035 1035	Kandy C Belo
Relinguished By: 4.		Relinquished By: 3.				ed By: 2.	Relinguished By:		ignature: 1 / // //
700	•	•	•	Ċ	0905	9/10/08	52_12	N Bradford & RR Tracks	0001109
2 jars only - no grain size analysis	2 jars	•	•	C	0820	9/10/08	52_11	N Baltimore & Bradford	FO 081108
		•	•	0		9/9/08	DUP	DUPLICATE	FO 081107
Vode # changed back to original-PHA	Po(1	•	•	C	1449	9/9/08	52_10	IL-52-MNZ-162-0908 V Crawford & St Johns Br	FO 081106
	•	•	•	C	1415	9/9/08	10 2 6 52 9	11-52-8675NCRAWFORD-0909 () N 8675 N Clawford / 10 0	FO 081105
	•	•	•	С	1336	9/9/08	52_8	IL-52-ANE911-0908 N Alta & RR Tracks	FO 081104
		•	•	C .	1153	9/9/08	52_7	IL-52-ANE921-0908 PIW Parking Lot	FO 081103
2 jars only - no grain size analysis	2 jars	•	•	C	1116	9/9/08	52_6	IL-52-AAE651-0908 N Pittsburg & RR Tracks	FO 081102
-		•	•	С	1010	9/9/08	52_5	IL-52-ANE815-0908 N Burlington & Crawford	FO 081101
		•	•	С	0925	9/9/08	52_4	IL-52-ANE813-0908 N Burlington & RR Tracks	FO 081100
	Total Meta	Total Soli Grain Size	PCB Aroo	Sample Type	Sample Time	Sample Date	Point Code	Location	WPCL Sample I.D.
	als (As, Cd i, Ag, Zn)		olors - LL			·			
	, Cr, Cu,		·			LING	SIN SAMP	OUTFALL 52 CATCH BASIN SAMPLING	
Field Comments	Metals	General							
nalyses	Requested Analyses			NT	SEDIMENT	Matrix:			File Number: 1020.001
						AMP	LINE S	LAND HARBOR IN	Project Name: PURILAND HARBOR INLINE SAMP

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081100

Sample Collected: 09/09/08

09:25

Sample Status: COMPLETE AND

Sample Received: 09/10/08

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

N BURLINGTON & RR TRACKS

Address/Location:

IL-52-ANE813-0908

Page 1 of 1

Sample Point Code:

System ID:

Report Page:

AM08407

Sample Type:

COMPOSITE

EID File #: LocCode:

1020.001 **PORTHARI**

Sample Matrix:

SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap).

		.*			Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL					
TOTAL SOLIDS	98.9	% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS	·				
POLYCHLORINATED BIPHENYLS (PCB)					•
Aroclor 1016/1242	<10	µg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	EST 29	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1260	38	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	22500	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI		•			
Clay (<3.2 µm)	2.18	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	19.98	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	4.30	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	4.67	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μ m)	7.32	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	22.96	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	19.60	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μm)	11.28	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 µm)	0.82	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 µm)	1.09	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	0.82	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	2.45	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	1.44	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	1.09	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081100

Report Date: 10/08/08 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081101 Sample Collected: 09/09/08 10:10 Sample Status: COMPLETE AND

Sample Received: 09/10/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 1 of 1

Address/Location: IL-52-ANE815-0908

N BURLINGTON & CRAWFORD System ID: AM08408
Sample Point Code: 52_5 EID File #: 1020.001

Sample Type:COMPOSITELocCode:PORTHARISample Matrix:SEDIMENTCollected By:RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as

applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap).

Test Parameter Result Units MRL Method Date GENERAL TOTAL SOLIDS 91.3 % W/W 0.01 SM 2540 G 09/10/08 GC ANALYSIS POLYCHLORINATED BIPHENYLS (PCB)

TOTAL GOLIDG	31.5	/0 VV/VV	0.01	3W 2340 G	00/10/00
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)	•		-		•
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	EST 30	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1260	28	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	35900	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI	•		1		
Clay (<3.2 μm)	3.10	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	16.88	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	6.37	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	6.54	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μ m)	9.07	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μ m)	20.02	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	14.07	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	10.89	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	0.69	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 μm)	2.76	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	3.45	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	2.41	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μ m)	3.06	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	0.69	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081101

Report Date: 10/08/08 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081102

Sample Collected: 09/09/08 Sample Received: 09/10/08 11:16

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

IL-52-AAE651-0908

Report Page:

Page 1 of 1

Address/Location:

N PITTSBURG & RR TRACKS

System ID:

AM08409

Sample Point Code:

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1016/1242 and 1254; concentrations are flagged as estimates due to high surrogate recoveries and pattern overlap.

		:			Analysis Date
Test Parameter	Result	Units	MRL	Method	Date
GENERAL					
TOTAL SOLIDS	95.1	% W/W	0.01	SM 2540 G	09/12/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	EST 37	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	EST 108	μg/Kg dry wt	10	EPA 8082 ,	09/24/08
Aroclor 1260	EST 203	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	63800	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08

End of Report for Sample ID: FO081102

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: **FO081103**

Sample Collected: 09/09/08 Sample Received: 09/10/08 11:53

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-52-ANE921-0908

AM08410

PIW PARKING LOT

System ID:

Sample Point Code:

52 7

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap); MRLs are raised due to low percent solids.

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL					
TOTAL SOLIDS	47.3	.% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	09/24/08
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1254	EST 33	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1260	60	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1268	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
OUTSIDE ANALYSIS				,	
TOTAL ORGANIC CARBON	64100	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 µm)	5.38	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	9.75	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	9.63	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μm)	9.20	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	11.33	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μ m)	6.32	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	12.32	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	11.58	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	2.69	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 μm)	4.31	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	5.38	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	4.31	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	5.63	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	2.15	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081103

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081104

Sample Collected: 09/09/08 Sample Received: 09/10/08 13:36

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-ANE911-0908

System ID:

AM08411

Sample Point Code:

N ALTA & RR TRACKS

EID File #:

1020.001

Sample Type:

52_8

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB Aroclor MRLs are raised due to dilution required for high concentration of target analyte.

Test Parameter	Result	Units	MRL.	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	90.3	% W/W	0.01	SM 2540 G	09/10/08
METALS					•
ARSENIC	7.42	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	0.59	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	563	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	5000	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	272	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.036	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	321	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	0.84	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	437	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PCB)		•			
Aroclor 1016/1242	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1221	<2000	μg/Kg dry wt	2000	EPA 8082	09/29/08
Aroclor 1232	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1248	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1254	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1260	8160	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1262	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
Aroclor 1268	<1000	μg/Kg dry wt	1000	EPA 8082	09/29/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	32400	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 μm)	1.34	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	22.81	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μ m)	2.98	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	4.03	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μ m)	6.59	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	30.68	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	17.33	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μm)	9.64	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	0.27	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081104 Sample Collected: 09/09/08 13:36 Sample Status: COMPLETE AND

Sample Received: 09/10/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 2 of 2

Address/Location: IL-52-ANE911-0908

N ALTA & RR TRACKS System ID: AM08411

Sample Point Code:52_8EID File #:1020.001Sample Type:COMPOSITELocCode:PORTHARI

Sample Matrix: SEDIMENT Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: PCB Aroclor MRLs are raised due to dilution required for high concentration of target analyte.

•					Analysis
Test Parameter	Result	Units	MRL	Method	Date
Silt (22-13 µm)	1.34	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	0.80	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	0.57	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	08,0	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081104

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081105

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:15

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Address/Location:

IL-52-8675NCRAWFORD-0908

8675 N CRAWFORD

Sample Point Code:

52_9

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

System ID:

Report Page:

AM08412

Page 1 of 2

EID File #:

1020.001

LocCode:

PORTHARI

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1254 with some 1260 (estimated due to pattern overlap).

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	62.9	% W/W	0.01	SM 2540 G	09/10/08
METALS				•	
ARSENIC	7.08	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	1.91	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	5260	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	13500	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	150	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.087	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	3050	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	1.36	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	3120	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/29/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1254	60	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1260	EST 29	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	60800	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 μm)	2.81	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	13.30	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	9.66	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μm)	9.06	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	11.66	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 µm)	7.84	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μ m)	16.61	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	12.30	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081105

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:15

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-8675NCRAWFORD-0908 8675 N CRAWFORD

System ID:

AM08412

Sample Point Code:

52 9

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode:

PORTHARI Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1254 with some 1260 (estimated due to pattern overlap).

				Analysis
Result	Units	MRL	Method	Date
0.80	Fract %	0.01	ASTM D421/422	09/12/08
2.40	Fract %	0.01	ASTM D421/422	09/12/08
2.00	Fract %	0.01	ASTM D421/422	09/12/08
2.00	Fract %	0.01	ASTM D421/422	09/12/08
8.74	Fract %	0.01	ASTM D421/422	09/12/08
0.80	Fract %	0.01	ASTM D421/422	09/12/08
	0.80 2.40 2.00 2.00 8.74	0.80 Fract % 2.40 Fract % 2.00 Fract % 2.00 Fract % 8.74 Fract %	0.80 Fract % 0.01 2.40 Fract % 0.01 2.00 Fract % 0.01 2.00 Fract % 0.01 8.74 Fract % 0.01	0.80 Fract % 0.01 ASTM D421/422 2.40 Fract % 0.01 ASTM D421/422 2.00 Fract % 0.01 ASTM D421/422 2.00 Fract % 0.01 ASTM D421/422 8.74 Fract % 0.01 ASTM D421/422

End of Report for Sample ID: FO081105

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081106

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:49

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 2

Address/Location:

IL-52-AAE673-0908 N CRAWFORD & ST JOHNS

System ID:

AM08413

Sample Point Code:

52_10

UPDATED DATA

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

REASON: Adder/Not

LocCode: Collected By: RCB/JXB/LAS

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: MRLs are raised for PCB Aroclors due to high concentrations of non-target interferences; multiple clean-up procedures did not remove the interferences.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL	*				
TOTAL SOLIDS	64.9	% W/W	0.01	SM 2540 G	09/10/08
METALS				÷	
ARSENIC	5.62	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	1.22	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	954	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	2170	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	110	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.085	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	512	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	0.35	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	1160	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS			•	•	
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1221	<200	μg/Kg dry wt	200	EPA 8082	09/29/08
Aroclor 1232	<100	µg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1248	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1254	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1260	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1262	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
Aroclor 1268	<100	μg/Kg dry wt	100	EPA 8082	09/29/08
OUTSIDE ANALYSIS			•		
TOTAL ORGANIC CARBON	113000	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI		•		•	•
Clay (<3.2 µm)	7.47	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μ m)	15.20	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μ m)	4.74	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 µm)	4.00	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 µm)	6.14	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	20.36	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μ m)	12.75	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	9.28	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/21/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081106

Sample Collected: 09/09/08 Sample Received: 09/10/08 14:49

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-AAE673-0908 N CRAWFORD & ST JOHNS

System ID:

AM08413

Sample Point Code:

52 10

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By:

RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: MRLs are raised for PCB Aroclors due to high concentrations of non-target interferences; multiple clean-up procedures did not remove the interferences.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (13-9 μm)	1.07	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 µm)	4.27	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	5.33	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	3.73	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	2.46	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	3.20	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081106

Report Date: 10/21/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081107

Sample Collected: 09/09/08 Sample Received: 09/10/08 00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

DUPLICATE

AM08414

System ID:

Sample Point Code: Sample Type:

DUP COMPOSITE EID File #: LocCode:

1020.001 **PORTHARI**

Sample Matrix:

SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap); MRLs are raised due to low percent solids.

Test Parameter	Result	Units			Analysis
			MRL	Method	Date
GENERAL					
TOTAL SOLIDS	50.5	% W/W	0.01	SM 2540 G	09/10/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1221	<40	μ g/Kg dry wt	40	EPA 8082	09/24/08
Aroclor 1232	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1248	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1254	EST 61	μg/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1260	83	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1262	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
Aroclor 1268	<20	μ g/Kg dry wt	20	EPA 8082	09/24/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	77200	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 µm)	5.20	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 μm)	9.26	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μm)	9.29	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 µm)	9.23	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 µm)	11.43	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μ m)	5.50	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μ m)	10.76	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	11.52	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	2,83	Fract %	0.01	ASTM D421/422	09/12/08
Silt (22-13 μm)	5.20	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	6.61	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 μm)	5.20	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	5.15	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	2.83	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081107

Validated By:

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081108 Sample Collected: 09/10/08 08:20 Sample Status: COMPLETE AND

Sample Received: 09/10/08 VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP Report Page: Page 1 of 1

Address/Location: IL-52-ANE910-0908

N BALTIMORE & BRADFORD System ID: AM08415

Sample Point Code:52_11EID File #:1020.001Sample Type:COMPOSITELocCode:PORTHARI

Sample Matrix: SEDIMENT Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Detected PCB appears to be a mix of Aroclors, predominantly Aroclor 1260 with some 1254 (estimated due to pattern overlap).

Test Parameter		Units	MRL	Method	Analysis Date
	Result				
GENERAL					
TOTAL SOLIDS	97.5	% W/W	0.01	SM 2540 G	09/12/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)					-
Aroclor 1016/1242	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/29/08
Aroclor 1232	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1254	EST 123	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1260	515	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/29/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/29/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	85400	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08

End of Report for Sample ID: FO081108

Validated By:

Report Date: 10/08/08

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO081109

Sample Collected: 09/10/08 Sample Received: 09/10/08 09:05

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page: Page 1 of 2

Address/Location:

IL-52-AAE694-0908

N BRADFORD & RR TRACKS

System ID:

AM08416

Sample Point Code:

EID File #:

1020.001

Sample Type:

52_12

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	95.6	% W/W	0.01	S M 2540 G	09/10/08
METALS					
ARSENIC	2.61	mg/Kg dry wt	0.50	EPA 6020	09/22/08
CADMIUM	0.51	mg/Kg dry wt	0.10	EPA 6020	09/22/08
CHROMIUM	46.4	mg/Kg dry wt	5.00	EPA 6020	09/22/08
COPPER	69.7	mg/Kg dry wt	2.00	EPA 6020	09/22/08
LEAD	39.1	mg/Kg dry wt	1.00	EPA 6020	09/22/08
MERCURY	0.125	mg/Kg dry wt	0.010	EPA 6020	09/22/08
NICKEL	25.8	mg/Kg dry wt	5.00	EPA 6020	09/22/08
SILVER	0.10	mg/Kg dry wt	0.10	EPA 6020	09/22/08
ZINC	187	mg/Kg dry wt	5.00	EPA 6020	09/22/08
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB)	•				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	. 09/24/08
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1248	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1260	54	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/24/08
Aroclor 1268	<10	μ g/Kg dry wt	10	EPA 8082	09/24/08
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	40700	mg/Kg dry wt	100	EPA 9060 MOD	09/19/08
GRAIN SIZE BY ASTM - ARI					
Clay (<3.2 µm)	3.25	Fract %	0.01	ASTM D421/422	09/12/08
Coarse Sand (4750-2000 µm)	14.44	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (150-75 μ m)	3.26	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (250-150 μ m)	3.21	Fract %	0.01	ASTM D421/422	09/12/08
Fine Sand (425-250 μm)	4.80	Fract %	0.01	ASTM D421/422	09/12/08
Gravel (>4750 μm)	46.31	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (2000-850 μm)	8.47	Fract %	0.01	ASTM D421/422	09/12/08
Medium Sand (850-425 μ m)	5.84	Fract %	0.01	ASTM D421/422	09/12/08
Silt (13-9 μm)	1.00	Fract %	0.01	ASTM D421/422	09/12/08

Report Date: 10/08/08

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Sample ID: FO081109

Sample Collected: 09/10/08 Sample Received: 09/10/08 09:05

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name:

PORTLAND HARBOR INLINE SAMP

Report Page:

Page 2 of 2

Address/Location:

IL-52-AAE694-0908

N BRADFORD & RR TRACKS

System ID:

AM08416

Sample Point Code:

52 12

EID File #:

1020.001

Sample Type:

LocCode:

PORTHARI

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: RCB/JXB/LAS

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
Silt (22-13 µm)	. 1.75	Fract %	0.01	ASTM D421/422	09/12/08
Silt (32-22 μm)	2.00	Fract %	0.01	ASTM D421/422	09/12/08
Silt (7-3.2 µm)	2.25	Fract %	0.01	ASTM D421/422	09/12/08
Silt (75-32 μm)	2.42	Fract %	0.01	ASTM D421/422	09/12/08
Silt (9-7 μm)	1.00	Fract %	0.01	ASTM D421/422	09/12/08

End of Report for Sample ID: FO081109

Report Date: 10/08/08

Validated By:

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

ph: (503) 906.9200 fax: (503) 906.9210

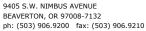
ORELAP#: OR100021

September 30, 2008

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 09/10/08 16:40. The following list is a summary of the Work Orders contained in this report, generated on 09/30/08 09:50.


If you have any questions concerning this report, please feel free to contact me.

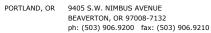
Work Order	Project	<u>ProjectNumber</u>
PRI0356	Portland Harbor	36238

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave. Project Number: 36238 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 09/30/08 09:50


ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO 081100	PRI0356-01	Soil	09/09/08 09:25	09/10/08 16:40
FO 081101	PRI0356-02	Soil	09/09/08 10:10	09/10/08 16:40
FO 081102	PRI0356-03	Soil	09/09/08 11:16	09/10/08 16:40
FO 081103	PRI0356-04	Soil	09/09/08 11:53	09/10/08 16:40
FO 081104	PRI0356-05	Soil	09/09/08 13:36	09/10/08 16:40
FO 081105	PRI0356-06	Soil	09/09/08 14:15	09/10/08 16:40
FO 081106	PRI0356-07	Soil	09/09/08 14:49	09/10/08 16:40
FO 081107	PRI0356-08	Soil	09/09/08 00:00	09/10/08 16:40
FO 081108	PRI0356-09	Soil	09/10/08 08:20	09/10/08 16:40
FO 081109	PRI0356-10	Soil	09/09/08 09:05	09/10/08 16:40

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

6543 N. Burlington Ave. Portland, OR 97203 Project Name: Portland Harbor

Project Number: 36238
Project Manager: Jennifer Shackelford

Report Created: 09/30/08 09:50

Organic Carbon, Total (TOC)

TestAmerica Connecticut

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PRI0356-01	(FO 081100)			Soil			Sam	pled: 09/09/	08 09:25		
Total Organic O Duplicates	Carbon -	9060	22500		100	mg/Kg	1x	20178	09/19/08 13:38	09/19/08 13:38	
PRI0356-02	(FO 081101)			Soil			Sam	pled: 09/09/	/08 10:10		
Total Organic O Duplicates	Carbon -	9060	35900		100	mg/Kg	1x	20178	09/19/08 13:51	09/19/08 13:51	
PRI0356-03	(FO 081102)			Soil			Samj	pled: 09/09	/08 11:16		
Total Organic O Duplicates	Carbon -	9060	63800		100	mg/Kg	1x	20178	09/19/08 14:05	09/19/08 14:05	
PRI0356-04	(FO 081103)			Soil			Samj	pled: 09/09	/08 11:53		
Total Organic C Duplicates	Carbon -	9060	64100		100	mg/Kg	1x	20178	09/19/08 14:19	09/19/08 14:19	
PRI0356-05	(FO 081104)			Soil			Samj	pled: 09/09	08 13:36		
Total Organic C Duplicates	Carbon -	9060	32400		100	mg/Kg	1x	20178	09/19/08 14:47	09/19/08 14:47	
PRI0356-06	(FO 081105)			Soil			Samj	pled: 09/09	08 14:15		
Total Organic O Duplicates	Carbon -	9060	60800		100	mg/Kg	1x	20178	09/19/08 15:02	09/19/08 15:02	
PRI0356-07	(FO 081106)			Soil			Samj	pled: 09/09	08 14:49		
Total Organic O Duplicates	Carbon -	9060	113000		100	mg/Kg	1x	20178	09/19/08 15:16	09/19/08 15:16	
PRI0356-08	(FO 081107)			Soil			Samj	pled: 09/09/	08 00:00		
Total Organic C Duplicates	Carbon -	9060	77200		100	mg/Kg	1x	20178	09/19/08 15:31	09/19/08 15:31	
PRI0356-09	(FO 081108)			Soil			Samj	pled: 09/10	08 08:20		
Total Organic C Duplicates	Carbon -	9060	85400		100	mg/Kg	1x	20178	09/19/08 15:45	09/19/08 15:45	
PRI0356-10	(FO 081109)			Soil			Samj	pled: 09/09	/08 09:05		
Total Organic (Duplicates	Carbon -	9060	40700		100	mg/Kg	1x	20178	09/19/08 16:13	09/19/08 16:13	

TestAmerica Portland

Howard Holmes, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: 36238 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/30/08 09:50

	Oı	ganic Carbo			Laborato Connectic	-	ality Con	trol Result	s				
QC Batch: 20178	Soil Pro	eparation Met	hod: NA										
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike % Amt RE		% RPD	(Limits)) Analyzed	Notes
LCS (220-20178-5)				QC Source	:			Extracted	: 09/19/08 13:	:24			
Total Organic Carbon - Duplicates	9060	4670		100	mg/Kg	1x		3530 1329	(28-172)			09/19/08 13:24	
Blank (220-20178-6)				QC Source	:			Extracted	: 09/19/08 13:	:31			
Total Organic Carbon - Duplicates	9060	5.9		100	mg/Kg	1x						09/19/08 13:31	J

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.Project Number:36238Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford09/30/08 09:50

Notes and Definitions

Report Specific Notes:

J - Sample result is greater than the MDL but below the CRDL

Laboratory Reporting Conventions:

DET - Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND - Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA _ Not Reported / Not Available

dry - Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

wet Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported

on a Wet Weight Basis.

RPD - RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

MRL - METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table.

MDL* - METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B.
 *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported as Estimated Results.

Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution found on the analytical raw data.

distribit round on the unarytical raw date

Reporting - Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and percent solids, where applicable.

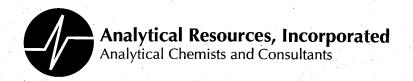
Electronic -Signature

- Electronic Signature added in accordance with TestAmerica's *Electronic Reporting and Electronic Signatures Policy*.

Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

Howard Holmes, Project Manager


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

Test/America

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 1977 F. Fittal Ave. Spokane, WA 99206-5303)405 SW Numbus Ave. Beaverton, OR 97008-7145. where the transfer with the post is the same variable interaction $\Delta K^{\rm MO}(400)$ with the 425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 565-9219

ANALYTICAL TESTING CORPORATION		
CHAIN OF C	USTODY REPORT	Work Order #: RIO3500
REPORT TO Jennifer Shackelford	Charles Lytle	TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses
PROJECT NAME: POSHANA Has bus	P.O. NUMBER: 36, 238 PRESERVATIVE	Petroleum Hydrosarbon Analyses 5 4 3 2 1 < 1 Petroleum Hydrosarbon Analyses 5 4 3 2 1 < 1
PROJECT NUMBER:	REQUESTED ANALYSES	OTHER Specify: * Turner ound Requests less than standard may incur Rush Charges.
SAMPLED BY: CLIENT SAMPLE SAMPLING IDENTIFICATION DATE/TIME		MATRIX # OF LOCATION TA (W. S. O) CONT. COMMENTS WO ID
FU 081100 919108 9:25 X X		S 2
2 FO 081101 10:10 X X		S A
1 CO 00 100 A 1110		5 2
FO 081104 13:36 X X		S 2
FO 081105 14:15 X X		<u>S</u> 2
FO 081106 14:49 X X		S 2 S 2
€0 081107 V - X X		SI
FO 081108 9/10/08 8:20 X FO 081109 J 9:05 X X		S 2
RELEASED BY: KUSTEN WINT PRINT NAME: KOSSEN WOUTH	Hord 11ME: 15:20 PRINT NAME: PUBLE	FIRM: [AP TIME: 15. 20 DATE: 9-10-0
RELEASED BY: Sold FIRM FIRM TAPE ADDITIONAL REMARKS:	DATE: 9/10/E RECEIVED BY. TIME: 16:40 PRINT NAME.	ILSON FIRM: THE TIME: 16:40
ADDITIONAL REMARKS.		29°C PAGE OF

	Tes	stAmerica Sample	Receipt Che	cklist		Coolar (King)
Received by:	Unpacked by:	Logged-in by:		Work Order No. TRI	0354	
*(section A)	*(section B)	1 (Client: City of T	ortland	
Date: 9-10-08	Date: <u>7-70-0</u> ŷ	Date:	3	Project: Portland	Harbor	^
Time: /6 3 4/0	Initials:	Initials:		lempera	ture out of range	; ;
***ESI Clients (see Section C		lass NA (oil/air samples	s, ESI client)	Digi #1 Digi #2 Temperature Blank:	No 	ot enough Ice o Ice e Melted (in 4 Hours her:
Custody Seals: (#	_)		В	<u>Sample Status:</u> (If N circled, see N	IOD)	
Signature: Y N Dated:	Receiv	ved from:	Genera	<u>ıl</u> :	•	
X_None	<u>ILEGEN</u>		l In	itact?	\sqrt{Y} N	
Container Type:		XTA Courier Senvoy	#	Containers Match COC?	YN	none given
#Cooler(s)	1	UPS	1 10	s Match COC?	$\langle Y \rangle N$	_
#Box(s)		Fed Ex	•	alyses Requested:	"	
None (#Other:)	Client	•	/anide Checked?	Y N	(NA)
Coolant Type:		TDP	•	orrect Type & Preservation?	Y N	
Gel Ice		DHL	;		/	
Cerice		SDS	İ	dequate Volume?	Y / N	4
None		Mid-Valley	l .	ithin Hold Time?	N	
		GS/TA		es/ Oil Quality:		\sim
Packing Material:		GS/Senvoy	· VOA:	s/ Syringes free of Headspace?	Y N	NA)
Bubble Ba	gs	Other:	TB o	not provided	Y N	Na
Styrofoam	Cubbies		<u>Metals</u> :			
Peanuts			H	NO3 Preserved?	Y N	(NA)
None (Other:)		Di	ssolved Metals Filtered?	Y N	NA
C ***ESI Clients Only:			FED EX/ UPS:	Was the tracking paper keep	able? YES	NO
Temperature Blank:	°C not provided	Digi: # 1 #2	If circled	NO, what is the Tracking number	?	
All preserved bottl All preserved acco		NA (voas/soils/all unp.) NOD) NA (voas/soils/all unp.)	FED EX	Goldstreak UPS DH		ner:
Comments:		Project	Managers:			
		PM Reviewed:		(Initial/Date)		

October 6, 2008

Mr. Howard Holmes Test America, Inc. 9405 SW Nimbus Ave. Beaverton, OR 97008

Subject: Project No.: PRI0356;

ARI Project No.: NO98

Dear Mr. Holmes,

The following pages provide the information you requested. Please call me to discuss any questions or comments you may have on the data or its presentation.

Best Regards,

Analytical Resources Incorporated

Lieuna Sunth for Havold Benny.

Harold Benny

Geotechnical Division Manager

206-695-6246

haroldb@arilabs.com

Enclosures

cc: File NO98

Client: Test America, Inc.

ARI Project No.: NO98

Client Project: PRI0356

Case Narrative

- 1. Eight samples were received on September 12, 2008, and were in good condition.
- 2. The samples were submitted for grain size distribution, according to ASTM D422. The samples were prepared according to ASTM D421 (dry prep).
- 3. The samples contained organic material such as twigs, roots, leaves, etc. that may have broke down during the analysis, and may have affected the reported grain size distribution.
- 4. An assumed specific gravity of 2.65 was used in the calculations.
- 5. A standard milkshake mixer type device was used to disperse the samples.
- 6. The data is provided in summary tables and plots.
- 7. There were no further anomalies in the samples or test method.

Approved by: A

Title:

Laboratory Supervisor

Date

N098

SUBCONTRACT ORDER

TestAmerica Portland PRI0356

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Howard Holmes

RECEIVING LABORATORY:

Analytical Resources, Inc. (ARI) 4611 S 134th Place, Suite 100

Tukwilla, WA 98168 Phone :(206) 621-6490 Fax: 206-621-7523 Project Location:

Receipt Temperature:_

°C

Ice: Y / N

Analysis	Units	Due	Expires	Comments
Sample ID: PRI0356-01	Soil		Sampled: 09/09/08 09:25	}
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 09:25	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)				
Sample ID: PRI0356-02	Soil		Sampled: 09/09/08 10:10	13
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 10:10	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)				
Sample ID: PRI0356-04	Soil		Sampled: 09/09/08 11:53	C
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 11:53	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)			,	
Sample ID: PRI0356-05	Soil		Sampled: 09/09/08 13:36	· T)
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 13:36	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)				
Sample ID: PRI0356-06	Soil		Sampled: 09/09/08 14:15	E
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 14:15	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)				
Sample ID: PRI0356-07	Soil		Sampled: 09/09/08 14:49	F
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 14:49	sub to Analytical Resources Inc (ARI)
Containers Supplied:	-			· , ,
8 oz. jar (A)				

Released By

Date/Time

Received By

Date/Time

Reteased By Date/Time

Received By

Date/Time

Page 1 of 2

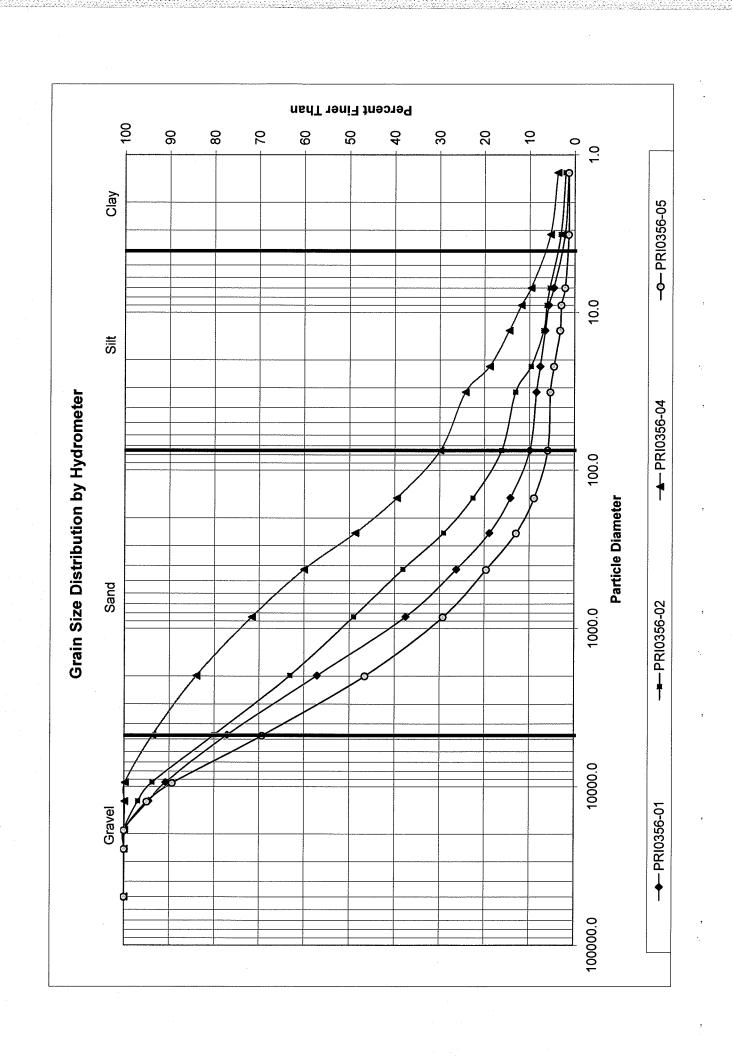
1098

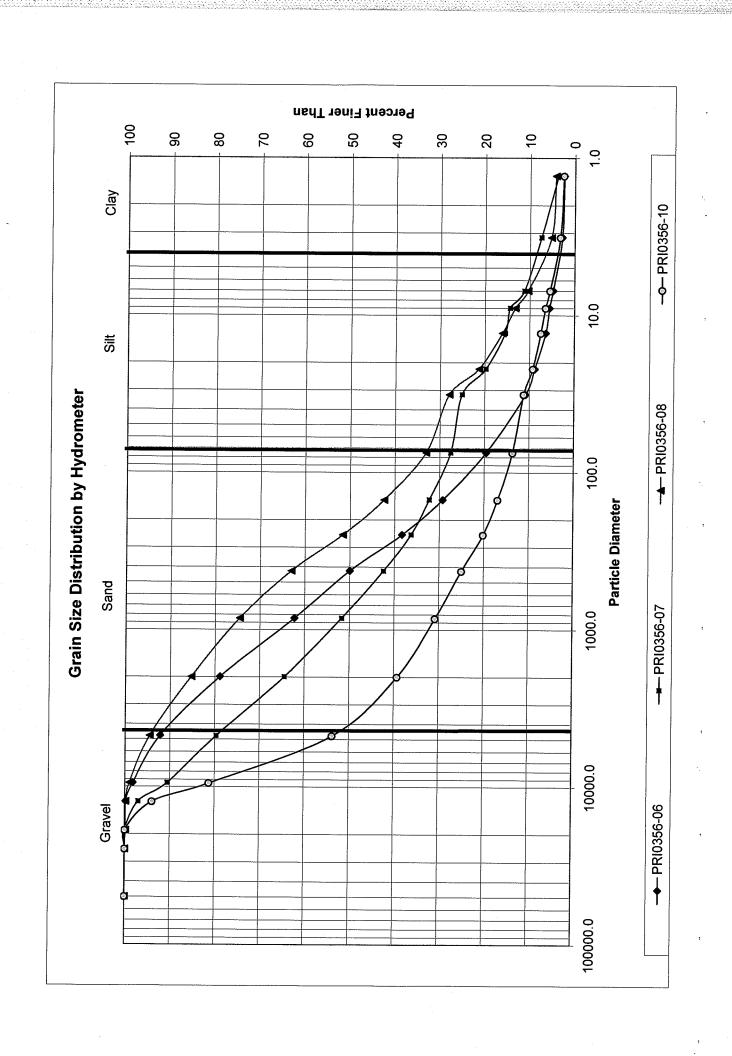
SUBCONTRACT ORDER

TestAmerica Portland PRI0356

Analysis	Units	Due	Expires	Comments
Sample ID: PRI0356-08	Soil		Sampled: 09/09/08 00:00	G
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 00:00	sub to Analytical Resources Inc (ARI)
Containers Supplied:				,
8 oz. jar (A)				
Sample ID: PRI0356-10	Soil		Sampled: 09/09/08 09:05	H
Grain Size (ASTM) - SUB	ug/l	09/24/08	03/08/09 09:05	sub to Analytical Resources Inc (ARI)
Containers Supplied:				
8 oz. jar (A)				

Test America, Inc. PRI0356


					_				·
	1.3	4.	2.1	3.8	13	2.4	3.7	4 3	2.5
	3.2	2.2	3.1	5.4	13	28	7.5	5.2	3.2
	7	4.6	5.5	9.7	2.1	4 8	11.2	10.4	5.5
	6	5.7	6.2	11.8	3.0	5.6	14.4		
	13	6.5	6.9	1	3.2	6.4	15.5	16.1	7.5
	22	7.6	9.7	18.8	4.6	8.8	19.7	21.3	9.2
	32	8.5	13.1	24.2	5.4	10.8	25.1	27.9	11.2
Φ	#200 (75)	9.9	16.2	29.9		19.6	27.5	33.0	
Percent Finer (Passing) Than the Indicated Size	#100	14.2	22.5	39.5	8.9	29.2	32.3	42.3	
the Indic	#60 (250)	18.9	29.1	48.7	13.0	38.3	36.3	51.5	20.1
ıg) Than	#40 (425)	26.2	38.1	0.09	19.5	49.9	42.4	63.0	24.9
r (Passin	#20 (850)	37.5	49.0	71.6	29.2	62.2	51.7	74.5	30.8
ent Fine	#10 (2000)	57.1	63.1	83.9	46.5	78.9	64.4	85.2	39.3
Perc	#4 (4750)	77.0	80.0	93.7	69.3	92.2	79.6	94.5	53.7
	3/8"	90.8	93.7	99.8	89.3	98.2	90.5	99.0	81.2
	1/2"	94.5	96.9	99.9	94.9	99.8	97.0	8.66	94.0
	3/4"	100.0	100.0	99.9	100.0	99.9	100.0	99.8	100.0
	۱	100.0 100.0 100.0 94.5	100.0 100.0 100.0 96.9	100.0 100.0 99.9	100.0 100.0 100.0 94.9	100.0 100.0 99.9	100.0 100.0 100.0 97.0 90.5	100.0 100.0 99.8 99.8 99.0	100.0
		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Sieve Size (microns)	PRI0356-01	PRI0356-02	PRI0356-04	PRI0356-05	PRI0356-06	PRI0356-07	PRI0356-08	PRI0356-10 100.0 100.0 100.0 94.0 81.2


Testing performed according to ASTM D421/D422

Test America, Inc. PRI0356

Percent Retained in Each Size Fraction

Description)%	%Coarse Gravel			% Gravel	-	% Coarse Sand	% Medium Sand	ım Sand		% Fine Sand	70	% Very Coarse Silt	% Coarse Silt	% Medium Silt	% Fine Silt	% Fine Silt	% Very Fine Sift	% Clay
Particle Size (microns)	3-2"	2-1"	1-3/4"		1/2-3/8"	3/8"-4750	3/4-1/2" 1/2-3/8" 3/8"-4750 4750-2000	2000-850	850-425	425-250	250-150	150-75	75-32	32-22	22-13	13-9	2-6	7-3.2	<3.2
PR10356-01	00.0	0.00	0.00	5.48	3.77	13.71	19.98	19.60	11.28	7.32	4.67	4.30	1.44	0.82	1.09	0.82	1 09	2.45	2.18
PRI0356-02	0.00	0.00	0.00	3.06	3.20	13.76	16.88	14.07	10.89	9.07	6.54	6.37	3.06	3.45	2.76	69.0	0.69	241	2 40
PRI0356-04	0.00	0.00	0.08	0.03	0.10	6.11	9.75	12.32	11.58	11.33	9.20	9.63	5.63	5.38	4.31	2.69	2.15	4.31	2 2 2
PRI0356-05	0.00	0.00	0.00	5.11	5.58	19.99	22.81	17.33	9.64	6.59	4.03	2.98	0.57	0.80	1.34	0.27	08 C	080	20.50
PR10356-06	0.00	0.00	0.07	0.09	1.65	6.03	13.30	16.61	12.30	11.66	90.6	9.66	8.74	2.00	2.40	080	08.0	2000	2 8.4
PRI0356-07	0.00	0.00	0.00	2.97	6.49	10.90	15.20	12.75	9.28	6.14	4.00	4.74	2.46	5.33	4.27	1 07	3.20	3 73	7 47
PRI0356-08	0.00	0.00	0.18	0.02	0.82	4.48	9.26	10.76	11.52	11.43	9.23	9.29	5.15	6.61	5.20	2 83	2 83	5.20	7.30
PRI0356-10	0.00	0.00	0.00	6.03		12.73 27.55	14.44	8.47	5.84	4.80	3.21	3.26	2.42	2.00	1 75	100	100	2.25	3.25
												21.0		ì		2	2	21:1	0.7.0

2010 Sediment Trap Sampling

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review 2010 Sediment Trap Sampling City Outfall Basin 52

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: October 18, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) between February 2010 and June 2010. Five sediment trap samples (FO105694, FO105695, FO105696, FO105697, FO105698), one duplicate sample (FO105702), and one equipment blank sample (FO105699) were collected in City Outfall Basin 52 between February 2, 2010 and June 17, 2010.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
 - o Metals EPA 6020
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Pace Analytical Services (Pace)
 - o PCB Congeners EPA 1668A

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Due to poor internal standard recoveries and interferences in the OC extracts, some samples were re-extracted and run in separate batches during the subcontracted laboratory analysis of PCB congeners. As a result, three method blanks were processed during the PCB laboratory analysis; one with each batch. One method blank was analyzed with sample FO105694. A second method blank was processed with sample FO105696. A third method blank was processed with samples FO105695, FO105697, FO105698 and FO105702. PCB congeners 31 and 52 were detected in the first method blank. The concentrations of these two congeners in the associated sample were less than 10 times the concentrations detected in the method blank; therefore, the results are qualified with a "B" flag in the subcontracted report. PCB congeners 1, 2, 3, 11, 20, 28, 31, and 52 were detected in the method blank processed with sample FO105696. The concentrations of congeners 1, 2, 3, and 11 in the sample were less than 10 times the concentrations in the method blank; therefore, the results are qualified with a "B" flag in the subcontracted report and as potentially high estimates "J" in the accompanying data tables. Concentrations of congeners 20, 28, 31, and 52 in the sample were 10 times greater than the concentrations detected in the method blank; therefore, the results are not qualified. No analytes were detected in the method blank processed along with the remaining PCB congener samples.

Two method blanks were processed during the laboratory analysis of TOC. There is no reported detection of TOC in either method blank sample.

Internal Standard Recoveries

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. With the exception of sample FO105696 and its associated QC samples, the labeled internal standard recoveries obtained for the sample extracts were within the method-specified control limits. Internal standard recoveries outside of method-specified control limits are flagged "R" in the subcontracted laboratory report. Congeners associated with the impacted internal standards in sample FO105696 are qualified as estimates (EST).

Interfering background constituents impacted the measurement of some PCB congeners and some isotopically-labeled internal standards. The affected values are flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. Estimated maximum possible concentrations (EMPCs) are provided for affected congeners, and values are qualified with an "EMPC" flag. These values are not included in the total homolog and total PCB values. Congeners associated with impacted internal standards are qualified as estimates.

Due to the poor internal standard recovery in sample FO105696 and its associated QC samples, total homolog and total PCB concentrations for this sample are considered estimates. For the remaining five samples, estimated congener value(s) are not significant relative to the total PCB concentration (i.e. <1%), and total homolog and total PCB concentrations are considered only slightly biased.

Matrix Spike/Matrix Spike Duplicate

MS/MSD samples were processed during the subcontracted analysis of TOC. Analyte recoveries and relative percent differences (RPDs) were within laboratory control limits for the MS/MSD samples.

Laboratory Control Samples

As with the method blank samples, three sets of LC/DLC samples were processed during the laboratory analysis of PCB congeners; one with each batch. LC and DLC recoveries and RPDs were within laboratory control limits for the batch that included sample FO105694 and the batch that included samples FO105695, FO105697, FO105698, and FO105702. The spikes associated with sample FO105696 exhibited elevated recoveries for congeners 1, 3, and 4 due to their association with poorly recovered internal standards. Spiked congener 1 was not recovered and is flagged "NC" (not calculated) in the subcontracted laboratory report. LC/DLC samples were processed during the laboratory analysis of TOC. LC and DLC recoveries and RPDs were within laboratory control limits for the TOC analysis.

Other

During the PCB congener analysis, the initial extraction batch that included samples FO105695, FO105696, FO105697, FO105698, and FO105702 exhibited poor internal standard recovery and

interferences in the QC extracts. Accordingly, the sample set was re-extracted, with the exception of sample FO105696 for which insufficient volume was available for re-extraction.

A separate PCB congener analysis was conducted for the field equipment blank sample, FO105699. No congeners were detected in the field blank or in the laboratory blank processed with this sample. All associated QA/QC samples were within method specified reporting limits.

WPCL reports that method reporting limits associated with the PCB Aroclor analysis were elevated in samples FO105695 and FO105697 due to low percent solids. Sample FO105697 exhibited trace levels of PCB tentatively identified as mixed Aroclors 1254/1260. Sample FO105694 exhibited trace levels of Aroclor 1260 slightly below the method reporting limit (MRL). Several unidentified non-Aroclor chromatographic peaks were detected in samples FO105697, FO105698, and FO105702. WPCL reports that quantification of PCB Aroclors may be imprecise in samples FO105698 and FO105702 due to overlapping components of the detected Aroclors.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

City of Portland Chain-of-Custody Bureau of Environmental Services

Date: 6/17/2010

Collected By: Page: AJA, PTB

H.XI3	المال المالية الم	52 Sed	Basin	mwater	Sof Sten	d ter	t ortigi	Sampling	dir ido	tooo ocain	004 1 Z000_7	mproampa	, , אמוכו סם		
Kecelved By: 4. Signature: Time:	Time:		ڊ	c	Signature:	Si gi	•	Time:	 i	=		ure:	Signature:	Time: 125 2	ature: A A A A A A A A A A A A A A A A A A A
			J	P .	Calvad	밁					2	Received By:	_		eived By: / 1,
Printed Name: Date:	Date:			8	Printed Name:	Prin		Date:	02			Printed Name:		个 Date:///7//0	Service Servic
Relinquished By: 4. Signature:	Time:		ر. ب	(G nall	Signature:	Sig		Time:	닭			ure:		252 June 5	ature: PURT By
r#			$\ $			∦					3v: 2.	Relinguished By:	Reli		inquished By: 1.
											,				
	9							•	J.	1230	6/17/10	SANATBODY 6		SIFT Equipment	FO105699
			:										-		
75=66.6	•		•				0	•	0	THE PARTY OF THE P	C/17/10) gu		Duplicate	FO105702
TS= (c/c) (g 974.4 g Total Wet Weight	(5)	•	•				•	49	0	1142	6/17/10	_ST4	52	ST-52-AAE516-0610 8675 N CRAWFORD ST	FO105698
	•	•	0				•	6	0	1038	6/17/10	52_ST3	 	ST-52-AAE700-0610 Nettsburg, sw of RR tracks sift sed trap-	FO105697
「S-54. 16.7 g Total Wet Weight		•						•	Ó	1548	6/16/10	ST3	s 52	ST-52-AAE700-0610 N PITSBURG, SW OF RR TRACKS STANDARD BOTTLE	FO105696
TS=48.2 258.9 g Total Wet Weight	6	•	6			ļ. <u>.</u>	•	•	0	1026	6/17/10	_ST2	A 52	ST-52-AAE513-0610 N BRADFORD & ALTA	FO105695
TS=5 8, 2 273.1 g Total Wet Weight	•	•	•				•	6	0	943	6/17/10	2_ST1	52	ST-52-AAE498-0610 N BALTIMORE & BRADFORD	FO105694
	-	TS*	тос	Grain Siz	SVOCs	PAH+Pht	PCB Aroo	 	Sample Type	Sample Time	Sample Date	Point Code	-	Location	WPCL Sample I.D.
Analyses colded per PHA -6/21/0	als (As, Cd Cr, , Ag, Zn) + Hg			9		halates	iors (Low-level)	를 geners (All 209)	etain sam	ssible to r	stody st aliquot po s.	2/2/2010 2/2/2010 3/16/2010 the smalle ip analyse	ap Cha stalled: moved: (m to use follow-u	Sediment traps installed: 2/2/2010 Sediment traps removed: 6/16/2010 Sediment traps removed: 6/16/2010 VPCL, care should be taken to use the smallest alique volume for additional follow-up analyses.	Sediment traps installed: 2/2/2010 Sediment traps removed: 6/16/2010 Sediment traps removed: 6/16/2010 Total Solids to be done at WPCL, care should be taken to use the smallest allquot possible to retain sample volume for additional follow-up analyses.
Comments	Metals	eneral	Gen	T	ď	Organics]]	╁	.					(a 50 Sadinasta	
Requested Analyses	Requeste							22	NT/WA	SEDIMENT/WARE	Matrix:	~			ile Number: 1020.005
										٦	ER SAM	RMWAT	STOF	PORTLAND HARBOR STORMWATER SAMP	roject Name: PORTI
		:								P	1831	B			

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105694

Sample Collected: 06/17/10 Sample Received: 06/17/10

09:43

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE498-0610

System ID:

AO05580

Sample Point Code:

N BALTIMORE & BRADFORD 52_ST1

EID File #:

1020.005

Sample Type:

COMPOSITE

LocCode:

PORTHASW

Sample Matrix:

SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: In addition to the Aroclor 1248 reported, this sample contains trace level of Aroclor 1260 (est. 9 ug/Kg).

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL	A A A A A A A A A A A A A A A A A A A				
TOTAL SOLIDS	58.2	% W/W	0.01	SM 2540 G	06/17/10
METALS				•	
ARSENIC	3.19	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	0.66	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	99.5	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	97.3	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	59.3	mg/Kg dry wt	Ó.10	EPA 6020	06/25/10
MERCURY	0.048	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	43.2	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.21	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	350	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS			•		
POLYCHLORINATED BIPHENYLS (PO	CB)				
Aroclor 1016/1242	´ <10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1248	[°] 11	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1254	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	46000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL COM			•	1000 NG-	074540
Refer to Contract Report	Completed.	ng/Kg dry wt		EPA 1668 MOD	07/15/10

End of Report for Sample ID: FO105694

Validated By:

Report Date: 08/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105695

Sample Collected: 06/17/10 Sample Received: 06/17/10 10:26

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE513-0610

AO05581

N BRADFORD & ALTA NEAR ST JOHNS PS

System ID:

1020.005

Sample Point Code:

52 ST2

EID File #: LocCode:

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

Collected By: AJA/PTB

PORTHASW

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Reporting limits for PCB Aroclors are raised due to low %solids.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL TOTAL SOLIDS	48.2	% W/W	0.01	SM 2540 G	06/17/10
	13.2	,,,,,,,,			
METALS	5.05		0.50	EPA 6020	06/25/10
ARSENIC	5.25	mg/Kg dry wt	0.50		
CADMIUM	1.01	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	162	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	254	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	86.5	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.068	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	99.2	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.39	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	462	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (PCB))	•			
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	06/22/10
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1254	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1260	130	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
OUTSIDE ANALYSIS		. •			
TOTAL ORGANIC CARBON	81000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL CONGI	ENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105695

Report Date: 08/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105696

Sample Collected: 06/16/10 Sample Received: 06/17/10

15:48

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE700-0610

System ID:

AO05582

Sample Point Code:

N PITTSBURGH SW OF RR TRKS- STANDARD BOT

EID File #:

1020.005

Sample Type:

52_ST3

LocCode:

PORTHASW

Sample Matrix:

COMPOSITE SEDIMENT

Collected By: AJA/PTB

Comments:

Wet Weight: 16.7g QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL TOTAL SOLIDS	54.1	% W/W	0.01	SM 2540 G	06/17/10
OUTSIDE ANALYSIS POLYCHLORINATED BIPHENYL CON- Refer to Contract Report	GENERS -PACE Completed	ng/Kg dry wt	•	EPA 1668 MOD	07/14/10

End of Report for Sample ID: FO105696

Validated By:

Report Date: 08/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105697

Sample Collected: 06/17/10 Sample Received: 06/17/10

10:38

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE700-0610 N PITTSBURGH SW OF RR TRKS- SIFT SEDTRAP

System ID:

AO05583

Sample Point Code: Sample Type:

52 ST3

EID File #:

1020.005

Sample Matrix:

COMPOSITE SEDIMENT

LocCode: Collected By: AJA/PTB

PORTHASW

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Reporting limits for PCB Aroclors are raised due to low %solids. This sample exhibited trace level PCB tentatively identified as mixed Aroclors 1254/1260. Also noted were several unidentified non-Aroclor chromatographic peaks.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	46.6	% W/W	0.01	SM 2540 G	06/17/10
METALS	•				
ARSENIC	4.57	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.51	mg/Kg dry.wt	0.10	EPA 6020	06/25/10
CHROMIUM	98.5	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	150	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	104	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.112	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	60.0	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.25	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	730	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS	<i>y</i>	·	•	•	
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1221	<40	μg/Kg dry wt	40	EPA 8082	06/22/10
Aroclor 1232	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1248	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1254	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1260	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1262	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1268	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
OUTSIDE ANALYSIS				÷	
TOTAL ORGANIC CARBON	84000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL CONGE				- D. (400 1:0-	004046
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105697

Report Date: 08/20/10 Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105698

Sample Collected: 06/17/10

Sample Status: COMPLETE AND

Sample Received: 06/17/10

VALIDATED

Proj./Company Name:

PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

ST-52-AAE516-0610 8675 N CRAWFORD ST

System ID:

AO05584

Sample Point Code:

52_ST4

EID File #:

1020.005

Sample Type:

COMPOSITE

LocCode:

PORTHASW

Sample Matrix:

SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Quantification of PCB Aroclors may be imprecise due to overlapping components of the detected Aroclors. Also noted were several unidentified non-Aroclor chromatographic peaks.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL				•	
TOTAL SOLIDS	66.6	% W/W	0.01	SM 2540 G	06/17/10
METALS	,				
ARSENIC	3.34	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.18	mg/Kg dry wt	0.10	EPA 6020	06/25/10
сняомим	243	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	309	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	89.8	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.079	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	112	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.21	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	692	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS					*
POLYCHLORINATED BIPHENYLS (PC	B)				
Aroclor 1016/1242	[*] 78	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1254	110	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	35000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL CON	GENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105698

Report Date: 08/20/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

12:30

Sample ID: FO105699

Sample Collected: 06/17/10

Sample Status: COMPLETE AND

Sample Received: 06/17/10

VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP

Report Page:

Page 1 of 1

Address/Location:

SIFT EQUIPMENT BLANK

System ID:

AO05585

Sample Point Code:

EQBLANK

EID File #:

1020.005

Sample Type:

GRAB

LocCode:

PORTHASW

Sample Matrix:

DIWTR

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

				•	Analysis
Test Parameter	Result	Units	MRL	Method	Date
METALS					
MERCURY	<0.0020	μg/L	0.002	WPCLSOP M-10.02	06/25/10
METALS BY ICP-MS (TOTAL) - 8					
ARSENIC	<0.10	μg/L	0.1	EPA 200.8	06/24/10
CADMIUM	<0.10	μg/L	0.1	EPA 200.8	06/24/10
CHROMIUM	< 0.40	μg/L	0.4	EPA 200.8	06/24/10
COPPER	0.36	μg/L	0.2	EPA 200.8	06/24/10
LEAD	<0.10	μg/L	0.1	EPA 200.8	06/24/10
NICKEL	<0.20	μg/L	0.2	EPA 200.8	06/24/10
SILVER	<0.10	μg/L	0.1	EPA 200.8	06/24/10
ZINC	<0.50	μg/L	0.5	EPA 200.8	06/24/10
OUTSIDE ANALYSIS					
POLYCHLORINATED BIPHENYL CON	GENERS -PACE			•	
Refer to Contract Report	Completed	ng/L		EPA 1668 MOD	06/30/10

End of Report for Sample ID: FO105699

Report Date: 08/20/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105702 Sample Collected: 06/17/10 00:00 Sample Status: COMPLETE AND

Sample Received: 06/17/10 VALIDATED

Proj./Company Name: PORTLAND HARBOR STORMWATER SAMP Report Page: Page 1 of 1

Address/Location: DUPLICATE

Sample Point Code: DUP System ID: AO05699
EID File #: 1020.005

Sample Type: COMPOSITE LocCode: PORTHASW

Sample Matrix: SEDIMENT Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. LAB: Quantification of PCB Aroclors may be imprecise due to overlapping components of the detected Aroclors. Also noted were several unidentified non-Aroclor chromatographic peaks.

Test Parameter	Result	Units	MRL	Method	Analysis Date
METALS					
ARSENIC	2.81	mg/Kg dry wt	0.50	EPA 6020	06/25/10
CADMIUM	1.05	mg/Kg dry wt	0.10	EPA 6020	06/25/10
CHROMIUM	280	mg/Kg dry wt	0.50	EPA 6020	06/25/10
COPPER	339	mg/Kg dry wt	0.25	EPA 6020	06/25/10
LEAD	204	mg/Kg dry wt	0.10	EPA 6020	06/25/10
MERCURY	0.067	mg/Kg dry wt	0.010	EPA 6020	06/25/10
NICKEL	122	mg/Kg dry wt	0.25	EPA 6020	06/25/10
SILVER	0.19	mg/Kg dry wt	0.10	EPA 6020	06/25/10
ZINC	613	mg/Kg dry wt	0.50	EPA 6020	06/25/10
GC ANALYSIS					
POLYCHLORINATED BIPHENYLS (P	CB)		•		
Aroclor 1016/1242	101	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	06/22/10
Aroclor 1232	· <10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1248	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1254	422	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	06/22/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	40000	mg/Kg dry wt	2000	EPA 9060 MOD	07/01/10
POLYCHLORINATED BIPHENYL CO	NGENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	08/10/10

End of Report for Sample ID: FO105702

Report Date: 08/20/10 Validated By:

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

August 18, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor

Enclosed are the results of analyses for samples received by the laboratory on 06/22/10 16:45. The following list is a summary of the Work Orders contained in this report, generated on 08/18/10 13:27.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	ProjectNumber
PTF0689	Portland Harbor	Stormwater Basin 52

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name: Report Created: 6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Portland, OR 97203 Jennifer Shackelford 08/18/10 13:27 Project Manager:

ANALYTICAL REPORT FOR SAMPLES Sample ID **Date Received** Laboratory ID Matrix **Date Sampled** FO105694 PTF0689-01 Other dry 06/17/10 09:43 06/22/10 16:45 FO105695 PTF0689-02 Other dry 06/17/10 10:26 06/22/10 16:45 FO105696 PTF0689-03 Other dry 06/17/10 15:48 06/22/10 16:45 FO105697 PTF0689-04 Other dry 06/17/10 10:38 06/22/10 16:45 FO105698 PTF0689-05 Other dry 06/17/10 11:42 06/22/10 16:45 PTF0689-06 FO105702 Other dry 06/17/10 00:00 06/22/10 16:45

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution LaboratoryProject Name:Portland Harbor6543 N. Burlington Ave.Project Number:Stormwater Basin 52Report Created:Portland, OR 97203Project Manager:Jennifer Shackelford08/18/10 13:27

Analytical Case Narrative

TestAmerica - Portland, OR

PTF0689

This report is not complete without the analytical data from Pace Analytical for the PCB analysis.

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manage

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Report Created: Project Number: Stormwater Basin 52 Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Percent Dry Weight (Solids) per ASTM D2216-80

TestAmerica Portland

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTF0689-01	(FO105694)			Ot	her dry		Sam	pled: 06/17/	10 09:43		
% Solids		ASTM D2216-80	58.2		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-02	(FO105695)			Ot	her dry		Sam	pled: 06/17/	10 10:26		
% Solids		ASTM D2216-80	48.2		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-03	(FO105696)			Ot	her dry		Sam	pled: 06/17/	10 15:48		
% Solids		ASTM D2216-80	54.1		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-04	(FO105697)			Ot	her dry		Sam	pled: 06/17/	10 10:38		
% Solids		ASTM D2216-80	46.6		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-05	(FO105698)			Ot	her dry		Sam	pled: 06/17/	10 11:42		
% Solids		ASTM D2216-80	66.6		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	
PTF0689-06	(FO105702)			Ot	her dry		Sam	pled: 06/17/	10 00:00		
% Solids		ASTM D2216-80	66.6		0.0100	% by Weight	1x	10F0748	06/23/10 14:13	06/23/10 14:13	

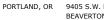
TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Organic Carbon, Total (TOC)


TestAmerica Seattle

Analyte	Method	Result	MDL* MI	RL Units	Dil	Batch	Prepared	Analyzed	Notes
PTF0689-01 (FO105	694)		Other dr	7	Sam	pled: 06/17	/10 09:43		
Total Organic Carbon	9060	46000	200	00 mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-02 (FO105	695)		Other dr	7	Sam	pled: 06/17	/10 10:26		
Total Organic Carbon	9060	81000	200	00 mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-04 (FO105	697)		Other dr	7	Sam	pled: 06/17	/10 10:38		
Total Organic Carbon	9060	84000	200	00 mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-05 (FO105	698)		Other dr	7	Sam	pled: 06/17	/10 11:42		
Total Organic Carbon	9060	35000	200	00 mg/Kg	1x	67010	07/01/10 09:11	07/01/10 09:11	
PTF0689-06 (FO105	702)		Other dr	7	Sam	pled: 06/17	/10 00:00		
Total Organic Carbon	9060	40000	200	00 mg/Kg	1x	67155	07/02/10 09:12	07/02/10 09:12	

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manage

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory

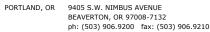
6543 N. Burlington Ave. Portland, OR 97203

Project Name: Portland Harbor

Project Number: Stormwater Basin 52
Project Manager: Jennifer Shackelford

Report Created: 08/18/10 13:27

Percent Moisture


TestAmerica Seattle

Analyte		Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTF0689-01	(FO105694)			Oth	er dry		Samp	oled: 06/17/	10 09:43		
Percent Moisture	•	Moisture	41		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids		"	59		0.10	"	"	"	"	"	
PTF0689-02	(FO105695)			Oth	er dry		Samp	oled: 06/17/	10 10:26		
Percent Moisture		Moisture	52		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids		"	48		0.10		"	"	"	"	
PTF0689-04	(FO105697)			Oth	er dry		Samp	oled: 06/17/	10 10:38		
Percent Moisture	•	Moisture	52		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids		"	48		0.10		"	"	"	"	
PTF0689-05	(FO105698)			Oth	er dry		Samp	oled: 06/17/	/10 11:42		
Percent Moisture		Moisture	32		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids		"	68		0.10	"	"	"	"	"	
PTF0689-06	(FO105702)			Oth	er dry		Samp	oled: 06/17/	/10 00:00		
Percent Moisture		Moisture	32		0.10	%	1x	67064	07/02/10 16:19	07/02/10 16:19	
Percent Solids		"	68		0.10	"	"	"	"	"	

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manage

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

City of Portland Water Pollution Laboratory Project Name: Portland Harbor

6543 N. Burlington Ave.

Project Number: Stormwater Basin 52

Portland, OR 97203

Project Manager: Jennifer Shackelford

08/18/10 13:27

	O	rganic Carbo		ΓΟC) - I ΓestAmeric		ry Qua	ality Con	itrol Re	sults					
QC Batch: 67010	Soil Pr	eparation Met	hod: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Blank (580-67010-3)				QC Source:				Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	ND		2000	mg/Kg	1x							07/01/10 09:11	
LCS (580-67010-4)				QC Source:				Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	4900		2000	mg/Kg	1x		3400	144%	(12.8-187)			07/01/10 09:11	
Duplicate (580-67010-7)				OC Source:	580-67010-5	;		Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	7700		2000	mg/Kg	1x	8000				4%	(50)	07/01/10 09:11	
M				000	500 (7010)			F4	4. 4.	07/01/10 00	.11			
Matrix Spike (580-67010-8)	22.52	25500		_	580-67010-5		0000			07/01/10 09	;11		07/01/10 00 11	
Total Organic Carbon	9060	27700		2000	mg/Kg	1x	8000	18400	107%	(76-128)			07/01/10 09:11	
Matrix Spike Dup (580-67010-9)			QC Source:	580-67010-5	;		Extr	acted:	07/01/10 09	:11			
Total Organic Carbon	9060	29300		2000	mg/Kg	1x	8000	20000	107%	(76-128)	6%	(28)	07/01/10 09:11	
QC Batch: 67155	Soil Pr	eparation Met	hod: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits)	Analyzed	Notes
Matrix Spike (201665S)				QC Source:	PTF0689-0	5		Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	55600		2000	mg/Kg	1x	40000	19000	84%	(76-128)			07/02/10 09:12	
Duplicate (201665X)				QC Source:	PTF0689-0	5		Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	36900		2000	mg/Kg	1x	40000				7%	(50)	07/02/10 09:12	
Blank (580-67155-3)				QC Source:				Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	ND		2000	mg/Kg	1x							07/02/10 09:12	
LCS (580-67155-4)				QC Source:				Extr	acted:	07/02/10 09	:12			
Total Organic Carbon	9060	4100		2000	mg/Kg	1x				(12.8-187)			07/02/10 09:12	

TestAmerica Portland

Christina Woodcock For Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

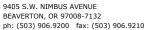
TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

City of Portland Water Pollution Laboratory **Portland Harbor** Project Name:

6543 N. Burlington Ave. Project Number: Stormwater Basin 52 Report Created: Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Percent Moisture - Laboratory Quality Control Results

TestAmerica Seattle


QC Batch: 67064	Soil Pre	paration Metl	hod: NA											
Analyte	Method	Result	MDL*	MRL	Units	Dil	Source Result	Spike Amt	% REC	(Limits)	% RPD	(Limits	s) Analyzed	Notes
Duplicate (580-67064-2)	QC Source: 580-67064-1 Extracted: 07/02/10 16:19													
Percent Solids	Moisture	81		0.10	%	1x	81				0%	(20)	07/02/10 16:19	
Percent Moisture	"	19		0.10	"	"	19				1%	"	"	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, $without \ the \ written \ approval \ of \ the \ laboratory.$

Portland Harbor

City of Portland Water Pollution Laboratory Project Name:

6543 N. Burlington Ave. Report Created: Project Number: Stormwater Basin 52 Portland, OR 97203 Project Manager: Jennifer Shackelford 08/18/10 13:27

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Electronic Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Signature

Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244

11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave,Beaventon, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

Mork Order #:

CHAIN OF CUSTODY REPORT

CLIENT (T. of VOS	Portland	INVOICE TO:	TURNAROUND REQUEST
- } }		7 - 3.7.10	in Business Days *
ADDRESS: Tennita	Tennite Shackethic	Charles Children	Organic & Inorganic Analyses
)		7	
PHONE: F4	-	P.O. NUMBER:	Petroleum Hydrocarbon Analyse
PROJECT NAME: POSTIAND HArbor Stormwet	Harbor Stormweter 2	PRESERVATIVE	STD 4 3 2 1 <1
PROJECT NUMBER:			
		REQUESTED ANALYSES	OTHER Specify:
SAMPLED BY:	2000	-	* Turnaround Requests less than standard may incur Rush Charges.
CLIENT SAMPLE IDENTIFICATION	SAMPLING SCORY OF DATECTIME CONTROL OF CONTR		MATRIX # OF LOCATION/ TA (W, S, O) CONT. COMMENTS WO ID
1 F0105644	blizho 1943 X X		0 2 75=58,2%
2 F0105695	1. 1026 X		2 75=48.2%
3 50105/09/6	1548		1 75= 54,190
4 F01051097	X 8601		2 75= 46.6%
, F0105698	X 7HI		2 TS= 66.690
, F0105702	スマート		V 2 TS=166.69.
7			
00			
6			
10		1	
RELEASED BY: [U] BY LONGIV	Cof DX	DATE: 6/22/16 RECEIVED BY: MAY TIME: 1740 PRINT NAME: 35/60'S	DATE: 6/23/10 TAG TAGE: 12:46
RELEASED BY: PRINT NAME: PS/PS	FIRM: THE	DATE: 6/22/13 RECEIVED BY TOLOGYNY TO TOME: 16:45 PRINT NAME: 18/10/13/10/14/14/5	OF FIRM: THE DATE: 11/15
ADDITIONAL REMARKS:	of Please sand to PACE		TEMP. Z. U PAGE OF
			TAL-1000(0408)

Note: Please Use given TS results for calculations, ble of limited sample volume \$01050916 has extremely limited volum ~15g, plase run regulass

TestAmerica Portland

Sample Receiving Checklist

Work				THE	68		Date/j	Tin	ne R	eceiv	/e d :_	10/22	1	10	1445	?)	
Clien	t Nan	ne a	nd F	Project:	Za s	ity	1/10	ソレ	x 10	in	al_						
Time 2	Zone: T/EST			DT/CS	T	<i>[]0 [</i> □md'	T/MST	E	2 [PD	T/PST		A	ζ	□o′	THER		
Unpa Coo Tempe	ler #(s erature	s):	1	i #2 IR.	Gun (Plastic	Glass	 S)			,	Ten	np	No Ice W/	t enoug Melted in 4 Hr ner;	gh or N I s of co	Range: No Ice ollection
N/A	Yes	No													Init	ials:_(
Z			1. I	f ESI cl	ient, w	vere tem	np blank	s re	ceive	d? If n	no, d	ocume	nt c	on NO	D.		
			2. (Cooler S	eals ir	ntact? (1	N/A if ha	and	deliv	ered)	if no	, docur	nei	nt on M	OD.		
			3. (Chain of	Custo	ody pres	sent? If	no,	docu	ment o	on N	OD.					
			4. I	Bottles r	eceive	d intac	t? If no,	doc	cume	nt on l	NOL	Ο, .					
	Ø _		5. 8	Sample :	is not	multiph	asic? If	no,	, docu	ment	on N	IOD.					
anu.			6.]	Proper C	Contair	ner and	preserva	ative	es use	d? If	no,	docume	ent	on NO	DD.		
			7. j	pH of al	l samp	oles che	cked and	d me	eet re	quiren	nent	s? If n	0, 0	locum	ent on l	NOD.	
			8.	Cyanide	samp	les chec	cked for	sulf	fides	and m	eet r	equirer	nei	nts? If	no, no	tify Pl	M.
			9.]	HF Dilu	tion re	equired'	?										
			PM	before	procee	eding.	rovided 1			-							
			7				agree v						no,	docui	nent or	NOL) .
					-	=	section o				-						
	· 🗀					•	nge sam	-				-	1 C-	4- 🗀	\\	_	,
			_				eserved?								ASCOTOL	c Acic	1
						=	preserva										vD.
							e residu										_
<u> </u>							filtered 1										
			no,	docum	ent on	NOD a	provide ind conta hort hole	act I	PM b	efore p	proc	eeding.		SD or	matrix	duplic	ates? If
<i>~</i> —							Around										
							hours pa					ate(s)?	If:	no, not	ify PM	-	

TestAmerica Portland

Sample Receiving Checklist

Wor	k Ord	#: \$110087
Log	n Ch	initials Initials
N/A	Yes	
	X	22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM.
X		23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
/ <		no, document on NOD and contact PM.
	X	24. Did the chain of custody include "received by" and "relinquished by" signatures,
,	, •	dates and times?
χ_{\Box}		25. Were special log in instructions read and followed?
	\mathbb{X}	26. Were tests logged checked against the COC?
X	′ 🖂 -	27. Were rush notices printed and delivered?
X		28. Were short hold notices printed and delivered?
	X	29. Were subcontract COCs printed?
X		30. Was HF dilution logged?
/		
Lab	eling	d Storage Checks: Initials:
N/A	Yes	
	X	31. Were the subcontracted samples/containers put in Sx fridge?
		32. Were sample bottles and COC double checked for dissolved/filtered metals?
•		33. Did the sample ID, Date, and Time from label match what was logged?
		34. Were Foreign sample stickers affixed to each container and containers stored in
,		foreign fridge?
		35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
	X	36. Was an NOD for created for noted discrepancies and placed in folder?
Doce	inent a	problems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy
form	(NOD)	- 1

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10132108

Sample Receipt Date: 06/24/2010

Client Project #: PTF0689

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

August 18, 2010

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

August 18, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of sample extracted.

The initial extraction batch, that included samples PTF0689-02 through PTF0689-06, exhibited poor internal standard recovery and interferences in the QC extracts. The sample extracts also yielded poor recoveries but did not exhibit the interferences seen in the QC samples. Due to these issues the sample set was re-extracted, with the exception of sample PTF0689-03 for which insufficient volume was available for re-extraction. The results for the re-extracted samples were not consistent in their agreement with the initial extracts. Upon further investigation, it was determined that these samples were re-extracted without the Dean-Stark attachments on the Soxhlets and that all samples may not have been mixed with sufficient sodium sulfate to thoroughly dry the sample matrix. This could account for an inefficient extraction on the second sample set and generally lower analyte concentrations being determined. Therefore, the samples were extracted a third time under optimal extraction conditions and those results are included in this report. Sample PTF0689-01 (FO105694) was initially extracted in a separate batch and did not require re-extraction. Results from the third extraction set were in good agreement with the initial results for these samples.

The isotopically-labeled PCB internal standards in the sample extracts were generally recovered at 46-118%. Sample PTF0689-03 (FO105696) exhibited lower recoveries of 1-94%. With the exception of sample PTF0689-03 (FO105696), the labeled internal standard recoveries obtained for the sample extracts were within the target ranges specified in the method. Those sample and QC recoveries outside of the method specified ranges were flagged "R" on the results tables. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained except where very low recoveries were exhibited.

In some cases, interfering substances impacted the determination of PCB congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks associtated with samples PTF0689-01 and PTF0689-03 to contain low levels of selected PCB congeners. The remaining blank was found to be free of PCB congeners at the reporting limits. Any sample levels determined to be within ten times the levels in the associated method blank were flagged "B" on the results tables and may have originated, at least partially, in the laboratory. In general, levels less than ten times the background are not considered to be statistically different from the background.

Laboratory spike samples were also prepared with the sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were generally recovered at 93-122% with relative percent differences of 0.0-19.8%. The spikes associated with sample PTF0689-03 exhibited elevated recoveries for congeners 1, 3 and 4 due to their association with internal standards that were very poorly recovered. Congener #1 was not recovered in LCS-25717 and was flagged "NC" as not calculated. These results indicate high levels of accuracy and precision for these analyses except where very low recoveries were exhibited. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

11/9

SUBCONTRACT ORDER TestAmerica Portland

013408

WCP.16

PTF0689 **RECEIVING LABORATORY:** SENDING LABORATORY: Pace Analytical Services, Inc - Minneapolis TestAmerica Portland 1700 Elm Street Suite 200 9405 SW Nimbus Ave. Minneapolis, MN 55414 Beaverton, OR 97008 Phone: (503) 906-9200 Phone: (612) 607-1700 Fax: (612) 607-6444 Fax: (503) 906-9210 Project Manager: Darrell Auvil Project Location: OR - OREGON Receipt Temperature: Limited Volume - please use solids results Dry weight needs Excel EDD Standard TAT is requested unless specific due date is requested. => Due Date: Initials: **Analysis** Units **Expires** Comments Sample ID: PTF0689-01 (FO105694 - Other dry) Sampled: 06/17/10 09:43 12/14/10 09:43 ***209 Congeners*** TS=58.2% 1668 Coplanar PCBs - SUB ug/l O) Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-02 (FO105695 - Other dry) Sampled: 06/17/10 10:26 /S=48.2% 12/14/10 10:26 ***209 Congeners*** 1668 Coplanar PCBs - SUB ug/l Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-03 (FO105696 - Other dry) Sampled: 06/17/10 15:48 ***209 Congeners*** (TS=54.1% 12/14/10 15:48 1668 Coplanar PCBs - SUB ug/l Containers Supplied: DDI 8 oz. jar (A) Sample ID: PTF0689-04 (FO105697 - Other dry) Sampled: 06/17/10 10:38 ***209 Congeners*** TS=46.6% 12/14/10 10:38 1668 Coplanar PCBs - SUB ug/l Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-05 (FO105698 - Other dry) Sampled: 06/17/10 11:42 ***209 Congeners* TS=66.6% 12/14/10 11:42 1668 Coplanar PCBs - SUB ug/l DUS Containers Supplied: 4 oz. jar (A) Sample ID: PTF0689-06 (FO105702 - Other dry) Sampled: 06/17/10 00:00 TS=66.6% ***209 Congeners*** 1668 Coplanar PCBs - SUB ug/l 12/14/10 00:00 Containers Supplied: 4 oz. jar (A)

//MM

Religised By

Released By Report No.....10132108_1668A

<u>LL 73/11</u>
Date/Time

Received By

4/24/10 955 Date/Time

T-6 Received By

Date/Time Page 1 of 1

Page 5 of 82

Pace Analytical*

Sample Condition Upon Receipt

Client Name:

SCUR(.16fd)
Project # [0132108

Courier: Fed Ex Tracking #: 41707	UPS UBPS U	ient 🔲	Commerci	al 🗆 P	ace Other				
Custody Seal on Cooler		Ω Π	no Sei	nis intact:	☐ yes	_			
Packing Material: 🔲 B	*/	-			•	ш	NO E		
	80344042 oi (179425)		☐ None	7)**I	_ Temp Bla		No
	(178420)		ical Tiss	•	None				cess has begun
Cooler Temperature Temp should be above freez	eing to 6°C		ivai rissi	Comm		Vo	conten	te: $9/29$	sph examining
Chain of Custody Present	***************************************	1JYes I	□No □N			*****	<u> </u>		
Chain of Custody Filled O	ut:	ElYes I							
Chain of Custody Relinqui	ished:	ZYes I		A 3.		**************************************			
Sampler Name & Signatur	re on COC:	□Yes (JKG DIN	4.				***************************************	
Samples Arrived within Ho	old Time:	Elves [5.				***************************************	*************************************
Short Hold Time Analysis	s (<72hr):	∐Yes [2K6 []N/	6.				***************************************	
Rush Turn Around Time	Requested:	∐Yes E	TNO DIV	7.					
Sufficient Volume:		[]Yes [ANO DINA	8. IM	uted vol	lunce	,		
Correct Containers Used:		Yes D	JNO CINA	9.					
-Pace Containers Used:		□Yeş C	INO INA						,
Containers intact:		DYes D	INO LINA	10.					
Filtered volume received to	r Dissolved tests	□Yes □	INO LINVA	11.	· · · · · · · · · · · · · · · · · · ·				
Sample Labels match COC	>	.⊠Yes ,□	No □NA	12.					
-includes date/time/ID/A	nalysis Matrix:								
All containers needing acid/base checked. Noncompliance are no	preservation have been oted in 13.	□Yee □	NO DINA		o'	EONH	[] H26O4	□ NaOH	□ HOI
All containers needing preserva compliance with EPA recomme	tion are found to be in	□Yes □	No □N⁄A	Samp #					
compliance with EPA recomme	noation.			initial wher			ot # of added	 	
Exceptions: VOA, Coliform, TOC, O	ll and Grease, WI-DRO (wate	r DYes Z	V o	completed	• • • • • • • • • • • • • • • • • • • •		reservative		
Samples checked for dechlo	orination:	□Yes □I	NO EINA	14.	······································				
leadepace in VOA Vials (>	6mm):	□Yes □t			······			· · · · · · · · · · · · · · · · · · ·	
Trip Blank Present:			40 DAVA	16.					
Frip Blank Custody Seals Pr	· ·	□Yes □N	6 □N/A						
ace Trip Blank Lot # (if pur	chased):			7-11-7-11-4-11-1-1				*************************	
Client Notification/ Resolut	tion:				1 1	Fi	eld Data Requ	ired? Y	/ N
Person Contacted: 🚨	Darrell Aurie		Date/T	me: <u>Ç</u>	1850	7			
Comments/ Resolution:			····	T	ļ				
	\$0 X_90d	5-10	n 12	TI	tre :	7/2	ک دوا	Duftra	real
		· · · · · · · · · · · · · · · · · · ·	·	·····				·	
			·			****			
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		- , 	·			-4	· · · · · · · · · · · · · · · · · · ·		
			1x	- h	···		····	11	······································
Project Manager Review:			4				Date:	1/26/2	<u> </u>

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **North Carolina Compliance**, inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

1132

SUBCONTRACT ORDER P. 2(573) | TestAmerica Portland

PTF0689

101353758911

|--|

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700

Fax: (612) 607-6444

Project Location: OR - OREGON

Ice: Receipt Temperature: Y / N Additional volume needs Excel EDD Standard TAT is requested unless specific due date is requested. => Due Date: **Analysis Expires** Comments Sample ID: PTF0689-01 (FO105694 - Other dry) Sampled: 06/17/10 09:43 1668 Coplanar PCBs - SUB ug/l ***209 Congeners*** TS=58.2% 12/14/10 09:43 Containers Supplied 4 oz. jar (A) Sample ID: PTF0689-02 (FO105695 - Other dry) Sampled: 06/17/10 10:26 ***209 Congeners*** TS=48.2% 1668 Coplanar PCBs - SUB ug/l 12/14/10 10:26 Containers Supplied: 001 8 oz. jar (C) 4 oz. jar (A) Sample IQ: PTF0689-03 (FO105696 - Other dry) <u>Sampled: 06/17/10 15:48</u> ***209 Congeners*** TS=54.1% 1668 Coplanar PCBs - SUB ug/l 12/14/10 15:48 Containers Supplied: 8 oz. jar (A) Sample ID: PTF0689-04 (FO105697 - Other dry) Sampled: 06/17/10 10:38 12/14/10 10:38 1668 Coplanar PCBs - SUB ug/l ***209 Congeners*** TS=46.6% Containers Supplied: 4 oz. jar (A) 8 oz. jar (C) Sample ID: PTF0689-05 (FO105698 - Other dry) Sampled: 06/17/10 11:42 1668 Coplanar PCBs - SUB ug/l 12/14/10 11:42 ***209 Congeners*** TS=66.6% Containers Supplied: 4 oz. jar (A) 8 oz. jar (C) Sample ID: PTF0689-06 (FO105702 - Other dry) Sampled: 06/17/10 00:00 1668 Coplanar PCBs - SUB ug/l 12/14/10 00:00 ***209 Congeners Containers Supplied:

			10/20/00
Sall Sa	mple Condit	ion Upon Receipt	10130108
Pace Analytical Client Name	: Test Aug	rica Parthand	Project #
	1-51.71.42	00 10000	
Courier: Ped Ex UPS USPS Clic Tracking #: 417075259436	ent Commen	cial Deace Other	Colored Annual Colore
Custody Seal on Cooler/Box Present:	no Se	eals intact: 🛛 yes 🔲	no Piol (Xiante)
Packing Material: Bubble Wrap Bubble	e Bage 🔲 Nor	ne 🔲 Other	Temp Blank: Yes No
Thermometer Used 80344042 or (179425)	Type of Ice: (\	_	Samples on ice, cooling process has begun
Cooler Temperature 2,2		sue is Frozen: Yes No	Date and initials of person examining contents: 4-6-10 MST
Temp should be above freezing to 6°C		Comments:	contents: 50 - La - CU - 2 - CO - T
Chain of Custody Present:	☑Yes ☐No ☐	N/A 1.	
Chain of Custody Filled Out:	DYYes □No □	N/A 2.	
Chain of Custody Relinquished:	MYes □Ŋo □	IN/A 3.	
Sampler Name & Signature on COC:	Dys kano D	N/A 4.	
Samples Arrived within Hold Time:	TYes ONO O	N/A 5.	
Short Hold Time Analysis (<72hr):	☐Yes DWNp ☐	N/A 6.	
Rush Turn Around Time Requested:	Dygs Dino D	N/A 7.	
Sufficient Volume:	MYes DNo D	N/A 8.	
Correct Containers Used:	torys □No □	N/A 9.	
-Pace Containers Used:	MYes □No □	N/A	
Containers Intact:	ØVes □No □	N/A 10.	
Filtered volume received for Dissolved tests	□Yes □No 0	N/A 11.	
Sample Labels match COC:	MYes DNo D	N/A 12.	ļ
-Includes date/time/ID/Analysis Matrix:	5L	/	
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes □No 凸	N/A 13.	B H2SO4 NaOH HCI
All containers needing preservation are found to be in	□Yes □No 🖼	Samp #	
compliance with EPA recommendation.		Initial when	Lot # of added
exceptions: VOA,Cotiform, TOC, Oil and Grease, WI-DRO (water	_{r.} □Yes DNNo	/ completed	preservative
Samples checked for dechlorination:	□Yes □No 🛂	√A 14.	
leadspace in VOA Vials (>6mm):	□Yes □No 10	WA 15.	
rip Blank Present:	□Yee □No □	M/A 16.	
rip Blank Custody Seals Present	□Yes □No Mi	V/A	į
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:	Da	te/Time:	
Comments/ Resolution: Resultania	tall fo	or somoles a	TED689-01, 20 MOS.
	1173		
	 		
Project Manager Review:	NAH	-	Date: 8 9 0

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the **Phonti-Chalydical SEIMNIFS**, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Solid

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

Client's Sample ID PTF0689-01 (FO105694)
Lab Sample ID 10132108001
Filename P100720A_12
Injected By SMT
Total Amount Extracted 17.5 g
% Moisture 41.8

Dilution 10.2 g Dry Weight Extracted Collected 06/17/2010 09:43 **ICAL ID** P100720A04 Received 06/24/2010 09:55 07/15/2010 15:45 CCal Filename(s) P100720A03 Extracted Method Blank ID BLANK-25744 Analyzed 07/20/2010 18:50

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.552	3.04	2.0	1.33	66
13C-4-MoCB	3 4	13.014	2.74	2.0	1.61	80
13C-2,2'-DiCB	4	13.385	1.58	2.0	1.27	63
13C-4,4'-DiCB	15	21.545	1.56	2.0	1.72	86
13C-2,2',6-TrCB	19	17.866	1.04	2.0	1.35	68
13C-3,4,4'-TrCB	37	29.856	1.05	2.0	1.81	91
13C-2,2 ['] ,6,6'-TeCB	54	21.892	0.80	2.0	1.53	76
13C-3,4,4',5-TeCB	81	37.151	0.80	2.0	1.86	93
13C-3,3',4,4'-TeCB	77	37.737	0.80	2.0	1.93	97
13C-2,2',4,6,6'-PeCB	104	28.448	1.54	2.0	1.54	77
13C-2,3,3',4,4'-PeCB	105	41.343	1.59	2.0	1.82	91
13C-2,3,4,4',5-PeCB	114	40.689	1.60	2.0	1.80	90
13C-2,3',4,4',5-PeCB	118	40.135	1.56	2.0	1.81	91
13C-2,3',4,4',5'-PeCB	123	39.800	1.56	2.0	1.80	90
13C-3,3',4,4',5-PeCB	126	44.529	1.58	2.0	1.81	91
13C-2,2',4,4',6,6'-HxCB	155	34.652	1.26	2.0	1.51	76
13C-HxCB (156/157)	156/157	47.614	1.28	4.0	3.47	87
13C-2,3',4,4`,5,5'-HxĆB	167	46.407	1.27	2.0	1.77	89
13C-3,3',4,4',5,5'-HxCB	169	50.967	1.26	2.0	1.74	87
13C-2,2',3,4',5,6,6'-HpCB	188	40.622	1.06	2.0	1.73	87
13C-2,3,3',4,4',5,5'-HpCB	189	53.616	1.05	2.0	1.85	93
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.121	0.90	2.0	1.79	89
13C-2,3,3',4,4',5,5',6-OcCB	205	56.785	0.90	2.0	1.72	86
13C-2,2',3,3',4,4',5,5',6-NoCB	206	59.285	0.77	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	53.013	0.80	2.0	1.72	86
13CDeCB	209	61.655	0.73	2.0	1.56	78
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.262	1.03	2.0	1.77	89
13C-2,3,3',5,5'-PeCB	111	37.754	1.59	2.0	1.72	86
13C-2,2 ¹ ,3,3 ¹ ,5,5 ¹ ,6-HpCB	178	43.757	1.05	2.0	1.67	83
Recovery Standards						
13C-2,5-DiCB	9	16.285	1.55	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.392	0.80	2.0	ŇA	NA
13C-2,2',4,5,5'-PeCB	101	34.920	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.321	1.25	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	56.138	0.92	2.0	NA	NA
		55.155	0.02	2.0		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.5
2				ND		24.5
3				ND		24.5
4		13.397	1.42	27.5		24.5
5				ND		24.5
6				ND		24.5
7				ND		24.5
8		17.495	1.56	59.1		24.5
9				ND		24.5
10				ND		24.5
11		20.778	1.50	185		147
12	12/13			ND		49.0
13	12/13			ND		49.0
14	. 2, . 3			ND		24.5
15		21.581	1.69	63.2		24.5
16		21.497	1.01	46.4		24.5
17		20.910	1.07	46.6		24.5
18	18/30	20.382	1.06	89.3		49.0
19				ND		24.5
20	20/28	25.279	1.01	203		49.0
21	21/33	25.564	1.02	113		49.0
22		26.017	1.01	80.2		24.5
23				ND		24.5
24				ND		24.5
25				ND		24.5
26	26/29			ND		49.0
27				ND		24.5
28	20/28	25.279	1.01	(203)		49.0
29	26/29			NĎ		49.0
30	18/30	20.382	1.06	(89.3)		49.0
31		24.927	1.02	`168 B		24.5
32		22.177	0.99	33.8		24.5
33	21/33	25.564	1.02	(113)		49.0
34				NĎ		24.5
35				ND		24.5
36				ND		24.5
37		29.890	1.04	91.1		24.5
38				ND		24.5
39				ND		24.5
40	40/41/71			ND		147
41	40/41/71			ND		147
42		29.135	0.75	61.3		49.0
43	43/73			ND		98.1
44	44/47/65	28.532	0.79	233		147
45	45/51			ND		98.1
46				ND		49.0
47	44/47/65	28.532	0.79	(233)		147
48				NĎ		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.962	0.80	122		98.1
50	50/53			ND		98.1
51	45/51			ND		98.1
52	10/01	27.408	0.80	284 B		49.0
53	50/53			ND ND		98.1
54	30/00			ND		49.0
55				ND		49.0
56		33.814	0.78	97.5		49.0
57				ND		49.0
58				ND		49.0
59	59/62/75			ND		147
60	30, 32, 13	34.048	0.79	50.7		49.0
61	61/70/74/76	32.741	0.76	481		196
62	59/62/75			ND		147
63				ND		49.0
64		29.923	0.81	106		49.0
65	44/47/65	28.532	0.79	(233)		147
66		33.093	0.74	`178́		49.0
67				ND		49.0
68				ND		49.0
69	49/69	27.962	0.80	(122)		98.1
70	61/70/74/76	32.741	0.76	(481)		196
71	40/41/71			` NĎ		147
72				ND		49.0
73	43/73			ND		98.1
74	61/70/74/76	32.741	0.76	(481)		196
75	59/62/75			` NĎ		147
76	61/70/74/76	32.741	0.76	(481)		196
77		37.771	0.78	`56.Ó		49.0
78				ND		49.0
79				ND		49.0
80				ND		49.0
81				ND		49.0
82		37.369	1.61	476		49.0
83		35.440	1.65	194		49.0
84		32.959	1.57	707		49.0
85	85/116/117	36.849	1.57	430		147
86	86/87/97/108/119/125	36.195	1.57	2170		294
87	86/87/97/108/119/125	36.195	1.57	(2170)		294
88	88/91	32.724	1.57	202		98.1
89				ND		49.0
90	90/101/113	34.954	1.57	2160		147
91	88/91	32.724	1.57	(202)		98.1
92		34.317	1.56	416		49.0
93	93/98/100/102			ND		196
94				ND		49.0
95		31.785	1.58	1440		49.0
96				ND		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	36.195	1.57	(2170)		294
98	93/98/100/102			` NĎ		196
99		35.558	1.60	740		49.0
100	93/98/100/102			ND		196
101	90/101/113	34.954	1.57	(2160)		147
102	93/98/100/102			ND		196
103				ND		49.0
104				ND		49.0
105		41.376	1.51	1570		49.0
106				ND		49.0
107	107/124	39.448	1.57	136		98.1
108	86/87/97/108/119/125	36.195	1.57	(2170)		294
109	00/01/01/100/110/120	39.699	1.46	201		49.0
110	110/115	37.033	1.57	3990		98.1
111	110/110			ND		49.0
112				ND		49.0
113	90/101/113	34.954	1.57	(2160)		147
114	30, 101, 110	40.705	1.50	95.5		49.0
115	110/115	37.033	1.57	(3990)		98.1
116	85/116/117	36.849	1.57	(430)		147
117	85/116/117	36.849	1.57	(430)		147
118	33/113/111	40.152	1.52	3200		49.0
119	86/87/97/108/119/125	36.195	1.57	(2170)		294
120	00/01/01/100/110/120			ND		49.0
121				ND		49.0
122				ND		49.0
123		39.800	1.22 I		52.1	49.0
124	107/124	39.448	1.57	(136)		98.1
125	86/87/97/108/119/125	36.195	1.57	(2170)		294
126	00/01/01/100/110/120			ND		49.0
127				ND		49.0
128	128/166	44.646	1.24	1460		98.1
129	129/138/163	43.355	1.23	7690		147
130	. 20, . 30, . 30	42.684	1.23	527		49.0
131		39.783	1.26	122		49.0
132		40.253	1.25	2510		49.0
133		40.756	1.27	80.6		49.0
134	134/143	39.163	1.25	399		98.1
135	135/151	37.989	1.25	1270		98.1
136	100/101	35.457	1.25	520		49.0
137		42.902	1.24	455		49.0
138	129/138/163	43.355	1.23	(7690)		147
139	139/140	39.548	1.24	102		98.1
140	139/140	39.548	1.24	(102)		98.1
141		42.265	1.25	1100		49.0
142				ND		49.0
143	134/143	39.163	1.25	(399)		98.1
144	. 5 . 7 . 1 . 5	38.576	1.27	209		49.0
		55.57 5		200		.5.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.0
146		41.427	1.23	689		49.0
147	147/149	38.945	1.24	3440		98.1
148				ND		49.0
149	147/149	38.945	1.24	(3440)		98.1
150				` NĎ		49.0
151	135/151	37.989	1.25	(1270)		98.1
152				` NĎ		49.0
153	153/168	42.064	1.23	3750		98.1
154				ND		49.0
155				ND		49.0
156	156/157	47.597	1.25	1240		98.1
157	156/157	47.597	1.25	(1240)		98.1
158		43.741	1.24	` 797		49.0
159				ND		49.0
160				ND		49.0
161				ND		49.0
162				ND		49.0
163	129/138/163	43.355	1.23	(7690)		147
164		43.036	1.25	` 464		49.0
165				ND		49.0
166	128/166	44.646	1.24	(1460)		98.1
167		46.423	1.23	347		49.0
168	153/168	42.064	1.23	(3750)		98.1
169				ND		49.0
170		50.330	1.05	1080		49.0
171	171/173	46.692	1.04	364		98.1
172		48.352	1.05	174		49.0
173	171/173	46.692	1.04	(364)		98.1
174		45.585	1.06	803		49.0
175				ND		49.0
176		41.913	1.04	97.0		49.0
177		46.038	1.04	513		49.0
178		43.791	1.08	135		49.0
179		41.007	1.03	249		49.0
180	180/193	49.022	1.04	1640		98.1
181				ND		49.0
182				ND		49.0
183	183/185	45.333	1.04	542		98.1
184				ND		49.0
185	183/185	45.333	1.04	(542)		98.1
186				` NĎ		49.0
187		44.713	1.05	695		49.0
188				ND		49.0
189		53.638	0.98	55.1		49.0
190		50.883	1.11	196		49.0
191				ND		49.0
192				ND		49.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-01 (FO105694) 10132108001 P100720A_12

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	49.022	1.04	(1640)		98.1
194		56.160	0.88	` 184		73.6
195		53.358	0.89	85.3		73.6
196		51.722	0.92	107		73.6
197	197/200			ND		147
198	198/199	51.034	0.89	206		147
199	198/199	51.034	0.89	(206)		147
200	197/200			NĎ		147
201				ND		73.6
202				ND		73.6
203		51.923	0.89	125		73.6
204				ND		73.6
205				ND		73.6
206				ND		73.6
207				ND		73.6
208				ND		73.6
209				ND		73.6

Conc = Concentration EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-01 (FO105694) 10132108001 P100720A_12

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	335	
Total Trichloro Biphenyls	871	
Total Tetrachloro Biphenyls	1670	
Total Pentachloro Biphenyls	18100	
Total Hexachloro Biphenyls	27200	
Total Heptachloro Biphenyls	6540	
Total Octachloro Biphenyls	707	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	55400	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix Dilution

Client's Sample ID PTF0689-02 (FO105695)
Lab Sample ID 10132108002-2R
Filename P100815B_07
Injected By BAL
Total Amount Extracted 21.1 g
% Moisture 51.8

10.2 g Dry Weight Extracted Collected 06/17/2010 10:26 **ICAL ID** P100815B02 Received 06/24/2010 09:55 CCal Filename(s) P100815B 01 Extracted 08/10/2010 17:35 Method Blank ID BLANK-26032 Analyzed 08/15/2010 22:12

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.396	3.74	2.0	1.08	62 I
13C-4-MoCB	3	12.846	3.31	2.0	1.44	72
13C-2,2'-DiCB	3	13.194	1.60	2.0	1.23	61
13C-4,4'-DiCB	15	21.342	1.62	2.0	1.55	77
13C-2,2',6-TrCB	19	17.663	1.09	2.0	1.21	60
13C-3,4,4'-TrCB	37	29.624	1.01	2.0	1.69	84
13C-2,2 ['] ,6,6'-TeCB	54	21.658	0.83	2.0	1.63	82
13C-3,4,4',5-TeCB	81	36.903	0.78	2.0	1.27	63
13C-3,3',4,4'-TeCB	77	37.506	0.79	2.0	1.20	60
13C-2,2',4,6,6'-PeCB	104	28.182	1.63	2.0	1.72	86
13C-2,3,3',4,4'-PeCB	105	41.095	1.55	2.0	1.15	57
13C-2,3,4,4',5-PeCB	114	40.441	1.58	2.0	1.20	60
13C-2,3',4,4',5-PeCB	118	39.871	1.65	2.0	1.29	65
13C-2,3',4,4',5'-PeCB	123	39.536	1.53	2.0	1.23	62
13C-3,3',4,4',5-PeCB	126	44.281	1.56	2.0	1.00	50
13C-2,2',4,4',6,6'-HxCB	155	34.387	1.29	2.0	2.09	105
13C-HxCB (156/157)	156/157	47.334	1.26	4.0	2.31	58
13C-2,3',4,4`,5,5'-HxĆB	167	46.126	1.31	2.0	1.36	68
13C-3,3',4,4',5,5'-HxCB	169	50.671	1.31	2.0	1.12	56
13C-2,2',3,4',5,6,6'-HpCB	188	40.340	1.04	2.0	2.05	102
13C-2,3,3',4,4',5,5'-HpCB	189	53.234	1.06	2.0	1.45	72
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.791	0.91	2.0	1.92	96
13C-2,3,3',4,4',5,5',6-OcCB	205	56.274	0.94	2.0	1.53	76
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.688	0.72	2.0	1.85	93
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.609	0.84	2.0	1.54	77
13CDeCB	209	61.231	0.77	2.0	1.83	91
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.012	1.17	2.0	2.04	102
13C-2,3,3',5,5'-PeCB	111	37.490	1.53	2.0	1.40	70
13C-2,2',3,3',5,5',6-HpCB	178	43.476	1.10	2.0	1.74	87
13C-2,2 ,3,3 ,3,3 ,0-1 IPCB	170	43.470	1.10	2.0	1.74	01
Recovery Standards						
13C-2,5-DiCB	9	16.093	1.61	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.142	0.81	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.672	1.49	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.057	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.670	0.86	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration	EMPC	EML
IUPAC	CO-elutions	K I	Ralio	ng/Kg	ng/Kg	ng/Kg
1		9.408	2.85	44.1		24.6
2		12.595	2.86	25.6		24.6
3		12.858	3.03	56.6		24.6
4 5		13.206	1.53	246		24.6
5				ND		24.6
6 7		16.692	1.52	126		24.6
7		16.345	1.55	24.9		24.6
8		17.280	1.56	581		24.6
9		16.129	1.50	39.6		24.6
10				ND		24.6
11		20.587	1.53	1380		148
12	12/13	20.934	1.49	98.4		49.2
13	12/13	20.934	1.49	(98.4)		49.2
14	. 2, . 3			ND		24.6
15		21.366	1.61	810		24.6
16		21.270	1.04	463		24.6
17		20.695	1.09	465		24.6
18	18/30	20.180	1.06	620		49.2
19	10/00	17.675	0.99	134		24.6
20	20/28	25.063	1.02	2140		49.2
21	21/33	25.331	1.04	1210		49.2
22	21/33	25.784	1.00	872		24.6
23		25.704		ND		24.6
24				ND		24.6
25		24.325	1.03	157		24.6
26	26/29	24.039	0.99	373		49.2
27	20/29	20.970	0.99	95.6		24.6
28	20/28	25.063	1.02	(2140)		49.2
20 29	26/29	24.039	0.99	(373)		49.2 49.2
30	18/30	20.180	1.06	(620)		49.2 49.2
31	16/30		1.06			49.2 24.6
32		24.710	1.03	1880 361		
32 33	21/33	21.926 25.331	1.04			24.6 49.2
33 24	21/33		1.04	(1210)		
34				NĎ		24.6
35		29.205	0.95	96.8		24.6
36			4.04	ND		24.6
37		29.658	1.01	1140		24.6
38				ND		24.6
39	40/44/74			ND		24.6
40	40/41/71	29.440	0.78	1240		148
41	40/41/71	29.440	0.78	(1240)		148
42	10/70	28.886	0.78	584		49.2
43	43/73			ND		98.4
44	44/47/65	28.283	0.79	2240		148
45	45/51	25.146	0.80	375		98.4
46	4.4.4.7.10.5	25.499	0.76	143		49.2
47	44/47/65	28.283	0.79	(2240)		148
48		28.031	0.80	440		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
49	49/69	27.729	0.78	1240		98.4
50	50/53	24.341	0.78	282		98.4
51	45/51	25.146	0.80	(375)		98.4
52		27.176	0.79	372Ó		49.2
53	50/53	24.341	0.78	(282)		98.4
54				` NĎ		49.2
55				ND		49.2
56		33.565	0.73	976		49.2
57				ND		49.2
58				ND		49.2
59	59/62/75	28.668	0.84	213		148
60	00/02//0	33.817	0.77	468		49.2
61	61/70/74/76	32.492	0.75	4150		197
62	59/62/75	28.668	0.84	(213)		148
63	39/02/13	32.140	0.73	76.8		49.2
64		29.691	0.79	1000		49.2
65	44/47/65	28.283	0.79	(2240)		148
66	44/47/03	32.861	0.76	2000		49.2
67		31.855	0.76	83.9		49.2
68		31.000	0.73	ND		49.2
69	49/69	27.729	0.78	(1240)		98.4
70			0.76			96.4 197
70 74	61/70/74/76	32.492	0.75	(4150)		
71	40/41/71	29.440	0.78	(1240)		148
72	40/70			NĎ		49.2
73	43/73			ND		98.4
74	61/70/74/76	32.492	0.75	(4150)		197
75	59/62/75	28.668	0.84	(213)		148
76	61/70/74/76	32.492	0.75	(4150)		197
77		37.523	0.74	640		49.2
78				ND		49.2
79		35.813	0.74	57.8		49.2
80				ND		49.2
81				ND		49.2
82		37.104	1.54	962		49.2
83		35.175	1.54	597		49.2
84		32.693	1.59	2180		49.2
85	85/116/117	36.584	1.48	922		148
86	86/87/97/108/119/125	35.930	1.57	8110		295
87	86/87/97/108/119/125	35.930	1.57	(8110)		295
88	88/91	32.458	1.62	935		98.4
89		33.213	1.55	96.2		49.2
90	90/101/113	34.689	1.57	23900		148
91	88/91	32.458	1.62	(935)		98.4
92		34.068	1.56	3360		49.2
93	93/98/100/102	31.905	1.54	274		197
94				ND		49.2
95		31.536	1.56	15100		49.2
96		28.635	1.41	57.0		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.930	1.57	(8110)		295
98	93/98/100/102	31.905	1.54	`(274)		197
99		35.293	1.54	268Ó		49.2
100	93/98/100/102	31.905	1.54	(274)		197
101	90/101/113	34.689	1.57	(23900)		148
102	93/98/100/102	31.905	1.54	(274)		197
103	00/00/100/102	30.798	1.54	67.5		49.2
104				ND		49.2
105		41.129	1.55	4110		49.2
106				ND		49.2
107	107/124	39.183	1.50	526		98.4
108	86/87/97/108/119/125	35.930	1.57	(8110)		295
109	00/07/97/100/119/123	39.452	1.58	804		49.2
110	110/115	36.768	1.56	18900		98.4
110	110/115	30.700	1.56	ND		49.2
111				ND ND		49.2 49.2
112	90/101/113	34.689	1.57	(23900)		49.2 148
	90/101/113	34.009	1.57	(23900)		
114	440/445	40.458	1.44	203		49.2
115	110/115	36.768	1.56	(18900)		98.4
116	85/116/117	36.584	1.48	(922)		148
117	85/116/117	36.584	1.48	(922)		148
118	00/07/07/400/440/407	39.904	1.52	12000		49.2
119	86/87/97/108/119/125	35.930	1.57	(8110)		295
120				ND		49.2
121				ND		49.2
122		40.240	1.62	117		49.2
123		39.535	1.60	124		49.2
124	107/124	39.183	1.50	(526)		98.4
125	86/87/97/108/119/125	35.930	1.57	(8110)		295
126		44.265	1.24 I		305	49.2
127				ND		49.2
128	128/166	44.365	1.24	8380		98.4
129	129/138/163	43.074	1.25	102000		148
130		42.420	1.26	4190		49.2
131		39.519	1.21	659		49.2
132		39.988	1.26	25200		49.2
133		40.491	1.24	993		49.2
134	134/143	38.882	1.26	3290		98.4
135	135/151	37.708	1.25	34600		98.4
136		35.192	1.25	10800		49.2
137		42.638	1.34	1100		49.2
138	129/138/163	43.074	1.25	(102000)		148
139	139/140	39.301	1.30	548		98.4
140	139/140	39.301	1.30	(548)		98.4
141		41.984	1.25	22800		49.2
142				ND		49.2
143	134/143	38.882	1.26	(3290)		98.4
144		38.294	1.25	5690		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.2
146		41.162	1.25	13200		49.2
147	147/149	38.663	1.24	73900		98.4
148	,	37.070	1.31	63.7		49.2
149	147/149	38.663	1.24	(73900)		98.4
150	,	34.806	1.31	111		49.2
151	135/151	37.708	1.25	(34600)		98.4
152	100/101			ND		49.2
153	153/168	41.783	1.24	93900		98.4
154	100/100	37.976	1.09	571		49.2
155				ND		49.2
156	156/157	47.317	1.23	7760		98.4
157	156/157	47.317	1.23	(7760)		98.4
158	130/137	43.476	1.24	8400		49.2
159		45.405	1.47 I		67.3	49.2
160		45.405	1.47 1	ND	07.3 	49.2
161				ND		49.2
162		45.657	1.21	298		49.2
163	129/138/163	43.074	1.25	(102000)		148
164	129/130/103	42.755	1.32	5820		49.2
165		42.755	1.32	ND		49.2
166	128/166	44.365	1.24	(8380)		49.2 98.4
167	120/100	46.143	1.24	3460		49.2
168	153/168	40.143	1.22			49.2 98.4
	153/166	50.688	1.2 4 1.47 l	(93900)	 1 - 7	49.2
169		50.000	1.47 1		157	49.2 49.2
170	474/470	50.000	1.04	39600		
171	171/173	46.378	1.04 1.03	12100		98.4
172	474/470	48.038	1.03	6690		49.2
173	171/173	46.378	1.04 1.04	(12100)		98.4
174		45.288	1.04	35600		49.2
175		44.147	1.03	1770		49.2
176		41.632	1.04	4850		49.2
177		45.740	1.04	20800		49.2
178		43.493	1.04	7180		49.2
179	100/100	40.726	1.05	13900		49.2
180	180/193	48.709	1.05	83300		98.4
181				ND		49.2
182	100/105	45.050		ND		49.2
183	183/185	45.053	1.04	26800		98.4
184	400/405	45.050	4.04	ND (00000)		49.2
185	183/185	45.053	1.04	(26800)		98.4
186		44.440	4.05	ND		49.2
187		44.416	1.05	41000		49.2
188		40.357	1.01	60.5		49.2
189		53.256	1.01	1680		49.2
190		50.554	1.03	7910		49.2
191		49.061	1.03	1660		49.2
192				ND		49.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTF0689-02 (FO105695) 10132108002-2R P100815B_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.709	1.05	(83300)		98.4
194		55.692	0.89	`1440Ó		73.8
195		52.954	0.89	5970		73.8
196		51.359	0.90	8460		73.8
197	197/200	47.820	0.89	2400		148
198	198/199	50.688	0.90	13000		148
199	198/199	50.688	0.90	(13000)		148
200	197/200	47.820	0.89	`(2400)		148
201		46.763	0.91	`185Ó		73.8
202		45.824	0.90	2200		73.8
203		51.560	0.89	8520		73.8
204				ND		73.8
205		56.317	0.89	915		73.8
206		58.709	0.78	2880		73.8
207		53.665	0.82	383		73.8
208		52.652	0.78	597		73.8
209		61.296	0.71	423		73.8

Conc = Concentration EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-02 (FO105695) 10132108002-2R P100815B_07

Congener Group	Concentration ng/Kg	
Congener Group	ng/kg	
Total Monochloro Biphenyls	126	
Total Dichloro Biphenyls	3310	
Total Trichloro Biphenyls	10000	
Total Tetrachloro Biphenyls	19900	
Total Pentachloro Biphenyls	96100	
Total Hexachloro Biphenyls	427000	
Total Heptachloro Biphenyls	305000	
Total Octachloro Biphenyls	57700	
Total Nonachloro Biphenyls	3860	
Decachloro Biphenyls	423	
Total PCBs	924000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTF0689-03 (FO105696)
Lab Sample ID 10132108003
Filename P100717A_05
Injected By BAL
Total Amount Extracted 13.8 g

Total Amount Extracted13.8 gMatrixSolid% Moisture45.9Dilution5Dry Weight Extracted7.48 gCollected06/17/2010 15:48

 ICAL ID
 P100717A02
 Received
 06/24/2010 09:55

 CCal Filename(s)
 P100717A_01
 Extracted
 07/14/2010 15:15

 Method Blank ID
 BLANK-25716
 Analyzed
 07/17/2010 11:57

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.600	0.75	2.0	0.00755	1 IR
13C-4-MoCB	3	13.038	2.66	2.0	0.306	15 R
13C-2,2'-DiCB	4	13.410	1.79	2.0	0.0297	1 R
13C-4,4'-DiCB	15	21.557	1.55	2.0	1.23	61
13C-2,2',6-TrCB	19	17.879	1.18	2.0	0.175	9 R
13C-3,4,4'-TrCB	37	29.858	1.04	2.0	1.78	89
13C-2,2',6,6'-TeCB	54	21.926	0.77	2.0	0.745	37
13C-3,4,4',5-TeCB	81	37.136	0.78	2.0	1.81	90
13C-3,3',4,4'-TeCB	77	37.723	0.80	2.0	1.60	80
13C-2,2',4,6,6'-PeCB	104	28.450	1.58	2.0	1.45	73
13C-2,3,3',4,4'-PeCB	105	41.312	1.52	2.0	1.54	77
13C-2,3,4,4',5-PeCB	114	40.658	1.55	2.0	1.57	79
13C-2,3',4,4',5-PeCB	118	40.105	1.56	2.0	1.64	82
13C-2,3',4,4',5'-PeCB	123	39.769	1.53	2.0	1.61	81
13C-3,3',4,4',5-PeCB	126	44.465	1.57	2.0	1.29	64
13C-2,2',4,4',6,6'-HxCB	155	34.654	1.28	2.0	1.70	85
13C-HxCB (156/157)	156/157	47.516	1.25	4.0	3.25	81
13C-2,3',4,4',5,5'-HxCB	167	46.343	1.27	2.0	1.66	83
13C-3,3',4,4',5,5'-HxCB	169	50.820	1.30	2.0	1.46	73
13C-2,2',3,4',5,6,6'-HpCB	188	40.608	1.04	2.0	1.88	94
13C-2,3,3',4,4',5,5'-HpCB	189	53.426	1.03	2.0	1.81	90
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.058	0.91	2.0	1.85	92
13C-2,3,3',4,4',5,5',6-OcCB	205	56.530	0.90	2.0	1.82	91
13C-2,2',3,3',4,4',5,5',6-NoCB	206	59.008	0.79	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.865	0.83	2.0	1.68	84
13CDeCB	209	61.616	0.69	2.0	1.69	84
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.264	1.09	2.0	1.68	84
13C-2,3,3',5,5'-PeCB	111	37.740	1.61	2.0	1.54	77
13C-2,2',3,3',5,5',6-HpCB	178	43.710	1.07	2.0	1.72	86
Recovery Standards						
13C-2,5-DiCB	9	16.309	1.56	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.393	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.906	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.274	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.926	0.89	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.612	2.82	893 B		33.4
2		12.775	2.93	180 B		33.4
3		13.062	3.40	87.5 B		33.4
4		13.422	1.39	200		33.4
5				ND		33.4
5 6		16.908	1.59	83.8		33.4
7				ND		33.4
8		17.508	1.57	205		33.4
9				ND		33.4
10				ND		33.4
11		20.790	1.53	397 B		201
12	12/13	20.730		ND		66.9
13	12/13			ND		66.9
14	12/13			ND		33.4
15		21.593	1.54	441		33.4
16		21.509	1.07	174		33.4
17		20.922	1.06	365		33.4
18	18/30	20.407	1.06	723		66.9
19	10/30	17.903	1.06	81.3		33.4
20	20/28	25.297	1.03	1680		66.9
21	21/33	25.582	1.03	746		66.9
22	21/33	26.035	1.04	609		33.4
23		20.033	1.01	ND		33.4
23 24				ND ND		33.4
2 4 25		24.576	1.03	119		33.4
26 26	26/29	24.274	1.03	279		66.9
26 27	20/29	21.210	1.04	61.6		33.4
28	20/20	25.297	1.11	(1680)		
26 29	20/28 26/29	25.297 24.274	1.03			66.9 66.9
29 30	18/30	24.274 20.407	1.04	(279) (723)		66.9
31	16/30	24.945	1.06	(723) 1480		33.4
32		24.945 22.178	1.02	294		33.4 33.4
32 33	21/33	25.582	1.01			
33 34	21/33			(746)		66.9
3 4		 29.422	1.03	ND		33.4
35				34.7 ND		33.4
36			4.00	ND 207		33.4
37		29.892	1.03	387 ND		33.4
38				ND		33.4
39	40/44/74	20.004		ND		33.4
40	40/41/71	29.691	0.77	580		201
41	40/41/71	29.691	0.77	(580)		201
42	40/70	29.137	0.82	296		66.9
43	43/73			ND		134
44 45	44/47/65	28.550	0.80	986		201
45 46	45/51	25.381	0.79	210		134
46	44/47/65	 20 EEO		ND (006)		66.9
47	44/47/65	28.550	0.80	(986)		201
48		28.299	0.79	237		66.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.980	0.80	578		134
50	50/53	24.593	0.80	162		134
51	45/51	25.381	0.79	(210)		134
52		27.427	0.78	965		66.9
53	50/53	24.593	0.80	(162)		134
54				NĎ		66.9
55				ND		66.9
56		33.816	0.78	184		66.9
57				ND		66.9
58				ND		66.9
59	59/62/75			ND		201
60		34.051	0.76	111		66.9
61	61/70/74/76	32.726	0.78	960		268
62	59/62/75			ND		201
63				ND		66.9
64		29.925	0.80	458		66.9
65	44/47/65	28.550	0.80	(986)		201
66		33.095	0.78	464		66.9
67				ND		66.9
68				ND		66.9
69	49/69	27.980	0.80	(578)		134
70	61/70/74/76	32.726	0.78	(960)		268
71	40/41/71	29.691	0.77	(580)		201
72				ND		66.9
73	43/73			ND		134
74	61/70/74/76	32.726	0.78	(960)		268
75	59/62/75			NĎ		201
76	61/70/74/76	32.726	0.78	(960)		268
77		37.740	0.76	68.4		66.9
78				ND		66.9
79				ND		66.9
80				ND		66.9
81			4.00	ND		66.9
82		37.338	1.62	114 ND		66.9
83		 32.961	 4.50	ND		66.9
84 85	85/116/117	32.961	1.58 	258 ND		66.9 201
86	86/87/97/108/119/125	36.181	1.57	597		401
87	86/87/97/108/119/125	36.181	1.57	(597)		401 401
88	88/91	32.709	1.57	(597)		134
89	00/91	32.709	1.54	ND		66.9
90	90/101/113	34.940	1.60	821		201
91	88/91	32.709	1.54	(172)		134
91	00/31	34.319	1.5 4 1.56	181		66.9
93	93/98/100/102	34.319	1.56	ND		268
93 94	33/30/100/102			ND ND		66.9
9 4 95		31.787	1.56	835		66.9
95 96		31.707	1.56	ND		66.9
90				ND		00.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	36.181	1.57	(597)		401
98	93/98/100/102			` NĎ		268
99		35.543	1.56	293		66.9
100	93/98/100/102			ND		268
101	90/101/113	34.940	1.60	(821)		201
102	93/98/100/102			ND		268
103				ND		66.9
104				ND		66.9
105		41.346	1.57	356		66.9
106				ND		66.9
107	107/124			ND		134
108	86/87/97/108/119/125	36.181	1.57	(597)		401
109	00/01/01/100/110/120			ND		66.9
110	110/115	37.019	1.57	1190		134
111	110/110			ND		66.9
112				ND		66.9
113	90/101/113	34.940	1.60	(821)		201
114	30/101/110			ND		66.9
115	110/115	37.019	1.57	(1190)		134
116	85/116/117			ND		201
117	85/116/117			ND		201
118	03/110/117	40.138	1.54	717		66.9
119	86/87/97/108/119/125	36.181	1.57	(597)		401
120	00/07/97/100/119/123		1.57	ND		66.9
121				ND		66.9
122				ND		66.9
123				ND		66.9
123	107/124			ND		134
125	86/87/97/108/119/125	36.181	1.57	(597)		401
126	86/87/97/106/119/123		1.57	ND		66.9
127				ND ND		66.9
128	128/166	44.599	1.26	233		134
129	129/138/163	43.308	1.24	1350		201
130	129/130/103	42.654	1.24	86.6		66.9
131		42.054	1.24	ND		66.9
131		40.222	1.24	412		66.9
132		40.222	1.24	ND		66.9
134	134/143			ND ND		134
134	135/151	37.958	1.23			134
136	135/151	37.956 35.443	1.23	341 144		66.9
			1.20	ND		
137 138	129/138/163	43.308	1.24	(1350)		66.9 201
139	139/140	43.306	1.24	(1350) ND		134
140	139/140			ND		134
141		42.234	1.24	208 ND		66.9
142	124/142			ND ND		66.9
143	134/143			ND ND		134
144				ND		66.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		66.9
146		41.396	1.23	148		66.9
147	147/149	38.931	1.25	827		134
148	1 1771 10			ND		66.9
149	147/149	38.931	1.25	(827)		134
150	1 1771 10			ND		66.9
151	135/151	37.958	1.23	(341)		134
152	100/101			ND		66.9
153	153/168	42.033	1.24	881		134
154	100/100			ND		66.9
155				ND		66.9
156	156/157	47.516	1.24	172		134
157	156/157	47.516	1.24	(172)		134
158	100/101	43.710	1.25	134		66.9
159				ND		66.9
160				ND		66.9
161				ND		66.9
162				ND		66.9
163	129/138/163	43.308	1.24	(1350)		201
164	0,.00,.00	42.989	1.24	93.3		66.9
165				ND		66.9
166	128/166	44.599	1.26	(233)		134
167	120/100			ND		66.9
168	153/168	42.033	1.24	(881)		134
169				ND		66.9
170		50.233	1.07	307		66.9
171	171/173			ND		134
172				ND		66.9
173	171/173			ND		134
174		45.538	1.07	248		66.9
175				ND		66.9
176				ND		66.9
177		45.974	1.02	143		66.9
178				ND		66.9
179		40.977	1.04	90.0		66.9
180	180/193	48.925	1.04	574		134
181				ND		66.9
182				ND		66.9
183	183/185	45.286	1.04	166		134
184				ND		66.9
185	183/185	45.286	1.04	(166)		134
186				NĎ		66.9
187		44.666	1.02	265		66.9
188				ND		66.9
189				ND		66.9
190				ND		66.9
191				ND		66.9
192				ND		66.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.925	1.04	(574)		134
194		55.948	0.88	`12 1		100
195				ND		100
196				ND		100
197	197/200			ND		201
198	198/199			ND		201
199	198/199			ND		201
200	197/200			ND		201
201				ND		100
202				ND		100
203				ND		100
204				ND		100
205				ND		100
206		59.052	0.76	108		100
207				ND		100
208				ND		100
209		61.660	0.68	116		100

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-03 (FO105696) 10132108003 P100717A_05

Congener Group	Concentration ng/Kg	
Congener Group	lig/Ng	
Total Monochloro Biphenyls	1160	
Total Dichloro Biphenyls	1330	
Total Trichloro Biphenyls	7030	
Total Tetrachloro Biphenyls	6260	
Total Pentachloro Biphenyls	5530	
Total Hexachloro Biphenyls	5030	
Total Heptachloro Biphenyls	1790	
Total Octachloro Biphenyls	121	
Total Nonachloro Biphenyls	108	
Decachloro Biphenyls	116	
Total PCBs	28500	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Matrix Dilution

Client - Test America

Client's Sample ID PTF0689-04 (FO105697)
Lab Sample ID 10132108004-2R
Filename P100815B_08
Injected By BAL
Total Amount Extracted 21.5 g
% Moisture 53.4

10.0 g Dry Weight Extracted Collected 06/17/2010 10:38 ICAL ID P100815B02 Received 06/24/2010 09:55 CCal Filename(s) P100815B 01 Extracted 08/10/2010 17:35 Method Blank ID BLANK-26032 Analyzed 08/15/2010 23:17

..._ . _

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.420	3.96	2.0	0.803	48 I
13C-4-MoCB	3	12.871	3.23	2.0	1.28	64
13C-2,2'-DiCB	4	13.218	1.65	2.0	1.12	56
13C-4,4'-DiCB	15	21.377	1.63	2.0	1.39	70
13C-2,2',6-TrCB	19	17.687	1.02	2.0	1.20	60
13C-3,4,4'-TrCB	37	29.690	1.05	2.0	1.48	74
13C-2,2',6,6'-TeCB	54	21.691	0.74	2.0	1.58	79
13C-3,4,4',5-TeCB	81	36.967	0.81	2.0	1.08	54
13C-3,3',4,4'-TeCB	77	37.554	0.82	2.0	1.05	53
13C-2,2',4,6,6'-PeCB	104	28.231	1.58	2.0	1.80	90
13C-2,3,3',4,4'-PeCB	105	41.159	1.54	2.0	1.06	53
13C-2,3,4,4',5-PeCB	114	40.472	1.62	2.0	1.16	58
13C-2,3',4,4',5-PeCB	118	39.935	1.55	2.0	1.14	57
13C-2,3',4,4',5'-PeCB	123	39.600	1.59	2.0	1.16	58
13C-3,3',4,4',5-PeCB	126	44.362	1.53	2.0	0.926	46
13C-2,2',4,4',6,6'-HxCB	155	34.418	1.28	2.0	2.19	110
13C-HxCB (156/157)	156/157	47.380	1.23	4.0	2.24	56
13C-2,3',4,4',5,5'-HxĆB	167	46.206	1.25	2.0	1.23	62
13C-3,3',4,4',5,5'-HxCB	169	50.767	1.15	2.0	1.07	54
13C-2,2',3,4',5,6,6'-HpCB	188	40.405	1.05	2.0	2.37	1 <u>18</u>
13C-2,3,3',4,4',5,5'-HpCB	189	53.316	0.99	2.0	1.53	77
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.871	0.87	2.0	2.03	102
13C-2,3,3',4,4',5,5',6-OcCB	205	56.376	0.93	2.0	1.53	76
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.790	0.76	2.0	2.11	105
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.691	0.89	2.0	1.57	79 100
13CDeCB	209	61.333	0.69	2.0	2.00	100
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.062	1.03	2.0	1.78	89
13C-2,3,3',5,5'-PeCB	111	37.554	1.57	2.0	1.32	66
13C-2,2',3,3',5,5',6-HpCB	178	43.557	1.02	2.0	1.72	86
Recovery Standards						
13C-2,5-DiCB	9	16.117	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.191	0.77	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.703	1.51	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.104	1.33	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.773	0.98	2.0	NA	NA
, ,-,-, , ,-,-	-			-		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		9.444	2.94	46.7		25.0
2		12.619	3.24	31.8		25.0
3		12.883	3.08	75.9		25.0
4		13.242	1.47	237		25.0
4 5				ND		25.0
6 7		16.717	1.47	135		25.0
7		16.381	1.57	25.8		25.0
8		17.316	1.56	602		25.0
9		16.153	1.46	41.8		25.0
10				ND		25.0
11		20.623	1.57	751		150
12	12/13	20.982	1.51	109		49.9
13	12/13	20.982	1.51	(109)		49.9
14	. 2, 10			ND		25.0
15		21.413	1.55	919		25.0
16		21.306	1.01	501		25.0
17		20.742	1.07	493		25.0
18	18/30	20.203	1.05	666		49.9
19	10/00	17.699	1.02	136		25.0
20	20/28	25.095	1.03	2080		49.9
21	21/33	25.364	1.02	1150		49.9
22	21/33	25.816	1.02	861		25.0
23		25.010	1.02	ND		25.0
24				ND		25.0
25		24.374	1.03	159		25.0
26	26/29	24.072	1.03	362		49.9
27	20/29	20.994	1.13	104		25.0
28	20/28	25.095	1.13	(2080)		49.9
29	26/29	24.072	1.03	(362)		49.9
30	18/30	20.203	1.05	(666)		49.9
31	16/30		1.03	1810		25.0
32		24.743 21.976	1.04	391		
33	21/33	25.364	1.02	(1150)		25.0 49.9
33 34	21/33	25.364	1.02	(1150) ND		25.0
3 4 35		29.237	0.99	75.9		25.0 25.0
36				75.9 ND		25.0 25.0
36 37		 29.707	1.02	1130		25.0 25.0
3 <i>1</i> 38		29.707	1.02	ND		25.0 25.0
36 39				ND ND		25.0 25.0
39	40/44/74			1580		25.U 450
40	40/41/71	29.472	0.83			150
41	40/41/71	29.472	0.83	(1580)		150
42 43	43/73	28.918	0.80	671 ND		49.9
43				ND 2650		99.9
44	44/47/65	28.365	0.78	3650		150
45 46	45/51	25.246	0.79 0.83	851 187		99.9
46	11/17/CE	25.514	0.83 0.70			49.9
47	44/47/65	28.365	0.78	(3650)		150
48		28.080	0.81	479		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC Co-elutions RT Ratio ng/Kg ng/Kg ng/Kg 49	HIDAC	Co alutiono	DT	Datia	Concentration	EMPC	EML
50 50/53 24,374 0.79 654 99,9 51 45/51 25,246 0.79 (851) 99,9 52 27,208 0.79 (854) 99,9 53 50/53 24,374 0.79 (654) 99,9 54 — — ND 49,9 55 — — ND 49,9 56 33.597 0.76 779 — 49,9 57 — ND — 49,9 58 — ND — 49,9 59 59/62/75 28,700 0.77 244 — 150 60 61/70/74/76 32,848 0.76 369 — 49,9 61 61/70/74/76 32,540 0.75 3500 — 200 62 25/62/75 28,700 0.77 (244) — 150 63 32,188 0.81 74,2 — 49,9 <th>IUPAC</th> <th>Co-elutions</th> <th>KI</th> <th>Ratio</th> <th>ng/kg</th> <th>ng/Kg</th> <th>ng/kg</th>	IUPAC	Co-elutions	KI	Ratio	ng/kg	ng/Kg	ng/kg
51 45/51 25,246 0.79 (851) 99,9 52 27,208 0.79 (654) 99,9 53 50/53 24,374 0.79 (654) 99,9 54 ND 49,9 55 ND 49,9 56 33.597 0.76 779 49,9 56 ND 49,9 58 ND 49,9 59 59/62/75 28,700 0.77 244 150 61 61/70/74/76 32,540 0.75 3500 200 62 59/62/75 28,700 0.77 (244) 150 63 32,848 0.81 74,2 49,9 64 29,740 0.79 1100 49,9	49	49/69	27.761	0.79			99.9
52	50	50/53	24.374	0.79	654		99.9
53 50/53 24,374 0.79 (654)	51	45/51	25.246		(851)		
53 50/53 24,374 0.79 (654)	52		27.208	0.79	357Ó		49.9
54		50/53					
55	54				` NĎ		49.9
56 33.597 0.76 779 49.9 57 ND 49.9 58 59/62/75 28.700 0.77 244 150 60 33.848 0.76 369 49.9 61 61/70/74/76 32.540 0.75 3500 200 62 59/62/75 28.700 0.77 (244) 150 63 32.188 0.81 74.2 49.9 64 22.740 0.79 1100 49.9 65 44/47/65 28.365 0.78 13620 49.9 67 31.903 0.82 79.7 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9	55						
57			33.597	0.76	779		
58 ND 49.9 59 59/62/75 28.700 0.77 244 150 60 33.848 0.76 369 49.9 61 61/70/74/76 32.540 0.75 3500 200 62 59/62/75 28.700 0.77 (244) 150 63 32.188 0.81 74.2 49.9 64 29.740 0.79 1100 49.9 65 44/47/65 28.365 0.78 (3650) 150 66 32.892 0.78 1720 49.9 67 31.903 0.82 79.7 49.9 68 ND 49.9 70 61/70/74/76 32.540 0.75 (3500) 200 71 40/41/71 29.472 0.83 (1580) 1							
59 59/62/75 28.700 0.77 244							49.9
60		59/62/75	28.700	0.77			
61 61/70/74/76 32.540 0.75 3500 200 62 59/62/75 28.700 0.77 (244) 150 63 32.188 0.81 74.2 49.9 64 29.740 0.79 1100 49.9 65 44/47/65 28.365 0.78 (3650) 150 66 32.892 0.78 1720 49.9 67 31.903 0.82 79.7 49.9 68 ND ND 49.9 69 49/69 27.761 0.79 (1780) 200 71 40/41/71 29.472 0.83 (1580) 150 72 ND ND 49.9 73 43/73 ND 49.9 74 61/70/74/76 32.540 0.75 (3500) 49.9 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 461/70/74/76 32.540 0.75 (3500) 200 78 45/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND ND 49.9 79 ND ND 49.9 80 ND 49.9 81 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 5000 300 88 88/91 32.507 1.55 (1630) 49.9 99 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95	60						
62 59/62/75 28,700 0.77 (244) 150 63 32.188 0.81 74.2 49.9 64 29,740 0.79 1100 49.9 65 44/47/65 28.365 0.78 (3650) 150 66 32.892 0.78 1720 49.9 67 31.903 0.82 79.7 49.9 68 ND ND 49.9 70 61/70/74/76 32.540 0.75 (3500) 150 71 40/41/71 29.472 0.83 (1580) 150 72 ND ND 49.9 73 43/73 ND ND 49.9 74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND ND 49.9 79 ND ND 49.9 80 ND ND 49.9 81 ND ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 88 88/91 32.507 1.55 (1630) 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95		61/70/74/76			3500		
63 64 64 62 67 68 68 69 69 69 69 69 69 69 61/70/74/76 62 62 61/70/74/76 62 63 62 63 63 63 63 63 64 64 65 66 66 66 67 67 68 67 68 68 68 68 68/87/97/108/119/125 68 68 68 68/87/97/108/119/125 68 68 68 68/87/97/108/119/125 68 68 68 68/87/97/108/119/125 68 68 68 68/87/97/108/119/125 68 68 68 68/87/97/108/119/125 69 69 69 69 69 69 69 69 69 69 69 69 69							
64							
65							
66 32.892 0.78 1720 49.9 67 31.903 0.82 79.7 49.9 68 ND 49.9 69 49/69 27.761 0.79 (1780) 200 70 61/70/74/76 32.540 0.75 (3500) 200 71 40/41/71 29.472 0.83 (1580) 150 72 ND ND 49.9 73 43/73 ND 99.9 74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND ND 49.9 79 ND ND 49.9 80 ND ND 49.9 81 ND ND 49.9 81 ND ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 5000 300 88 88/91 32.507 1.55 1630 99.9 90 90/101/113 34.737 1.56 8390 49.9 91 88/91 32.507 1.55 1630 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 49.9 94 31.065 1.47 152 49.9 95 31.568 1.566 7020 49.9		44/47/65					
67 68 68 69 49/69 27.761 0.79 (1780)							
68 69 69 69 69 69 70 61/70/74/76 632.540 0.75 63500) 71 61/70/74/76 32.540 0.75 63500) 72 73 74 61/70/74/76 32.540 0.75 75 76 77 77 78 78 79 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70							
69							
70 61/70/74/76 32.540 0.75 (3500) 200 71 40/41/71 29.472 0.83 (1580) 150 72 ND 49.9 73 43/73 ND 99.9 74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND 49.9 80 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 5000 300 88 88/91 32.507 1.55 1630 99.9 89 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.568 1.56 7020 49.9		49/69	27.761	0.79			
71 40/41/71 29.472 0.83 (1580) 150 72 ND 49.9 73 43/73 ND 99.9 74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 200 200 78 ND 49.9 49.9 49.9 49.9 ND 49.9 49.9 ND 49.9 49.9 ND 49.9 49.9 49.9 49.9 49.9							200
72 ND 49.9 73 43/73 ND 99.9 74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.75 (3500) 200 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND 49.9 79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85	71						
73 43/73 ND 99.9 74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND 49.9 79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 84 32.241 1.57 2130 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150		10/11//1					
74 61/70/74/76 32.540 0.75 (3500) 200 75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND 49.9 79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000		43/73					
75 59/62/75 28.700 0.77 (244) 150 76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND 49.9 79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/867/97/108/119/125 35.978 1.52 (5000) -				0.75			
76 61/70/74/76 32.540 0.75 (3500) 200 77 37.587 0.78 413 49.9 78 ND 49.9 79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 49.9 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 5000 300 88 88/91 32.507 1.55 1630 <td></td> <td></td> <td></td> <td></td> <td>(244)</td> <td></td> <td></td>					(244)		
77 78 78 79 79 79 79 79 79 79 79 79 70 70 70 70 70 71 71 71 72 71 72 72 73 75 75 77 77 78 78 79 79 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70							200
78 ND 49.9 79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 <td></td> <td>31/10/11/10</td> <td></td> <td></td> <td></td> <td></td> <td></td>		31/10/11/10					
79 ND 49.9 80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 49.9 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55							49.9
80 ND 49.9 81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953							
81 ND 49.9 82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 49.9 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065							
82 37.151 1.53 921 49.9 83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568							
83 35.206 1.60 492 49.9 84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9			37 151				
84 32.741 1.57 2130 49.9 85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 49.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9			35 206	1.60			
85 85/116/117 36.615 1.37 1040 150 86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9	84		32 741	1.57	2130		49.9
86 86/87/97/108/119/125 35.978 1.52 5000 300 87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9		85/116/117		1.37	1040		150
87 86/87/97/108/119/125 35.978 1.52 (5000) 300 88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9			35 978				
88 88/91 32.507 1.55 1630 99.9 89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9	87		35 978	1.52			300
89 33.244 1.46 73.0 49.9 90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9			32 507	1.55	1630		
90 90/101/113 34.737 1.56 8390 150 91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9		36/61		1.66			49.9
91 88/91 32.507 1.55 (1630) 99.9 92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9		90/101/113			8390		
92 34.116 1.57 1750 49.9 93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9			32 507	1.55			
93 93/98/100/102 31.953 1.50 518 200 94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9		55/51		1.57	1750		49.9
94 31.065 1.47 152 49.9 95 31.568 1.56 7020 49.9		93/98/100/102					
95 31.568 1.56 7020 49.9		00,00,100,102	31.065		152		
					7020		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.978	1.52	(5000)		300
98	93/98/100/102	31.953	1.50	(518)		200
99		35.357	1.57	282Ó		49.9
100	93/98/100/102	31.953	1.50	(518)		200
101	90/101/113	34.737	1.56	(8 ³ 90)		150
102	93/98/100/102	31.953	1.50	(518)		200
103		30.830	1.52	`15 8		49.9
104				ND		49.9
105		41.176	1.53	2820		49.9
106				ND		49.9
107	107/124	39.231	1.44	295		99.9
108	86/87/97/108/119/125	35.978	1.52	(5000)		300
109	33/31/31/133/113/123	39.499	1.45	422		49.9
110	110/115	36.816	1.58	10200		99.9
111	110/110			ND		49.9
112				ND		49.9
113	90/101/113	34.737	1.56	(8390)		150
114	30, 13 1, 113	40.505	1.60	136		49.9
115	110/115	36.816	1.58	(10200)		99.9
116	85/116/117	36.615	1.37	(1040)		150
117	85/116/117	36.615	1.37	(1040)		150
118	09/110/117	39.969	1.54	6200		49.9
119	86/87/97/108/119/125	35.978	1.52	(5000)		300
120	00/07/37/100/119/129			ND		49.9
121				ND		49.9
122		40.321	1.44	92.9		49.9
123		39.616	1.39	127		49.9
124	107/124	39.231	1.44	(295)		99.9
125	86/87/97/108/119/125	35.978	1.52	(5000)		300
126	86/87/97/106/119/123	44.362	1.97 I	(3000)	84.5	49.9
127		42.802	1.52	58.3	04.5	49.9
128	128/166	44.429	1.23	2460		99.9
129	129/138/163	43.138	1.25	16400		150
130	129/130/103	42.484	1.25	1090		49.9
131		39.566	1.31	219		49.9
132		40.036	1.25	5250		49.9
133		40.030	1.25	ND		49.9
134	134/143	38.929	1.26	845		99.9
134	135/151	36.929 37.755	1.25	5680		99.9
136	135/151	37.755 35.240	1.25	2280		49.9
			1.27	799		49.9 49.9
137 138	129/138/163	42.685 43.138	1.25	(16400)		49.9 150
			1.20	(10400)		
139	139/140	39.331	1.19	256 (256)		99.9
140	139/140	39.331	1.19	(256)		99.9
141		42.048	1.23	277Ó		49.9
142	404/440		4.00	ND (0.45)		49.9
143	134/143	38.929	1.26	(845)		99.9
144		38.359	1.25	793		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.9
146		41.226	1.24	2290		49.9
147	147/149	38.728	1.24	12200		99.9
148	,			ND		49.9
149	147/149	38.728	1.24	(12200)		99.9
150	,	34.854	1.24	70.6		49.9
151	135/151	37.755	1.25	(5680)		99.9
152				ND		49.9
153	153/168	41.847	1.24	12200		99.9
154	100,100	38.023	1.22	368		49.9
155				ND		49.9
156	156/157	47.380	1.24	1730		99.9
157	156/157	47.380	1.24	(1730)		99.9
158	100/107	43.523	1.23	1470		49.9
159				ND		49.9
160				ND		49.9
161				ND		49.9
162				ND		49.9
163	129/138/163	43.138	1.25	(16400)		150
164	123/133/133	42.802	1.26	1010		49.9
165				ND		49.9
166	128/166	44.429	1.23	(2460)		99.9
167	120/100	46.223	1.25	664		49.9
168	153/168	41.847	1.24	(12200)		99.9
169	155/100	41.047	1.2 4 	(12200) ND		49.9
170		50.063	1.05	3470		49.9
171	171/173	46.441	1.06	1140		99.9
172	17 17173	48.118	1.07	618		49.9
173	171/173	46.441	1.06	(1140)		99.9
174	17 17173	45.351	1.04	3450		49.9
175		44.194	0.99	183		49.9
176		41.696	1.03	513		49.9
177		45.804	1.03	2020		49.9
178		43.557	1.03	818		49.9
179		40.773	1.02	1670		49.9
180	180/193	48.772	1.05	7280		99.9
181	100/133			ND		49.9
182				ND		49.9
183	183/185	45.100	1.05	2490		99.9
184	100/100			ND		49.9
185	183/185	45.100	1.05	(2490)		99.9
186	100/100			ND		49.9
187		44.479	1.05	4390		49.9
188			1.05	ND		49.9
189		53.359	1.03	173		49.9
190		50.633	1.03	733		49.9
190		49.141	1.05	733 142		49.9
192				ND		49.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.772	1.05	(7280)		99.9
194		55.794	0.90	`161Ó		74.9
195		53.014	0.86	612		74.9
196		51.438	0.90	943		74.9
197	197/200	47.883	0.88	292		150
198	198/199	50.750	0.88	1790		150
199	198/199	50.750	0.88	(1790)		150
200	197/200	47.883	0.88	(292)		150
201		46.843	0.92	`26Ś		74.9
202		45.888	0.93	361		74.9
203		51.639	0.88	1090		74.9
204				ND		74.9
205		56.398	0.92	116		74.9
206		58.812	0.79	858		74.9
207		53.725	0.83	104		74.9
208		52.712	0.71	305		74.9
209		61.398	0.65	760		74.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-04 (FO105697) 10132108004-2R P100815B_08

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	154	
Total Dichloro Biphenyls	2820	
Total Trichloro Biphenyls	9920	
Total Tetrachloro Biphenyls	21700	
Total Pentachloro Biphenyls	52500	
Total Hexachloro Biphenyls	70900	
Total Heptachloro Biphenyls	29100	
Total Octachloro Biphenyls	7070	
Total Nonachloro Biphenyls	1270	
Decachloro Biphenyls	760	
Total PCBs	196000	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix Dilution

Client's Sample ID PTF0689-05 (FO105698)
Lab Sample ID 10132108005-2R
Filename P100815B_09
Injected By BAL
Total Amount Extracted 15.3 g
% Moisture 33.4

10.2 g Dry Weight Extracted Collected 06/17/2010 11:42 **ICAL ID** P100815B02 Received 06/24/2010 09:55 CCal Filename(s) P100815B 01 Extracted 08/10/2010 17:35 Method Blank ID BLANK-26032 Analyzed 08/16/2010 00:23

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.444	3.44	2.0	0.930	46
13C-4-MoCB	3	12.895	2.84	2.0	1.23	61
13C-2,2'-DiCB	4	13.242	1.56	2.0	1.06	53
13C-4,4'-DiCB	15	21.402	1.66	2.0	1.36	68
13C-2,2',6-TrCB	19	17.700	1.12	2.0	1.16	58
13C-3,4,4'-TrCB	37	29.708	1.04	2.0	1.48	74
13C-2,2',6,6'-TeCB	54	21.726	0.82	2.0	1.48	74
13C-3,4,4',5-TeCB	81	36.953	0.79	2.0	1.13	56
13C-3,3',4,4'-TeCB	77	37.556	0.78	2.0	1.12	56
13C-2,2',4,6,6'-PeCB	104	28.249	1.57	2.0	1.69	84
13C-2,3,3',4,4'-PeCB	105	41.145	1.48	2.0	1.18	59
13C-2,3,4,4',5-PeCB	114	40.474	1.57	2.0	1.14	57
13C-2,3',4,4',5-PeCB	118	39.921	1.64	2.0	1.16	58
13C-2,3',4,4',5'-PeCB	123	39.585	1.57	2.0	1.18	59
13C-3,3',4,4',5-PeCB	126	44.331	1.50	2.0	1.01	51
13C-2,2',4,4',6,6'-HxCB	155	34.437	1.24	2.0	1.94	97
13C-HxCB (156/157)	156/157	47.367	1.26	4.0	2.32	58
13C-2,3',4,4',5,5'-HxCB	167	46.176	1.28	2.0	1.22	61
13C-3,3',4,4',5,5'-HxCB	169	50.687	1.27	2.0	1.13	56
13C-2,2',3,4',5,6,6'-HpCB	188	40.390	1.10	2.0	2.11	105
13C-2,3,3',4,4',5,5'-HpCB	189	53.255	1.02	2.0	1.41	71
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.841	0.93	2.0	1.90	95
13C-2,3,3',4,4',5,5',6-OcCB	205	56.294	0.92	2.0	1.51	75
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.730	0.79	2.0	1.71	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.652	0.80	2.0	1.62	81
13CDeCB	209	61.231	0.64	2.0	1.83	91
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.096	1.12	2.0	1.76	88
13C-2,3,3',5,5'-PeCB	111	37.539	1.55	2.0	1.34	67
13C-2,2',3,3',5,5',6-HpCB	178	43.510	1.03	2.0	1.64	82
Recovery Standards						
13C-2,5-DiCB	9	16.154	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.209	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.739	1.62	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.090	1.23	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.712	0.95	2.0	NA	ŇÁ
		JJ	0.00	=.0		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.456	3.19	221		24.5
2		12.643	2.81	39.9		24.5
2 3		12.919	3.19	159		24.5
4		13.266	1.59	1950		24.5
5		17.160	1.44	98.7		24.5
4 5 6		16.753	1.54	957		24.5
7		16.393	1.55	191		24.5
8		17.340	1.55	4720		24.5
9		16.178	1.57	327		24.5
10		13.518	1.65	102		24.5
11		20.635	1.55	768		147
12	12/13	20.995	1.58	382		48.9
13	12/13	20.995	1.58	(382)		48.9
14				NĎ		24.5
15		21.426	1.56	3280		24.5
16		21.318	1.08	3330		24.5
17		20.743	1.05	3300		24.5
18	18/30	20.216	1.05	6330		48.9
19		17.724	1.07	908		24.5
20	20/28	25.113	1.02	10500		48.9
21	21/33	25.381	1.03	6400		48.9
22		25.851	1.05	4150		24.5
23				ND		24.5
24		21.162	1.05	95.7		24.5
25		24.392	1.02	823		24.5
26	26/29	24.107	1.04	2010		48.9
27		21.019	1.06	616		24.5
28	20/28	25.113	1.02	(10500)		48.9
29	26/29	24.107	1.04	(2010)		48.9
30	18/30	20.216	1.05	(6330)		48.9
31		24.761	1.03	` 975Ó		24.5
32		21.994	1.03	2200		24.5
33	21/33	25.381	1.03	(6400)		48.9
34		23.553	1.00	` 37.8		24.5
35		29.255	1.00	183		24.5
36				ND		24.5
37		29.725	1.02	2890		24.5
38				ND		24.5
39		28.115	0.99	47.2		24.5
40	40/41/71	29.490	0.77	5610		147
41	40/41/71	29.490	0.77	(5610)		147
42		28.937	0.78	`264Ó		48.9
43	43/73	27.494	0.74	332		97.9
44	44/47/65	28.350	0.79	11300		147
45	45/51	25.180	0.79	2100		97.9
46		25.566	0.81	721		48.9
47	44/47/65	28.350	0.79	(11300)		147
48		28.098	0.78	2130		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

ND = Not Detected

RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

HIDAC	Co alutiono	RT	Datia	Concentration	EMPC	EML
IUPAC	Co-elutions	KI	Ratio	ng/Kg	ng/Kg	ng/Kg
49	49/69	27.779	0.79	6520		97.9
50	50/53	24.409	0.78	1520		97.9
51	45/51	25.180	0.79	(2100)		97.9
52		27.226	0.79	19200		48.9
53	50/53	24.409	0.78	(1520)		97.9
54	30,00			ND		48.9
55				ND		48.9
56		33.632	0.76	2390		48.9
57				ND		48.9
58				ND		48.9
59	59/62/75	28.719	0.78	888		147
60	03/02/10	33.867	0.77	1220		48.9
61	61/70/74/76	32.559	0.77	14400		196
62	59/62/75	28.719	0.78	(888)		147
63	39/02/13	32.190	0.78	263		48.9
64		29.741	0.78	4500		48.9
65	44/47/65	28.350	0.79	(11300)		147
66	44/47/03	32.928	0.79	5540		48.9
67		31.905	0.80	218		48.9
68		31.905	0.60	ND		48.9
69	49/69	27.779	0.79	(6520)		97.9
70		32.559				97.9 196
70 71	61/70/74/76		0.77	(14400)		
71 72	40/41/71	29.490	0.77	(5610)		147 48.9
	40/70			NĎ		
73	43/73	27.494	0.74	(332)		97.9
74 75	61/70/74/76	32.559	0.77	(14400)		196
75 70	59/62/75	28.719	0.78	(888)		147
76	61/70/74/76	32.559	0.77	(14400)		196
77 70		37.590	0.77	421		48.9
78		36.651	0.70	113		48.9
79		35.879	0.72	136		48.9
80				ND		48.9
81				ND		48.9
82		37.154	1.55	2650		48.9
83		35.225	1.71	1390		48.9
84		32.760	1.57	6640		48.9
85	85/116/117	36.651	1.55	3380		147
86	86/87/97/108/119/125	35.997	1.56	15900		294
87	86/87/97/108/119/125	35.997	1.56	(15900)		294
88	88/91	32.525	1.58	2900		97.9
89		33.263	1.53	210		48.9
90	90/101/113	34.756	1.57	22900		147
91	88/91	32.525	1.58	(2900)		97.9
92		34.118	1.56	4220		48.9
93	93/98/100/102	31.955	1.61	628		196
94		31.100	1.52	97.4		48.9
95		31.586	1.56	19600		48.9
96		28.685	1.74	173		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.997	1.56	(15900)		294
98	93/98/100/102	31.955	1.61	(628)		196
99	00/00/100/102	35.359	1.60	7820		48.9
100	93/98/100/102	31.955	1.61	(628)		196
101	90/101/113	34.756	1.57	(22900)		147
102	93/98/100/102	31.955	1.61	(628)		196
103	39/30/100/102	30.848	1.61	103		48.9
104				ND		48.9
105		41.179	1.55	7680		48.9
106				ND		48.9
107	107/124	39.250	1.53	775		97.9
108	86/87/97/108/119/125	35.997	1.56	(15900)		294
109	00/01/31/100/119/123	39.485	1.57	1090		48.9
110	110/115	36.835	1.57	24500		97.9
111	110/113			ND		48.9
112				ND		48.9
113	90/101/113	34.756	1.57	(22900)		147
114	90/101/113	40.508	1.58	465		48.9
115	110/115	36.835	1.57	(24500)		97.9
116	85/116/117	36.651	1.55	(3380)		147
117	85/116/117	36.651	1.55	(3380)		147
118	03/110/117	39.954	1.52	18600		48.9
119	86/87/97/108/119/125	35.997	1.56	(15900)		294
120	00/01/31/100/119/123			ND		48.9
121				ND		48.9
122		40.307	1.67	215		48.9
123		39.619	1.63	287		48.9
124	107/124	39.250	1.53	(775)		97.9
125	86/87/97/108/119/125	35.997	1.56	(15900)		294
126	00/01/01/100/110/120			ND		48.9
127				ND		48.9
128	128/166	44.415	1.26	3650		97.9
129	129/138/163	43.124	1.25	21800		147
130	120/100/100	42.453	1.27	1540		48.9
131		39.569	1.26	430		48.9
132		40.038	1.24	7600		48.9
133		40.541	1.19	260		48.9
134	134/143	38.948	1.16	1350		97.9
135	135/151	37.791	1.24	5820		97.9
136		35.259	1.26	3000		48.9
137		42.688	1.18	1410		48.9
138	129/138/163	43.124	1.25	(21800)		147
139	139/140	39.351	1.22	447		97.9
140	139/140	39.351	1.22	(447)		97.9
141		42.034	1.24	3490		48.9
142				ND		48.9
143	134/143	38.948	1.16	(1350)		97.9
144		38.361	1.26	`107Ó		48.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.9
146		41.195	1.25	2530		48.9
147	147/149	38.730	1.26	13700		97.9
148	,			ND		48.9
149	147/149	38.730	1.26	(13700)		97.9
150	,			ND		48.9
151	135/151	37.791	1.24	(5820)		97.9
152				ND		48.9
153	153/168	41.833	1.25	13800		97.9
154		38.026	1.11	145		48.9
155				ND		48.9
156	156/157	47.350	1.24	3150		97.9
157	156/157	47.350	1.24	(3150)		97.9
158	100/107	43.526	1.25	2240		48.9
159				ND		48.9
160				ND		48.9
161				ND		48.9
162		45.690	1.18	49.5		48.9
163	129/138/163	43.124	1.25	(21800)		147
164	123/130/103	42.805	1.22	1270		48.9
165				ND		48.9
166	128/166	44.415	1.26	(3650)		97.9
167	120/100	46.193	1.19	930		48.9
168	153/168	41.833	1.25	(13800)		97.9
169	155/100	41.000	1.25	(13600) ND		48.9
170		50.033	1.04	2330		48.9
171	171/173	46.428	1.03	815		97.9
172	17 1/173	48.071	1.05	383		48.9
173	171/173	46.428	1.03	(815)		97.9
173	17 1/173	45.321	1.04	1990		48.9
175		44.197	1.04	109		48.9
176		41.682	1.06	340		48.9
177		45.774	1.03	1180		48.9
178		43.543	1.05	404		48.9
179		40.776	1.06	893		48.9
180	180/193	48.742	1.03	3920		97.9
181	100/195	46.193	0.91	53.3		48.9
182				ND		48.9
183	183/185	45.086	1.06	1490		97.9
184	103/103			ND		48.9
185	183/185	45.086	1.06	(1490)		97.9
186	103/103			ND		48.9
187		44.466	1.08	2160		48.9
188				ND		48.9
189		53.277	1.13	123		48.9
190		50.587	1.13	451		48.9
190		49.094	1.07	99.2		48.9
192		49.094	1.07	ND		48.9
				.,,,		10.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.742	1.03	(3920)		97.9
194		55.712	0.90	` 55 8		73.4
195		52.975	0.88	226		73.4
196		51.375	0.90	357		73.4
197	197/200			ND		147
198	198/199	50.721	0.89	689		147
199	198/199	50.721	0.89	(689)		147
200	197/200			` NĎ		147
201		46.813	0.97	107		73.4
202		45.874	0.87	152		73.4
203		51.576	0.91	413		73.4
204				ND		73.4
205				ND		73.4
206		58.730	0.85	342		73.4
207				ND		73.4
208		52.652	0.86	92.7		73.4
209		61.295	0.63	119		73.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-05 (FO105698) 10132108005-2R P100815B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	420	
Total Dichloro Biphenyls	12800	
Total Trichloro Biphenyls	53500	
Total Tetrachloro Biphenyls	82100	
Total Pentachloro Biphenyls	142000	
Total Hexachloro Biphenyls	89600	
Total Heptachloro Biphenyls	16700	
Total Octachloro Biphenyls	2500	
Total Nonachloro Biphenyls	435	
Decachloro Biphenyls	119	
Total PCBs	400000	

ND = Not Detected
Results reported on a dry weight basis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Matrix

Dilution

Client's Sample ID PTF0689-06 (FO105702)
Lab Sample ID 10132108006-2R
Filename P100815B_10
Injected By BAL
Total Amount Extracted 15.4 g
% Moisture 33.4

Dry Weight Extracted 10.2 g Collected 06/17/2010 **ICAL ID** P100815B02 Received 06/24/2010 09:55 CCal Filename(s) P100815B 01 Extracted 08/10/2010 17:35 Method Blank ID BLANK-26032 08/16/2010 01:28 Analyzed

PCB Isomer **IUPAC** RT Ratio ng's Found % Recovery ng's Added Labeled Analytes 13C-2-MoCB 13C-4-MoCB 2.0 9.432 4.32 0.741 48 ı 3 12.883 2.91 2.0 1.39 70 13C-2,2'-DiCB 13C-4,4'-DiCB 4 13.230 1.60 2.0 1.21 61 15 2.0 21.413 1.56 1.47 73 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-2,2',6,6'-TeCB 19 17.687 1.09 2.0 1.23 62 2.0 37 1.11 80 29.707 1.60 54 21.725 0.80 2.0 1.61 80 13C-3,4,4',5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 81 0.80 62 36.985 2.0 1.24 77 37.571 0.82 2.0 1.17 58 104 28.248 1.57 2.0 94 1.89 13C-2,3,3',4,4'-PeCB 105 41.143 1.57 2.0 1.26 63 13C-2,3,4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5'-PeCB 114 40.472 1.55 2.0 1.26 63 2.0 39.919 66 118 1.58 1.31 123 39.601 1.53 2.0 1.31 66 13C-3,3',4,4',5-PeCB 126 44.329 1.57 2.0 1.07 53 13C-2,2',4,4',6,6'-HxCB 2.0 107 155 34.436 1.21 2.13 13C-HxCB (156/157) 156/157 4.0 47.364 1.24 2 40 60 13C-2,3',4,4',5,5'-HxCB 167 46.157 1.34 2.0 1.31 65 13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB 169 50.701 1.32 2.0 1.14 57 2.0 115 40.389 188 1.09 2.30 13C-2,3,3',4,4',5,5'-HpCB 13C-2,2',3,3',5,5',6,6'-OcCB 189 53.273 1.11 2.0 1.44 72 202 45.838 0.96 2.0 1.94 97 13C-2,3,3',4,4',5,5',6-OcCB 205 56.356 0.87 2.0 80 1.60 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,5,5',6,6'-NoCB 206 58.748 2.0 1.72 86 0.84 208 52.648 0.80 2.0 1.55 78 13C--DeCB 209 61.270 0.75 2.0 1.83 91 Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 28 2.0 91 25.079 1.01 1.81 37.555 2.0 74 111 1.51 1.47 13C-2,2',3,3',5,5',6-HpCB 178 43.524 1.09 2.0 1.79 90 Recovery Standards 13C-2,5-DiCB 9 16.141 1.64 2.0 NA NA 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 52 27.192 0.80 2.0 NA NA 2.0 NA 101 34.704 1.61 NA 13C-2,2',3,4,4',5'-HxCB 2.0 138 43.088 1.27 NA NA 13C-2,2',3,3',4,4',5,5'-OcCB 0.97 2.0 194 55.731 NA NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

ILIDAO	On abotions	DT	Datia	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1		9.456	3.10	281		24.4
2		12.631	3.24	50.4		24.4
3		12.907	3.19	180		24.4
3 4 5		13.254	1.58	2260		24.4
5		17.148	1.58	122		24.4
6		16.741	1.55	1160		24.4
7		16.405	1.58	236		24.4
8		17.340	1.56	5770		24.4
9		16.166	1.56	402		24.4
10		13.506	1.56	129		24.4
11		20.623	1.55	997		146
12	12/13	20.994	1.53	438		48.8
13	12/13	20.994	1.53	(438)		48.8
14	12/10			ND		24.4
15		21.426	1.56	3610		24.4
16		21.318	1.06	4150		24.4
17		20.743	1.06	4160		24.4
18	18/30	20.203	1.04	7740		48.8
19	10/30	17.723	1.07	1140		24.4
20	20/28	25.112	1.03	13100		48.8
21	21/33	25.381	1.03	8080		48.8
22	21/33	25.850	1.03	5080		46.6 24.4
23				ND		24.4 24.4
23 24		 24 474	1.03	157		24.4 24.4
24 25		21.174	1.03	1020		
25	00/00	24.391	1.03	2490		24.4
26	26/29	24.106	1.02			48.8
27	00/00	21.018	1.05	763		24.4
28	20/28	25.112	1.03	(13100)		48.8
29	26/29	24.106	1.02	(2490)		48.8
30	18/30	20.203	1.04	(7740)		48.8
31		24.760	1.03	12100		24.4
32	04/00	21.993	1.01	2640		24.4
33	21/33	25.381	1.03	(8080)		48.8
34		23.536	0.98	46.1		24.4
35		29.254	0.96	239		24.4
36				ND		24.4
37		29.724	1.02	3440		24.4
38				ND		24.4
39		28.097	0.91	62.2		24.4
40	40/41/71	29.489	0.80	6470		146
41	40/41/71	29.489	0.80	(6470)		146
42		28.936	0.78	3070		48.8
43	43/73	27.477	0.74	384		97.6
44	44/47/65	28.349	0.79	12000		146
45	45/51	25.180	0.78	2480		97.6
46		25.548	0.78	851		48.8
47	44/47/65	28.349	0.79	(12000)		146
48		28.097	0.77	2550		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.779	0.78	7030		97.6
50	50/53	24.408	0.80	1750		97.6
51	45/51	25.180	0.78	(2480)		97.6
52	.0,0.	27.225	0.79	18600		48.8
53	50/53	24.408	0.80	(1750)		97.6
54	00,00			ND		48.8
55				ND		48.8
56		33.631	0.76	2490		48.8
57				ND		48.8
58				ND		48.8
59	59/62/75	28.718	0.77	1080		146
60	00,02,10	33.866	0.76	1290		48.8
61	61/70/74/76	32.558	0.76	13100		195
62	59/62/75	28.718	0.77	(1080)		146
63	33/02/13	32.189	0.76	280		48.8
64		29.741	0.79	4940		48.8
65	44/47/65	28.349	0.79	(12000)		146
66	44/4//00	32.927	0.77	5640		48.8
67		31.904	0.76	264		48.8
68				ND		48.8
69	49/69	27.779	0.78	(7030)		97.6
70	61/70/74/76	32.558	0.76	(13100)		195
70 71	40/41/71	29.489	0.80	(6470)		146
72	40/41/11	30.697	0.73	48.8		48.8
73	43/73	27.477	0.74	(384)		97.6
73 74	61/70/74/76	32.558	0.74	(13100)		195
7 4 75	59/62/75	28.718	0.77	(1080)		146
75 76	61/70/74/76	32.558	0.76	(13100)		195
76 77	01/70/74/70	37.588	0.76	493		48.8
77 78		37.300	0.77	ND		48.8
76 79		35.878	0.89	81.5		48.8
79 80		33.070	0.69	ND		48.8
81				ND ND		48.8
82		37.152	1.58	1800		48.8
83		35.224	1.36	973		48.8
84		32.759	1. 44 1.56	4790		48.8
85	85/116/117	36.649	1.55	2100		146
86	86/87/97/108/119/125	35.995	1.56	11200		293
87		35.995 35.995	1.56			293 293
	86/87/97/108/119/125	35.995		(11200)		
88	88/91	32.524	1.56 1.64	` 2150 170		97.6
89	90/101/113	33.262				48.8
90 91	88/91	34.754	1.57 1.56	17300		146
	00/91	32.524	1.50	(2150)		97.6
92	02/09/400/402	34.117	1.57	3040		48.8
93	93/98/100/102	31.971	1.61	590		195
94		31.082	1.57	82.1		48.8
95		31.585	1.56	15500		48.8
96		28.684	1.62	153		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.995	1.56	(11200)		293
98	93/98/100/102	31.971	1.61	` (590)		195
99		35.358	1.53	537 Ó		48.8
100	93/98/100/102	31.971	1.61	(590)		195
101	90/101/113	34.754	1.57	(17300)		146
102	93/98/100/102	31.971	1.61	(590)		195
103		30.847	1.54	87.7		48.8
104				ND		48.8
105		41.177	1.52	5020		48.8
106				ND		48.8
107	107/124	39.248	1.52	498		97.6
108	86/87/97/108/119/125	35.995	1.56	(11200)		293
109	33, 31, 31, 133, 113, 123	39.500	1.50	698		48.8
110	110/115	36.834	1.57	17600		97.6
111	110,110			ND		48.8
112				ND		48.8
113	90/101/113	34.754	1.57	(17300)		146
114	33/131/113	40.506	1.50	321		48.8
115	110/115	36.834	1.57	(17600)		97.6
116	85/116/117	36.649	1.55	(2100)		146
117	85/116/117	36.649	1.55	(2100)		146
118	03/110/117	39.953	1.53	12200		48.8
119	86/87/97/108/119/125	35.995	1.56	(11200)		293
120	00/07/97/100/119/123		1.50	(11200) ND		48.8
121				ND		48.8
122		40.288	1.45	139		48.8
123		39.617	1.55	210		48.8
123	107/124	39.248	1.52	(498)		97.6
125	86/87/97/108/119/125	35.995	1.56	(11200)		293
126	00/07/97/100/119/123		1.50	(11200) ND		48.8
127				ND ND		48.8
128	128/166	44.413	1.24	2590		97.6
129	129/138/163	43.122	1.25	20000		146
130	129/130/103	42.468	1.23	1110		48.8
131		39.567	1.18	311		48.8
132		40.036	1.27	6360		48.8
133		40.540	1.21	214		48.8
134	134/143	38.930	1.25	1050		97.6
135	135/151	37.773	1.23	6490		97.6
136	133/131	37.773 35.241	1.27	2810		48.8
136		42.686	1.25	846		48.8
137	129/138/163	43.122	1.19	(20000)		146
138	139/140	43.122 39.349	1.25	(20000) 291		97.6
139			1.24			97.6 97.6
	139/140	39.349	1.24	(291)		
141		42.049		386Ó		48.8
142	124/142		 1 0F	ND (4050)		48.8
143	134/143	38.930	1.25	(1050)		97.6
144		38.360	1.27	`114Ó		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.8
146		41.210	1.26	2350		48.8
147	147/149	38.729	1.26	14100		97.6
148	,			ND		48.8
149	147/149	38.729	1.26	(14100)		97.6
150	,			ND		48.8
151	135/151	37.773	1.27	(6490)		97.6
152				ND		48.8
153	153/168	41.847	1.26	16100		97.6
154		38.024	1.13	97.8		48.8
155				ND		48.8
156	156/157	47.364	1.23	2350		97.6
157	156/157	47.364	1.23	(2350)		97.6
158	100/101	43.524	1.24	1930		48.8
159				ND		48.8
160				ND		48.8
161				ND		48.8
162		45.721	1.07	84.0		48.8
163	129/138/163	43.122	1.25	(20000)		146
164	. = 0, . 0 0, . 0 0	42.803	1.23	1150		48.8
165				ND		48.8
166	128/166	44.413	1.24	(2590)		97.6
167	120/100	46.191	1.25	749		48.8
168	153/168	41.847	1.26	(16100)		97.6
169	100/100			ND		48.8
170		50.047	1.05	4150		48.8
171	171/173	46.425	1.04	1390		97.6
172	,	48.085	1.05	677		48.8
173	171/173	46.425	1.04	(1390)		97.6
174	,	45.335	1.03	3790		48.8
175		44.195	1.09	210		48.8
176		41.680	1.03	599		48.8
177		45.788	1.03	2170		48.8
178		43.541	1.04	774		48.8
179		40.774	1.04	1670		48.8
180	180/193	48.739	1.04	8680		97.6
181				ND		48.8
182				ND		48.8
183	183/185	45.084	1.03	3090		97.6
184				ND		48.8
185	183/185	45.084	1.03	(3090)		97.6
186				` NĎ		48.8
187		44.463	1.04	4450		48.8
188				ND		48.8
189		53.295	0.97	213		48.8
190		50.584	1.05	850		48.8
191		49.108	1.04	183		48.8
192				ND		48.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.739	1.04	(8680)		97.6
194		55.731	0.91	1620		73.2
195		52.993	0.92	631		73.2
196		51.389	0.88	975		73.2
197	197/200	47.851	0.85	285		146
198	198/199	50.718	0.89	1540		146
199	198/199	50.718	0.89	(1540)		146
200	197/200	47.851	0.85	(285)		146
201		46.811	0.92	233		73.2
202		45.889	0.90	290		73.2
203		51.590	0.90	1070		73.2
204				ND		73.2
205		56.377	0.80	112		73.2
206		58.748	0.81	627		73.2
207		53.705	0.86	87.3		73.2
208		52.692	0.84	151		73.2
209		61.313	0.74	194		73.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0689-06 (FO105702) 10132108006-2R P100815B_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	511	
Total Dichloro Biphenyls	15100	
Total Trichloro Biphenyls	66400	
Total Tetrachloro Biphenyls	84800	
Total Pentachloro Biphenyls	102000	
Total Hexachloro Biphenyls	86100	
Total Heptachloro Biphenyls	32900	
Total Octachloro Biphenyls	6760	
Total Nonachloro Biphenyls	865	
Decachloro Biphenyls	194	
Total PCBs	396000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Matrix

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-25716 Filename P100716B 06 Injected By BAL

10.1 g **Total Amount Extracted** Extracted 07/14/2010 15:15 **ICAL ID** P100716B02 Analyzed 07/16/2010 23:56

CCal Filename(s) P100716B 01 Dilution

CCai Filename(s)	P100716B	_01		Dilution	NA		
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	
Labeled Analytes							
13C-2-MoCB	1	9.564	2.56	2.0	0.0457	2	R
13C-4-MoCB	3 4	13.014	2.69	2.0	0.501	25	_
13C-2,2'-DiCB	. 4	13.386	1.67	2.0	0.157	8	R
13C-4,4'-DICB	15	21.533	1.58	2.0	1.34	67	_
13C-2,2',6-TrCB	19	17.855	1.17	2.0	0.450	22	R
13C-3,4,4'-TrCB	37	29.875	1.07	2.0	1.32	66	
13C-2,2',6,6'-TeCB	54	21.893	0.78	2.0	1.01	50	
13C-3,4,4',5-TeCB	81 77	37.253	0.79 0.78	2.0 2.0	0.515 0.445	26 22	D
13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB	104	37.857 28.449	1.58	2.0	3.48	22 174	R R
13C-2,2,4,6,6-FeCB 13C-2,3,3',4,4'-PeCB	104	41.445	1.50	2.0	3.46 1.60	80	К
13C-2,3,4,4',5-PeCB	114	40.791	1.59	2.0	1.52	76	
13C-2,3',4,4',5-PeCB	118	40.255	1.65	2.0	1.45	70 72	
13C-2,3',4,4',5'-PeCB	123	39.903	1.56	2.0	1.45	72	
13C-3,3',4,4',5-PeCB	126	44.564	1.58	2.0	1.84	92	
13C-2,2',4,4',6,6'-HxCB	155	34.721	1.24	2.0	1.44	72	
13C-HxCB (156/157)	156/157	47.566	1.27	4.0	6.13	153	R
13C-2,3',4,4 [`] ,5,5'-HxĆB	167	46.409	1.30	2.0	2.68	134	
13C-3,3',4,4',5,5'-HxCB	169	50.819	1.26	2.0	3.52	176	R
13C-2,2',3,4',5,6,6'-HpCB	188	40.724	1.03	2.0	0.534	27	
13C-2,3,3',4,4',5,5'-HpCB	189	53.404	1.04	2.0	1.79	90	
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.124	0.90	2.0	0.954	48	
13C-2,3,3',4,4',5,5',6-OcCB	205	56.465	0.88	2.0	1.67	84	
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.943	0.77	2.0	1.59	79 75	
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.844	0.82	2.0	1.50	75 75	
13CDeCB	209	61.508	0.70	2.0	1.49	75	
Cleanup Standards		o= oos	4.05		4.00	•	
13C-2,4,4'-TrCB	28	25.230	1.06	2.0	1.66	83	
13C-2,3,3',5,5'-PeCB	111	37.873	1.55	2.0	1.24	62	
13C-2,2',3,3',5,5',6-HpCB	178	43.810	1.05	2.0	1.78	89	
Recovery Standards	_	40.00=					
13C-2,5-DiCB	9	16.285	1.57	2.0	NA	NA	
13C-2,2',5,5'-TeCB	52	27.393	0.80	2.0	NA	NA	
13C-2,2',4,5,5'-PeCB	101	35.006	1.62	2.0	NA NA	NA NA	
13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	138 194	43.391 55.861	1.30 0.92	2.0 2.0	NA NA	NA NA	
130-2,2,3,3,4,4,5,5-0000	134	JJ.00 I	0.92	۷.0	INA	INA	

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

1 9.576 2.80 192 24.7 2 12.763 3.27 86.3 24.7 3 13.038 3.36 37.9 24.7 4 ND 24.7 5 ND 24.7 6 ND 24.7 7 ND 24.7 8 ND 24.7 10 ND 24.7 11 20.767 1.54 181 148 12 12/13 ND 49.4 14 ND 24.7 15 ND 49.4 16 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 18 18/30 ND 24.7 19 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 19 ND 24.7 24.7 25 ND 24.7 26 26/29 ND 24.7 27 ND 24.7 28 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 24.7 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 24.7 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 30 18/30 ND 24.7 31 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39	IUPAC	Co-elutions	RT	Datia	Concentration	EMPC	EML
2	IUPAC	Co-elutions	K I	Ratio	ng/Kg	ng/Kg	ng/Kg
3			9.576				
4	2						
5	3		13.038	3.36	37.9		
7	4						
7	5						
7	6						
9	7						
10	8						
11 20.767 1.54 181 148 12 12/13 ND 49.4 13 12/13 ND 49.4 14 ND 24.7 15 ND 24.7 16 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 18 18/30 ND 24.7 20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25							
12 12/13 ND 49.4 13 12/13 ND 49.4 14 ND 24.7 15 ND 24.7 16 ND 24.7 17 ND 24.7 18 18/30 ND 24.7 18 18/30 ND 24.7 20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 24.7 26 26/29 ND 24.7 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 34 ND 49.4 35 ND 49.4 36 ND 49.4 37 32 ND 49.4 38 ND 49.4 39 40/41/71 ND 24.7 38 ND 24.7 37 38 ND 24.7 38 ND 24.7 37 38 ND 24.7 38 ND 24.7 39 ND 24.7 30 ND 24.7 31 48 44 40/41/71 ND 148 42 43 43/73 ND 148							
13	11		20.767	1.54			
14							
15		12/13					
16	14						
17 18 18/30					ND		24.7
17 18 18/30	16				ND		24.7
19	17				ND		24.7
20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 49.4 29 26/29 ND 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 34 ND 24.7 35 ND 24.7	18	18/30			ND		49.4
20 20/28 25.263 1.01 55.6 49.4 21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 49.4 29 26/29 ND 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 49.4 34 ND 24.7 35 ND 24.7					ND		
21 21/33 ND 49.4 22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 36 ND 24.7 37	20	20/28	25.263	1.01			
22 ND 24.7 23 ND 24.7 24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 49.4 27 ND 49.4 27 ND 49.4 27 ND 49.4 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33					ND		
24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 36 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22						
24 ND 24.7 25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 36 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
25 ND 24.7 26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	24						
26 26/29 ND 49.4 27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 40 40/41/71 ND 148 41 40/41/7	25						
27 ND 24.7 28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 24.7 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 <		26/29					
28 20/28 25.263 1.01 (55.6) 49.4 29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 </td <td>27</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	27						
29 26/29 ND 49.4 30 18/30 ND 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 98.7 44 44/47/65	28	20/28	25.263	1.01			
30 18/30 49.4 31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 98.7 43 43/73 ND 98.7 44 44/47/65 ND	29	26/29			` NĎ		
31 24.928 1.00 44.8 24.7 32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	30	18/30					
32 ND 24.7 33 21/33 ND 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	31		24.928	1.00	44.8		24.7
33 21/33 49.4 34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	32						
34 ND 24.7 35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	33	21/33					
35 ND 24.7 36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	34						
36 ND 24.7 37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	35						
37 ND 24.7 38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	36						
38 ND 24.7 39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	37						
39 ND 24.7 40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	38						
40 40/41/71 ND 148 41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	39						
41 40/41/71 ND 148 42 ND 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148	40	40/41/71					
42 49.4 43 43/73 ND 98.7 44 44/47/65 ND 148							
43 43/73 ND 98.7 44 44/47/65 ND 148		-:					
44 44/47/65 ND 148		43/73					98.7
TO TO/O1 11D 30.1	45	45/51			ND		98.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		49.4
47	44/47/65			ND		148
48				ND		49.4
49	49/69			ND		98.7
50	50/53			ND		98.7
51	45/51			ND		98.7
52		27.393	0.77	82.7		49.4
53	50/53			ND		98.7
54				ND		49.4
55				ND		49.4
56				ND		49.4
57				ND		49.4
58				ND		49.4
59	59/62/75			ND		148
60				ND		49.4
61	61/70/74/76			ND		197
62	59/62/75			ND		148
63				ND		49.4
64				ND		49.4
65	44/47/65			ND		148
66				ND		49.4
67				ND		49.4
68				ND		49.4
69	49/69			ND		98.7
70	61/70/74/76			ND		197
71	40/41/71			ND		148
72				ND		49.4
73	43/73			ND		98.7
74	61/70/74/76			ND		197
75	59/62/75			ND		148
76	61/70/74/76			ND		197
77				ND		49.4
78				ND		49.4
79				ND		49.4
80				ND		49.4
81				ND		49.4
82				ND		49.4
83				ND		49.4
84				ND		49.4
85	85/116/117			ND		148
86	86/87/97/108/119/125			ND		296
87	86/87/97/108/119/125			ND		296
88	88/91			ND		98.7
89				ND		49.4
90	90/101/113			ND		148

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		98.7
92				ND		49.4
93	93/98/100/102			ND		197
94				ND		49.4
95				ND		49.4
96				ND		49.4
97	86/87/97/108/119/125			ND		296
98	93/98/100/102			ND		197
99	33,33,132			ND		49.4
100	93/98/100/102			ND		197
101	90/101/113			ND		148
102	93/98/100/102			ND		197
103	00/00/100/102			ND		49.4
104				ND		49.4
105				ND		49.4
106				ND		49.4
107	107/124			ND		98.7
108	86/87/97/108/119/125			ND		296
109	00/01/91/100/119/125			ND ND		49.4
110	110/115			ND ND		98.7
111	110/113			ND ND		49.4
112				ND ND		49.4
113	90/101/113			ND ND		148
114	90/101/113			ND ND		49.4
115	110/115			ND ND		98.7
116	85/116/117			ND ND		148
117	85/116/117			ND ND		148
117	05/110/117			ND ND		49.4
119	86/87/97/108/119/125			ND ND		49.4 296
120	00/07/97/100/119/125			ND ND		49.4
120				ND ND		49.4 49.4
121				ND ND		49.4 49.4
122				ND ND		49.4 49.4
123	107/124			ND ND		49.4 98.7
125	86/87/97/108/119/125			ND		296
126				ND		49.4
127	400/400			ND		49.4
128	128/166			ND		98.7
129	129/138/163			ND		148
130				ND		49.4
131				ND		49.4
132				ND		49.4
133	40.4/4.40			ND		49.4
134	134/143			ND		98.7
135	135/151			ND		98.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		49.4
137				ND		49.4
138	129/138/163			ND		148
139	139/140			ND		98.7
140	139/140			ND		98.7
141	100/110			ND		49.4
142				ND		49.4
143	134/143			ND		98.7
144				ND		49.4
145				ND		49.4
146				ND		49.4
147	147/149			ND		98.7
148	,			ND		49.4
149	147/149			ND		98.7
150				ND		49.4
151	135/151			ND		98.7
152				ND		49.4
153	153/168			ND		98.7
154				ND		49.4
155				ND		49.4
156	156/157			ND		98.7
157	156/157			ND		98.7
158				ND		49.4
159				ND		49.4
160				ND		49.4
161				ND		49.4
162				ND		49.4
163	129/138/163			ND		148
164				ND		49.4
165				ND		49.4
166	128/166			ND		98.7
167				ND		49.4
168	153/168			ND		98.7
169				ND		49.4
170				ND		49.4
171	171/173			ND		98.7
172				ND		49.4
173	171/173			ND		98.7
174				ND		49.4
175				ND		49.4
176				ND		49.4
177				ND		49.4
178				ND		49.4
179				ND		49.4
180	180/193			ND		98.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25716 P100716B 06

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		49.4
182				ND		49.4
183	183/185			ND		98.7
184				ND		49.4
185	183/185			ND		98.7
186				ND		49.4
187				ND		49.4
188				ND		49.4
189				ND		49.4
190				ND		49.4
191				ND		49.4
192				ND		49.4
193	180/193			ND		98.7
194				ND		74.0
195				ND		74.0
196				ND		74.0
197	197/200			ND		148
198	198/199			ND		148
199	198/199			ND		148
200	197/200			ND		148
201				ND		74.0
202				ND		74.0
203				ND		74.0
204				ND		74.0
205				ND		74.0
206				ND		74.0
207				ND		74.0
208				ND		74.0
209				ND		74.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKEE BLANK-25716 P100716B_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	317	
Total Dichloro Biphenyls	181	
Total Trichloro Biphenyls	100	
Total Tetrachloro Biphenyls	82.7	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	681	

ND = Not Detected
Results reported on a dry weight basis

Solid

Matrix

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-25744 Filename P100717A 10 Injected By BAL

Total Amount Extracted 10.2 g Extracted 07/15/2010 15:45 **ICAL ID** P100717A02 Analyzed 07/17/2010 17:26

CCal Filename(s) P100717A 01 Dilution

CCai Filename(s)	P100/1/A	_01		Dilution	5	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.600	2.98	2.0	1.09	55
13C-4-MoCB	3	13.063	2.72	2.0	1.31	65
13C-2,2'-DiCB	4	13.447	1.67	2.0	1.10	55
13C-4,4'-DiCB	15	21.619	1.54	2.0	1.40	70
13C-2,2',6-TrCB	19	17.928	1.08	2.0	1.07	54
13C-3,4,4'-TrCB	37	29.944	1.07	2.0	1.46	73
13C-2,2',6,6'-TeCB	54	21.978	0.80	2.0	1.28	64
13C-3,4,4',5-TeCB	81 77	37.289	0.80	2.0	0.685	34
13C-3,3',4,4'-TeCB	104	37.893 28.518	0.84 1.63	2.0	0.573 2.17	29 100
13C-2,2',4,6,6'-PeCB 13C-2,3,3',4,4'-PeCB	104	20.516 41.482	1.59	2.0 2.0	2.17 1.32	109 66
13C-2,3,4,4',5-PeCB	114	40.811	1.56	2.0	1.30	65
13C-2,3',4,4',5-PeCB	118	40.274	1.54	2.0	1.20	60
13C-2,3',4,4',5'-PeCB	123	39.939	1.52	2.0	1.20	60
13C-3,3',4,4',5-PeCB	126	44.601	1.61	2.0	1.55	77
13C-2,2',4,4',6,6'-HxCB	155	34.774	1.27	2.0	1.42	71
13C-HxCB (156/157)	156/157	47.620	1.26	4.0	4.33	108
13C-2,3',4,4`,5,5'-HxĆB	167	46.446	1.29	2.0	2.10	105
13C-3,3',4,4',5,5'-HxCB	169	50.890	1.26	2.0	2.27	114
13C-2,2',3,4',5,6,6'-HpCB	188	40.761	1.03	2.0	0.790	39
13C-2,3,3',4,4',5,5'-HpCB	189	53.494	1.06	2.0	1.63	<u>81</u>
13C-2,2',3,3',5,5',6,6'-OcCB	202	46.161	0.92	2.0	1.13	57
13C-2,3,3',4,4',5,5',6-OcCB	205	56.576	0.92	2.0	1.45	72 74
13C-2,2',3,3',4,4',5,5',6-NoCB	206 208	59.055	0.79 0.76	2.0 2.0	1.42 1.28	71 64
13C-2,2',3,3',4,5,5',6,6'-NoCB 13CDeCB	208	52.912 61.641	0.76	2.0 2.0	1.26 1.40	70
13CDeCB	209	01.041	0.05	2.0	1.40	70
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.315	1.04	2.0	1.57	7 8
13C-2,3,3',5,5'-PeCB	111	37.893	1.59	2.0	0.993	50
13C-2,2',3,3',5,5',6-HpCB	178	43.846	1.02	2.0	1.47	74
Recovery Standards						
13C-2,5-DiCB	9	16.406	1.58	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.462	0.82	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	35.042	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.410	1.28	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.951	0.93	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

	0 1 4		5 41	Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
1				ND		24.6
2				ND		24.6
3				ND		24.6
4				ND		24.6
5 6				ND		24.6
6				ND		24.6
7				ND		24.6
8				ND		24.6
9				ND		24.6
10				ND		24.6
11				ND		148
12	12/13			ND		49.3
13	12/13			ND		49.3
14				ND		24.6
15				ND		24.6
16				ND		24.6
17				ND		24.6
18	18/30			ND		49.3
19				ND		24.6
20	20/28			ND		49.3
21	21/33			ND		49.3
22				ND		24.6
23				ND		24.6
24				ND		24.6
25				ND		24.6
26	26/29			ND		49.3
27				ND		24.6
28	20/28			ND		49.3
29	26/29			ND		49.3
30	18/30			ND		49.3
31		24.997	1.06	31.9		24.6
32				ND		24.6
33	21/33			ND		49.3
34				ND		24.6
35				ND		24.6
36				ND		24.6
37				ND		24.6
38				ND		24.6
39				ND		24.6
40	40/41/71			ND		148
41	40/41/71			ND		148
42				ND		49.3
43	43/73			ND		98.5
44	44/47/65			ND		148
45	45/51			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		49.3
47	44/47/65			ND		148
48				ND		49.3
49	49/69			ND		98.5
50	50/53			ND		98.5
51	45/51			ND		98.5
52		27.478	0.81	60.0		49.3
53	50/53			ND		98.5
54				ND		49.3
55				ND		49.3
56				ND		49.3
57				ND		49.3
58				ND		49.3
59	59/62/75			ND		148
60				ND		49.3
61	61/70/74/76			ND		197
62	59/62/75			ND		148
63				ND		49.3
64				ND		49.3
65	44/47/65			ND		148
66				ND		49.3
67				ND		49.3
68				ND		49.3
69	49/69			ND		98.5
70	61/70/74/76			ND		197
71	40/41/71			ND		148
72				ND		49.3
73	43/73			ND		98.5
74	61/70/74/76			ND		197
75	59/62/75			ND		148
76	61/70/74/76			ND		197
77				ND		49.3
78				ND		49.3
79				ND		49.3
80				ND		49.3
81				ND		49.3
82				ND		49.3
83				ND		49.3
84				ND		49.3
85	85/116/117			ND		148
86	86/87/97/108/119/125			ND		296
87	86/87/97/108/119/125			ND		296
88	88/91			ND		98.5
89				ND		49.3
90	90/101/113			ND		148

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		98.5
92				ND		49.3
93	93/98/100/102			ND		197
94				ND		49.3
95				ND		49.3
96				ND		49.3
97	86/87/97/108/119/125			ND		296
98	93/98/100/102			ND		197
99	33,33,132			ND		49.3
100	93/98/100/102			ND		197
101	90/101/113			ND		148
102	93/98/100/102			ND		197
103	00/00/100/102			ND		49.3
104				ND		49.3
105				ND		49.3
106				ND		49.3
107	107/124			ND		98.5
108	86/87/97/108/119/125			ND		296
109	00/01/91/100/119/125			ND ND		49.3
110	110/115			ND ND		98.5
111	110/113			ND ND		49.3
112				ND ND		49.3
113	90/101/113			ND ND		148
113	90/101/113			ND ND		49.3
115	110/115			ND ND		98.5
116	85/116/117			ND ND		148
117	85/116/117			ND ND		148
117	05/110/117			ND ND		49.3
119	86/87/97/108/119/125			ND ND		49.3 296
120	00/07/97/100/119/123			ND ND		49.3
120				ND ND		49.3 49.3
121				ND ND		49.3 49.3
122				ND ND		49.3 49.3
123	107/124			ND ND		49.3 98.5
125	86/87/97/108/119/125			ND		296
126				ND		49.3
127	400/400			ND		49.3
128	128/166			ND		98.5
129	129/138/163			ND		148
130				ND		49.3
131				ND		49.3
132				ND		49.3
133	40.4/4.40			ND		49.3
134	134/143			ND		98.5
135	135/151			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
	OC CIGHOID		ratio		119/119	
136				ND		49.3
137				ND		49.3
138	129/138/163			ND		148
139	139/140			ND		98.5
140	139/140			ND		98.5
141				ND		49.3
142				ND		49.3
143	134/143			ND		98.5
144				ND		49.3
145				ND		49.3
146				ND		49.3
147	147/149			ND		98.5
148				ND		49.3
149	147/149			ND		98.5
150				ND		49.3
151	135/151			ND		98.5
152				ND		49.3
153	153/168			ND		98.5
154	100, 100			ND		49.3
155				ND		49.3
156	156/157			ND		98.5
157	156/157			ND		98.5
158	100/107			ND		49.3
159				ND		49.3
160				ND		49.3
161				ND		49.3
162				ND		49.3
163	129/138/163			ND		148
164	129/130/103			ND ND		49.3
165				ND ND		49.3
166	128/166			ND ND		98.5
167	120/100			ND ND		49.3
168	153/168			ND ND		98.5
169	155/166			ND ND		49.3
170				ND ND		49.3 49.3
170	171/173			ND ND		98.5
171	171/173			ND ND		96.5 49.3
	474/470					
173	171/173			ND		98.5
174				ND		49.3
175				ND		49.3
176				ND		49.3
177				ND		49.3
178				ND		49.3
179	100/100			ND		49.3
180	180/193			ND		98.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25744 P100717A_10

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/Kg	ng/Kg	ng/Kg
181				ND		49.3
182				ND		49.3
183	183/185			ND		98.5
184				ND		49.3
185	183/185			ND		98.5
186				ND		49.3
187				ND		49.3
188				ND		49.3
189				ND		49.3
190				ND		49.3
191				ND		49.3
192				ND		49.3
193	180/193			ND		98.5
194				ND		73.9
195				ND		73.9
196				ND		73.9
197	197/200			ND		148
198	198/199			ND		148
199	198/199			ND		148
200	197/200			ND		148
201				ND		73.9
202				ND		73.9
203				ND		73.9
204				ND		73.9
205				ND		73.9
206				ND		73.9
207				ND		73.9
208				ND		73.9
209				ND		73.9

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKER BLANK-25744 P100717A_10

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	31.9	
Total Tetrachloro Biphenyls	60.0	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	91.9	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26032
Filename P100815B_06
Injected By BAI

Injected By BAL Matrix Solid

Total Amount Extracted 10.4 g Extracted 08/10/2010 17:35 ICAL ID P100815B02 Analyzed 08/15/2010 21:06

CCal Filename(s) P100815B_01 Dilution NA

Coai Filename(s)	F 1000 13B	_01		Dilution	INA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.396	3.58	2.0	1.44	72
13C-4-MoCB	3	12.834	3.07	2.0	1.54	77
13C-2,2'-DiCB	4	13.194	1.63	2.0	1.32	66
13C-4,4'-DiCB	15	21.317	1.66	2.0	1.64	82
13C-2,2',6-TrCB	19	17.639	1.06	2.0	1.28	64
13C-3,4,4'-TrCB	37	29.639	1.13	2.0	1.43	72
13C-2,2',6,6'-TeCB	54	21.641	0.76	2.0	1.64	82
13C-3,4,4',5-TeCB	81	36.967	0.81	2.0	0.870	44
13C-3,3',4,4'-TeCB	77	37.587	0.80	2.0	0.807	40
13C-2,2',4,6,6'-PeCB	104	28.197	1.56	2.0	2.48	124
13C-2,3,3',4,4'-PeCB	105	41.159	1.63	2.0	1.35	68
13C-2,3,4,4',5-PeCB	114	40.471	1.47	2.0	1.39	70
13C-2,3',4,4',5-PeCB	118	39.952	1.47	2.0	1.34	67
13C-2,3',4,4',5'-PeCB	123	39.616	1.52	2.0	1.34	67
13C-3,3',4,4',5-PeCB	126	44.278	1.60	2.0	1.48	74
13C-2,2',4,4',6,6'-HxCB	155	34.452	1.26	2.0	1.79	89
13C-HxCB (156/157)	156/157	47.279	1.25	4.0	3.83	96
13C-2,3',4,4',5,5'-HxĆB	167	46.122	1.28	2.0	1.85	93
13C-3,3',4,4',5,5'-HxCB	169	50.566	1.28	2.0	2.21	110
13C-2,2',3,4',5,6,6'-HpCB	188	40.421	1.00	2.0	1.07	54
13C-2,3,3',4,4',5,5'-HpCB	189	53.100	1.04	2.0	1.72	86
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.821	0.87	2.0	1.40	70
13C-2,3,3',4,4',5,5',6-OcCB	205	56.118	0.88	2.0	1.68	84
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.510	0.78	2.0	1.70	85
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.518	0.77	2.0	1.54	77
13CDeCB	209	60.989	0.70	2.0	1.55	78
Cleanup Standards						
13C-2,4,4'-TrCB	28	25.011	1.09	2.0	1.99	99
13C-2,3,3',5,5'-PeCB	111	37.570	1.57	2.0	1.42	71
13C-2,2',3,3',5,5',6-HpCB	178	43.490	1.07	2.0	2.08	104
Recovery Standards						
13C-2,5-DiCB	9	16.153	1.60	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.124	0.78	2.0	NA NA	NA NA
13C-2,2',4,5,5'-PeCB	101	34.720	1.51	2.0	NA NA	NA NA
13C-2,2',3,4,4',5'-HxCB	138	43.087	1.29	2.0	NA	NA NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.493	0.88	2.0	NA	NA
	101	30.100	0.00	2.0	1 17 1	1 4/ 1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		23.9
2				ND		23.9
3				ND		23.9
4				ND ND		23.9
5				ND		23.9
6				ND ND		23.9
4 5 6 7				ND		23.9
8				ND ND		23.9
9				ND		23.9
10				ND ND		23.9
11				ND ND		23.9 144
12	12/13			ND ND		47.9
13	12/13			ND ND		47.9 47.9
13	12/13			ND ND		47.9 23.9
15				ND		23.9
16				ND		23.9
17	40/00			ND		23.9
18	18/30			ND		47.9
19	00/00			ND		23.9
20	20/28			ND		47.9
21	21/33			ND		47.9
22				ND		23.9
23				ND		23.9
24				ND		23.9
25				ND		23.9
26	26/29			ND		47.9
27				ND		23.9
28	20/28			ND		47.9
29	26/29			ND		47.9
30	18/30			ND		47.9
31				ND		23.9
32				ND		23.9
33	21/33			ND		47.9
34 35				ND		23.9
35				ND		23.9
36				ND		23.9
37				ND		23.9
38				ND		23.9
39				ND		23.9
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		47.9
43	43/73			ND		95.8
44	44/47/65			ND		144
45	45/51			ND		95.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		47.9
47	44/47/65			ND		144
48	11/11/00			ND		47.9
49	49/69			ND		95.8
50	50/53			ND		95.8
51	45/51			ND		95.8
52	16,61			ND		47.9
53	50/53			ND		95.8
54	33,33			ND		47.9
55				ND		47.9
56				ND		47.9
57				ND		47.9
58				ND		47.9
59	59/62/75			ND		144
60	00,027.0			ND		47.9
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	00/02/10			ND		47.9
64				ND		47.9
65	44/47/65			ND		144
66	44/4//00			ND		47.9
67				ND		47.9
68				ND		47.9
69	49/69			ND		95.8
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72	10/ 11/7 1			ND		47.9
73	43/73			ND		95.8
74	61/70/74/76			ND		192
75	59/62/75			ND		144
76	61/70/74/76			ND		192
77	01/10/11/10			ND		47.9
78				ND		47.9
79				ND		47.9
80				ND		47.9
81				ND		47.9
82				ND		47.9
83				ND		47.9
84				ND		47.9
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		287
87	86/87/97/108/119/125			ND		287
88	88/91			ND		95.8
89	55/5 i			ND ND		47.9
90	90/101/113			ND ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		95.8
92	33, 3 .			ND		47.9
93	93/98/100/102			ND		192
94	00/00/100/102			ND		47.9
95				ND		47.9
96				ND		47.9
97	86/87/97/108/119/125			ND		287
98	93/98/100/102			ND		192
99	00/00/100/102			ND		47.9
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
103	00/00/100/102			ND		47.9
104				ND		47.9
105				ND		47.9
106				ND		47.9
107	107/124			ND		95.8
108	86/87/97/108/119/125			ND		287
109	00/01/01/100/110/120			ND		47.9
110	110/115			ND		95.8
111	110/110			ND		47.9
112				ND		47.9
113	90/101/113			ND		144
114	00,101,110			ND		47.9
115	110/115			ND		95.8
116	85/116/117			ND		144
117	85/116/117			ND		144
118	33, 1.3, 1.1.			ND		47.9
119	86/87/97/108/119/125			ND		287
120	00,01,01,100,110,120			ND		47.9
121				ND		47.9
122				ND		47.9
123				ND		47.9
124	107/124			ND		95.8
125	86/87/97/108/119/125			ND		287
126				ND		47.9
127				ND		47.9
128	128/166			ND		95.8
129	129/138/163			ND		144
130	-			ND		47.9
131				ND		47.9
132				ND		47.9
133				ND		47.9
134	134/143			ND		95.8
135	135/151			ND		95.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B 06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		47.9
137				ND		47.9
138	129/138/163			ND		144
139	139/140			ND		95.8
140	139/140			ND		95.8
141				ND		47.9
142				ND		47.9
143	134/143			ND		95.8
144				ND		47.9
145				ND		47.9
146				ND		47.9
147	147/149			ND		95.8
148				ND		47.9
149	147/149			ND		95.8
150				ND		47.9
151	135/151			ND		95.8
152				ND		47.9
153	153/168			ND		95.8
154				ND		47.9
155				ND		47.9
156	156/157			ND		95.8
157	156/157			ND		95.8
158				ND		47.9
159				ND		47.9
160				ND		47.9
161				ND		47.9
162				ND		47.9
163	129/138/163			ND		144
164				ND		47.9
165				ND		47.9
166	128/166			ND		95.8
167				ND		47.9
168	153/168			ND		95.8
169				ND		47.9
170				ND		47.9
171	171/173			ND		95.8
172	4-44-0			ND		47.9
173	171/173			ND		95.8
174				ND		47.9
175				ND		47.9
176				ND		47.9
177				ND		47.9
178				ND		47.9
179	400/400			ND		47.9
180	180/193			ND		95.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26032 P100815B_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
101 AC	CO-cidiloris	IXI	Natio	lig/Ng	iig/itg	ng/ng
181				ND		47.9
182				ND		47.9
183	183/185			ND		95.8
184				ND		47.9
185	183/185			ND		95.8
186				ND		47.9
187				ND		47.9
188				ND		47.9
189				ND		47.9
190				ND		47.9
191				ND		47.9
192				ND		47.9
193	180/193			ND		95.8
194				ND		71.8
195				ND		71.8
196				ND		71.8
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		71.8
202				ND		71.8
203				ND		71.8
204				ND		71.8
205				ND		71.8
206				ND		71.8
207				ND		71.8
208				ND		71.8
209				ND		71.8

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKIT BLANK-26032 P100815B_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-25717 P100716B_03

10.4 g

P100716B02 P100716B_01 BLANK-25716 Matrix Solid Dilution NA

Extracted 07/14/2010 15:15 Analyzed 07/16/2010 20:39

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1		NC	NC	2.0	0.000	0	R
3	1.0	2.05	205 R	2.0	0.180	9	R
4	1.0	2.84	284 R	2.0	0.0161	1	R
15	1.0	1.15	115	2.0	1.28	64	
19	1.0	1.08	108	2.0	0.154	8	R
37	1.0	1.11	111	2.0	1.23	61	
54	1.0	0.978	98	2.0	0.790	39	
81	1.0	0.961	96	2.0	0.442	22	R
77	1.0	1.00	100	2.0	0.377	19	R
104	1.0	0.988	99	2.0	3.80	190	R
105	1.0	0.970	97	2.0	1.53	76	
114	1.0	0.974	97	2.0	1.48	74	
118	1.0	1.05	105	2.0	1.44	72	
123	1.0	1.01	101	2.0	1.39	70	
126	1.0	0.996	100	2.0	1.86	93	
155	1.0	0.939	94	2.0	1.38	69	
156/157	2.0	2.07	103	4.0	6.15	154	R
167	1.0	1.06	106	2.0	2.57	128	
169	1.0	1.000	100	2.0	3.58	179	R
188	1.0	1.00	100	2.0	0.415	21	R
189	1.0	1.02	102	2.0	1.71	86	
202	1.0	1.00	100	2.0	0.767	38	
205	1.0	1.03	103	2.0	1.63	81	
206	1.0	0.991	99	2.0	1.54	77	
208	1.0	1.02	102	2.0	1.38	69	
209	1.0	1.01	101	2.0	1.46	73	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID

LCS-25745 P100720A_05

10.3 g P100720A04

P100720A 03 BLANK-25744 Matrix Solid Dilution NA

Extracted 07/15/2010 15:45 Analyzed 07/20/2010 11:11

Injected By SMT

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1	1.0	1.08	108	2.0	1.30	65	
3	1.0	1.08	108	2.0	1.47	74	
4	1.0	0.934	93	2.0	1.23	61	
15	1.0	1.04	104	2.0	1.69	84	
19	1.0	1.01	101	2.0	1.22	61	
37	1.0	1.08	108	2.0	1.70	85	
54	1.0	0.959	96	2.0	1.64	82	
81	1.0	0.936	94	2.0	0.779	39	
77	1.0	1.01	101	2.0	0.647	32	
104	1.0	0.938	94	2.0	2.94	147	R
105	1.0	1.02	102	2.0	1.76	88	
114	1.0	1.01	101	2.0	1.65	82	
118	1.0	1.10	110	2.0	1.54	77	
123	1.0	1.00	100	2.0	1.62	81	
126	1.0	1.02	102	2.0	2.20	110	
155	1.0	0.956	96	2.0	1.47	74	
156/157	2.0	2.05	102	4.0	5.66	142	R
167	1.0	1.01	101	2.0	2.71	135	
169	1.0	1.05	105	2.0	3.13	156	R
188	1.0	0.972	97	2.0	0.725	36	
189	1.0	1.01	101	2.0	1.97	98	
202	1.0	0.974	97	2.0	1.19	59	
205	1.0	1.02	102	2.0	1.83	92	
206	1.0	0.976	98	2.0	1.81	90	
208	1.0	0.997	100	2.0	1.53	77	
209	1.0	0.965	97	2.0	1.73	87	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26033 P100815B_03

10.8 g

P100815B02 P100815B_01 BLANK-26032 Matrix Dilution Solid NA

Extracted 08/10/2010 17:35 Analyzed 08/15/2010 17:49

Injected By BAL

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.08	108	2.0	1.59	79	
3	1.0	1.05	105	2.0	1.71	86	
4	1.0	1.04	104	2.0	1.40	70	
15	1.0	1.06	106	2.0	1.79	89	
19	1.0	1.05	105	2.0	1.36	68	
37	1.0	1.05	105	2.0	1.52	76	
54	1.0	1.01	101	2.0	1.72	86	
81	1.0	0.970	97	2.0	0.949	47	
77	1.0	0.985	99	2.0	0.932	47	
104	1.0	0.993	99	2.0	2.54	127	
105	1.0	1.11	111	2.0	1.45	73	
114	1.0	1.02	102	2.0	1.46	73	
118	1.0	1.16	116	2.0	1.45	73	
123	1.0	1.18	118	2.0	1.42	71	
126	1.0	0.972	97	2.0	1.87	94	
155	1.0	0.987	99	2.0	1.69	84	
156/157	2.0	2.07	103	4.0	4.16	104	
167	1.0	1.05	105	2.0	1.90	95	
169	1.0	1.09	109	2.0	2.67	134	
188	1.0	1.09	109	2.0	0.903	45	
189	1.0	1.10	110	2.0	1.75	87	
202	1.0	1.04	104	2.0	1.21	61	
205	1.0	1.22	122	2.0	1.64	82	
206	1.0	1.14	114	2.0	1.60	80	
208	1.0	1.11	111	2.0	1.43	72	
209	1.0	1.13	113	2.0	1.56	78	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID

LCSD-25718 P100716B_04

10.2 g

P100716B02 P100716B_01 BLANK-25716 Matrix Solid Dilution NA

Extracted 07/14/2010 15:15 Analyzed 07/16/2010 21:44

Injected By BAL

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ry
1	1.0	3.21	321 R	2.0	0.0334	2	IR
3	1.0	1.41	141	2.0	0.411	21	R
4	1.0	1.26	126	2.0	0.135	7	R
15	1.0	1.13	113	2.0	1.33	67	
19	1.0	0.998	100	2.0	0.374	19	R
37	1.0	1.13	113	2.0	1.24	62	
54	1.0	0.959	96	2.0	0.934	47	
81	1.0	0.998	100	2.0	0.457	23	R
77	1.0	1.01	101	2.0	0.401	20	R
104	1.0	1.00	100	2.0	3.74	187	R
105	1.0	1.07	107	2.0	1.55	77	
114	1.0	1.00	100	2.0	1.50	75	
118	1.0	1.09	109	2.0	1.44	72	
123	1.0	1.02	102	2.0	1.43	72	
126	1.0	1.00	100	2.0	1.88	94	
155	1.0	0.968	97	2.0	1.51	75	
156/157	2.0	2.04	102	4.0	6.44	161	R
167	1.0	1.03	103	2.0	2.75	138	
169	1.0	1.01	101	2.0	3.80	190	R
188	1.0	0.954	95	2.0	0.481	24	R
189	1.0	0.983	98	2.0	1.92	96	
202	1.0	1.04	104	2.0	0.868	43	
205	1.0	0.979	98	2.0	1.74	87	
206	1.0	1.01	101	2.0	1.61	80	
208	1.0	1.01	101	2.0	1.56	78	
209	1.0	0.997	100	2.0	1.60	80	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls **Laboratory Control Spike Analysis Results**

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID

LCSD-25746 P100720A_06

10.5 g P100720A04 P100720A03 BLANK-25744 Matrix Solid Dilution NA

Extracted 07/15/2010 15:45 Analyzed 07/20/2010 12:16

Injected By SMT

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	-
1	1.0	1.13	113	2.0	1.26	63	-
3	1.0	1.06	106	2.0	1.57	79	
4	1.0	0.981	98	2.0	1.25	62	
15	1.0	1.07	107	2.0	1.88	94	
19	1.0	0.989	99	2.0	1.22	61	
37	1.0	1.10	110	2.0	1.65	83	
54	1.0	0.949	95	2.0	1.57	78	
81	1.0	0.961	96	2.0	0.822	41	
77	1.0	0.971	97	2.0	0.721	36	
104	1.0	0.970	97	2.0	2.67	133	
105	1.0	1.04	104	2.0	1.40	70	
114	1.0	0.959	96	2.0	1.41	70	
118	1.0	1.06	106	2.0	1.34	67	
123	1.0	0.953	95	2.0	1.37	69	
126	1.0	1.00	100	2.0	1.77	88	
155	1.0	0.982	98	2.0	1.73	87	
156/157	2.0	2.01	101	4.0	5.29	132	
167	1.0	1.000	100	2.0	2.53	127	
169	1.0	0.968	97	2.0	2.96	148 F	R
188	1.0	0.975	97	2.0	0.777	39	
189	1.0	0.965	96	2.0	1.78	89	
202	1.0	0.977	98	2.0	1.20	60	
205	1.0	0.957	96	2.0	1.75	87	
206	1.0	0.967	97	2.0	1.69	85	
208	1.0	0.985	99	2.0	1.56	78	
209	1.0	0.961	96	2.0	1.65	83	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID LCSD-26034 P100815B_04

10.4 g

P100815B02 P100815B_01 BLANK-26032 Matrix Solid Dilution NA

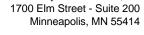
Extracted 08/10/2010 17:35 Analyzed 08/15/2010 18:55

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.16	116	2.0	1.33	67	
3	1.0	1.09	109	2.0	1.59	80	
4	1.0	1.01	101	2.0	1.24	62	
15	1.0	1.16	116	2.0	1.65	83	
19	1.0	1.01	101	2.0	1.33	67	
37	1.0	1.19	119	2.0	1.45	72	
54	1.0	1.01	101	2.0	1.71	86	
81	1.0	0.985	99	2.0	0.889	44	
77	1.0	0.965	96	2.0	0.876	44	
104	1.0	0.980	98	2.0	2.53	127	
105	1.0	1.06	106	2.0	1.44	72	
114	1.0	1.04	104	2.0	1.43	71	
118	1.0	1.18	118	2.0	1.41	70	
123	1.0	1.00	100	2.0	1.43	72	
126	1.0	0.996	100	2.0	1.58	79	
155	1.0	0.993	99	2.0	1.83	91	
156/157	2.0	2.00	100	4.0	3.87	97	
167	1.0	1.04	104	2.0	1.90	95	
169	1.0	1.01	101	2.0	2.17	108	
188	1.0	0.999	100	2.0	1.17	59	
189	1.0	1.03	103	2.0	1.79	90	
202	1.0	0.982	98	2.0	1.43	71	
205	1.0	1.00	100	2.0	1.72	86	
206	1.0	1.03	103	2.0	1.63	82	
208	1.0	1.04	104	2.0	1.54	77	
209	1.0	1.01	101	2.0	1.66	83	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis


ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client **Test America**

Spike 1 ID LCS-25717 Spike 2 ID LCSD-25718 Spike 1 Filename Spike 2 Filename P100716B_03 P100716B_04

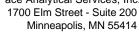
Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	-1000	321		
4-MoCB	3	205	141	37.0	
2,2'-DiCB	4	284	126	77.1	
4,4'-DiCB	15	115	113	1.8	
2,2',6-TrCB	19	108	100	7.7	
3,4,4'-TrCB	37	111	113	1.8	
2,2',6,6'-TeCB	54	98	96	2.1	
3,3',4,4'-TeCB	77	100	101	1.0	
3,4,4',5-TeCB	81	96	100	4.1	
2,2',4,6,6'-PeCB	104	99	100	1.0	
2,3,3',4,4'-PeCB	105	97	107	9.8	
2,3,4,4',5-PeCB	114	97	100	3.0	
2,3',4,4',5-PeCB	118	105	109	3.7	
2,3',4,4',5'-PeCB	123	101	102	1.0	
3,3',4,4',5-PeCB	126	100	100	0.0	
2,2',4,4',6,6'-HxCB	155	94	97	3.1	
(156/157)	156/157	103	102	1.0	
2,3',4,4',5,5'-HxCB	167	106	103	2.9	
3,3',4,4',5,5'-HxCB	169	100	101	1.0	
2,2',3,4',5,6,6'-HpCB	188	100	95	5.1	
2,3,3',4,4',5,5'-HpCB	189	102	98	4.0	
2,2',3,3',5,5',6,6'-OcCB	202	100	104	3.9	
2,3,3',4,4',5,5',6-OcCB	205	103	98	5.0	
2,2',3,3',4,4',5,5',6-NoCB	206	99	101	2.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	102	101	1.0	
Decachlorobiphenyl	209	101	100	1.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

<u> Pace Analytical</u> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results


Client **Test America**

LCS-25745 Spike 1 ID Spike 2 ID LCSD-25746 Spike 1 Filename Spike 2 Filename P100720A_05 P100720A_06

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	108	113	4.5	
4-MoCB	3	108	106	1.9	
2,2'-DiCB	4	93	98	5.2	
4,4'-DiCB	15	104	107	2.8	
2,2',6-TrCB	19	101	99	2.0	
3,4,4'-TrCB	37	108	110	1.8	
2,2',6,6'-TeCB	54	96	95	1.0	
3,3',4,4'-TeCB	77	101	97	4.0	
3,4,4',5-TeCB	81	94	96	2.1	
2,2',4,6,6'-PeCB	104	94	97	3.1	
2,3,3',4,4'-PeCB	105	102	104	1.9	
2,3,4,4',5-PeCB	114	101	96	5.1	
2,3',4,4',5-PeCB	118	110	106	3.7	
2,3',4,4',5'-PeCB	123	100	95	5.1	
3,3',4,4',5-PeCB	126	102	100	2.0	
2,2',4,4',6,6'-HxCB	155	96	98	2.1	
(156/157)	156/157	102	101	1.0	
2,3',4,4',5,5'-HxCB	167	101	100	1.0	
3,3',4,4',5,5'-HxCB	169	105	97	7.9	
2,2',3,4',5,6,6'-HpCB	188	97	97	0.0	
2,3,3',4,4',5,5'-HpCB	189	101	96	5.1	
2,2',3,3',5,5',6,6'-OcCB	202	97	98	1.0	
2,3,3',4,4',5,5',6-OcCB	205	102	96	6.1	
2,2',3,3',4,4',5,5',6-NoCB	206	98	97	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	100	99	1.0	
Decachlorobiphenyl	209	97	96	1.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client **Test America**

Spike 1 ID LCS-26033 Spike 2 ID LCSD-26034 Spike 1 Filename Spike 2 Filename P100815B_03 P100815B_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	108	116	7.1	
4-MoCB	3	105	109	3.7	
2,2'-DiCB	4	104	101	2.9	
4,4'-DiCB	15	106	116	9.0	
2,2',6-TrCB	19	105	101	3.9	
3,4,4'-TrCB	37	105	119	12.5	
2,2',6,6'-TeCB	54	101	101	0.0	
3,3',4,4'-TeCB	77	99	96	3.1	
3,4,4',5-TeCB	81	97	99	2.0	
2,2',4,6,6'-PeCB	104	99	98	1.0	
2,3,3',4,4'-PeCB	105	111	106	4.6	
2,3,4,4',5-PeCB	114	102	104	1.9	
2,3',4,4',5-PeCB	118	116	118	1.7	
2,3',4,4',5'-PeCB	123	118	100	16.5	
3,3',4,4',5-PeCB	126	97	100	3.0	
2,2',4,4',6,6'-HxCB	155	99	99	0.0	
(156/157)	156/157	103	100	3.0	
2,3',4,4',5,5'-HxCB	167	105	104	1.0	
3,3',4,4',5,5'-HxCB	169	109	101	7.6	
2,2',3,4',5,6,6'-HpCB	188	109	100	8.6	
2,3,3',4,4',5,5'-HpCB	189	110	103	6.6	
2,2',3,3',5,5',6,6'-OcCB	202	104	98	5.9	
2,3,3',4,4',5,5',6-OcCB	205	122	100	19.8	
2,2',3,3',4,4',5,5',6-NoCB	206	114	103	10.1	
2,2',3,3',4,5,5',6,6'-NoCB	208	111	104	6.5	
Decachlorobiphenyl	209	113	101	11.2	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10131888

Sample Receipt Date: 06/22/2010

Client Project #: PTF0605

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

July 21, 2010

Nate Habte, Project Manager (612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

July 19, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on one sample submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 0.25-0.75 parts per trillion and were adjusted for sample volume.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 17-111%. With twenty two exceptions, flagged "R" on the results tables, the labeled internal standard recoveries obtained for this project were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCB congeners at the reporting limits. This indicates that the sample preparation steps did not significantly impact the measurement of the native congeners in the field sample.

Laboratory spike samples were also prepared with the sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 94-104% with relative percent differences of 0-4.0%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
lowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTF0605

10131888

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008

Phone: (503) 906-9200 Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone :(612) 607-1700

Phone :(612) 607-1700 Fax: (612) 607-6444

Project Location: OR - OREGON

Receipt Temperature:

Ice: Y / N

needs Excel EDD

Analysis

Standard TAT is requested unless specific due date is requested. => Due Date: 3 Weeks Initials:

Comments

Sample ID: PTF0605-01 (FO105699 - Water)

Units

Sampled: 06/17/10 12:30

209 Congeners to Pace

1668 Coplanar PCBs - SUB ug/l

12/14/10 12:30

Expires

Containers Supplied:

1L Amber - Unpres. (A)

F380

Date/Time

Pageived By

6:12:10 0918 A 6:22

-

Received By

Date/TimePage 5 of 25 of 1

Released Report No.....10131888_PRESIANE

	M STO S G M G T C M			
Face Analytical Client Name	: Test /	tmorice.	Project #	10131888
,	5.	iki ad	_	
Courter: Z Fed Ex UPS USPS Clie	ent 🛘 Commercia	Pace Other	(0,016)	na l
Tracking #: 4/70 - 7525 700,			Figili	Digo Dialte
Custody Seal on Cooler/Box Present:	no Sea	ls intact:	no Projil	Valme)
Packing Material: Bubble Wrap Bubble	e Bage None	Other	Temp Blank: Ye	es No <u>/</u>
Thermometer Used 80344042 or 19425)	Type of ice: Aw	Blue None		ooling process has begun
Cooler Temperature	Biological Tissu	ie is Frozen: Yes N		ale of person examining
Temp should be above freezing to 6°C		Comments:	Contentes	
Chain of Custody Present:	ZYes DNo DNA	A 1.		
Chain of Custody Filled Out:	ZYes DNo DNA	A 2.		
Chain of Custody Relinquished:	Dres Ono On	A 3.		
Sampler Name & Signature on COC:	□Yes ☑No □N/	A 4.		
Samples Arrived within Hold Time:	ZYes DNo DNA	A 5.		
Short Hold Time Analysis (<72hr):	□Yes □No □K//	A 6.		
Rush Turn Around Time Requested:	□Yes ☑No □N/	A 7.		
Sufficient Volume:	Yes DNo DN/	A 8.		
Correct Containers Used:	Yes DNo DNA	A 9.		
-Pace Containers Used:	□Yes ⊠No □N/	\		
Containers Intact:	Dres DNo DNA	10.		
Filtered volume received for Dissolved tests	□Yes □No ☑N/	11.		
Sample Labels match COC:	Ziyes DNo DN/	12.		
-Includes date/time/ID/Analysis Matrix:	T			
All containers needing acid/base preservation have been checked. Noncompliance are noted in 13.	□Yes □No □N/A	13.	HNO3 H2SO4	NaOH HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □N/A	Samp #		
·	. Dyes DNo	Initial when	Lot # of added	
Exceptions: VOA,Coliform, TOC, Oil and Grease, Wi-DRO (water	, – , – , – , – , – , – , – , – , – , –	completed	preservative	
Samples checked for dechlorination:	☐Yes ☐No ☐N/A			
Headspace in VOA Vials (>6mm):	OYes ONO ZINA			
Trip Blank Present:	Yes INO MINA	I		
Trip Blank Custody Seals Present	CIYes ONO DRVA			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:		, 1	Field Data Required	i? Y / N
Person Contacted: Dor(1211 Au	√ Date/	Time: (a)	0@1a:47	
Comments/ Resolution:			,	
-1668-20	9 CSMF	igned ->	full scan	
- Stan Tr	tt vales	ston stig	on coc	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·			
			-,	
Project Manager Review:	NAH		Date:	0/17/10

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Read Polar Seinbles, Inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

PTF0605-01 (FO105699)

Client's Sample ID Lab Sample ID Filename

10131888001 P100709B 08 Injected By BAL

Total Amount Extracted % Moisture

Dry Weight Extracted ICAL ID

CCal Filename(s) Method Blank ID

1030 mL Water Matrix NA Dilution NA

NA Collected 06/17/2010 12:30 P100709B02 Received 06/22/2010 09:42 P100709B 01 Extracted 06/30/2010 19:30 BLANK-25552 Analyzed 07/10/2010 08:00

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.540	2.94	2.0	0.399	20 R
13C-4-MoCB	3	12.991	3.16	2.0	0.445	22 R
13C-2,2'-DiCB	4	13.363	1.65	2.0	0.343	17 R
13C-4,4'-DiCB	15	21.523	1.59	2.0	0.558	28
13C-2,2',6-TrCB	19	17.844	1.09	2.0	0.389	19 R
13C-3,4,4'-TrCB	37	29.810	1.11	2.0	1.10	55
13C-2,2',6,6'-TeCB	54	21.894	0.80	2.0	0.544	27
13C-3,4,4',5-TeCB	<u>81</u>	37.072	0.79	2.0	1.62	81
13C-3,3',4,4'-TeCB	77	37.659	0.80	2.0	1.72	86
13C-2,2',4,6,6'-PeCB	104	28.418	1.59	2.0	0.724	36
13C-2,3,3',4,4'-PeCB	105	41.264	1.62	2.0	1.93	96
13C-2,3,4,4',5-PeCB	114	40.594	1.60	2.0	1.88	94
13C-2,3',4,4',5-PeCB	118	40.057	1.59	2.0	1.87	94
13C-2,3',4,4',5'-PeCB	123	39.722	1.60	2.0	1.85	93
13C-3,3',4,4',5-PeCB	126	44.400	1.59	2.0	2.08	104
13C-2,2',4,4',6,6'-HxCB	155	34.607	1.29	2.0	1.08	54
13C-HxCB (156/157)	156/157	47.453	1.27	4.0	4.30	108
13C-2,3',4,4',5,5'-HxCB	167	46.262	1.28	2.0	2.10	105
13C-3,3',4,4',5,5'-HxCB	169	50.756	1.29	2.0	2.22	111
13C-2,2',3,4',5,6,6'-HpCB	188	40.560	1.08	2.0	1.35	68
13C-2,3,3',4,4',5,5'-HpCB	189	53.348	1.04	2.0	2.19	110
13C-2,2',3,3',5,5',6,6'-OcCB	202 205	45.994	0.93	2.0	1.54 1.92	77 96
13C-2,3,3',4,4',5,5',6-OcCB		56.431	0.91 0.77	2.0	1.66	83
13C-2,2',3,3',4,4',5,5',6-NoCB	206 208	58.888 52.809	0.77	2.0 2.0	1.60	80
13C-2,2',3,3',4,5,5',6,6'-NoCB 13CDeCB	208	52.609 61.496	0.80	2.0 2.0	1.54	80 77
13CDeCB	209	61.496	0.70	2.0	1.54	7.7
Cleanup Standards	00	05.000	4.00	0.0	0.000	47
13C-2,4,4'-TrCB	28	25.232	1.09	2.0	0.933	47
13C-2,3,3',5,5'-PeCB	111	37.676	1.61	2.0	1.54	77
13C-2,2',3,3',5,5',6-HpCB	178	43.663	1.06	2.0	1.60	80
Recovery Standards	_					
13C-2,5-DiCB	9	16.275	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	27.362	0.80	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.858	1.63	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	43.227	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.827	0.92	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
1				ND		0.244
2				ND		0.244
3				ND		0.244
4				ND		0.244
5				ND		0.244
6				ND		0.244
7				ND		0.244
8				ND		0.244
9				ND ND		0.244
10				ND ND		0.244
11				ND ND		1.46
12	12/13			ND ND		0.487
13	12/13			ND ND		0.487
	12/13					0.467
14				ND		
15				ND		0.244
16				ND		0.244
17	40/00			ND		0.244
18	18/30			ND		0.487
19	00/00			ND		0.244
20	20/28			ND		0.487
21	21/33			ND		0.487
22				ND		0.244
23				ND		0.244
24				ND		0.244
25				ND		0.244
26	26/29			ND		0.487
27				ND		0.244
28	20/28			ND		0.487
29	26/29			ND		0.487
30	18/30			ND		0.487
31				ND		0.244
32				ND		0.244
33	21/33			ND		0.487
34				ND		0.244
35				ND		0.244
36				ND		0.244
37				ND		0.244
38				ND		0.244
39				ND		0.244
40	40/41/71			ND		1.46
41	40/41/71			ND		1.46
42				ND		0.487
43	43/73			ND		0.974
44	44/47/65			ND		1.46
45	45/51			ND		0.974
46				ND		0.487
47	44/47/65			ND		1.46
48				ND		0.487
-				_		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
49	49/69			ND		0.974
50	50/53			ND		0.974
51	45/51			ND		0.974
52				ND		0.487
53	50/53			ND		0.974
54				ND		0.487
55				ND		0.487
56				ND		0.487
57				ND		0.487
58				ND		0.487
59	59/62/75			ND		1.46
60				ND		0.487
61	61/70/74/76			ND		1.95
62	59/62/75			ND		1.46
63	33/32//3			ND		0.487
64				ND		0.487
65	44/47/65			ND		1.46
66				ND		0.487
67				ND		0.487
68				ND		0.487
69	49/69			ND		0.974
70	61/70/74/76			ND		1.95
71	40/41/71			ND		1.46
72	10/11//1			ND		0.487
73	43/73			ND		0.974
74	61/70/74/76			ND		1.95
75	59/62/75			ND		1.46
76	61/70/74/76			ND		1.95
77	01/10/14/10			ND		0.487
78				ND		0.487
79				ND		0.487
80				ND		0.487
81				ND		0.487
82				ND		0.487
83				ND		0.487
84				ND		0.487
85	85/116/117			ND		1.46
86	86/87/97/108/119/125			ND		2.92
87	86/87/97/108/119/125			ND		2.92
88	88/91			ND		0.974
89	00/31			ND		0.487
90	90/101/113			ND		1.46
91	88/91			ND		0.974
92	33,31			ND		0.487
93	93/98/100/102			ND		1.95
94	33/30/100/102			ND		0.487
95				ND ND		0.487
96				ND		0.487

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits
Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
97	86/87/97/108/119/125			ND		2.92
98	93/98/100/102			ND		1.95
99				ND		0.487
100	93/98/100/102			ND		1.95
101	90/101/113			ND		1.46
102	93/98/100/102			ND		1.95
103				ND		0.487
104				ND		0.487
105				ND		0.487
106				ND		0.487
107	107/124			ND		0.974
108	86/87/97/108/119/125			ND		2.92
109				ND		0.487
110	110/115			ND		0.974
111				ND		0.487
112				ND		0.487
113	90/101/113			ND		1.46
114				ND		0.487
115	110/115			ND		0.974
116	85/116/117			ND		1.46
117	85/116/117			ND		1.46
118				ND		0.487
119	86/87/97/108/119/125			ND		2.92
120				ND		0.487
121				ND		0.487
122				ND		0.487
123	407/404			ND		0.487
124	107/124			ND		0.974
125	86/87/97/108/119/125			ND		2.92
126				ND		0.487
127	100/100			ND		0.487
128	128/166			ND ND		0.974
129	129/138/163					1.46
130 131				ND ND		0.487 0.487
131				ND ND		0.487
133				ND ND		0.487
134	134/143			ND ND		0.467
135	135/151			ND ND		0.974
136	133/131			ND ND		0.487
137				ND ND		0.487
137	129/138/163			ND ND		1.46
139	139/140			ND ND		0.974
140	139/140			ND ND		0.974
141	100/170			ND ND		0.487
142				ND		0.487
143	134/143			ND		0.974
144	10 1/1 10			ND		0.487

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level
R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
145				ND		0.487
146				ND		0.487
147	147/149			ND		0.974
148	,			ND		0.487
149	147/149			ND		0.974
150	,			ND		0.487
151	135/151			ND		0.974
152	100,101			ND		0.487
153	153/168			ND		0.974
154	100,100			ND		0.487
155				ND		0.487
156	156/157			ND		0.974
157	156/157			ND		0.974
158	130/137			ND		0.487
159				ND		0.487
160				ND ND		0.487
161				ND ND		0.487
162				ND ND		0.487
163	129/138/163			ND ND		
164	129/136/163			ND ND		1.46 0.487
104						
165	400/400			ND		0.487
166	128/166			ND		0.974
167	450/400			ND		0.487
168	153/168			ND		0.974
169				ND		0.487
170	474/470			ND		0.487
171	171/173			ND		0.974
172				ND		0.487
173	171/173			ND		0.974
174				ND		0.487
175				ND		0.487
176				ND		0.487
177				ND		0.487
178				ND		0.487
179				ND		0.487
180	180/193			ND		0.974
181				ND		0.487
182				ND		0.487
183	183/185			ND		0.974
184				ND		0.487
185	183/185			ND		0.974
186				ND		0.487
187				ND		0.487
188				ND		0.487
189				ND		0.487
190				ND		0.487
191				ND		0.487
192				ND		0.487

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise
B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
193	180/193			ND		0.974
194				ND		0.731
195				ND		0.731
196				ND		0.731
197	197/200			ND		1.46
198	198/199			ND		1.46
199	198/199			ND		1.46
200	197/200			ND		1.46
201				ND		0.731
202				ND		0.731
203				ND		0.731
204				ND		0.731
205				ND		0.731
206				ND		0.731
207				ND		0.731
208				ND		0.731
209				ND		0.731

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTF0605-01 (FO105699) 10131888001 P100709B_08

Congener Group	Concentration ng/L	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Water

Tel: 612-607-1700 Fax: 612-607-6444

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Matrix

Lab Sample ID BLANK-25552 Filename P100702A 07 Injected By CVS

Total Amount Extracted 1020 mL Extracted 06/30/2010 19:30 **ICAL ID** P100702A02 Analyzed 07/02/2010 16:43

P100702A 01 CCal Filename(s) Dilution NA

CCal Filename(s)	P100702A	_01		Dilution	NA		
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4-MoCB 13C-2,2'-DiCB 13C-4,4'-DiCB 13C-2,2',6-TrCB 13C-3,4,4'-TrCB 13C-3,4,4'-TrCB 13C-3,3',4,4'-TrCB 13C-2,2',4,6,6'-PeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-3,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	9.552 13.027 13.399 21.561 17.881 29.854 21.920 37.118 37.705 28.462 41.312 40.641 40.088 39.752 44.449 34.652 47.502 46.311 50.807 40.608 53.392 46.043 56.497 58.977 52.853 61.564	3.03 2.86 1.61 1.53 1.08 1.04 0.80 0.79 0.79 1.62 1.63 1.59 1.60 1.27 1.27 1.26 1.28 1.07 1.04 0.92 0.91 0.77 0.79	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.0890 0.106 0.100 0.327 0.151 1.08 0.294 1.91 1.96 0.841 2.19 2.17 2.14 2.25 1.13 3.67 1.88 1.88 1.88 1.98 1.79 1.79 1.89 1.77 1.74 1.69	4 5 5 16 8 54 15 96 98 42 110 109 107 113 57 92 94 94 84 99 90 94 88 87 84	RRRRR R
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	25.275 37.722 43.711	1.04 1.57 1.05	2.0 2.0 2.0	0.722 1.80 1.82	36 90 91	
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	16.311 27.405 34.904 43.275 55.872	1.60 0.79 1.61 1.28 0.91	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA NA	

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
1				ND		0.246
2				ND		0.246
3				ND		0.246
4				ND		0.246
4 5 6 7				ND		0.246
ő				ND		0.246
7				ND		0.246
8				ND		0.246
9				ND		0.246
10				ND		0.246
11				ND		1.48
12	12/13			ND		0.492
13	12/13			ND		0.492
14	,.0			ND		0.246
15				ND		0.246
16				ND		0.246
17				ND		0.246
18	18/30			ND		0.492
19	. 0, 00			ND		0.246
20	20/28			ND		0.492
21	21/33			ND		0.492
22	, 00			ND		0.246
23				ND		0.246
24				ND		0.246
25				ND		0.246
26	26/29			ND		0.492
27				ND		0.246
28	20/28			ND		0.492
29	26/29			ND		0.492
30	18/30			ND		0.492
31				ND		0.246
32				ND		0.246
33	21/33			ND		0.492
34				ND		0.246
34 35				ND		0.246
36				ND		0.246
37				ND		0.246
38				ND		0.246
39				ND		0.246
40	40/41/71			ND		1.48
41	40/41/71			ND		1.48
42	 •			ND		0.492
43	43/73			ND		0.984
44	44/47/65			ND		1.48
45	45/51			ND		0.984

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
46				ND		0.492
47	44/47/65			ND		1.48
48				ND		0.492
49	49/69			ND		0.984
50	50/53			ND		0.984
51	45/51			ND		0.984
52				ND		0.492
53	50/53			ND		0.984
54				ND		0.492
55				ND		0.492
56				ND		0.492
57				ND		0.492
58				ND		0.492
59	59/62/75			ND		1.48
60				ND		0.492
61	61/70/74/76			ND		1.97
62	59/62/75			ND		1.48
63				ND		0.492
64				ND		0.492
65	44/47/65			ND		1.48
66				ND		0.492
67				ND		0.492
68				ND		0.492
69	49/69			ND		0.984
70	61/70/74/76			ND		1.97
71	40/41/71			ND		1.48
72				ND		0.492
73	43/73			ND		0.984
74	61/70/74/76			ND		1.97
75	59/62/75			ND		1.48
76	61/70/74/76			ND		1.97
77				ND		0.492
78				ND		0.492
79				ND		0.492
80				ND		0.492
81				ND		0.492
82				ND		0.492
83				ND		0.492
84				ND		0.492
85	85/116/117			ND		1.48
86	86/87/97/108/119/125			ND		2.95
87	86/87/97/108/119/125			ND		2.95
88	88/91			ND		0.984
89	 -			ND		0.492
90	90/101/113			ND		1.48

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits

RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
91	88/91			ND		0.984
92				ND		0.492
93	93/98/100/102			ND		1.97
94				ND		0.492
95				ND		0.492
96				ND		0.492
97	86/87/97/108/119/125			ND		2.95
98	93/98/100/102			ND		1.97
99				ND		0.492
100	93/98/100/102			ND		1.97
101	90/101/113			ND		1.48
102	93/98/100/102			ND		1.97
103				ND		0.492
104				ND		0.492
105				ND		0.492
106				ND		0.492
107	107/124			ND		0.984
108	86/87/97/108/119/125			ND		2.95
109				ND		0.492
110	110/115			ND		0.984
111				ND		0.492
112				ND		0.492
113	90/101/113			ND		1.48
114				ND		0.492
115	110/115			ND		0.984
116	85/116/117			ND		1.48
117	85/116/117			ND		1.48
118				ND		0.492
119	86/87/97/108/119/125			ND		2.95
120				ND		0.492
121				ND		0.492
122				ND		0.492
123				ND		0.492
124	107/124			ND		0.984
125	86/87/97/108/119/125			ND		2.95
126				ND		0.492
127				ND		0.492
128	128/166			ND		0.984
129	129/138/163			ND		1.48
130				ND		0.492
131				ND		0.492
132				ND		0.492
133				ND		0.492
134	134/143			ND		0.984
135	135/151			ND		0.984

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated

* = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/L	EMPC ng/L	EML ng/L
136				ND		0.492
137				ND		0.492
138	129/138/163			ND		1.48
139	139/140			ND		0.984
140	139/140			ND		0.984
141	100/140			ND		0.492
142				ND		0.492
143	134/143			ND		0.984
144	10 1/1 10			ND		0.492
145				ND		0.492
146				ND		0.492
147	147/149			ND		0.984
148				ND		0.492
149	147/149			ND		0.984
150				ND		0.492
151	135/151			ND		0.984
152	100/101			ND		0.492
153	153/168			ND		0.984
154	100/100			ND		0.492
155				ND		0.492
156	156/157			ND		0.984
157	156/157			ND		0.984
158				ND		0.492
159				ND		0.492
160				ND		0.492
161				ND		0.492
162				ND		0.492
163	129/138/163			ND		1.48
164	0, .00, .00			ND		0.492
165				ND		0.492
166	128/166			ND		0.984
167	0, .00			ND		0.492
168	153/168			ND		0.984
169				ND		0.492
170				ND		0.492
171	171/173			ND		0.984
172				ND		0.492
173	171/173			ND		0.984
174				ND		0.492
175				ND		0.492
176				ND		0.492
177				ND		0.492
178				ND		0.492
179				ND		0.492
180	180/193			ND		0.984

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-25552 P100702A 07

				Concentration	EMPC	EML
IUPAC	Co-elutions	RT	Ratio	ng/L	ng/L	ng/L
181				ND		0.492
182				ND		0.492
183	183/185			ND		0.984
184				ND		0.492
185	183/185			ND		0.984
186				ND		0.492
187				ND		0.492
188				ND		0.492
189				ND		0.492
190				ND		0.492
191				ND		0.492
192				ND		0.492
193	180/193			ND		0.984
194				ND		0.738
195				ND		0.738
196				ND		0.738
197	197/200			ND		1.48
198	198/199			ND		1.48
199	198/199			ND		1.48
200	197/200			ND		1.48
201				ND		0.738
202				ND		0.738
203				ND		0.738
204				ND		0.738
205				ND		0.738
206				ND		0.738
207				ND		0.738
208				ND		0.738
209				ND		0.738

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

ND = Not Detected NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time

I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKBN BLANK-25552 P100702A_07

Congener Group	Concentration ng/L	
T		
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-25553 P100702A_03 1020 mL

P100702A02 P100702A_01 BLANK-25552 Matrix Water Dilution NA

Extracted 06/30/2010 19:30 Analyzed 07/02/2010 12:22

Injected By CVS

	ı	Native Analyt	tes	Lal	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1	1.0	1.02	102	2.0	0.147	7	R
3	1.0	1.02	102	2.0	0.224	11	R
4	1.0	1.04	104	2.0	0.214	11	R
15	1.0	0.987	99	2.0	0.452	23	R
19	1.0	0.985	99	2.0	0.309	15	R
37	1.0	0.981	98	2.0	1.06	53	
54	1.0	0.943	94	2.0	0.419	21	R
81	1.0	0.967	97	2.0	2.09	104	
77	1.0	0.981	98	2.0	2.20	110	
104	1.0	0.979	98	2.0	0.774	39	
105	1.0	0.997	100	2.0	2.14	107	
114	1.0	0.971	97	2.0	2.09	105	
118	1.0	0.983	98	2.0	2.09	105	
123	1.0	0.971	97	2.0	2.10	105	
126	1.0	0.980	98	2.0	2.25	113	
155	1.0	0.963	96	2.0	1.18	59	
156/157	2.0	1.99	100	4.0	3.88	97	
167	1.0	1.000	100	2.0	1.93	97	
169	1.0	0.993	99	2.0	1.92	96	
188	1.0	0.991	99	2.0	1.81	91	
189	1.0	1.01	101	2.0	2.08	104	
202	1.0	0.988	99	2.0	1.95	97	
205	1.0	0.983	98	2.0	1.98	99	
206	1.0	0.981	98	2.0	1.86	93	
208	1.0	0.969	97	2.0	1.90	95	
209	1.0	0.988	99	2.0	1.76	88	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s)

Method Blank ID

LCSD-25554 P100702A_04

1000 mL P100702A02 P100702A 01

P100702A_01 BLANK-25552 Matrix Water Dilution NA

Extracted 06/30/2010 19:30 Analyzed 07/02/2010 13:26

Injected By CVS

	M	Native Analy	tes	La	beled Analyt	es	
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recove	ery
1	1.0	1.04	104	2.0	0.130	7	 R
3	1.0	1.02	102	2.0	0.146	7	R
4	1.0	1.06	106	2.0	0.135	7	R
15	1.0	1.03	103	2.0	0.189	9	R
19	1.0	0.980	98	2.0	0.138	7	R
37	1.0	0.991	99	2.0	0.957	48	
54	1.0	0.935	94	2.0	0.181	9	R
81	1.0	0.998	100	2.0	2.04	102	
77	1.0	1.00	100	2.0	2.09	104	
104	1.0	0.978	98	2.0	0.669	33	
105	1.0	1.01	101	2.0	2.29	114	
114	1.0	0.978	98	2.0	2.23	111	
118	1.0	0.991	99	2.0	2.26	113	
123	1.0	0.977	98	2.0	2.27	114	
126	1.0	0.984	98	2.0	2.39	120	
155	1.0	0.956	96	2.0	1.17	58	
156/157	2.0	2.01	101	4.0	3.99	100	
167	1.0	0.988	99	2.0	2.03	101	
169	1.0	0.998	100	2.0	1.99	100	
188	1.0	0.990	99	2.0	1.92	96	
189	1.0	1.01	101	2.0	2.21	110	
202	1.0	0.992	99	2.0	2.09	104	
205	1.0	0.989	99	2.0	2.05	103	
206	1.0	0.970	97	2.0	1.92	96	
208	1.0	0.986	99	2.0	1.97	99	
209	1.0	0.973	97	2.0	1.80	90	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

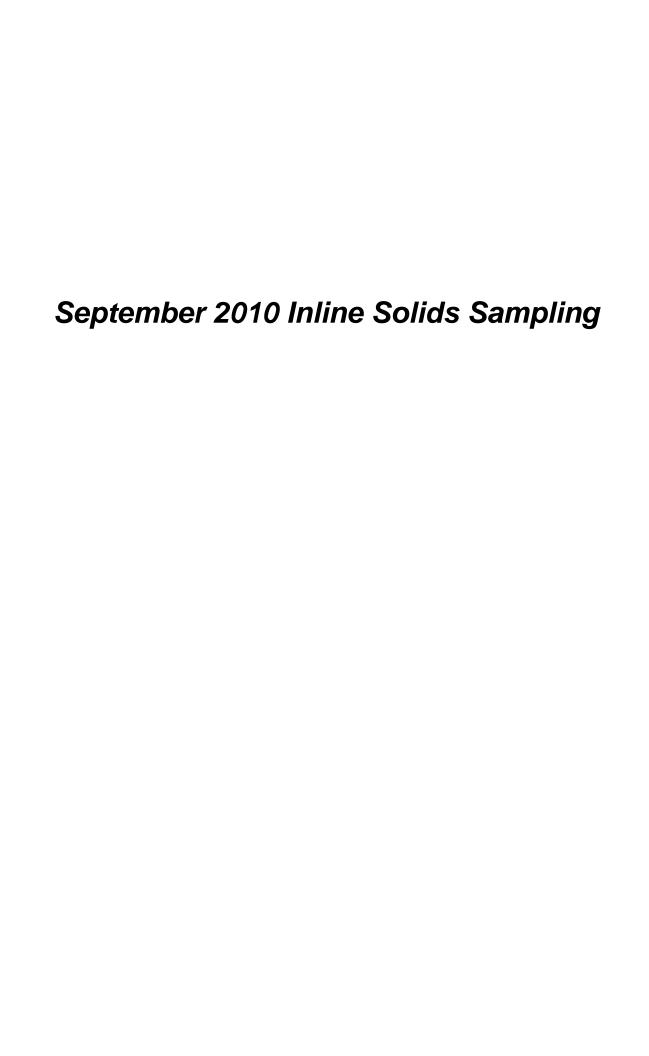
NC = Not Calculated

* = See Discussion ng = Nanograms

I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America


 Spike 1 ID
 LCS-25553
 Spike 2 ID
 LCSD-25554

 Spike 1 Filename
 P100702A_03
 Spike 2 Filename
 P100702A_04

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	102	104	1.9	
4-MoCB	3	102	102	0.0	
2,2'-DiCB	4	104	106	1.9	
4,4'-DiCB	15	99	103	4.0	
2,2',6-TrCB	19	99	98	1.0	
3,4,4'-TrCB	37	98	99	1.0	
2,2',6,6'-TeCB	54	94	94	0.0	
3,3',4,4'-TeCB	77	98	100	2.0	
3,4,4',5-TeCB	81	97	100	3.0	
2,2',4,6,6'-PeCB	104	98	98	0.0	
2,3,3',4,4'-PeCB	105	100	101	1.0	
2,3,4,4',5-PeCB	114	97	98	1.0	
2,3',4,4',5-PeCB	118	98	99	1.0	
2,3',4,4',5'-PeCB	123	97	98	1.0	
3,3',4,4',5-PeCB	126	98	98	0.0	
2,2',4,4',6,6'-HxCB	155	96	96	0.0	
(156/157)	156/157	100	101	1.0	
2,3',4,4',5,5'-HxCB	167	100	99	1.0	
3,3',4,4',5,5'-HxCB	169	99	100	1.0	
2,2',3,4',5,6,6'-HpCB	188	99	99	0.0	
2,3,3',4,4',5,5'-HpCB	189	101	101	0.0	
2,2',3,3',5,5',6,6'-OcCB	202	99	99	0.0	
2,3,3',4,4',5,5',6-OcCB	205	98	99	1.0	
2,2',3,3',4,4',5,5',6-NoCB	206	98	97	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	97	99	2.0	
Decachlorobiphenyl	209	99	97	2.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Inline Solids Investigation City Outfall Basin 52

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: November 11, 2010

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in September 2010. Three inline solids samples (FO105870, FO105871, FO105872) and one duplicate sample (FO105873) were collected in Outfall Basin 52 on September 7 and 8, 2010.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and subcontracted laboratories. The following laboratories conducted the analyses listed:

- BES WPCL
 - Total Solids SM 2540G
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060 MOD
- Pace Analytical Services (Pace)
 - o PCB Congeners EPA 1668A

The WPCL summary report and the subcontracted laboratory reports for all analyses associated with this sampling event are attached. The WPCL summary report comments that unless otherwise noted, all analytical QA/QC criteria were met for these samples including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

The following QA/QC review of the analytical data is based on the available documentation provided by the subcontracted laboratories and on exceptions noted in the WPCL summary

report. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times.

Method Blanks

Method blanks were processed during the subcontracted laboratory analyses of PCB congeners and TOC. No analytes were detected in the method blanks for either analysis.

Internal Standard Recoveries

Isotopically-labeled internal standard recoveries were processed during the laboratory analysis of PCB congeners. Internal standard recoveries are within control limits with three exceptions in the QC samples, which are flagged "R" in the subcontracted laboratory report. All internal standards run with the field samples were recovered within control criteria, and the data are not qualified further.

Interfering background constituents impacted the measurement of some PCB congeners and internal standards. The affected values are flagged "I" in the subcontracted report to indicate that incorrect isotope ratios were obtained. Estimated maximum possible concentrations (EMPCs) are provided for affected congeners, and values are qualified with an EMPC flag. These values are not included in the total homolog and total PCB values.

Because estimated congener value(s) are not significant relative to the total PCB concentration (i.e. <1%), total homolog and total PCB concentrations are considered only slightly biased.

Matrix Spike/Matrix Spike Duplicate

MS/MSD samples were processed during the subcontracted analysis of TOC. Analyte recoveries and relative percent differences (RPDs) are within laboratory control limits for all MS/MSD samples.

Laboratory Control Samples

Two sets of LC/DLC samples were processed during the laboratory analysis of PCB congeners. All LC and DLC recoveries and RPDs are within laboratory control limits. An LC sample was processed during the laboratory analysis of TOC. The LC recovery is within the method-specified laboratory control limit.

Other

WPCL reports that inconsistent results during the matrix QC for the PCB Aroclor analysis in sample FO105870 (sample SJB2) indicate a non-homogeneous sample matrix; therefore, PCB results are considered estimates.

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review Inline Solids Investigation City Outfall Basin 52

To: File

From: Karen Demsey, GSI Water Solutions, Inc. (GSI)

Date: December 12, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in September 2010. Three inline solids primary samples and one duplicate sample were collected in Outfall Basin 52 on September 7 and 8, 2010. The samples were initially analyzed for polychlorinated biphenyls and other parameters in September 2010 and then archived for potential additional analysis in the future. In November 2011, additional analyses were requested for the three primary samples (FO105870, FO105871, and FO105872). The samples were reanalyzed under new laboratory identification numbers (W11K141-01, W11K141-02 and W11K141-03, respectively). The City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) conducted following analyses on these samples:

- Total Solids SM 2540G
- Total Metals EPA 6020

The following QA/QC review of the analytical data is based on the available documentation provided by WPCL. The QA/QC review of the analytical data consisted of reviewing the following elements, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times
- Chemicals of interest detected in method blanks
- Standard reference sample recoveries within accuracy control limits
- Duplicate sample recoveries within laboratory control limits
- Matrix spike sample results within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

The recommended method-specific holding time was exceeded due to delayed request for metals analysis. Because the samples were properly preserved, the results for detections above the method reporting limits are considered usable but biased slightly low. However, the detected results are considered acceptable for the purposes of this investigation.

Method Blanks

A laboratory methods blank was processed during the metals analysis. No analytes were detected in the method blank.

Standard Reference

A laboratory sample of standard reference material was analyzed during the metals analysis. Analyte recoveries were within laboratory control limits for the standard reference material sample.

Duplicate Analysis

A duplicate analysis of one of the field samples was performed during the metals analysis. All relative percent differences between the duplicate analysis and primary analysis of the source sample were within laboratory control limits.

Matrix Spike

A matrix spike sample was processed during the metals analysis. Analyte recoveries were within laboratory control limits for the matrix spike sample.

GSI WATER SOLUTIONS, INC. PAGE 2 OF 2

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Chain-Of-Custody Bureau of Environmental Service

Date: 9/8/10

Page:

Collected By: ASA, PB

89
•

Project Name: PORT	PORTLAND HARBOR INLINE SAMP	INE SA	₩P											ļ		•	1			
File Number: 1020.001	1		Matrix:	SEDIMENT		Š.								20	eque	Requested Analyses	Ana 			
			٠					Orga	Organics	3,		ଜୁ	General		Metals			Field Comments	ents	
	Basin 52 Inline	ine		·· `\	/.		9)							·,· · · ·						
				and the second second			All 209							,					-	
'A						clors - LL	geners (dis		-						
*		Point	Sample	P	Sample	B Aro	B Cor	C				tal Sol			٠				٠	
WPCL Sample i.D.	Location	Code	Date	Time	Туре	PC	PC	TO				Tot								
FO105870	IL-52-SJB2-0910 DISCHARGE TO AAE685	52_13	9/7/10	1145	С	•	•	•				•								
FO105871	IL-52-ANE911-0910 N ALTA & RR TRACKS	52_8	9/7/10	1214	С	•	•	•				•		e e e e						
FO105872	IL-52-SJB1-0910 ODOT-SJB-WQMH	52_14	9/8/10	1001	C	•	•	•				•								
				÷																
											77.00								-	•
																•				
FO105873	DUPLICATE	DUP	9/7/10		C	•	•	•				•			·					
Signature: 1. Signature: 1.	Time: 1633	Relinguished By: Signature:	ed By: 2.		Time:	•			Relingui Signature:	Relinquished By: Signature:	ed By	ယ			-	Time:	8 IT	Relinguished By: 4. Signature:	Time:	P.
drew 1	trasberg Date: 9/8/10	Printed Name:			Date:				Printec	Printed Name:	ı					Date:	- 0	Printed Name:	Date:	92
Signature:		Received By: Signature:	į2 12		Time:				Receive Signature:	Received By: Signature:	HS.	မှာ			-4 ·	Time:	N (3)	Received By: 4. Signature:	Time:	PR.
Printed Name: WACKCMS		Printed Name:			Date:				Printec	Printed Name:				.		Date:	-6	Printed Name:	Date:	(0)

Portland Harbor Inline Samp COC - OF 52 (9-7&8-10).xls

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105870

Sample Collected: 09/07/10 Sample Received: 09/08/10

11:45

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page: Page 1 of 1

Address/Location:

IL-52-SJB2-0910

AO07999

ODOT MANHOLE DISCHARGING TO AAE685

System ID:

Sample Point Code:

52_13

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE **SEDIMENT**

LocCode: Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Except as follows, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable. Inconsistent results for matrix QC for PCB analysis indicate non-homogeneous sample matrix; PCB results should be considered estimates.

					Analysis
Test Parameter	Result	Units	MRL	Method	Date
GENERAL				4	
TOTAL SOLIDS	86.9	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS	•				
POLYCHLORINATED BIPHENYLS (PCB)					
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1221	· <20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	60	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1254	35	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS	•				
TOTAL ORGANIC CARBON	8710	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CONGE	NERS -PACE	•	, .	•	
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105870

Report Date: 10/18/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105871

Sample Collected: 09/07/10 Sample Received: 09/08/10

12:14

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

IL-52-ANE911-0910

System ID:

AO08000

Sample Point Code:

52 8

EID File #:

1020.001

Sample Type:

COMPOSITE

LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

N ALTA & RR TRACKS

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	84.0	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS		•			
POLYCHLORINATED BIPHENYLS (PCB)		•			
Aroclor 1016/1242	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1221	<400	μg/Kg dry wt	400	EPA 8082	09/10/10
Aroclor 1232	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1248	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1254	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1260	2860	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1262	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
Aroclor 1268	<200	μg/Kg dry wt	200	EPA 8082	09/10/10
OUTSIDE ANALYSIS				•	
TOTAL ORGANIC CARBON	28600	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CONGE	NERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105871

Report Date: 10/18/10

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105872

Sample Collected: 09/08/10 Sample Received: 09/08/10

10:01

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page: Page 1 of 1

Address/Location:

IL-52-SJB1-0910

AO08001

SOLIDS FROM ST JOHNS BRIDGE WQ MANHOLE

System ID:

Sample Point Code:

52_14

EID File #:

1020.001

Sample Type: Sample Matrix: COMPOSITE SEDIMENT

LocCode: Collected By: AJA/PTB

PORTHARI

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	77.5	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS					•
POLYCHLORINATED BIPHENYLS (PCB	3)				
Aroclor 1016/1242	´ <10	μg/Kg dry wt	.10	EPA 8082	09/10/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	97	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1254	. 66	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS					
TOTAL ORGANIC CARBON	20100	mg/Kg dry wt	100	EPA 9060 MOD	09/17/10
POLYCHLORINATED BIPHENYL CONG	ENERS -PACE		•	·	
Refer to Contract Report	Completed	ng/Kg dry wt		EPA 1668 MOD	10/06/10

End of Report for Sample ID: FO105872

Report Date: 10/18/10

Validated By:

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Sample ID: FO105873

Sample Collected: 09/07/10 Sample Received: 09/08/10 00:00

Sample Status: COMPLETE AND

VALIDATED

Proj./Company Name: PORTLAND HARBOR INLINE SAMP

Report Page:

Page 1 of 1

Address/Location:

FIELD DUPLICATE

System ID:

AO08002

Sample Point Code:

DUP

1020.001

Sample Type:

COMPOSITE

EID File #: LocCode:

PORTHARI

Sample Matrix:

SEDIMENT

Collected By: AJA/PTB

Comments:

QA/QC: Unless otherwise noted, all analytical QA/QC criteria were met for this sample including holding times, calibration, method blanks, laboratory control sample recoveries, duplicate precision, matrix spike recoveries, and surrogate recoveries, as applicable.

Test Parameter	Result	Units	MRL	Method	Analysis Date
GENERAL					
TOTAL SOLIDS	85.7	% W/W	0.01	SM 2540 G	09/11/10
GC ANALYSIS	<i>.</i>				
POLYCHLORINATED BIPHENYLS (PO	CB)				
Aroclor 1016/1242	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1221	<20	μg/Kg dry wt	20	EPA 8082	09/10/10
Aroclor 1232	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1248	76	μg/Kg dry wt	. 10	EPA 8082	09/10/10
Aroclor 1254	26	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1260	<10	μg/Kg dry wt	10 、	EPA 8082	09/10/10
Aroclor 1262	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
Aroclor 1268	<10	μg/Kg dry wt	10	EPA 8082	09/10/10
OUTSIDE ANALYSIS	•				
TOTAL ORGANIC CARBON	7580	mg/Kg dry wt	100	EPA 9060 MOD	09/16/10
POLYCHLORINATED BIPHENYL CON	GENERS -PACE				
Refer to Contract Report	Completed	ng/Kg dry wt	•	EPA 1668 MOD	09/29/10

End of Report for Sample ID: FO105873

Report Date: 10/18/10

PORTLAND, OR 9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

ORELAP#: OR100021

September 24, 2010

Jennifer Shackelford City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

RE: Portland Harbor Inline

Enclosed are the results of analyses for samples received by the laboratory on 09/09/10 16:05. The following list is a summary of the Work Orders contained in this report, generated on 09/24/10 14:31.

If you have any questions concerning this report, please feel free to contact me.

Work Order	Project	<u>ProjectNumber</u>
PTI0295	Portland Harbor Inline	30001516

TestAmerica Portland

THE LEADER IN ENVIRONMENTAL TESTING

PORTLAND, OR

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave. Project Number: 30001516 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FO105870	PTI0295-01	Soil	09/07/10 11:45	09/09/10 16:05
FO105871	PTI0295-02	Soil	09/07/10 12:14	09/09/10 16:05
FO105872	PTI0295-03	Soil	09/07/10 10:01	09/09/10 16:05
FO105873	PTI0295-04	Soil	09/07/10 00:00	09/09/10 16:05

TestAmerica Portland

and W. Anil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE

BEAVERTON, OR 97008-7132 ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory

6543 N. Burlington Ave.

Portland, OR 97203

Portland Harbor Inline Project Name: Project Number: 30001516

Project Manager: Jennifer Shackelford

Report Created: 09/24/10 14:31

Organic Carbon, Total (TOC)

TestAmerica Connecticut

Analyte	Method	Result	MDL*	MRL	Units	Dil	Batch	Prepared	Analyzed	Notes
PTI0295-01 (FO105870)			Soil			Samp	oled: 09/07	/10 11:45		
Total Organic Carbon - Duplicates	9060	8710	30.0	100	mg/Kg	1x	42822	09/16/10 20:44	09/16/10 20:44	
PTI0295-02 (FO105871)			Soil			Samp	oled: 09/07	/10 12:14		
Total Organic Carbon - Duplicates	9060	28600	30.0	100	mg/Kg	1x	42822	09/16/10 20:58	09/16/10 20:58	
PTI0295-03 (FO105872)	Soil Sampled: 09/07/10 10:01									
Total Organic Carbon - Duplicates	9060	20100	30.0	100	mg/Kg	1x	42822	09/17/10 09:18	09/17/10 09:18	
PTI0295-04 (FO105873)			Soil			Samp	oled: 09/07	/10 00:00		
Total Organic Carbon - Dunlicates	9060	7580	30.0	100	mg/Kg	1x	42822	09/16/10 21:58	09/16/10 21:58	

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory Project Name: Portland Harbor Inline

6543 N. Burlington Ave. Project Number: 30001516 Report Created:
Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:31

Organic Carbon, Total (TOC) - Laboratory Quality Control Results TestAmerica Connecticut QC Batch: 42822 **Soil Preparation Method:** NA Spike % (Limits) % RPD MDL* MRL Source Analyte Method Result Units Dil (Limits) Analyzed Notes Result QC Source: PTI0295-03 Matrix Spike Dup (133083D) Extracted: 09/16/10 21:51 Total Organic Carbon - Duplicates 9060 137000 30.0 100 mg/Kg 1x 20100 124000 95% (75-125) 0.1% (20) 09/16/10 21:51 QC Source: PTI0295-03 Extracted: 09/16/10 21:44 Matrix Spike (133083S) Total Organic Carbon - Duplicates 9060 137200 30.0 100 mg/Kg 20100 122000 (75-125) 09/16/10 21:44 QC Source: Extracted: 09/16/10 18:25 LCS (220-42822-6) Total Organic Carbon - Duplicates 9060 5134 30.0 100 mg/Kg 1x 4110 125% (28-172) 09/16/10 18:25 Blank (220-42822-7) QC Source: Extracted: 09/16/10 18:32 Total Organic Carbon - Duplicates 9060 ND 30.0 100 1x 09/16/10 18:32 mg/Kg

TestAmerica Portland

and W. Smil

Darrell Auvil, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

9405 S.W. NIMBUS AVENUE BEAVERTON, OR 97008-7132

ph: (503) 906.9200 fax: (503) 906.9210

City of Portland Water Pollution Laboratory **Portland Harbor Inline** Project Name:

6543 N. Burlington Ave. 30001516 Report Created: Project Number: Portland, OR 97203 Project Manager: Jennifer Shackelford 09/24/10 14:31

Notes and Definitions

Report Specific Notes:

None

Laboratory Reporting Conventions:

DET Analyte DETECTED at or above the Reporting Limit. Qualitative Analyses only.

ND Analyte NOT DETECTED at or above the reporting limit (MDL or MRL, as appropriate).

NR/NA Not Reported / Not Available

dry Sample results reported on a Dry Weight Basis. Results and Reporting Limits have been corrected for Percent Dry Weight.

Sample results and reporting limits reported on a Wet Weight Basis (as received). Results with neither 'wet' nor 'dry' are reported wet

on a Wet Weight Basis.

RPD RELATIVE PERCENT DIFFERENCE (RPDs calculated using Results, not Percent Recoveries).

METHOD REPORTING LIMIT. Reporting Level at, or above, the lowest level standard of the Calibration Table. MRL

MDL* METHOD DETECTION LIMIT. Reporting Level at, or above, the statistically derived limit based on 40CFR, Part 136, Appendix B. *MDLs are listed on the report only if the data has been evaluated below the MRL. Results between the MDL and MRL are reported

as Estimated Results.

Dil Dilutions are calculated based on deviations from the standard dilution performed for an analysis, and may not represent the dilution

found on the analytical raw data.

Reporting -Reporting limits (MDLs and MRLs) are adjusted based on variations in sample preparation amounts, analytical dilutions and Limits

percent solids, where applicable.

Electronic Signature

Electronic Signature added in accordance with TestAmerica's Electronic Reporting and Electronic Signatures Policy. Application of electronic signature indicates that the report has been reviewed and approved for release by the laboratory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

TestAmerica Portland

and W. Amil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory

CERTIFICATION SUMMARY

Subcontracted Laboratories

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 - Minneapolis, MN 55414

Analysis Performed: 1668 PCB 209 Congeners - SUB

Samples: PTI0295-01, PTI0295-02, PTI0295-03, PTI0295-04

TestAmerica Connecticut

128 Long Hill Cross Road - Shelton, CT 06484

Method Performed: 9060

Samples: PTI0295-01, PTI0295-02, PTI0295-03, PTI0295-04

TestAmerica Portland

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report shall not be reproduced except in full, without the written approval of the laboratory.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145

425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210 907-563-9200 FAX 563-9210

2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119

TAL-1000(0408) TA WO ID * Turnaround Requests less than standard may incur Rush Charges <u>^1</u> TURNAROUND REQUEST DATE TIME LOCATION/ COMMENTS in Business Days * OTHER | Specify: Work Order #: # OF CONT. MATRIX (W, S, O) \circ CHAIN OF CUSTODY REPORT RECEIVED BY: 🌶 Charles Lythe RECEIVED BY: REOUESTED ANALYSES PRESERVATIVE P.O. NUMBER: 56 13 🕅 FIRM: (ity of PETHAMERIES 1257)

DATE 79/2 REPORT TO. Jennifer Shackelford PROJECT NAME: PATHAND HARBOT INLING PROJECT NUMBER: BASIN 52 丟 100 1214 SAMPLING DATE/TIME CLIENT: City of Portland 9/7/10 F0105873 F0105872 F0105370 F0105871 CLIENT SAMPLE IDENTIFICATION SAMPLED BY: PRINT NAME:

TestAmerica Portland

Sample Receiving Checklist

	c Ord nt Nar	er #: PT10295 Date/Time Received: Come and Project: City of POYHAMA	919110 1405								
Time ED	Zone; T/EST	r □CDT/CST □MDT/MST ☑PDT/PST	□AK □OTHER								
Coo	oler #(: erature	g Checks: s): es: 0	Temperature out of Range: Not enough or No IceIce MeltedW/in 4 Hrs of collectionOther:								
N/A	Yes	No	Initials:								
		1. If ESI client, were temp blanks received? If no, do	cument on NOD.								
		2. Cooler Seals intact? (N/A if hand delivered) if no,	document on NOD.								
	Z	3. Chain of Custody present? If no, document on NC	D.								
		4. Bottles received intact? If no, document on NOD.									
		5. Sample is not multiphasic? If no, document on NO	DD.								
		6. Proper Container and preservatives used? If no, de	ocument on NOD.								
\mathbb{Z}		7. pH of all samples checked and meet requirements	? If no, document on NOD.								
		8. Cyanide samples checked for sulfides and meet re-	8. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.								
		9. HF Dilution required?	9. HF Dilution required?								
		 10. Sufficient volume provided for all analysis? If n PM before proceeding. 11. Did chain of custody agree with samples received 									
	, <u>⊯</u> □"	12. Is the "Sampled by" section of the COC complete									
		☐ 13. Were VOA/Oil Syringe samples without headspa									
		☐ 14. Were VOA vials preserved? ☐ HCl ☐ Sodium 7									
E		15. Did samples require preservation with sodium thi									
		☐ 16. If yes to #15, was the residual chlorine test negative									
		17. Are dissolved/field filtered metals bottles sedime									
		18. Is sufficient volume provided for client requested no, document on NOD and contact PM before proceed.	d MS/MSD or matrix duplicates? If								
		19. Are analyses with short holding times received i	n hold?								
		20. Was Standard Turn Around (TAT) requested?									
		21. Receipt date(s) < 48 hours past the collection dat	e(s)? If no, notify PM.								

TestAmerica Portland Sample Receiving Checklist

Work Order #: *PT10295*

,			
Logi	in Ch	ecks	: Initials:
N/A	Yes	No	
			22. Sufficient volume provided for all analysis? If no, document on NOD & contact PM
			23. Sufficient volume provided for client requested MS/MSD or matrix duplicates? If
			no, document on NOD and contact PM.
			24. Did the chain of custody include "received by" and "relinquished by" signatures,
	•		dates and times?
			25. Were special log in instructions read and followed?
			26. Were tests logged checked against the COC?
			27. Were rush notices printed and delivered?
			28. Were short hold notices printed and delivered?
			29. Were subcontract COCs printed?
			30. Was HF dilution logged?
•			<u> </u>
Lab	eling	and	Storage Checks: Initials:
N/A	Yes	No	
			31. Were the subcontracted samples/containers put in Sx fridge?
			32. Were sample bottles and COC double checked for dissolved/filtered metals?
			33. Did the sample ID, Date, and Time from label match what was logged?
			34. Were Foreign sample stickers affixed to each container and containers stored in
			foreign fridge?
			35. Were HF stickers affixed to each container, and containers stored in Sx fridge?
\mathbb{Z}			36. Was an NOD for created for noted discrepancies and placed in folder?
	ament a		roblems or discrepancies and the actions taken to resolve them on a Notice of Discrepancy

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Darrell Auvil Test America 9405 SW Nimbus Avenue Beaverton OR 97008

> REPORT OF LABORATORY ANALYSIS FOR PCBs

Report Information:

Pace Project #: 10138002

Sample Receipt Date: 09/14/2010

Client Project #: Portland Harbor InlineB

Client Sub PO #: N/A

State Cert #: MN200001-005

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCB Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Nate Habte, your Pace Project Manager.

This report has been reviewed by:

October 12, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

October 12, 2010

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on four samples submitted by a representative of Test America - Portland. The samples were analyzed for the presence or absence of polychlorinated biphenyl (PCB) congeners using USEPA Method 1668A. Reporting limits were set to approximately 25-75 parts per trillion and were adjusted for the amount of dry sample extracted.

The isotopically-labeled PCB internal standards in the sample extracts were recovered at 41-129%. With three exceptions, flagged "R" on the QC results tables, the labeled internal standard recoveries obtained for the sample extracts were within the target ranges specified in the method. Since the quantification of the native PCB congeners was based on internal standard and isotope dilution methodology, the data were automatically corrected for variation in recovery and accurate values were obtained.

In some cases, interfering substances impacted the determination of PCB congeners. The affected values were flagged "I" where incorrect isotope ratios were obtained.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks be free of PCB congeners at the reporting limits. This indicates that the sample preparation procedures did not significantly contribute to the levels determined for the field samples.

Laboratory spike samples were also prepared with each sample batch using a reference matrix that had been fortified with native standards. The results show that the spiked native compounds were recovered at 88-136% with relative percent differences of 0.0-13.2%. These results indicate high levels of accuracy and precision for these analyses. Matrix spikes were not prepared with the samples.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010A
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota Mississippi	027-053-137 MN00064	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

SUBCONTRACT ORDER TestAmerica Portland

PTI0295

SENDING LABORATORY:

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Phone: (503) 906-9200

Fax: (503) 906-9210

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Pace Analytical Services, Inc - Minneapolis

1700 Elm Street Suite 200 Minneapolis, MN 55414 Phone: (612) 607-1700

Fax: (612) 607-6444 Project Location: OR - OREGON

Receipt Temperature: °C

Ice: Y / N

needs Excel EDD

Analysis

Sample ID: PTI0295-01 (FO105870 - Soil)

Units

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0295-02 (FO105871 - Soil)

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0295-03 (FO105872 - Soil)

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Sample ID: PTI0295-04 (FO105873 - Soil)

1668 Coplanar PCBs - SUB ug/l

Containers Supplied:

4 oz. jar Amber (A)

Comments

Sampled: 09/07/10 11:45

03/06/11 11:45

Expires

Sampled: 09/07/10 12:14

03/06/11 12:14

209 Congeners to Pace

209 Congeners to Pace

Sampled: 09/07/10 00:00

Sampled: 09/07/10 10:01

03/06/11 00:00

03/06/11 10:01

209 Congeners to Pace

Vow Phas Pace MN 9/14/10 1005 7-4.4

Received By

Date/Timpage 5 of 56 of 1

Sample Condition Upon Receipt

Pace Analyticai" Project # 10/38005 Client Name: Courier: V Fed Ex UPS USPS Client Commercial Pace Other Optional Tracking #: 41 70 75 26 1642 Proj. Due Date Proj. Name Custody Seal on Cooler/Box Present:

✓ yes

□ no Seals intact: √ yes ☐ no Packing Material: Bubble Wrap Temp Blank: Yes No Thermometer Used 80344042 or (79425) Type of Ice: Weh Blue None Samples on ice, cooling process has begun Date and initials of person examining Biological Tissue is Frozen: Yes No **Cooler Temperature** contents: 1/14/10 1158 Temp should be above freezing to 6°C Comments: MYes □No **□N/A** Chain of Custody Present: DWee □No □N⁄A Chain of Custody Filled Out: Yes DNo **□N/A** Chain of Custody Relinquished: Sampler Name & Signature on COC: □Yes ☑No □N/A Wes DNo **□N/A** Samples Arrived within Hold Time: ☐Yes ☐No Short Hold Time Analysis (<72hr): □N/A UYes ENo **□N/A** Rush Turn Around Time Requested: ØYes □No Sufficient Volume: **□N/A** □N⁄A SWes □No Correct Containers Used: WYes □No -Pace Containers Used: □N/A Yes DNo Containers Intact: □N/A 10 DINZA ☐Yes ☐No Filtered volume received for Dissolved tests 11. ØYes □No Sample Labels match COC: □N/A -Includes date/time/ID/Analysis Matrix: All containers needing acid/base preservation have been NaOH ĽM/A ☐Yes ☐No 13. checked. Noncompliance are noted in 13. Samp # All containers needing preservation are found to be in ☐Yes ☐No compliance with EPA recommendation. Lot # of added Initial when ☐Yes ☐Wo Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-DRO (water completed preservative ☐Yes ☐No DK/A Samples checked for dechlorination: 14. Headspace in VOA Vials (>6mm): □Yes □No DINVA 15 ☐Yes ☐No 52N/Á Trip Blank Present: 16. Trip Blank Custody Seals Present ☐Yes ☐No 12N/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: Field Data Required? Y / N 11:00 Person Contacted: Date/Time: Comments/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Received Adaptical SelmBits, inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Project Manager Review:

Date:

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

PTI0295-01 (FO105870) Client's Sample ID Lab Sample ID 10138002001 Filename P101001A_06 Injected By BAL Solid Total Amount Extracted 12.4 g Matrix 18.4 Dilution % Moisture 10.1 g Dry Weight Extracted Collected 09/07/2010 11:45 **ICAL ID** P101001A02 Received 09/14/2010 10:05 09/29/2010 14:40 CCal Filename(s) P101001A 01 Extracted Method Blank ID BLANK-26482 Analyzed 10/01/2010 08:46

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.120	3.60	2.0	1.19	60
13C-4-MoCB	3	12.547	3.48	2.0	1.38	69
13C-2,2'-DiCB	4	12.882	1.61	2.0	1.52	76
13C-4,4'-DiCB	15	21.077	1.60	2.0	1.41	71
13C-2,2',6-TrCB	19	17.363	0.93	2.0	1.48	74
13C-3,4,4'-TrCB	37	29.391	1.06	2.0	1.62	81
13C-2,2',6,6'-TeCB	54	21.377	0.80	2.0	1.62	81
13C-3,4,4',5-TeCB	81	36.685	0.83	2.0	1.47	73
13C-3,3',4,4'-TeCB	77	37.272	0.80	2.0	1.50	75
13C-2,2',4,6,6'-PeCB	104	27.933	1.67	2.0	1.71	86
13C-2,3,3',4,4'-PeCB	105	40.877	1.60	2.0	1.39	69
13C-2,3,4,4',5-PeCB	114	40.207	1.60	2.0	1.37	69
13C-2,3',4,4',5-PeCB	118	39.636	1.63	2.0	1.38	69
13C-2,3',4,4',5'-PeCB	123	39.301	1.59	2.0	1.37	69
13C-3,3',4,4',5-PeCB	126	44.046	1.41	2.0	1.44	72
13C-2,2',4,4',6,6'-HxCB	155	34.137	1.28	2.0	2.07	104
13C-HxCB (156/157)	156/157	47.065	1.25	4.0	2.50	62
13C-2,3',4,4',5,5'-HxCB	167	45.891	1.22	2.0	1.42	71
13C-3,3',4,4',5,5'-HxCB	169	50.418	1.26	2.0	1.21	61
13C-2,2',3,4',5,6,6'-HpCB	188	40.106	1.04	2.0	2.59	129
13C-2,3,3',4,4',5,5'-HpCB	189	52.981	1.01	2.0	1.50	75
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.555	0.92	2.0	2.29	114
13C-2,3,3',4,4',5,5',6-OcCB	205	55.955	0.87	2.0	1.75	88
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.326	0.83	2.0	1.90	95
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.356	0.78	2.0	1.67	84
13CDeCB	209	60.805	0.73	2.0	1.79	89
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.780	1.03	2.0	1.77	89
13C-2,3,3',5,5'-PeCB	111	37.272	1.58	2.0	1.71	86
13C-2,2',3,3',5,5',6-HpCB	178	43.241	1.06	2.0	2.00	100
Recovery Standards						
13C-2,5-DiCB	9	15.805	1.62	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.893	0.82	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.422	1.59	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.806	1.24	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.352	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.132	3.14	47.7		24.8
				ND		24.8
3		12.571	2.99	34.9		24.8
4		12.906	1.48	634		24.8
2 3 4 5		16.800	1.35	29.6		24.8
6		16.392	1.50	279		24.8
7		16.057	1.42	53.3		24.8
8		16.992	1.54	1340		24.8
9		15.841	1.47	94.4		24.8
10		13.182	1.40	43.3		24.8
11				ND		149
12	12/13	20.670	1.35	151		49.6
13	12/13	20.670	1.35	(151)		49.6
14				NĎ		24.8
15		21.101	1.53	1180		24.8
16		20.981	1.04	1250		24.8
17		20.418	1.05	1350		24.8
18	18/30	19.879	1.03	2750		49.6
19		17.387	1.06	343		24.8
20	20/28	24.797	1.03	4850		49.6
21	21/33	25.065	1.03	2610		49.6
22		25.535	1.04	1720		24.8
23				ND		24.8
24		20.825	1.04	75.6		24.8
25		24.076	1.03	348		24.8
26	26/29	23.791	1.05	815		49.6
27	00/00	20.682	1.06	237		24.8
28	20/28	24.797	1.03	(4850)		49.6
29	26/29	23.791	1.05	(815)		49.6
30	18/30	19.879	1.03	(2750)		49.6
31		24.445	1.04	`419Ó		24.8
32	04/00	21.662	1.02	1060		24.8
33	21/33	25.065	1.03	(2610)		49.6
34 35			1.03	NĎ		24.8
35 36		28.955	1.03	72.0 ND		24.8
36 37		 29.425	1.04	1300		24.8
3 <i>1</i> 38		29.425	1.04	ND		24.8 24.8
36 39		27.799	1.05	טא 27.1		24.8 24.8
39 40	40/41/71	29.190	0.77	2310		24.6 149
40 41	40/41/71	29.190	0.77	(2310)		149
42	40/41/71	28.620	0.77	1070		49.6
43	43/73	27.161	0.78	136		99.1
43 44	44/47/65	28.033	0.79	4380		149
4 4 45	45/51	24.864	0.78	763		99.1
46	70/01	25.233	0.78	256		49.6
47	44/47/65	28.033	0.78	(4380)		149
48	17171100	27.782	0.78	868		49.6
70		21.102	0.13	000		- 3.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.480	0.78	2520		99.1
50	50/53	24.076	0.79	549		99.1
51	45/51	24.864	0.78	(763)		99.1
52		26.927	0.78	721Ó		49.6
53	50/53	24.076	0.79	(549)		99.1
54				` NĎ		49.6
55		32.795	0.68	69.5		49.6
56		33.332	0.79	1230		49.6
57				ND		49.6
58				ND		49.6
59	59/62/75	28.419	0.78	338		149
60		33.567	0.79	699		49.6
61	61/70/74/76	32.259	0.78	6430		198
62	59/62/75	28.419	0.78	(338)		149
63		31.907	0.73	`13 2		49.6
64		29.442	0.78	1870		49.6
65	44/47/65	28.033	0.78	(4380)		149
66		32.611	0.79	`276Ó		49.6
67		31.605	0.78	103		49.6
68				ND		49.6
69	49/69	27.480	0.78	(2520)		99.1
70	61/70/74/76	32.259	0.78	(6430)		198
71	40/41/71	29.190	0.77	(2310)		149
72				ND		49.6
73	43/73	27.161	0.79	(136)		99.1
74	61/70/74/76	32.259	0.78	(6430)		198
75	59/62/75	28.419	0.78	(338)		149
76	61/70/74/76	32.259	0.78	(6430)		198
77		37.306	0.78	206		49.6
78				ND		49.6
79				ND		49.6
80				ND		49.6
81				ND		49.6
82		36.870	1.56	736		49.6
83		34.925	1.55	320		49.6
84		32.460	1.58	2010		49.6
85	85/116/117	36.367	1.56	847		149
86	86/87/97/108/119/125	35.696	1.55	4340		297
87	86/87/97/108/119/125	35.696	1.55	(4340)		297
88	88/91	32.208	1.55	854		99.1
89		32.963	1.46	71.6		49.6
90	90/101/113	34.455	1.56	5860		149
91	88/91	32.208	1.55	(854)		99.1
92	00/00/400/:55	33.835	1.58	1080		49.6
93	93/98/100/102	31.655	1.54	240		198
94				ND		49.6
95		31.286	1.56	5590		49.6
96				ND		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0295-01 (FO105870)
Lab Sample ID 10138002001
Filename P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.696	1.55	(4340)		297
98	93/98/100/102	31.655	1.54	(240)		198
99		35.059	1.55	219Ó		49.6
100	93/98/100/102	31.655	1.54	(240)		198
101	90/101/113	34.455	1.56	(5860)		149
102	93/98/100/102	31.655	1.54	(240)		198
103				` NĎ		49.6
104				ND		49.6
105		40.894	1.59	1640		49.6
106				ND		49.6
107	107/124	38.966	1.58	180		99.1
108	86/87/97/108/119/125	35.696	1.55	(4340)		297
109	00/01/01/100/110/120	39.201	1.62	260		49.6
110	110/115	36.535	1.56	6390		99.1
111	110/110			ND		49.6
112				ND		49.6
113	90/101/113	34.455	1.56	(5860)		149
114	30/101/113	40.207	1.53	114		49.6
115	110/115	36.535	1.56	(6390)		99.1
116	85/116/117	36.367	1.56	(847)		149
117	85/116/117	36.367	1.56	(847)		149
118	03/110/117	39.670	1.58	4110		49.6
119	86/87/97/108/119/125	35.696	1.55	(4340)		49.0 297
120	80/87/97/108/119/123		1.55	(4340) ND		49.6
121				ND ND		49.6
121			1.65	57.7		49.6
122		40.005 39.318	1.70	93.1		49.6 49.6
123	107/124	38.966	1.70			49.6 99.1
124	86/87/97/108/119/125	35.696	1.56	(180)		297
	00/07/97/100/119/125		1.55	(4340) ND		49.6
126				ND ND		
127	120/100					49.6
128	128/166	44.130	1.24	523		99.1 149
129	129/138/163	42.839	1.25	3500		
130		42.168	1.25	235		49.6
131		39.268	1.29	80.8		49.6
132		39.737	1.26	1410		49.6
133	40.4/4.40			ND		49.6
134	134/143	38.647	1.26	281		99.1
135	135/151	37.507	1.25	1110		99.1
136		34.941	1.25	584		49.6
137	400/400/400	42.403	1.21	210		49.6
138	129/138/163	42.839	1.25	(3500)		149
139	139/140			ND		99.1
140	139/140			ND		99.1
141		41.766	1.25	586		49.6
142	40.4/4.40			ND (201)		49.6
143	134/143	38.647	1.26	(281)		99.1
144		38.077	1.28	196		49.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion X = Outside QC Limits

RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		49.6
146		40.928	1.26	400		49.6
147	147/149	38.429	1.25	2690		99.1
148				ND		49.6
149	147/149	38.429	1.25	(2690)		99.1
150				` NĎ		49.6
151	135/151	37.507	1.25	(1110)		99.1
152				` NĎ		49.6
153	153/168	41.565	1.25	2340		99.1
154				ND		49.6
155				ND		49.6
156	156/157	47.081	1.25	364		99.1
157	156/157	47.081	1.25	(364)		99.1
158		43.241	1.24	348		49.6
159				ND		49.6
160				ND		49.6
161				ND		49.6
162				ND		49.6
163	129/138/163	42.839	1.25	(3500)		149
164		42.520	1.28	215		49.6
165				ND		49.6
166	128/166	44.130	1.24	(523)		99.1
167		45.924	1.23	108		49.6
168	153/168	41.565	1.25	(2340)		99.1
169				ND		49.6
170		49.764	0.98	226		49.6
171	171/173	46.142	1.15	100		99.1
172	474/470			ND (188)		49.6
173	171/173	46.142	1.15	(100)		99.1
174		45.052	1.03	269		49.6
175			4.00	ND		49.6
176		41.380	1.03	53.7		49.6
177		45.505	1.05	162		49.6
178		43.275	1.11	65.5		49.6
179	400/400	40.475	1.03	162		49.6
180	180/193	48.473	1.04	477		99.1
181				ND ND		49.6
182 183	102/105	 44.801	1.02	236		49.6
184	183/185	44.601	1.02	ND		99.1
185	183/185	44.801	1.02	(236)		49.6 99.1
186	103/103	44.601	1.02	(236) ND		49.6
187		44.180	1.04	356		49.6 49.6
188		44.100	1.04	ND		49.6 49.6
189				ND ND		49.6 49.6
190				ND ND		49.6 49.6
190				ND ND		49.6 49.6
191				ND ND		49.6 49.6
132				ND		43.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ng's = Nanograms

ND = Not Detected

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.473	1.04	(477)		99.1
194				` NĎ		74.4
195				ND		74.4
196				ND		74.4
197	197/200			ND		149
198	198/199			ND		149
199	198/199			ND		149
200	197/200			ND		149
201				ND		74.4
202				ND		74.4
203				ND		74.4
204				ND		74.4
205				ND		74.4
206				ND		74.4
207				ND		74.4
208				ND		74.4
209				ND		74.4

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-01 (FO105870) 10138002001 P101001A_06

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	82.6	
Total Dichloro Biphenyls	3800	
Total Trichloro Biphenyls	23000	
Total Tetrachloro Biphenyls	33900	
Total Pentachloro Biphenyls	37000	
Total Hexachloro Biphenyls	15200	
Total Heptachloro Biphenyls	2110	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	115000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Analyzed

09/07/2010 12:14

09/14/2010 10:05

09/29/2010 14:40

10/01/2010 09:51

Method Blank ID

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0295-02 (FO105871) Lab Sample ID 10138002002 Filename P101001A_07 Injected By BAL Total Amount Extracted 13.1 g Matrix Dilution % Moisture 19.0 10.6 g Dry Weight Extracted Collected ICAL ID P101001A02 Received CCal Filename(s) P101001A 01 Extracted

BLANK-26482

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.061	3.15	2.0	1.28	64
13C-4-MoCB	3	12.500	3.01	2.0	1.38	69
13C-2,2'-DiCB	4	12.835	1.49	2.0	1.54	77
13C-4,4'-DiCB	15	21.054	1.81	2.0	1.25	63
13C-2,2',6-TrCB	19	17.316	1.00	2.0	1.28	64
13C-3,4,4'-TrCB	37	29.393	1.12	2.0	1.23	62
13C-2,2',6,6'-TeCB	54	21.360	0.79	2.0	1.24	62
13C-3,4,4',5-TeCB	81	36.671	0.81	2.0	1.03	52
13C-3,3',4,4'-TeCB	77	37.258	0.82	2.0	1.01	51
13C-2,2',4,6,6'-PeCB	104	27.917	1.54	2.0	1.38	69
13C-2,3,3',4,4'-PeCB	105	40.846	1.59	2.0	0.976	49
13C-2,3,4,4',5-PeCB	114	40.175	1.61	2.0	0.983	49
13C-2,3',4,4',5-PeCB	118	39.639	1.59	2.0	0.981	49
13C-2,3',4,4',5'-PeCB	123	39.287	1.55	2.0	0.977	49
13C-3,3',4,4',5-PeCB	126	44.032	1.58	2.0	0.969	48
13C-2,2',4,4',6,6'-HxCB	155	34.122	1.27	2.0	1.32	66
13C-HxCB (156/157)	156/157	47.067	1.23	4.0	1.74	43
13C-2,3',4,4',5,5'-HxĆB	167	45.877	1.24	2.0	0.889	44
13C-3,3',4,4',5,5'-HxCB	169	50.404	1.15	2.0	0.813	41
13C-2,2',3,4',5,6,6'-HpCB	188	40.092	1.04	2.0	1.67	83
13C-2,3,3',4,4',5,5'-HpCB	189	52.984	1.00	2.0	1.02	51
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.558	0.91	2.0	1.53	76
13C-2,3,3',4,4',5,5',6-OcCB	205	55.980	0.88	2.0	1.07	54
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.351	0.86	2.0	1.17	58
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.359	0.83	2.0	1.14	57
13CDeCB	209	60.765	0.73	2.0	1.04	52
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.748	1.05	2.0	1.69	85
13C-2,3,3',5,5'-PeCB	111	37.258	1.57	2.0	1.74	87
13C-2,2',3,3',5,5',6-HpCB	178	43.227	1.04	2.0	1.91	95
Recovery Standards						
13C-2,5-DiCB	9	15.771	1.61	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.861	0.81	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	34.407	1.56	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	42.791	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.355	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		23.5
2		12.260	2.76	24.4		23.5
2 3				ND		23.5
4		12.883	1.37	78.8		23.5
5				ND		23.5
4 5 6		16.370	1.36	44.6		23.5
7				ND		23.5
8		16.969	1.46	173		23.5
9				ND		23.5
10				ND		23.5
11		20.263	1.40	168		141
12	12/13			ND		47.0
13	12/13			ND		47.0
14				ND		23.5
15		21.066	1.52	130		23.5
16		20.958	1.06	158		23.5
17		20.371	1.06	178		23.5
18	18/30	19.844	1.06	380		47.0
19		17.340	1.04	54.0		23.5
20	20/28	24.781	1.03	697		47.0
21	21/33	25.050	1.04	350		47.0
22		25.502	1.04	241		23.5
23				ND		23.5
24				ND		23.5
25		24.044	1.00	46.2		23.5
26	26/29	23.775	1.02	106		47.0
27		20.670	1.03	34.5		23.5
28	20/28	24.781	1.03	(697)		47.0
29	26/29	23.775	1.02	(106)		47.0
30	18/30	19.844	1.06	(380)		47.0
31		24.429	1.03	`56Ź		23.5
32		21.629	1.06	154		23.5
33	21/33	25.050	1.04	(350)		47.0
34				NĎ		23.5
35		28.940	1.12	23.9		23.5
36				ND		23.5
37		29.410	1.05	223		23.5
38				ND		23.5
39				ND		23.5
40	40/41/71	29.158	0.79	528		141
41	40/41/71	29.158	0.79	(528)		141
42		28.605	0.75	232		47.0
43	43/73			ND		94.1
44	44/47/65	28.018	0.78	856		141
45	45/51	24.832	0.76	163		94.1
46		25.217	0.70	57.6		47.0
47	44/47/65	28.018	0.78	(856)		141
48		27.766	0.79	171		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.464	0.79	502		94.1
50	50/53	24.060	0.80	139		94.1
51	45/51	24.832	0.76	(163)		94.1
52		26.894	0.79	285Ó		47.0
53	50/53	24.060	0.80	(139)		94.1
54				` NĎ		47.0
55				ND		47.0
56		33.317	0.75	347		47.0
57				ND		47.0
58				ND		47.0
59	59/62/75			ND		141
60		33.552	0.78	156		47.0
61	61/70/74/76	32.244	0.77	1430		188
62	59/62/75			ND		141
63				ND		47.0
64		29.426	0.78	426		47.0
65	44/47/65	28.018	0.78	(856)		141
66		32.596	0.78	684		47.0
67				ND		47.0
68				ND		47.0
69	49/69	27.464	0.79	(502)		94.1
70	61/70/74/76	32.244	0.77	(1430)		188
71	40/41/71	29.158	0.79	(528)		141
72				ND		47.0
73	43/73			ND		94.1
74	61/70/74/76	32.244	0.77	(1430)		188
75	59/62/75			ND		141
76	61/70/74/76	32.244	0.77	(1430)		188
77		37.274	0.76	366		47.0
78				ND		47.0
79		35.581	0.81	110		47.0
80				ND		47.0
81				ND		47.0
82		36.838	1.64	379		47.0
83		34.910	1.53	913		47.0
84	05/440/445	32.428	1.55	2560		47.0
85	85/116/117	36.335	1.50	584		141
86	86/87/97/108/119/125	35.681	1.57	11200		282
87	86/87/97/108/119/125	35.681	1.57	(11200)		282
88	88/91	32.193	1.57	688		94.1
89	00/404/440	32.931	1.47	104		47.0
90	90/101/113	34.440	1.56	58300		141
91	88/91	32.193	1.57	(688)		94.1
92	02/02/400/402	33.803	1.57	7350		47.0
93	93/98/100/102	31.640	1.59	278 ND		188
94			 4.50	ND		47.0
95		31.271	1.56	42300		47.0
96		28.353	1.63	56.3		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTI0295-02 (FO105871)
Lab Sample ID 10138002002
Filename P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.681	1.57	(11200)		282
98	93/98/100/102	31.640	1.59	(278)		188
99	00,00,100,10=	35.044	1.56	1940		47.0
100	93/98/100/102	31.640	1.59	(278)		188
101	90/101/113	34.440	1.56	(58300)		141
102	93/98/100/102	31.640	1.59	(278)		188
103	00/00/100/102	30.533	1.53	101		47.0
104				ND		47.0
105		40.896	1.55	3050		47.0
106				ND		47.0
107	107/124	38.951	1.53	516		94.1
107	86/87/97/108/119/125	35.681	1.57	(11200)		282
109	00/07/97/100/119/125	39.203	1.54	1050		47.0
110	110/115	36.520	1.56	37900		94.1
111	110/113	30.520	1.50	37900 ND		47.0
112				ND ND		47.0 47.0
113	90/101/113	34.440	1.56	(58300)		141
114	90/101/113	40.242	1.42	189		47.0
115	110/115	36.520	1.56	(37900)		94.1
116	85/116/117	36.335	1.50	(584)		141
	85/116/117	36.335	1.50	(504)		141
117	65/116/117	39.672	1.56	(584)		
118	00/07/07/400/440/405		1.56	1800Ó		47.0
119	86/87/97/108/119/125	35.681 37.744	1.57	(11200) 162		282
120				ND		47.0 47.0
121			4.47			
122		40.008	1.47	82.1		47.0
123	407/404	39.286	1.56	184		47.0
124	107/124	38.951	1.53	(516)		94.1
125	86/87/97/108/119/125	35.681	1.57	(11200)		282
126		44.049	1.99 I		588	47.0
127	100/100	42.389	1.55	56.5		47.0
128	128/166	44.133	1.24	19800		94.1
129	129/138/163	42.825	1.25	284000		141
130		42.171	1.25	10100		47.0
131		39.253	1.25	1660		47.0
132		39.739	1.25	72800		47.0
133	10.1/1.10	40.259	1.25	2590		47.0
134	134/143	38.633	1.25	9630		94.1
135	135/151	37.459	1.24	96400		94.1
136		34.927	1.26	30300		47.0
137		42.372	1.22	1070		47.0
138	129/138/163	42.825	1.25	(284000)		141
139	139/140	39.035	1.27	862		94.1
140	139/140	39.035	1.27	(862)		94.1
141		41.752	1.25	69200		47.0
142				ND		47.0
143	134/143	38.633	1.25	(9630)		94.1
144		38.046	1.24	15900		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention TimeI = Interference

ND = Not Detected

NA = Not Applicable

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		47.0
146		40.913	1.25	35000		47.0
147	147/149	38.431	1.25	215000		94.1
148	,	36.838	1.20	84.1		47.0
149	147/149	38.431	1.25	(215000)		94.1
150		34.541	1.24	` 181		47.0
151	135/151	37.459	1.24	(96400)		94.1
152				NĎ		47.0
153	153/168	41.550	1.25	269000		94.1
154		37.727	1.25	1030		47.0
155				ND		47.0
156	156/157	47.067	1.26	17200		94.1
157	156/157	47.067	1.26	(17200)		94.1
158		43.227	1.25	`2350Ó		47.0
159		45.122	0.74 I		542	47.0
160				ND		47.0
161				ND		47.0
162		45.374	0.68 I		173	47.0
163	129/138/163	42.825	1.25	(284000)		141
164		42.506	1.25	` 1770Ó		47.0
165				ND		47.0
166	128/166	44.133	1.24	(19800)		94.1
167		45.910	1.25	8220		47.0
168	153/168	41.550	1.25	(269000)		94.1
169		50.438	1.40	486		47.0
170		49.750	1.04	102000		47.0
171	171/173	46.128	1.05	35700		94.1
172		47.788	1.04	17000		47.0
173	171/173	46.128	1.05	(35700)		94.1
174		45.038	1.05	101000		47.0
175		43.898	1.04	4910		47.0
176		41.366	1.06	14500		47.0
177		45.491	1.04	61000		47.0
178		43.244	1.05	19200		47.0
179	100/100	40.477	1.04	40400		47.0
180	180/193	48.459	1.03	212000		94.1
181		45.910	1.01	439		47.0
182	100/105			ND		47.0
183	183/185	44.787	1.03	78600		94.1
184	400/405	40.997	1.09	78.0		47.0
185	183/185	44.787	1.03	(78600)		94.1
186		44.400	4.04	ND		47.0
187		44.166	1.04	108000		47.0
188		40.125	1.01 1.04	96.5		47.0
189		52.984 50.304	1.04	4210 17400		47.0 47.0
190		50.304	1.05	17400 4340		
191		48.828	1.05 			47.0 47.0
192				ND		47.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.459	1.03	(212000)		94.1
194		55.377	0.89	` 2800Ó		70.6
195		52.682	0.89	13400		70.6
196		51.092	0.89	18500		70.6
197	197/200	47.554	0.88	5940		141
198	198/199	50.438	0.90	28600		141
199	198/199	50.438	0.90	(28600)		141
200	197/200	47.554	0.88	(5940)		141
201		46.514	0.89	`451Ó		70.6
202		45.575	0.89	4160		70.6
203		51.310	0.90	17800		70.6
204				ND		70.6
205		56.002	0.89	1910		70.6
206		58.351	0.78	4290		70.6
207		53.372	0.78	624		70.6
208		52.402	0.79	620		70.6
209		60.830	0.71	116		70.6

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-02 (FO105871) 10138002002 P101001A_07

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	24.4	
Total Dichloro Biphenyls	594	
Total Trichloro Biphenyls	3210	
Total Tetrachloro Biphenyls	9020	
Total Pentachloro Biphenyls	188000	
Total Hexachloro Biphenyls	1200000	
Total Heptachloro Biphenyls	821000	
Total Octachloro Biphenyls	123000	
Total Nonachloro Biphenyls	5530	
Decachloro Biphenyls	116	
Total PCBs	2350000	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client - Test America

Client's Sample ID PTI0295-03 (FO105872) Lab Sample ID 10138002003 Filename P101009A_07 Injected By BAL Solid Total Amount Extracted 13.4 g Matrix 23.5 Dilution % Moisture 10.3 g Dry Weight Extracted Collected 09/07/2010 10:01 **ICAL ID** P101009A02 Received 09/14/2010 10:05 10/06/2010 16:40 CCal Filename(s) P101009A 01 Extracted Method Blank ID BLANK-26574 Analyzed 10/09/2010 07:28

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.378	2.97	2.0	1.32	66
13C-4-MoCB	3	11.720	2.02	2.0	1.38	78 I
13C-2,2'-DiCB	4	12.055	1.60	2.0	1.40	70
13C-4,4'-DiCB	15	20.118	1.60	2.0	1.61	81
13C-2,2',6-TrCB	19	16.428	1.15	2.0	1.37	68
13C-3,4,4'-TrCB	37	28.408	1.07	2.0	1.59	80
13C-2,2',6,6'-TeCB	54	20.427	0.81	2.0	1.50	75 74
13C-3,4,4',5-TeCB 13C-3,3',4,4'-TeCB	81 77	35.668 36.289	0.77 0.81	2.0 2.0	1.42 1.42	71 71
13C-3,3,4,4-1eCB 13C-2,2',4,6,6'-PeCB	7 / 104	36.269 26.949	1.54	2.0	1.42	7 I 79
13C-2,2,4,0,0-FeCB 13C-2,3,3',4,4'-PeCB	105	39.860	1.56	2.0	1.31	7 9 66
13C-2,3,4,4',5-PeCB	114	39.206	1.60	2.0	1.36	68
13C-2,3',4,4',5-PeCB	118	38.670	1.61	2.0	1.35	68
13C-2,3',4,4',5'-PeCB	123	38.334	1.57	2.0	1.34	67
13C-3,3',4,4',5-PeCB	126	43.063	1.55	2.0	1.30	65
13C-2,2',4,4',6,6'-HxCB	155	33.170	1.29	2.0	1.79	89
13C-HxCB (156/157)	156/157	46.081	1.26	4.0	2.67	67
13C-2,3',4,4`,5,5'-HxĆB	167	44.924	1.27	2.0	1.41	71
13C-3,3',4,4',5,5'-HxCB	169	49.434	1.24	2.0	1.33	66
13C-2,2',3,4',5,6,6'-HpCB	188	39.139	1.06	2.0	1.96	98
13C-2,3,3',4,4',5,5'-HpCB	189	51.959	1.03	2.0	1.56	78
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.589	0.91	2.0	1.81	90
13C-2,3,3',4,4',5,5',6-OcCB	205	54.739	0.90	2.0	1.58	79
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.915	0.76	2.0	1.67	83
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.377	0.84	2.0	1.55	77 74
13CDeCB	209	59.243	0.71	2.0	1.43	71
Cleanup Standards						
13C-2,4,4'-TrCB	28	23.797	1.06	2.0	1.59	80
13C-2,3,3',5,5'-PeCB	111	36.305	1.59	2.0	1.47	73
13C-2,2',3,3',5,5',6-HpCB	178	42.275	1.03	2.0	1.61	80
Recovery Standards						
13C-2,5-DiCB	9	14.931	1.60	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.926	0.82	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.438	1.66	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.822	1.29	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.178	0.89	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		8.402	3.19	79.2		24.4
2		11.480	3.34	25.2		24.4
3		11.732	3.22	64.1		24.4
4		12.079	1.53	987		24.4
4 5		15.877	1.63	35.8		24.4
6		15.506	1.56	399		24.4
7		15.158	1.51	71.6		24.4
8		16.093	1.60	1910		24.4
9		14.931	1.67	111		24.4
10		12.343	1.47	62.4		24.4
11		19.351	1.54	401		146
12	12/13	19.723	1.57	310		48.7
13	12/13	19.723	1.57	(310)		48.7
14				` NĎ		24.4
15		20.142	1.58	3330		24.4
16		20.034	1.07	3730		24.4
17		19.471	1.04	3450		24.4
18	18/30	18.944	1.05	6030		48.7
19		16.464	1.08	1010		24.4
20	20/28	23.831	1.03	12300		48.7
21	21/33	24.099	1.04	5660		48.7
22		24.552	1.04	4070		24.4
23				ND		24.4
24			4.00	ND		24.4
25	00/00	23.093	1.02	877		24.4
26	26/29	22.825	1.04	1960		48.7
27	00/00	19.747	1.12 1.03	945		24.4
28	20/28	23.831 22.825	1.03	(12300)		48.7
29 30	26/29 18/30	22.825 18.944	1.04	(1960)		48.7 48.7
31	16/30	23.479	1.05	(6030) 8900		46.7 24.4
32		20.712	1.04	3320		24.4
33	21/33	24.099	1.04	(5660)		48.7
33 34	21/33	22.271	1.04	34.4		24.4
35		27.972	1.01	233		24.4
36			1.01	ND		24.4
37		28.425	1.03	3310		24.4
38		20.420		ND		24.4
39		26.798	0.92	52.3		24.4
40	40/41/71	28.190	0.78	8110		146
41	40/41/71	28.190	0.78	(8110)		146
42		27.653	0.80	3880		48.7
43	43/73	26.195	0.79	423		97.4
44	44/47/65	27.050	0.79	13500		146
45	45/51	23.881	0.78	3160		97.4
46		24.250	0.76	1040		48.7
47	44/47/65	27.050	0.79	(13500)		146
48		26.798	0.78	2830		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	26.497	0.79	7910		97.4
50	50/53	23.110	0.78	2160		97.4
51	45/51	23.881	0.78	(3160)		97.4
52		25.960	0.79	ì690Ó		48.7
53	50/53	23.110	0.78	(2160)		97.4
54				` NĎ		48.7
55				ND		48.7
56		32.332	0.78	2990		48.7
57				ND		48.7
58				ND		48.7
59	59/62/75	27.435	0.80	1400		146
60		32.566	0.78	1590		48.7
61	61/70/74/76	31.275	0.78	11900		195
62	59/62/75	27.435	0.80	(1400)		146
63		30.923	0.77	` 317		48.7
64		28.458	0.78	6220		48.7
65	44/47/65	27.050	0.79	(13500)		146
66		31.627	0.78	6710		48.7
67		30.621	0.78	302		48.7
68				ND		48.7
69	49/69	26.497	0.79	(7910)		97.4
70	61/70/74/76	31.275	0.78	(11900)		195
71	40/41/71	28.190	0.78	(8110)		146
72		29.431	0.74	51.9		48.7
73	43/73	26.195	0.79	(423)		97.4
74	61/70/74/76	31.275	0.78	(11900)		195
75	59/62/75	27.435	0.80	(1400)		146
76	61/70/74/76	31.275	0.78	(11900)		195
77		36.305	0.79	571		48.7
78				ND		48.7
79		34.595	0.79	73.5		48.7
80				ND		48.7
81				ND		48.7
82		35.853	1.61	1330		48.7
83		33.941	1.65	699		48.7
84		31.460	1.56	3900		48.7
85	85/116/117	35.366	1.58	1590		146
86	86/87/97/108/119/125	34.696	1.56	9470		292
87	86/87/97/108/119/125	34.696	1.56	(9470)		292
88	88/91	31.225	1.59	1950		97.4
89	00/404/440	31.963	1.56	190		48.7
90	90/101/113	33.472	1.57	13100		146
91	88/91	31.225	1.59	(1950)		97.4
92	00/00/400/400	32.851	1.57	2270		48.7
93	93/98/100/102	30.688	1.57	515		195
94		29.833	1.46	82.0		48.7
95		30.286	1.56	11400		48.7
96		27.385	1.69	153		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID PTIC Lab Sample ID 1013 Filename P10

PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	34.696	1.56	(9470)		292
98	93/98/100/102	30.688	1.57	(515)		195
99		34.092	1.61	`473Ó		48.7
100	93/98/100/102	30.688	1.57	(515)		195
101	90/101/113	33.472	1.57	(13100)		146
102	93/98/100/102	30.688	1.57	` (515)		195
103		29.598	1.62	74.3		48.7
104				ND		48.7
105		39.894	1.57	3790		48.7
106				ND		48.7
107	107/124	37.982	1.60	323		97.4
108	86/87/97/108/119/125	34.696	1.56	(9470)		292
109		38.234	1.57	50 0		48.7
110	110/115	35.551	1.57	11100		97.4
111				ND		48.7
112				ND		48.7
113	90/101/113	33.472	1.57	(13100)		146
114		39.240	1.59	236		48.7
115	110/115	35.551	1.57	(11100)		97.4
116	85/116/117	35.366	1.58	`(1590)		146
117	85/116/117	35.366	1.58	(1590)		146
118		38.686	1.54	`862Ó		48.7
119	86/87/97/108/119/125	34.696	1.56	(9470)		292
120				` NĎ		48.7
121				ND		48.7
122		39.022	1.75	104		48.7
123		38.351	1.60	158		48.7
124	107/124	37.982	1.60	(323)		97.4
125	86/87/97/108/119/125	34.696	1.56	(9470)		292
126				ND		48.7
127				ND		48.7
128	128/166	43.130	1.23	1340		97.4
129	129/138/163	41.856	1.24	8760		146
130		41.218	1.24	534		48.7
131		38.267	1.30	166		48.7
132		38.753	1.24	3000		48.7
133		39.290	1.18	96.2		48.7
134	134/143	37.664	1.08	484		97.4
135	135/151	36.507	1.28	2460		97.4
136		33.941	1.27	1450		48.7
137	100/100/100	41.403	1.24	457		48.7
138	129/138/163	41.856	1.24	(8760)		146
139	139/140	38.049	1.22	154		97.4
140	139/140	38.049	1.22	(154)		97.4
141		40.782	1.25	139Ó		48.7
142	404/440		4.00	ND (404)		48.7
143	134/143	37.664	1.08	(484)		97.4
144		37.077	1.21	370		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl **Sample Analysis Results**

Client Sample ID Lab Sample ID Filename

PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.7
146		39.961	1.24	973		48.7
147	147/149	37.462	1.26	5840		97.4
148				ND		48.7
149	147/149	37.462	1.26	(5840)		97.4
150				NĎ		48.7
151	135/151	36.507	1.28	(2460)		97.4
152				` NĎ		48.7
153	153/168	40.581	1.26	6160		97.4
154				ND		48.7
155				ND		48.7
156	156/157	46.081	1.24	1240		97.4
157	156/157	46.081	1.24	(1240)		97.4
158		42.258	1.22	` 87Ó		48.7
159				ND		48.7
160				ND		48.7
161				ND		48.7
162		44.488	1.22	51.0		48.7
163	129/138/163	41.856	1.24	(8760)		146
164		41.537	1.25	482		48.7
165				ND		48.7
166	128/166	43.130	1.23	(1340)		97.4
167		44.924	1.22	369		48.7
168	153/168	40.581	1.26	(6160)		97.4
169				ND		48.7
170		48.747	1.05	1250		48.7
171	171/173	45.159	1.03	417		97.4
172		46.819	1.02	207		48.7
173	171/173	45.159	1.03	(417)		97.4
174		44.069	1.00	Ì14Ó		48.7
175		42.945	1.06	57.2		48.7
176		40.397	1.01	174		48.7
177		44.522	1.05	686		48.7
178		42.291	1.06	232		48.7
179		39.491	1.05	528		48.7
180	180/193	47.489	1.04	2520		97.4
181				ND		48.7
182				ND		48.7
183	183/185	43.834	1.07	930		97.4
184				ND		48.7
185	183/185	43.834	1.07	(930)		97.4
186				` NĎ		48.7
187		43.214	1.06	1270		48.7
188				ND		48.7
189		51.980	1.11	59.0		48.7
190		49.300	1.05	252		48.7
191		47.841	1.06	50.8		48.7
192				ND		48.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Page 27 of 56

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	47.489	1.04	(2520)		97.4
194		54.200	0.92	· 547		73.1
195		51.678	0.94	202		73.1
196		50.105	0.89	297		73.1
197	197/200			ND		146
198	198/199	49.434	0.89	657		146
199	198/199	49.434	0.89	(657)		146
200	197/200			` NĎ		146
201		45.544	0.91	78.0		73.1
202		44.605	0.90	144		73.1
203		50.323	0.91	440		73.1
204				ND		73.1
205				ND		73.1
206		56.959	0.77	395		73.1
207				ND		73.1
208		51.398	0.79	122		73.1
209		59.286	0.75	137		73.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference
ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-03 (FO105872) 10138002003 P101009A_07

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	168	
Total Dichloro Biphenyls	7620	
Total Trichloro Biphenyls	55900	
Total Tetrachloro Biphenyls	92000	
Total Pentachloro Biphenyls	76300	
Total Hexachloro Biphenyls	36600	
Total Heptachloro Biphenyls	9770	
Total Octachloro Biphenyls	2360	
Total Nonachloro Biphenyls	517	
Decachloro Biphenyls	137	
Total PCBs	281000	

ND = Not Detected
Results reported on a dry weight basis

Solid

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1668A Polychlorobiphenyl Sample Analysis Results

Matrix

Client - Test America

Client's Sample ID PTI0295-04 (FO105873)
Lab Sample ID 10138002004
Filename P101001A_08
Injected By BAL
Total Amount Extracted 12.3 g
% Moisture 16.2

 % Moisture
 16.2
 Dilution
 5

 Dry Weight Extracted
 10.3 g
 Collected
 09/07/2010

 ICAL ID
 P101001A02
 Received
 09/14/2010

 ICAL ID
 P101001A02
 Received
 09/14/2010 10:05

 CCal Filename(s)
 P101001A_01
 Extracted
 09/29/2010 14:40

 Method Blank ID
 BLANK-26482
 Analyzed
 10/01/2010 10:57

PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	9.120	3.05	2.0	1.38	69
13C-4-MoCB	3	12.559	2.82	2.0	1.58	79
13C-2,2'-DiCB	4	12.894	1.69	2.0	1.78	89
13C-4,4'-DiCB	15	21.077	1.59	2.0	1.55	77
13C-2,2',6-TrCB	19	17.339	1.02	2.0	1.57	79
13C-3,4,4'-TrCB	37	29.407	1.11	2.0	1.66	83
13C-2,2',6,6'-TeCB	54	21.393	0.81	2.0	1.57	78
13C-3,4,4',5-TeCB	81	36.684	0.81	2.0	1.53	77
13C-3,3',4,4'-TeCB	77	37.271	0.80	2.0	1.54	77
13C-2,2',4,6,6'-PeCB	104	27.932	1.61	2.0	1.78	89
13C-2,3,3',4,4'-PeCB	105	40.859	1.61	2.0	1.47	73
13C-2,3,4,4',5-PeCB	114	40.205	1.62	2.0	1.50	75
13C-2,3',4,4',5-PeCB	118	39.652	1.59	2.0	1.46	73
13C-2,3',4,4',5'-PeCB	123	39.300	1.55	2.0	1.49	74
13C-3,3',4,4',5-PeCB	126	44.045	1.57	2.0	1.53	76
13C-2,2',4,4',6,6'-HxCB	155	34.136	1.27	2.0	1.87	94
13C-HxCB (156/157)	156/157	47.080	1.25	4.0	2.96	74 76
13C-2,3',4,4',5,5'-HxCB	167 169	45.889 50.433	1.24 1.25	2.0 2.0	1.52 1.52	76 76
13C-3,3',4,4',5,5'-HxCB 13C-2,2',3,4',5,6,6'-HpCB	188	40.105	1.07	2.0	1.95	76 98
13C-2,3,3',4,4',5,5'-HpCB	189	52.979	1.07	2.0	1.63	81
13C-2,2',3,3',5,5',6,6'-OcCB	202	45.554	0.91	2.0	1.86	93
13C-2,3,3',4,4',5,5',6-OcCB	205	55.975	0.91	2.0	1.72	86
13C-2,2',3,3',4,4',5,5',6-NoCB	206	58.302	0.79	2.0	1.82	91
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	52.375	0.78	2.0	1.72	86
13CDeCB	209	60.781	0.70	2.0	1.72	86
Cleanup Standards						
13C-2,4,4'-TrCB	28	24.780	1.08	2.0	1.72	86
13C-2,3,3',5,5'-PeCB	111	37.271	1.61	2.0	1.75	87
13C-2,2 ['] ,3,3 ['] ,5,5 ['] ,6-HpCB	178	43.240	1.06	2.0	2.00	100
Recovery Standards						
13C-2,5-DiCB	9	15.817	1.64	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	26.892	0.79	2.0	NA	ŇA
13C-2,2',4,5,5'-PeCB	101	34.421	1.56	2.0	NA	ŇÁ
13C-2,2',3,4,4',5'-HxCB	138	42.804	1.26	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	55.350	0.91	2.0	NA	NA
,-,-,-,-,-,-				=		

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)
EMPC = Estimated Maximum Possible Concentration
A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1		9.132	2.91	37.8		24.2
2				ND		24.2
2 3		12.571	3.00	30.6		24.2
4		12.918	1.49	479		24.2
5				ND		24.2
4 5 6		16.404	1.55	236		24.2
7		16.057	1.55	46.4		24.2
8		16.991	1.53	1090		24.2
9		15.829	1.45	78.9		24.2
10		13.182	1.39	33.0		24.2
11				ND		145
12	12/13	20.670	1.38	117		48.5
13	12/13	20.670	1.38	(117)		48.5
14				` NĎ		24.2
15		21.101	1.53	921		24.2
16		20.981	1.07	938		24.2
17		20.406	1.04	1010		24.2
18	18/30	19.879	1.04	2020		48.5
19		17.375	1.07	265		24.2
20	20/28	24.797	1.04	3320		48.5
21	21/33	25.065	1.04	1780		48.5
22	, 00	25.534	1.05	1190		24.2
23				ND		24.2
24		20.837	0.92	33.5		24.2
25		24.076	1.04	235		24.2
26	26/29	23.791	1.04	558		48.5
27	20,20	20.682	1.10	182		24.2
28	20/28	24.797	1.04	(3320)		48.5
29	26/29	23.791	1.04	(558)		48.5
30	18/30	19.879	1.04	(2020)		48.5
31	10/00	24.444	1.02	2810		24.2
32		21.661	1.04	787		24.2
33	21/33	25.065	1.04	(1780)		48.5
34	21/00			ND		24.2
35		28.955	1.02	60.5		24.2
36				ND		24.2
37		29.424	1.05	816		24.2
38				ND		24.2
39				ND		24.2
40	40/41/71	29.189	0.79	1380		145
41	40/41/71	29.189	0.79	(1380)		145
42	40/41/71	28.636	0.78	649		48.5
43	43/73	20.000		ND		96.9
44	44/47/65	28.032	0.78	2310		145
4 4 45	45/51	24.864	0.78	515		96.9
46	-1 0/01	25.232	0.79	175		48.5
47	44/47/65	28.032	0.78	(2310)		145
48	11 /1/00	27.781	0.78	539		48.5
70		21.101	0.70	000		70.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable NC = Not Calculated * = See Discussion

ND = Not Detected

X = Outside QC Limits RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
49	49/69	27.479	0.78	1380		96.9
50	50/53	24.076	0.79	345		96.9
51	45/51	24.864	0.81	(515)		96.9
52	43/31	26.926	0.78	3110		48.5
53	50/53	24.076	0.79	(345)		96.9
54	50/55	24.070	0.79	ND		48.5
5 4 55				ND ND		48.5
			0.79	571		48.5
56		33.331	0.79			
57				ND		48.5
58	50/00/75			ND		48.5
59	59/62/75	28.418	0.77	213		145
60		33.582	0.78	334		48.5
61	61/70/74/76	32.258	0.79	2850		194
62	59/62/75	28.418	0.77	(213)		145
63		31.906	0.79	67.8		48.5
64		29.441	0.78	1040		48.5
65	44/47/65	28.032	0.78	(2310)		145
66		32.626	0.79	`132Ó		48.5
67		31.604	0.79	57.8		48.5
68				ND		48.5
69	49/69	27.479	0.78	(1380)		96.9
70	61/70/74/76	32.258	0.79	(2850)		194
71	40/41/71	29.189	0.79	(1380)		145
72				` NĎ		48.5
73	43/73			ND		96.9
74	61/70/74/76	32.258	0.79	(2850)		194
75	59/62/75	28.418	0.77	(213)		145
76	61/70/74/76	32.258	0.79	(2850)		194
77	01/10/11/10	37.288	0.79	103		48.5
78			0.75	ND		48.5
79				ND		48.5
80				ND		48.5
81				ND		48.5
82		36.852	1.57	327		48.5
83		34.924	1.54	142		48.5
84		32.459	1.54	767		48.5
0 4	05/446/447	32.439	1.57			
85	85/116/117	36.366	1.56	396		145
86	86/87/97/108/119/125	35.695	1.57	1880		291
87	86/87/97/108/119/125	35.695	1.57	(1880)		291
88	88/91	32.224	1.56	361		96.9
89	00/404/440			ND		48.5
90	90/101/113	34.454	1.57	2500		145
91	88/91	32.224	1.56	(361)		96.9
92		33.834	1.55	468		48.5
93	93/98/100/102			ND		194
94				ND		48.5
95		31.285	1.55	2170		48.5
96				ND		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A) EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
97	86/87/97/108/119/125	35.695	1.57	(1880)		291
98	93/98/100/102			` NĎ		194
99		35.058	1.59	992		48.5
100	93/98/100/102			ND		194
101	90/101/113	34.454	1.57	(2500)		145
102	93/98/100/102			ND		194
103				ND		48.5
104				ND		48.5
105		40.893	1.58	1030		48.5
106				ND		48.5
107	107/124	38.964	1.62	103		96.9
108	86/87/97/108/119/125	35.695	1.57	(1880)		291
109	00/01/01/100/110/120	39.216	1.55	165		48.5
110	110/115	36.533	1.57	2940		96.9
111	110/110			ND		48.5
112				ND		48.5
113	90/101/113	34.454	1.57	(2500)		145
114	30/101/113	40.205	1.58	66.1		48.5
115	110/115	36.533	1.57	(2940)		96.9
116	85/116/117	36.366	1.56	(396)		145
117	85/116/117	36.366	1.56	(396)		145
118	03/110/117	39.669	1.58	2440		48.5
119	86/87/97/108/119/125	35.695	1.57	(1880)		291
120	80/87/97/100/119/123		1.57	(1880) ND		48.5
121				ND ND		48.5
121				ND ND		48.5
122				ND ND		48.5
123	107/124	38.964	1.62	(103)		96.9
125	86/87/97/108/119/125	35.695	1.57	(1880)		291
126	80/87/97/100/119/123		1.57	(1880) ND		48.5
120				ND ND		48.5
127	128/166	44.129	1.23	441		96.9
120	129/138/163	42.838	1.25	2860		145
130	129/130/103	42.030 42.184	1.23	183		48.5
130		42.104 	1.30	ND		48.5 48.5
132		39.736	1.24	877		48.5
		39.736	1.24	ND		48.5 48.5
133	404/440					
134	134/143	38.646	1.27	163		96.9
135	135/151	37.472	1.24	632		96.9
136		34.940	1.29	278		48.5
137	120/120/162	42.402	1.25	157		48.5
138	129/138/163	42.838	1.25	(2860)		145
139	139/140			ND		96.9
140	139/140		4.00	ND		96.9
141		41.748	1.22	493		48.5
142	40.4/4.40			ND (400)		48.5
143	134/143	38.646	1.27	(163)		96.9
144		38.076	1.20	112		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

ND = Not Detected

ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
145				ND		48.5
146		40.926	1.25	314		48.5
147	147/149	38.445	1.24	1670		96.9
148	,			ND		48.5
149	147/149	38.445	1.24	(1670)		96.9
150	,			ND		48.5
151	135/151	37.472	1.24	(632)		96.9
152	100/101			ND		48.5
153	153/168	41.547	1.25	1860		96.9
154	100/100			ND		48.5
155				ND		48.5
156	156/157	47.080	1.27	387		96.9
157	156/157	47.080	1.27	(387)		96.9
158	100/107	43.240	1.26	290		48.5
159			1.20	ND		48.5
160				ND ND		48.5
161				ND		48.5
162				ND		48.5
163	129/138/163	42.838	1.25	(2860)		145
164	129/130/103	42.519	1.27	175		48.5
165		42.519	1.27	ND		48.5
166	128/166	44.129	1.23	(441)		96.9
167	120/100	45.923	1.28	123		48.5
168	153/168	41.547	1.25	(1860)		96.9
	155/166	41.547	1.25			48.5
169		49.762	1.03	ND 487		48.5
170 171	171/173	49.762 46.141	1.03	467 149		96.9
171	17 1/173	47.801	1.09	81.7		48.5
	171/173	47.801 46.141	1.03	(149)		46.5 96.9
173	171/173		1.09	403		48.5
174 175		45.051 	1.05	403 ND		48.5 48.5
175 176			1.02	52.8		48.5 48.5
176		41.396	1.02	52.8 250		
		45.503	1.02			48.5
178		43.257	1.02	77.2		48.5
179	400/400	40.490		139		48.5
180	180/193	48.471	1.04	869 ND		96.9
181				ND		48.5
182	400/405	44.700	4.00	ND		48.5
183	183/185	44.799	1.03	282		96.9
184	400/405	44.700	4.00	ND (000)		48.5
185	183/185	44.799	1.03	(282)		96.9
186		44.470	4.04	ND		48.5
187		44.179	1.04	411 ND		48.5
188				ND		48.5
189			4.07	ND		48.5
190		50.299	1.07	71.2		48.5
191				ND		48.5
192				ND		48.5

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits Nn = Value obtained from additional analyses

Results reported on a dry weight basis

NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time

ND = Not Detected

I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
193	180/193	48.471	1.04	(869)		96.9
194		55.393	0.86	`14 5		72.7
195				ND		72.7
196		51.104	0.88	80.2		72.7
197	197/200			ND		145
198	198/199	50.450	0.90	155		145
199	198/199	50.450	0.90	(155)		145
200	197/200			` NĎ		145
201				ND		72.7
202				ND		72.7
203		51.322	0.92	88.3		72.7
204				ND		72.7
205				ND		72.7
206				ND		72.7
207				ND		72.7
208				ND		72.7
209				ND		72.7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference ng's = Nanograms

Method 1668A Polychlorobiphenyl Sample Analysis Results

Client Sample ID Lab Sample ID Filename PTI0295-04 (FO105873) 10138002004 P101001A_08

Congener Group	Concentration ng/Kg	
Congener Group	lig/Kg	
Total Monochloro Biphenyls	68.4	
Total Dichloro Biphenyls	3000	
Total Trichloro Biphenyls	16000	
Total Tetrachloro Biphenyls	17000	
Total Pentachloro Biphenyls	16700	
Total Hexachloro Biphenyls	11000	
Total Heptachloro Biphenyls	3270	
Total Octachloro Biphenyls	468	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	67500	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID BLANK-26482
Filename P100930B_09

Injected By BAL Matrix Solid

Total Amount Extracted 10.4 g Extracted 09/29/2010 14:40 ICAL ID P100930B02 Analyzed 09/30/2010 22:55

CCal Filename(s) P100930B_01 Dilution NA

CCai Filename(s)	P100930B	_01		Dilution	NA		
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery	_
Labeled Analytes 13C-2-MoCB 13C-4-MoCB 13C-4,4'-DiCB 13C-2,2'-DiCB 13C-2,2',6-TrCB 13C-2,2',6,6'-TeCB 13C-3,4,4'-5-TeCB 13C-3,3',4,4'-TeCB 13C-2,2',4,6,6'-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,3',4,4',5-PeCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',6,6'-HxCB 13C-2,2',4,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HxCB 13C-2,2',3,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5'-HpCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-OcCB 13C-2,2',3,3',4,4',5,5',6-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB 13C-2,2',3,3',4,4',5,5',6,6'-NoCB	1 3 4 15 19 37 54 81 77 104 105 114 118 123 126 155 156/157 167 169 188 189 202 205 206 208 209	9.061 12.487 12.834 21.006 17.279 29.359 21.310 36.837 37.441 27.883 41.046 40.375 39.839 39.504 44.165 34.255 47.116 45.959 50.386 40.275 52.896 45.641 55.827 58.177 52.314 60.634	3.18 3.06 1.59 1.54 1.08 1.06 0.79 0.82 0.80 1.58 1.60 1.56 1.66 1.52 1.49 1.23 1.26 1.24 1.26 1.09 1.06 0.91 0.90 0.77 0.79 0.69	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.30 1.42 1.62 1.43 1.67 1.49 1.54 0.553 0.540 4.44 1.43 1.37 1.26 1.29 2.07 1.58 5.41 2.45 2.90 0.770 1.77 1.58 1.82 1.88 1.85 1.77	65 71 81 71 83 74 77 28 27 222 71 68 63 65 103 79 135 122 145 38 89 79 91 94 92 88	2
Cleanup Standards 13C-2,4,4'-TrCB 13C-2,3,3',5,5'-PeCB 13C-2,2',3,3',5,5',6-HpCB	28 111 178	24.714 37.458 43.377	1.05 1.60 1.08	2.0 2.0 2.0	1.65 1.34 2.06	83 67 103	
Recovery Standards 13C-2,5-DiCB 13C-2,2',5,5'-TeCB 13C-2,2',4,5,5'-PeCB 13C-2,2',3,4,4',5'-HxCB 13C-2,2',3,3',4,4',5,5'-OcCB	9 52 101 138 194	15.734 26.844 34.523 42.941 55.224	1.57 0.79 1.62 1.25 0.91	2.0 2.0 2.0 2.0 2.0	NA NA NA NA	NA NA NA NA	

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a dry weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits RT = Retention Time

I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
1				ND		24.1
2				ND		24.1
3				ND		24.1
4				ND		24.1
5				ND		24.1
4 5 6 7				ND		24.1
7				ND		24.1
8				ND		24.1
9				ND		24.1
10				ND		24.1
11				ND		144
12	12/13			ND		48.1
13	12/13			ND		48.1
14				ND		24.1
15				ND		24.1
16				ND		24.1
17				ND		24.1
18	18/30			ND		48.1
19				ND		24.1
20	20/28			ND		48.1
21	21/33			ND		48.1
22	_,,,,,			ND		24.1
23				ND		24.1
24				ND		24.1
25				ND		24.1
26	26/29			ND		48.1
27				ND		24.1
28	20/28			ND		48.1
29	26/29			ND		48.1
30	18/30			ND		48.1
31				ND		24.1
32				ND		24.1
33	21/33			ND		48.1
34				ND		24.1
34 35				ND		24.1
36				ND		24.1
37				ND		24.1
38				ND		24.1
39				ND		24.1
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.1
43	43/73			ND		96.2
44	44/47/65			ND		144
45	45/51			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.1
47	44/47/65			ND		144
48				ND		48.1
49	49/69			ND		96.2
50	50/53			ND		96.2
51	45/51			ND		96.2
52	16/61			ND		48.1
53	50/53			ND		96.2
54	00/00			ND		48.1
55				ND		48.1
56				ND		48.1
57				ND		48.1
58				ND		48.1
59	59/62/75			ND		144
60	00/02/10			ND		48.1
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	33/02/19			ND		48.1
64				ND ND		48.1
65	44/47/65			ND ND		144
66	44/47/03			ND ND		48.1
67				ND ND		48.1
68				ND ND		48.1
69	49/69			ND ND		96.2
70	49/09 61/70/74/76			ND ND		192
70 71	40/41/71			ND ND		144
71 72	40/41/71			ND ND		48.1
	40/70					
73	43/73			ND		96.2
74	61/70/74/76			ND		192
75 70	59/62/75			ND ND		144
76	61/70/74/76			ND		192
77				ND		48.1
78				ND		48.1
79				ND		48.1
80				ND		48.1
81				ND		48.1
82				ND		48.1
83				ND		48.1
84				ND		48.1
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		289
87	86/87/97/108/119/125			ND		289
88	88/91			ND		96.2
89				ND		48.1
90	90/101/113			ND		144

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.2
92				ND		48.1
93	93/98/100/102			ND		192
94	00/00/100/102			ND		48.1
95				ND		48.1
96				ND		48.1
97	86/87/97/108/119/125			ND		289
98	93/98/100/102			ND		192
99	00/00/100/102			ND		48.1
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
102	93/90/100/102			ND ND		48.1
103				ND ND		48.1
104				ND ND		48.1
105				ND ND		48.1
100	107/124			ND ND		96.2
107						
	86/87/97/108/119/125			ND		289
109	440/445			ND		48.1
110	110/115			ND		96.2
111				ND		48.1
112	00/404/440			ND		48.1
113	90/101/113			ND		144
114	440/445			ND		48.1
115	110/115			ND		96.2
116	85/116/117			ND		144
117	85/116/117			ND		144
118				ND		48.1
119	86/87/97/108/119/125			ND		289
120				ND		48.1
121				ND		48.1
122				ND		48.1
123				ND		48.1
124	107/124			ND		96.2
125	86/87/97/108/119/125			ND		289
126				ND		48.1
127				ND		48.1
128	128/166			ND		96.2
129	129/138/163			ND		144
130				ND		48.1
131				ND		48.1
132				ND		48.1
133				ND		48.1
134	134/143			ND		96.2
135	135/151			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.1
137				ND		48.1
138	129/138/163			ND		144
139	139/140			ND		96.2
140	139/140			ND		96.2
141				ND		48.1
142				ND		48.1
143	134/143			ND		96.2
144				ND		48.1
145				ND		48.1
146				ND		48.1
147	147/149			ND		96.2
148				ND		48.1
149	147/149			ND		96.2
150				ND		48.1
151	135/151			ND		96.2
152				ND		48.1
153	153/168			ND		96.2
154				ND		48.1
155				ND		48.1
156	156/157			ND		96.2
157	156/157			ND		96.2
158				ND		48.1
159				ND		48.1
160				ND		48.1
161				ND		48.1
162				ND		48.1
163	129/138/163			ND		144
164				ND		48.1
165				ND		48.1
166	128/166			ND		96.2
167				ND		48.1
168	153/168			ND		96.2
169				ND		48.1
170				ND		48.1
171	171/173			ND		96.2
172				ND		48.1
173	171/173			ND		96.2
174				ND		48.1
175				ND		48.1
176				ND		48.1
177				ND		48.1
178				ND		48.1
179				ND		48.1
180	180/193			ND		96.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26482 P100930B 09

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
181				ND		48.1
182				ND		48.1
183	183/185			ND		96.2
184	100/100			ND		48.1
185	183/185			ND		96.2
186	100/100			ND		48.1
187				ND		48.1
188				ND		48.1
189				ND		48.1
190				ND		48.1
191				ND		48.1
192				ND		48.1
193	180/193			ND		96.2
194				ND		72.2
195				ND		72.2
196				ND		72.2
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.2
202				ND		72.2
203				ND		72.2
204				ND		72.2
205				ND		72.2
206				ND		72.2
207				ND		72.2
208				ND		72.2
209				ND		72.2

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a dry weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKNV BLANK-26482 P100930B_09

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a dry weight basis

Method 1668A Polychlorobiphenyl **Blank Analysis Results**

Lab Sample ID BLANK-26574 Filename P101008A 04 Injected By BAL

Solid Matrix **Total Amount Extracted** 10.4 g Extracted 10/06/2010 16:40

ICAL ID P101008A02 Analyzed 10/08/2010 16:25 P101008A 01

CCal Filename(s) Dilution NA

CCal Filename(s)	P101008A	_01		Dilution	NA	
PCB Isomer	IUPAC	RT	Ratio	ng's Added	ng's Found	% Recovery
Labeled Analytes						
13C-2-MoCB	1	8.390	3.12	2.0	1.32	66
13C-4-MoCB	3	11.733	3.11	2.0	1.46	73
13C-2,2'-DiCB	4	12.057	1.58	2.0	1.45	73
13C-4,4'-DiCB	15	20.109	1.54	2.0	1.32	66
13C-2,2',6-TrCB	19	16.442	1.04	2.0	1.49	75
13C-3,4,4'-TrCB	37	28.412	1.11	2.0	1.40	70
13C-2,2',6,6'-TeCB	54	20.413	0.79	2.0	1.56	78
13C-3,4,4',5-TeCB	81	35.823	0.83	2.0	0.787	39
13C-3,3',4,4'-TeCB	77	36.410	0.79	2.0	0.808	40
13C-2,2',4,6,6'-PeCB	104	26.953	1.59	2.0	2.87	144
13C-2,3,3',4,4'-PeCB	105	39.999	1.61	2.0	1.42	71
13C-2,3,4,4',5-PeCB	114	39.345	1.57	2.0	1.43	72
13C-2,3',4,4',5-PeCB	118	38.792	1.62	2.0	1.36	68
13C-2,3',4,4',5'-PeCB	123	38.473	1.61	2.0	1.40	70
13C-3,3',4,4',5-PeCB	126	43.118	1.54	2.0	1.79	90
13C-2,2',4,4',6,6'-HxCB	155	33.274	1.22	2.0	1.55	77
13C-HxCB (156/157)	156/157	46.086	1.27	4.0	4.10	103
13C-2,3',4,4',5,5'-HxCB	167	44.929	1.24	2.0	1.94	97
13C-3,3',4,4',5,5'-HxCB	169	49.339	1.26	2.0	2.36	118
13C-2,2',3,4',5,6,6'-HpCB	188	39.261	1.07	2.0	0.960	48
13C-2,3,3',4,4',5,5'-HpCB	189	51.835	1.06	2.0	1.64	82
13C-2,2',3,3',5,5',6,6'-OcCB	202	44.627	0.92	2.0	1.37	68
13C-2,3,3',4,4',5,5',6-OcCB	205	54.594	0.87	2.0	1.73	87 70
13C-2,2',3,3',4,4',5,5',6-NoCB	206	56.749	0.80	2.0	1.59	79
13C-2,2',3,3',4,5,5',6,6'-NoCB	208	51.275	0.80	2.0	1.63	82 72
13CDeCB	209	59.013	0.70	2.0	1.44	12
Cleanup Standards		00 =0.4		• •		
13C-2,4,4'-TrCB	28	23.784	1.03	2.0	1.61	80
13C-2,3,3',5,5'-PeCB	111	36.461	1.57	2.0	1.39	69
13C-2,2',3,3',5,5',6-HpCB	178	42.363	1.02	2.0	1.80	90
Recovery Standards						
13C-2,5-DiCB	9	14.968	1.57	2.0	NA	NA
13C-2,2',5,5'-TeCB	52	25.913	0.79	2.0	NA	NA
13C-2,2',4,5,5'-PeCB	101	33.543	1.60	2.0	NA	NA
13C-2,2',3,4,4',5'-HxCB	138	41.927	1.27	2.0	NA	NA
13C-2,2',3,3',4,4',5,5'-OcCB	194	54.034	0.88	2.0	NA	NA

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

Nn = Value obtained from additional analyses

Results reported on a total weight basis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

X = Outside QC Limits

RT = Retention Time I = Interference

ng's = Nanograms

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
	OO CIULIONS		ratio		119/119	
1				ND		24.0
2				ND		24.0
3				ND		24.0
4 5 6				ND		24.0
5				ND		24.0
6 7				ND ND		24.0
8				ND ND		24.0 24.0
9				ND ND		24.0
10				ND ND		24.0
11				ND		144
12	12/13			ND		48.0
13	12/13			ND		48.0
14	12/10			ND		24.0
15				ND		24.0
16				ND		24.0
17				ND		24.0
18	18/30			ND		48.0
19				ND		24.0
20	20/28			ND		48.0
21	21/33			ND		48.0
22				ND		24.0
23				ND		24.0
24				ND		24.0
25	00/00			ND		24.0
26	26/29			ND		48.0
27	00/00			ND		24.0
28	20/28			ND		48.0
29	26/29			ND		48.0
30 31	18/30			ND ND		48.0 24.0
32				ND ND		24.0 24.0
33	21/33			ND ND		48.0
34	21/33			ND		24.0
35				ND ND		24.0
36				ND		24.0
36 37				ND ND		24.0
38				ND		24.0
39				ND		24.0
40	40/41/71			ND		144
41	40/41/71			ND		144
42				ND		48.0
43	43/73			ND		96.1
44	44/47/65			ND		144
45	45/51			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
46				ND		48.0
47	44/47/65			ND		144
48	44/47/03			ND		48.0
49	49/69			ND ND		96.1
5 0	50/53			ND		96.1
51	45/51			ND		96.1
52	40/01			ND		48.0
53	50/53			ND		96.1
54	00/00			ND		48.0
55				ND		48.0
56				ND		48.0
57				ND		48.0
58				ND		48.0
59	59/62/75			ND		144
60	00/02/10			ND		48.0
61	61/70/74/76			ND		192
62	59/62/75			ND		144
63	00/02/10			ND		48.0
64				ND		48.0
65	44/47/65			ND		144
66	44/41/05			ND		48.0
67				ND		48.0
68				ND		48.0
69	49/69			ND		96.1
70	61/70/74/76			ND		192
71	40/41/71			ND		144
72	10/ 11/7 1			ND		48.0
73	43/73			ND		96.1
74	61/70/74/76			ND		192
75 75	59/62/75			ND		144
76	61/70/74/76			ND		192
 77	0.77.677.17.0			ND		48.0
78				ND		48.0
79				ND		48.0
80				ND		48.0
81				ND		48.0
82				ND		48.0
83				ND		48.0
84				ND		48.0
85	85/116/117			ND		144
86	86/87/97/108/119/125			ND		288
87	86/87/97/108/119/125			ND		288
88	88/91			ND		96.1
89	33/31			ND		48.0
90	90/101/113			ND		144
50	33/101/110			ND		1-7-7

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A_04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
91	88/91			ND		96.1
92				ND		48.0
93	93/98/100/102			ND		192
94				ND		48.0
95				ND		48.0
96				ND		48.0
97	86/87/97/108/119/125			ND		288
98	93/98/100/102			ND		192
99	00,00,100,102			ND		48.0
100	93/98/100/102			ND		192
101	90/101/113			ND		144
102	93/98/100/102			ND		192
102	93/90/100/102			ND ND		48.0
103				ND ND		48.0
105				ND ND		48.0
105				ND ND		48.0
100	107/124			ND ND		96.1
108	86/87/97/108/119/125			ND		288
109	440/445			ND		48.0
110	110/115			ND		96.1
111				ND		48.0
112	00/404/440			ND		48.0
113	90/101/113			ND		144
114				ND		48.0
115	110/115			ND		96.1
116	85/116/117			ND		144
117	85/116/117			ND		144
118				ND		48.0
119	86/87/97/108/119/125			ND		288
120				ND		48.0
121				ND		48.0
122				ND		48.0
123				ND		48.0
124	107/124			ND		96.1
125	86/87/97/108/119/125			ND		288
126				ND		48.0
127				ND		48.0
128	128/166			ND		96.1
129	129/138/163			ND		144
130				ND		48.0
131				ND		48.0
132				ND		48.0
133				ND		48.0
134	134/143			ND		96.1
135	135/151			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
136				ND		48.0
137				ND		48.0
138	129/138/163			ND		144
139	139/140			ND		96.1
140	139/140			ND		96.1
141	100/110			ND		48.0
142				ND		48.0
143	134/143			ND		96.1
144				ND		48.0
145				ND		48.0
146				ND		48.0
147	147/149			ND		96.1
148	,			ND		48.0
149	147/149			ND		96.1
150				ND		48.0
151	135/151			ND		96.1
152				ND		48.0
153	153/168			ND		96.1
154				ND		48.0
155				ND		48.0
156	156/157			ND		96.1
157	156/157			ND		96.1
158				ND		48.0
159				ND		48.0
160				ND		48.0
161				ND		48.0
162				ND		48.0
163	129/138/163			ND		144
164				ND		48.0
165				ND		48.0
166	128/166			ND		96.1
167				ND		48.0
168	153/168			ND		96.1
169				ND		48.0
170				ND		48.0
171	171/173			ND		96.1
172				ND		48.0
173	171/173			ND		96.1
174				ND		48.0
175				ND		48.0
176				ND		48.0
177				ND		48.0
178				ND		48.0
179				ND		48.0
180	180/193			ND		96.1

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected
NA = Not Applicable
NC = Not Calculated
* = See Discussion
X = Outside QC Limits
RT = Retention Time
I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Lab Sample ID Filename

BLANK-26574 P101008A 04

IUPAC	Co-elutions	RT	Ratio	Concentration ng/Kg	EMPC ng/Kg	EML ng/Kg
IUFAC	CO- c iulions	N i	Natio	lig/Ng	iig/Kg	ng/rtg
181				ND		48.0
182				ND		48.0
183	183/185			ND		96.1
184				ND		48.0
185	183/185			ND		96.1
186				ND		48.0
187				ND		48.0
188				ND		48.0
189				ND		48.0
190				ND		48.0
191				ND		48.0
192				ND		48.0
193	180/193			ND		96.1
194				ND		72.0
195				ND		72.0
196				ND		72.0
197	197/200			ND		144
198	198/199			ND		144
199	198/199			ND		144
200	197/200			ND		144
201				ND		72.0
202				ND		72.0
203				ND		72.0
204				ND		72.0
205				ND		72.0
206				ND		72.0
207				ND		72.0
208				ND		72.0
209				ND		72.0

Conc = Concentration

EML =Method Specified Reporting Limit (1668A)

EMPC = Estimated Maximum Possible Concentration

A = Limit of Detection based on signal to noise

B = Less than 10 times higher than method blank level

R = Recovery outside of Method 1668A control limits

ng/L = Nanograms per liter

Results reported on a total weight basis

ND = Not Detected NA = Not Applicable NC = Not Calculated * = See Discussion X = Outside QC Limits RT = Retention Time I = Interference

Method 1668A Polychlorobiphenyl Blank Analysis Results

Client Sample ID Lab Sample ID Filename DFBLKOO BLANK-26574 P101008A_04

Congener Group	Concentration ng/Kg	
Total Monochloro Biphenyls	ND	
Total Dichloro Biphenyls	ND	
Total Trichloro Biphenyls	ND	
Total Tetrachloro Biphenyls	ND	
Total Pentachloro Biphenyls	ND	
Total Hexachloro Biphenyls	ND	
Total Heptachloro Biphenyls	ND	
Total Octachloro Biphenyls	ND	
Total Nonachloro Biphenyls	ND	
Decachloro Biphenyls	ND	
Total PCBs	ND	

ND = Not Detected
Results reported on a total weight basis

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26483 P100930B_10

10.2 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 00:01

Injected By BAL

	r	Native Analy	tes	Labeled Analytes				
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery		
1	1.0	0.990	99	2.0	1.47	73		
3	1.0	1.06	106	2.0	1.54	77		
4	1.0	0.979	98	2.0	1.72	86		
15	1.0	1.14	114	2.0	1.41	70		
19	1.0	0.876	88	2.0	1.66	83		
37	1.0	0.992	99	2.0	1.52	76		
54	1.0	0.962	96	2.0	1.59	79		
81	1.0	1.06	106	2.0	0.680	34		
77	1.0	0.953	95	2.0	0.663	33		
104	1.0	0.955	96	2.0	3.37	169 F	R	
105	1.0	1.02	102	2.0	1.39	69		
114	1.0	1.09	109	2.0	1.31	66		
118	1.0	1.14	114	2.0	1.24	62		
123	1.0	1.06	106	2.0	1.22	61		
126	1.0	1.01	101	2.0	1.95	97		
155	1.0	0.955	96	2.0	1.66	83		
156/157	2.0	2.11	105	4.0	4.28	107		
167	1.0	1.06	106	2.0	2.11	106		
169	1.0	1.05	105	2.0	2.24	112		
188	1.0	1.02	102	2.0	0.939	47		
189	1.0	1.06	106	2.0	1.66	83		
202	1.0	0.970	97	2.0	1.79	90		
205	1.0	1.01	101	2.0	1.75	88		
206	1.0	0.978	98	2.0	1.80	90		
208	1.0	1.03	103	2.0	1.73	86		
209	1.0	1.32	132	2.0	1.62	81		

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

^{* =} See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCS-26575 P101009A_04

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 04:14

Injected By BAL

	1	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.11	111	2.0	1.34	67	
3	1.0	1.13	113	2.0	1.52	76	
4	1.0	0.992	99	2.0	1.45	72	
15	1.0	1.13	113	2.0	1.71	85	
19	1.0	1.01	101	2.0	1.36	68	
37	1.0	1.07	107	2.0	1.71	85	
54	1.0	0.983	98	2.0	1.67	83	
81	1.0	1.04	104	2.0	1.01	51	
77	1.0	1.01	101	2.0	1.05	53	
104	1.0	1.02	102	2.0	2.13	107	
105	1.0	1.10	110	2.0	1.42	71	
114	1.0	1.03	103	2.0	1.39	69	
118	1.0	1.24	124	2.0	1.32	66	
123	1.0	1.10	110	2.0	1.36	68	
126	1.0	1.04	104	2.0	1.72	86	
155	1.0	1.00	100	2.0	1.62	81	
156/157	2.0	2.17	109	4.0	3.40	85	
167	1.0	1.10	110	2.0	1.70	85	
169	1.0	1.03	103	2.0	1.70	85	
188	1.0	1.00	100	2.0	1.45	73	
189	1.0	1.08	108	2.0	1.70	85	
202	1.0	0.979	98	2.0	1.92	96	
205	1.0	1.05	105	2.0	1.66	83	
206	1.0	1.02	102	2.0	1.77	89	
208	1.0	0.983	98	2.0	1.65	82	
209	1.0	1.21	121	2.0	1.63	81	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID LCSD-26484 P100930B_11 10.4 g

P100930B02 P100930B_01 BLANK-26482 Matrix Solid Dilution NA

Extracted 09/29/2010 14:40 Analyzed 10/01/2010 01:06

Injected By BAL

	ı	Native Analy	tes	Labeled Analytes				
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	% Recovery	
1	1.0	1.04	104	2.0	1.42	71		
3	1.0	1.05	105	2.0	1.53	76		
4	1.0	1.06	106	2.0	1.71	85		
15	1.0	1.11	111	2.0	1.44	72		
19	1.0	0.977	98	2.0	1.58	79		
37	1.0	1.02	102	2.0	1.60	80		
54	1.0	0.984	98	2.0	1.62	81		
81	1.0	1.07	107	2.0	0.736	37		
77	1.0	0.989	99	2.0	0.698	35		
104	1.0	0.943	94	2.0	3.48	174	R	
105	1.0	1.09	109	2.0	1.46	73		
114	1.0	1.07	107	2.0	1.37	68		
118	1.0	1.14	114	2.0	1.29	64		
123	1.0	1.09	109	2.0	1.30	65		
126	1.0	1.01	101	2.0	2.02	101		
155	1.0	1.01	101	2.0	1.64	82		
156/157	2.0	2.18	109	4.0	4.30	108		
167	1.0	1.10	110	2.0	2.13	107		
169	1.0	1.06	106	2.0	2.31	115		
188	1.0	1.05	105	2.0	0.981	49		
189	1.0	1.07	107	2.0	1.81	90		
202	1.0	0.960	96	2.0	1.96	98		
205	1.0	1.01	101	2.0	1.86	93		
206	1.0	0.990	99	2.0	1.95	97		
208	1.0	0.976	98	2.0	1.88	94		
209	1.0	1.36	136	2.0	1.78	89		

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms

I = Interference

Method 1668A Polychlorobiphenyls Laboratory Control Spike Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s) Method Blank ID LCSD-26576 P101009A_05

10.2 g

P101009A02 P101009A_01 BLANK-26574 Matrix Solid Dilution NA

Extracted 10/06/2010 16:40 Analyzed 10/09/2010 05:19

Injected By BAL

	N	Native Analy	tes	Labeled Analytes			
PCB Isomer	Spiked (ng)	Found (ng)	% Recovery	Spiked (ng)	Found (ng)	% Recovery	
1	1.0	1.14	114	2.0	1.45	73	
3	1.0	1.19	119	2.0	1.59	79	
4	1.0	1.02	102	2.0	1.53	77	
15	1.0	0.991	99	2.0	1.48	74	
19	1.0	1.01	101	2.0	1.43	72	
37	1.0	1.09	109	2.0	1.62	81	
54	1.0	1.01	101	2.0	1.26	63	
81	1.0	1.05	105	2.0	0.925	46	
77	1.0	1.02	102	2.0	0.957	48	
104	1.0	1.01	101	2.0	2.54	127	
105	1.0	1.11	111	2.0	1.24	62	
114	1.0	1.08	108	2.0	1.34	67	
118	1.0	1.19	119	2.0	1.34	67	
123	1.0	1.15	115	2.0	1.33	66	
126	1.0	1.07	107	2.0	1.26	63	
155	1.0	1.01	101	2.0	2.04	102	
156/157	2.0	2.21	111	4.0	3.64	91	
167	1.0	1.11	111	2.0	1.76	88	
169	1.0	1.09	109	2.0	2.14	107	
188	1.0	0.994	99	2.0	1.36	68	
189	1.0	1.07	107	2.0	1.68	84	
202	1.0	1.03	103	2.0	1.23	61	
205	1.0	0.997	100	2.0	1.71	85	
206	1.0	0.979	98	2.0	1.71	85	
208	1.0	1.04	104	2.0	1.56	78	
209	1.0	1.28	128	2.0	1.84	92	

R = Recovery outside of method 1668A control limits

Nn = Result obtained from alternate analysis

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

* = See Discussion

ng = Nanograms I = Interference

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26483
 Spike 2 ID
 LCSD-26484

 Spike 1 Filename
 P100930B_10
 Spike 2 Filename
 P100930B_11

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	99	104	4.9	
4-MoCB	3	106	105	0.9	
2,2'-DiCB	4	98	106	7.8	
4,4'-DiCB	15	114	111	2.7	
2,2',6-TrCB	19	88	98	10.8	
3,4,4'-TrCB	37	99	102	3.0	
2,2',6,6'-TeCB	54	96	98	2.1	
3,3',4,4'-TeCB	77	95	99	4.1	
3,4,4',5-TeCB	81	106	107	0.9	
2,2',4,6,6'-PeCB	104	96	94	2.1	
2,3,3',4,4'-PeCB	105	102	109	6.6	
2,3,4,4',5-PeCB	114	109	107	1.9	
2,3',4,4',5-PeCB	118	114	114	0.0	
2,3',4,4',5'-PeCB	123	106	109	2.8	
3,3',4,4',5-PeCB	126	101	101	0.0	
2,2',4,4',6,6'-HxCB	155	96	101	5.1	
(156/157)	156/157	105	109	3.7	
2,3',4,4',5,5'-HxCB	167	106	110	3.7	
3,3',4,4',5,5'-HxCB	169	105	106	0.9	
2,2',3,4',5,6,6'-HpCB	188	102	105	2.9	
2,3,3',4,4',5,5'-HpCB	189	106	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	97	96	1.0	
2,3,3',4,4',5,5',6-OcCB	205	101	101	0.0	
2,2',3,3',4,4',5,5',6-NoCB	206	98	99	1.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	103	98	5.0	
Decachlorobiphenyl	209	132	136	3.0	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1668A Spike Recovery Relative Percent Difference (RPD) Results

Client Test America

 Spike 1 ID
 LCS-26575
 Spike 2 ID
 LCSD-26576

 Spike 1 Filename
 P101009A_04
 Spike 2 Filename
 P101009A_05

Compound	IUPAC	Spike 1 %REC	Spike 2 %REC	%RPD	
2-MoCB	1	111	114	2.7	
4-MoCB	3	113	119	5.2	
2,2'-DiCB	4	99	102	3.0	
4,4'-DiCB	15	113	99	13.2	
2,2',6-TrCB	19	101	101	0.0	
3,4,4'-TrCB	37	107	109	1.9	
2,2',6,6'-TeCB	54	98	101	3.0	
3,3',4,4'-TeCB	77	101	102	1.0	
3,4,4',5-TeCB	81	104	105	1.0	
2,2',4,6,6'-PeCB	104	102	101	1.0	
2,3,3',4,4'-PeCB	105	110	111	0.9	
2,3,4,4',5-PeCB	114	103	108	4.7	
2,3',4,4',5-PeCB	118	124	119	4.1	
2,3',4,4',5'-PeCB	123	110	115	4.4	
3,3',4,4',5-PeCB	126	104	107	2.8	
2,2',4,4',6,6'-HxCB	155	100	101	1.0	
(156/157)	156/157	109	111	1.8	
2,3',4,4',5,5'-HxCB	167	110	111	0.9	
3,3',4,4',5,5'-HxCB	169	103	109	5.7	
2,2',3,4',5,6,6'-HpCB	188	100	99	1.0	
2,3,3',4,4',5,5'-HpCB	189	108	107	0.9	
2,2',3,3',5,5',6,6'-OcCB	202	98	103	5.0	
2,3,3',4,4',5,5',6-OcCB	205	105	100	4.9	
2,2',3,3',4,4',5,5',6-NoCB	206	102	98	4.0	
2,2',3,3',4,5,5',6,6'-NoCB	208	98	104	5.9	
Decachlorobiphenyl	209	121	128	5.6	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

December 08, 2011

Linda Scheffler Director's Office

 Work Order
 Project
 Received

 W11K141
 Portland Harbor
 09/08/10 16:33

Enclosed are the results of analysis for the above work order. If you have questions concerning this report, please contact your project coordinator Peter Abrams at 503-823-5533.

Renee Chauvin

Laboratory Coordinator QA/QC

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project: Portland Harbor
Work Order: W11K141

Received: 9/8/10 16:33 Submitted By: Field Operations Client: Director's Office
Project Mgr: Linda Scheffler

WQDB #: Janus329

			Sample Collection Date					
<u>Sample</u>	<u>Laboratory ID</u>	<u>Matrix</u>	<u>Type</u>	<u>Start</u>	<u>End</u>	<u>Qualifier</u>		
52_13	W11K141-01	Sediment	Composite	09/07/10 11:45	09/07/10 11:45			
52_8	W11K141-02	Sediment	Composite	09/07/10 12:14	09/07/10 12:14			
52_14	W11K141-03	Sediment	Composite	09/08/10 10:01	09/08/10 10:01			

Case Narrative

These samples were originally analyzed for PCB Aroclors, PCB Congeners, TOC, and Total Solids in September 2010.

Request for Metals analysis was received on 11/16/11. To ensure accurate dry-weight correction for Metals analysis, each sample was re-analyzed for Total Solids using sample from the same container used for the Metals analysis.

Analyte	Result	Units	MRL [Dilution Batch	Prepared	Analyzed	Method	Qualifier
General Chemistry								
Total Solids								
52_13 : W11K141-01								
Total solids	83.2	% W/W	0.01	B11K285	11/17/11	11/18/11	SM 2540G	H5
52_8 : W11K141-02 Total solids	81.6	% W/W	0.01	B11K285	11/17/11	11/18/11	SM 2540G	H5
52_14: W11K141-03 Total solids	77.9	% W/W	0.01	B11K285	11/17/11	11/18/11	SM 2540G	H5

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

Page 2 of 6

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W1K141 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Analyte	Result		IVIRL L	Jiiulion	Datcii	Fiepaieu	Allalyzeu	IVIELLIOU	Qualifier
Total Metals									
Total Metals by ICPMS									
52_13 : W11K141-01									
Arsenic	2.18	mg/kg dry	0.500	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Cadmium	0.351	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Chromium	89.8	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Copper	44.8	mg/kg dry	0.200	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Lead	40.3	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Mercury	0.0168	mg/kg dry	0.0100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Nickel	27.1	mg/kg dry	0.200	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Silver	ND	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Zinc	332	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
52_8 : W11K141-02									
Arsenic	4.61	mg/kg dry	0.500	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Cadmium	0.464	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Chromium	659	mg/kg dry	0.500	400	B11K417	11/26/11	12/03/11	EPA 6020	H5
Copper	873	mg/kg dry	0.200	400	B11K417	11/26/11	12/03/11	EPA 6020	H5
Lead	105	mg/kg dry	0.100	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Mercury	0.0173	mg/kg dry	0.0100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Nickel	431	mg/kg dry	0.200	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Silver	0.235	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Zinc	316	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
52_14 : W11K141-03									
Arsenic	4.03	mg/kg dry	0.500	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Cadmium	1.02	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Chromium	159	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Copper	188	mg/kg dry	0.200	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Lead	151	mg/kg dry	0.100	100	B11K417	11/26/11	12/03/11	EPA 6020	H5
Mercury	0.0466	mg/kg dry	0.0100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Nickel	41.8	mg/kg dry	0.200	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Silver	0.202	mg/kg dry	0.100	20	B11K417	11/26/11	12/03/11	EPA 6020	H5
Zinc	632	mg/kg dry	0.500	100	B11K417	11/26/11	12/03/11	EPA 6020	H5

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11K141 Project Mgr: Linda Scheffler

Quality Control Report

General Chemistry - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Solids - Batch B11K285									
Duplicate (B11K285-DUP1)			Source: W11K124-02						
Total solids	97.4	% W/W	0.01		97.4		0.03 (5)	11/17/11 :11/18/11	
Duplicate (B11K285-DUP2)			Source: W11K141-03						
Total solids	77.0	% W/W	0.01		77.9		1 (5)	11/17/11 :11/18/11	

Total Metals - QC

				Spike	Source	%Rec	RPD	Prepared:	
Analyte	Result	Units	MRL	Level	Result	(Limits)	(Limit)	Analyzed	Qualifie
Total Metals by ICPMS - Bat	ch B11K417								
Blank (B11K417-BLK1)									
Arsenic	ND	mg/kg wet	0.500					11/26/11 :12/03/11	
Cadmium	ND	mg/kg wet	0.100					11/26/11 :12/03/11	
Chromium	ND	mg/kg wet	0.500					11/26/11 :12/03/11	
Copper	ND	mg/kg wet	0.200					11/26/11 :12/03/11	
Lead	ND	mg/kg wet	0.100					11/26/11 :12/03/11	
Mercury	ND	mg/kg wet	0.0100					11/26/11 :12/03/11	
Nickel	ND	mg/kg wet	0.200					11/26/11 :12/03/11	
Silver	ND	mg/kg wet	0.100					11/26/11 :12/03/11	
Zinc	ND	mg/kg wet	0.500					11/26/11 :12/03/11	
Standard Reference Material (B11K417-SRM1								
Arsenic	236	mg/kg wet	0.500	225		105 (75-125)		11/26/11 :12/03/11	
Cadmium	76.1	mg/kg wet	0.100	69.1		110 (75-125)		11/26/11 :12/03/11	
Chromium	142	mg/kg wet	0.500	124		115 (75-125)		11/26/11 :12/03/11	
Copper	72.5	mg/kg wet	0.200	78.8		92 (75-125)		11/26/11 :12/03/11	
Lead	238	mg/kg wet	0.100	223		107 (75-125)		11/26/11 :12/03/11	
Mercury	5.303	mg/kg wet	0.0100	5.15		103 (75-125)		11/26/11 :12/03/11	
Nickel	196	mg/kg wet	0.200	172		114 (75-125)		11/26/11 :12/03/11	
Silver	36.2	mg/kg wet	0.100	35.2		103 (75-125)		11/26/11 :12/03/11	
Zinc	394	mg/kg wet	0.500	349		113 (75-125)		11/26/11 :12/03/11	
Duplicate (B11K417-DUP1)		;	Source: W11K141-01						
Arsenic	2.27	mg/kg dry	0.500		2.18		4 (20)	11/26/11 :12/03/11	
Cadmium	0.338	mg/kg dry	0.100		0.351		4 (20)	11/26/11 :12/03/11	
Chromium	90.0	mg/kg dry	0.500		89.8		0.3 (20)	11/26/11 :12/03/11	
Copper	44.5	mg/kg dry	0.200		44.8		0.6 (20)	11/26/11 :12/03/11	
Lead	42.2	mg/kg dry	0.100		40.3		5 (20)	11/26/11 :12/03/11	
Mercury	0.01585	mg/kg dry	0.0100		0.01677		6 (20)	11/26/11 :12/03/11	
Nickel	28.0	mg/kg dry	0.200		27.1		3 (20)	11/26/11 :12/03/11	

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11K141 Project Mgr: Linda Scheffler

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS - Batch	B11K417								
Duplicate (B11K417-DUP1)			Source: W11K141-01						
Silver	ND	mg/kg dry	0.100		ND		(20)	11/26/11 :12/03/11	
Zinc	321	mg/kg dry	0.500		332		4 (20)	11/26/11 :12/03/11	
Matrix Spike (B11K417-MS1)			Source: W11K141-01						
Arsenic	15.1	mg/kg dry	0.500	12.3	2.18	105 (75-125)		11/26/11 :12/03/11	
Cadmium	13.0	mg/kg dry	0.100	12.9	0.351	98 (75-125)		11/26/11 :12/03/11	
Chromium	134	mg/kg dry	0.500	38.8	89.8	113 (75-125)		11/26/11 :12/03/11	
Copper	112	mg/kg dry	0.200	64.6	44.8	104 (75-125)		11/26/11 :12/03/11	
Lead	107	mg/kg dry	0.100	64.6	40.3	103 (75-125)		11/26/11 :12/03/11	
Mercury	0.6771	mg/kg dry	0.0100	0.646	0.01677	102 (75-125)		11/26/11 :12/03/11	
Nickel	93.9	mg/kg dry	0.200	64.6	27.1	103 (75-125)		11/26/11 :12/03/11	
Silver	10.4	mg/kg dry	0.100	11.6	ND	89 (75-125)		11/26/11 :12/03/11	
Zinc	410	mg/kg dry	0.500	64.6	332	119 (75-125)		11/26/11 :12/03/11	

Qualifiers

H5 Holding time was exceeded due to delayed request for analysis.

Definitions

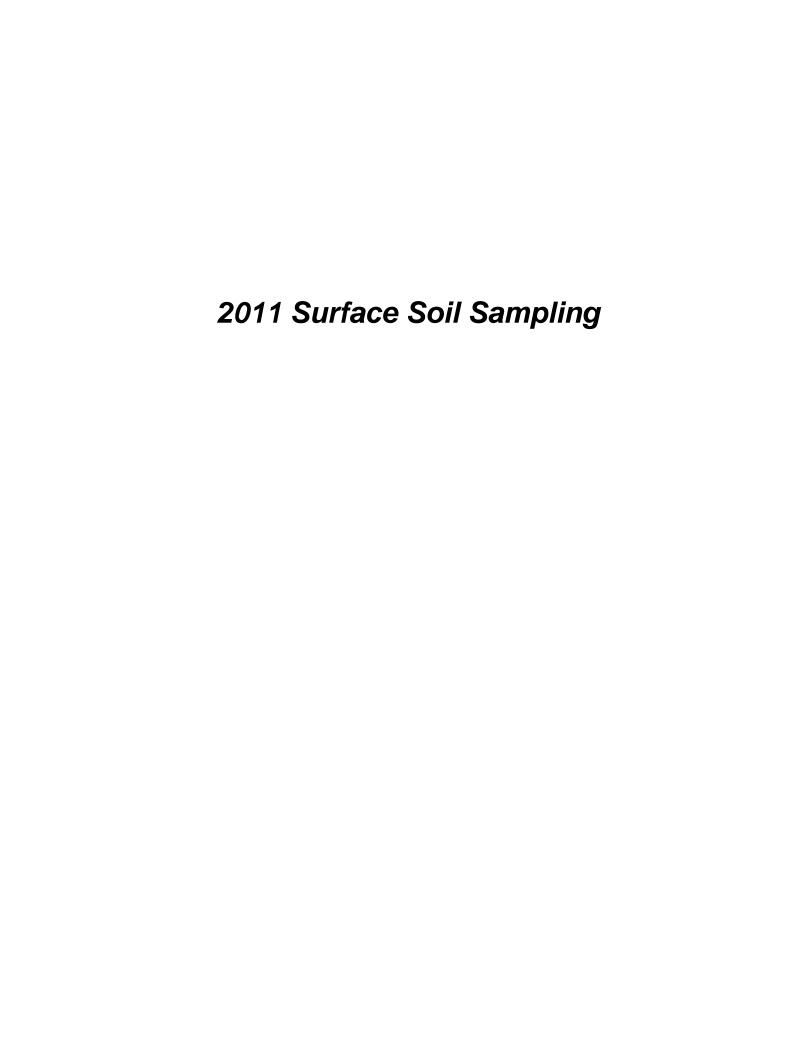
DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

Reported: 12/08/11 15:17

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 (503) 823-5696

Bureau of Environmental Services



Collected By: ASA, PB 0/10 **'** Page 6 of 6

Project Name: PORTLAND HARBOR INLINE SAMP Requested Analyses Work Order: WILLIY!

File Number: 1020.001		Matrix: §	SEDIMENT	_										Reque	Ste	Requested Analyses				
							īga	Organics		<u> </u>	ဂ္ဂ	General		Metals			Field Co	Field Comments		•
ແທດເລີດກາ Basin 52 Inline	2 Inline					i .								"e] -	2 2 2	analines samples	10 xee	samples were exercised "120:0: Men	anyses	muses were
Client: Directors Office						209)								As C	ž	initially received using Laburates. Metals	e naine	Lehword	w. Mesta	æ
Project: Portland Harbor						rs (Al								els: Ig N	27.	anchype were lossed in noing Element.	ossed in	wing E	Jament.	
	Sample	Sample name talias	ű			ngene					ldis			met Pb f		Samples logged in "livel" - MZ	امكادم	الما الما	۳ - M	ر ا
	Point	Sample	æ	· O	B Arc	CB Co	OC				otal Sc			otal rCu n	lement		ć			
WPCL Sample I.D. Location	/ Code	Date	lime	Type	┸┈	┺	TC		L	Ļ	To			7 C	50					
FO105870 IL-52-SJB2-0910 DISCHARGE TO AAE685	0 E685 52_13	9/7/10	1145	Ω -	•	•	•		. ,		•			6	0					
FO105871 IL-52-ANE911-0910	10 52_8	9/7/10	1214	0	•	•	•				•			6	07					
FO105872 L-52-SJB1-0910 ODOT-SJB-WQMH) 1H 52_14	9/8/10	1001	ဂ -	•	•	•		<u>. </u>		•			G	00					
	<u>(</u>					· ··· -														
															-					3
				'													·			
			·													-			·	_
		·																		
	-			•																
FO105873 DUPLICATE	DUP	9/7/10		C	•	•	•				•	, ,								
Kelinquisned by: 1.	_	Relinguished By: 2.						Relin	Relinquished By	ed B	3.				!	Relingui	Relinquished By: 4.		: !	
Signature: L. C. Time: 1635				Time:				Signature:	re:						Time:	Signature:			Time:	
Printed Name / Adrew Arashare Date: 9/4/10	Printed Name:	16:		Date:				Printed	Printed Name:						Date:	Printed Name:			Date:	
	Received By:	1 By: 2.		Time:				Receive Signature:	Received By: Signature:	Ϋ́	μ				īme:	Received By: Signature:	<u>d By:</u> 4.	•	Time:	
	Printed Name:	16:		Date:				Printed	Printed Name:				ļ		Date:	Printed Name:	me:		Date:	
May Con Con Con 18 110	Ď						L		ı							-				

Portland Harbor Inline Samp COC - OF 52 (9-7&8-10) xls

55 SW Yamhill Street, Suite 400 Portland, OR 97204 P: 503.239.8799 F: 503.239.8940 info@gsiwatersolutions.com www.gsiwatersolutions.com

Laboratory Data QA/QC Review 2011 Surface Soil Sampling City Outfall Basin 52

To: File

From: Andrew Davidson, GSI Water Solutions, Inc. (GSI)

Date: June 24, 2011

This memorandum presents a quality assurance/quality control (QA/QC) review of the laboratory data generated from a source control investigation sampling event conducted by the City of Portland (City) in January 2011. Nine composited, surface soil samples (W11A060-01 – W11A060-08, W11A060-10) and one duplicate sample (W11A060-09) were collected in portions of City right-of-way (ROW) in Outfall Basin 52.

The laboratory analyses for these source control program samples were completed by the City's Bureau of Environmental Services (BES) Water Pollution Control Laboratory (WPCL) and a subcontracted laboratory. The following laboratories conducted the analyses listed:

- BES WPCL
 - o Metals EPA 6020
 - o Polychlorinated Biphenyls (PCBs) Aroclors EPA 8082
 - Total Solids SM 2540G
- Test America (TA)
 - o Total Organic Carbon (TOC) EPA 9060

The WPCL summary report and the subcontracted laboratory report for all analyses associated with this sampling event are attached.

The following QA/QC review of the analytical data is based on the available documentation provided by WPCL and the subcontracted laboratory. The QA/QC review of the analytical data consisted of reviewing the following elements for each laboratory report, if applicable and/or available:

- Chain-of-custody for completeness and continuous custody
- Analysis conducted within holding times

- Chemicals of interest detected in method blanks
- Surrogate recoveries within laboratory control limits
- Internal standard recoveries within accuracy control limits
- Matrix spike and matrix spike duplicate (MS/MSD) sample results within laboratory control limits
- Laboratory control and duplicate laboratory control (LC/DLC) sample recoveries within laboratory control limits
- Relative percent differences (RPDs) for laboratory duplicate samples within laboratory control limits

The results of the QA/QC review of the subcontracted laboratory reports are presented below.

Chain-of-Custody

The chain-of-custody forms showed continuous custody of the samples. The chain-of-custody procedures appear to have been adequate indicating that sample integrity was maintained throughout the sample collection and delivery process.

Analysis Holding Times

Samples for all analyses were extracted and analyzed within the recommended method-specific holding times with two exceptions. WPCL reports that because of a delayed request for analysis of archived sample, W11A060-10, TOC and Total Solids were analyzed after the recommended method holding times had expired. However, because the sample analysis date (1/27/11) was less than one month after the collection date (1/6/11), the results are not expected to be significantly impacted, and the data is not further qualified.

Method Blanks

Method blanks were processed during the analyses of metals, PCB Aroclors, and TOC for the initial batch of samples (W11A060-01 – W11A060-09). No analytes were detected in any of the method blanks for the initial batch of samples.

A second set of method blanks was processed during the analyses of metals, PCB Aroclors, and TOC for archived sample, W11A060-10. No analytes were detected in the second set of method blanks except for copper, which was detected in the method blank processed during the metals analysis. However, because the concentration of copper in sample W11A060-10 was greater than ten times the concentration detected in the associated method blank, the data are not further qualified.

Surrogate Recoveries

Surrogate recoveries were completed during the analysis of PCB Aroclors. All surrogate recoveries were within laboratory control limits.

Matrix Spike/Matrix Spike Duplicate

For the initial batch of samples (W11A060-01 – W11A060-09), MS samples were processed during the analyses of metals, PCB Aroclors, and TOC, and MSD samples were processed during the analyses of PCB Aroclors and TOC. During the metals analysis, MS recoveries for chromium and copper were outside laboratory control limits. WPCL also reports that MS recovery results for zinc are not applicable because the sample concentration is greater than four times the spike amount. Aroclor 1016/1242 and Aroclor 1260 were spiked in MS/MSD samples processed during the PCB Aroclor analysis. MS/MSD recoveries and RPDs for Aroclor 1016/1242 were within laboratory control limits. WPCL reports that calculated recoveries for Aroclor 1260 are not applicable because of the high concentration of 1260 in the source sample. MS/MSD recoveries and relative percent differences (RPDs) were within laboratory control limits for the TOC analysis.

For archived sample, W11A060-10, MS samples were processed during the analyses of metals, PCB Aroclors, and TOC, and MSD samples were processed during the analysis of PCB Aroclors. During the metals analysis, the MS recovery for zinc was slightly above laboratory control limits. However, because all other metals QC data were within laboratory control limits, the associated sample result for zinc is not further qualified. Aroclor 1016/1242 and Aroclor 1260 were spiked in MS/MSD samples processed during the PCB Aroclor analysis. MS/MSD recoveries and RPDs for Aroclor 1016/1242 were within laboratory control limits. WPCL reports that calculated recoveries for Aroclor 1260 are not applicable because of the high concentration of 1260 in the source sample. The MS recovery of TOC was within laboratory control limits.

Laboratory Control Samples

LC samples were processed during the analyses of PCB Aroclors and TOC for the initial batch of samples (W11A060-01 – W11A060-09) and the archived sample, W11A060-10. All LC sample recoveries were within laboratory control limits.

Laboratory Duplicate Samples

For the initial batch of samples (W11A060-01 – W11A060-09), laboratory duplicate samples were processed during the analyses of total solids, metals, and TOC. RPDs for laboratory duplicate samples processed during the total solids and TOC analyses were within laboratory control limits. For the laboratory duplicate sample processed during the metals analysis (duplicate of W11A060-01), RPDs for chromium and nickel were above laboratory control limits. Accordingly, WPCL reports that results for chromium and nickel in sample W11A060-01 should be considered estimates due to non-homogenous sample matrix. These results are flagged as estimates ("J") in the accompanying data table.

Laboratory duplicate samples were processed during the total solids, metals, and TOC analyses of archived sample, W11A060-10. RPDs for all analyses were within laboratory control limits.

Other

WPCL reports that MS/MSD and duplicate sample results for sample W11A060-01 indicate non-homogenous sample matrix. Additionally, WPCL reports that a high matrix spike recovery for zinc in sample W11A060-10 indicates a non-homogenous sample matrix.

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Work Order #: WII # 060

Date: 16 [[[

Collected By:

Client Name: Director's Office	ļ
Project Name: Portland Harbor	tland Harbor
1777	TOTAL PLANTS OF THE PROPERTY O
	Requested Analyses

Special Instructions:		nequested Alialyses	
Metals	Pb, Wi, Zn)		
Sample Sample Sample Codion ID Date Time Type CO	(Cr, Cu,		# of Containers Remarks
01 52_15 1/6/2011 1400 C • •	•		Area 1
02 52_16 1/6/2011 1435 C • •	•		Area 2
03 52_17 1/6/2011 1330 C • •	•		Area 3
04 52_18 1/6/2011 1200 C • •	•		Area 4
05 52_19 1/6/2011 1230 C • •	•		Area 5
06 52_20 1/6/2011 1258 C • •	•		Area 6
07 52_21 1/6/2011 1518 C • •	•		Area 7
52_22 1/6/2011 1535 C •	•		Area 9
DUP 1/6/2011 C • •	•		
			Area 8 TO BE ARCHIVED
Me By:	e By:	Relinquished By: Signature: Date:	Received By: Signature: Date:
ed Name Peter Brown + 1606 Printed Name: Mackeyzie Tis	Mackennik	Time 1 (a 0 V) Printed Name:	Printed Name: Time:
Portland Harbor - Basin 52 Surface Soil COC (12-22-10) xls			

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Chair-of-Custody

Work Order #: WIN A 060 Date: 16 [[[

Collected By: FO PTB

Soi Matrix: Bureau of Environmental Services Portland Harbor Director's Office Project Name: Client Name:

Requested Analyses

			, c		61		:						-IIVED			
			Remarks	Area 1	Area 2	Area 3	Area 4	Area 5	Area 6	Area 7	Area 9		Area 8 TO BE ARCHIVED	Date:	Тіпе:	1
			# of Containers										>	Received By: Signature:	Printed Name:	
													•	Rec	Print	
														Date:	Time:	
,					<u> </u>				:							
	· · · · · · · · · · · · · · · · · · ·													Relinquished By: Signature:	Printed Name:	-
					<u> </u>			·					=	Date:) [6 11	Time: 1600	
												\$ #3 0	-pertach yru		12/2	
		Pb, Ni, Zn)	PCB Ard	•	• .	•	•	•	•	•	•	•	X	1	Vaccentic	
			TOC Totals M	•	•	•	•	•	•	•	•	• .	X	Received By: Signature:	Printed Name:	<u>S</u>)
			Sample Type	ပ	O	၁	ွဲပ	Ų	· O	U	O	O	S	Date: 1 b 11	1606	IC (12-22-10);
			Sample Time	1400	1435	1330	1200	1230	1258	1518	1535		1500	Date:	T _{Ilme}	urface Soil CO
ns:	e Soils		Sample Date	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	1/6/2011	hill.	Brown	 Portland Harbor - Basin 52 Surface Soil COC (12-22-10) xls
Special Instructions:	Basin 52 Surface Soils		Location ID	52_15	52_16	52_17	52_18	52_19	52_20	52_21	52_22	and.	52_23	nquished By: nture: MM	od Name Cote	Portland Harbo
<u>Q</u>	<u>ä</u>	пшрец	N qe7	01	00	03	77	92	90	20	80	60	<u> </u>	Page 1		29

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

February 14, 2011

Linda Scheffler Director's Office

 Work Order
 Project
 Received

 W11A060
 Portland Harbor
 01/06/11 16:06

Enclosed are the results of analysis for the above work order. If you have questions concerning this report, please contact your project coordinator Peter Abrams at 503-823-5533.

Renee Chauvin

Laboratory Coordinator QA/QC

20 THAT 0 P

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

LABORATORY ANALYSIS REPORT

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler
Received: 1/6/11 16:06 WQDB #: Janus329

Submitted By: Field Operations

				Sample Col	lection Date	
<u>Sample</u>	Laboratory ID	<u>Matrix</u>	Type	<u>Start</u>	<u>End</u>	Qualifier
52_15	W11A060-01	Soil	Composite	01/06/11 14:00	01/06/11 14:00	
52_16	W11A060-02	Soil	Composite	01/06/11 14:35	01/06/11 14:35	
52_17	W11A060-03	Soil	Composite	01/06/11 13:30	01/06/11 13:30	
52_18	W11A060-04	Soil	Composite	01/06/11 12:00	01/06/11 12:00	
52_19	W11A060-05	Soil	Composite	01/06/11 12:30	01/06/11 12:30	
52_20	W11A060-06	Soil	Composite	01/06/11 12:58	01/06/11 12:58	
52_21	W11A060-07	Soil	Composite	01/06/11 15:18	01/06/11 15:18	
52_22	W11A060-08	Soil	Composite	01/06/11 15:35	01/06/11 15:35	
DUP	W11A060-09	Soil	Composite	01/06/11 00:00	01/06/11 00:00	
52 23	W11A060-10	Soil	Composite	01/06/11 15:00	01/06/11 15:00	

Case Narrative

Sample 52 23 (W11A060-10):

Request for analysis was made on 1/26/11 for this sample, originally labelled as an archive sample. Because of the delayed request for analysis, TOC and Total Solids were analyzed after the method holding times had expired.

Metals:

Matrix duplicate and spike results for sample 52_15 (W11A060-01) indicate non-homogenous sample matrix. A second duplicate also produced high RPDs for several elements. For sample 52_23 (W11A060-10), high matrix spike recovery for Zinc indicates non-homogeneous sample matrix. Analytical system QC results show that the analysis was in control for both batches, and the RPDs and recoveries outside of acceptance limits were due to the matrix.

PCB Aroclor matrix QC:

The matrix spike and matrix spike duplicate samples were fortified with Aroclors 1016/1242 and 1260. Calculated recoveries for Aroclor 1260 are not applicable because of the high concentration of 1260 in the source sample.

Analyte	Result	Units	MRL Dilution	Batch	Prepared	Analyzed	Method	Qualifier

General Chemistry

Total Solids

52_15: W11A060-01

Total solids **80.1** % W/W 0.01 B11A115 01/08/11 01/09/11 SM 2540G

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

Page 2 of 29

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

85.3

% W/W

Units Analyte Result MRL Dilution Batch Prepared Analyzed Method Qualifier **General Chemistry Total Solids** 52_16: W11A060-02 Total solids 0.01 01/09/11 SM 2540G 91.9 B11A115 01/08/11 % W/W 52_17: W11A060-03 Total solids SM 2540G 89.7 0.01 B11A115 01/08/11 01/09/11 % W/W 52_18: W11A060-04 Total solids 88.3 0.01 B11A115 01/08/11 01/09/11 SM 2540G % W/W 52_19: W11A060-05 Total solids 0.01 01/08/11 01/09/11 SM 2540G 69.6 % W/W B11A115 52 20: W11A060-06 Total solids 0.01 B11A115 01/08/11 01/09/11 SM 2540G 73.9 % W/W 52 21: W11A060-07 Total solids 0.01 B11A115 01/08/11 01/09/11 SM 2540G 76.7 % W/W 52_22 : W11A060-08 Total solids 89.6 % W/W 0.01 B11A115 01/08/11 01/09/11 SM 2540G DUP: W11A060-09 Total solids SM 2540G 92.1 % W/W 0.01 B11A115 01/08/11 01/09/11

0.01

B11A368

01/26/11

01/27/11

Reported: 02/14/11 14:52

52_23: W11A060-10

Total solids

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Renee Chauvin, Laboratory Coordinator QA/QC

SM 2540G

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Total Metals									
Total Metals by ICPMS									
52_15 : W11A060-01									
Chromium	131	mg/kg dry	0.500	200	B11A113	01/08/11	01/12/11	EPA 6020	M1
Copper	169	mg/kg dry	0.200	200	B11A113	01/08/11	01/12/11	EPA 6020	
Lead	181	mg/kg dry	0.100	200	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	49.3	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	M1
Zinc	358	mg/kg dry	0.500	200	B11A113	01/08/11	01/12/11	EPA 6020	
52_16 : W11A060-02									
Chromium	296	mg/kg dry	0.500	200	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	415	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	84.2	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	113	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	142	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_17 : W11A060-03									
Chromium	549	mg/kg dry	0.500	300	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	444	mg/kg dry	0.200	300	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	56.3	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	302	mg/kg dry	0.200	300	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	198	mg/kg dry	0.500	300	B11A113	01/08/11	01/13/11	EPA 6020	
52_18 : W11A060-04									
Chromium	31.1	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
Copper	57.0	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Lead	172	mg/kg dry	0.100	40	B11A113	01/08/11	01/13/11	EPA 6020	
Nickel	32.7	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Zinc	211	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_19 : W11A060-05									
Chromium	57.1	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
Copper	161	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Lead	149	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	57.5	mg/kg dry	0.200	20	B11A113	01/08/11	01/12/11	EPA 6020	
Zinc	273	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_20 : W11A060-06									
Chromium	136	mg/kg dry	0.500	80	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	422	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	113	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	99.7	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	408	mg/kg dry	0.500	80	B11A113	01/08/11	01/13/11	EPA 6020	
52_21 : W11A060-07									
Chromium	216	mg/kg dry	0.500	100	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	224	mg/kg dry	0.200	100	B11A113	01/08/11	01/13/11	EPA 6020	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

							,		
Total Metals									
Total Metals by ICPMS									
52 21 : W11A060-07									
 Lead	75.9	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	144	mg/kg dry	0.200	100	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	523	mg/kg dry	0.500	100	B11A113	01/08/11	01/13/11	EPA 6020	
52_22 : W11A060-08									
Chromium	304	mg/kg dry	0.500	200	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	541	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	47.1	mg/kg dry	0.100	20	B11A113	01/08/11	01/13/11	EPA 6020	
Nickel	144	mg/kg dry	0.200	200	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	178	mg/kg dry	0.500	200	B11A113	01/08/11	01/13/11	EPA 6020	
DUP: W11A060-09									
Chromium	104	mg/kg dry	0.500	80	B11A113	01/08/11	01/13/11	EPA 6020	
Copper	436	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Lead	96.7	mg/kg dry	0.100	20	B11A113	01/08/11	01/12/11	EPA 6020	
Nickel	81.8	mg/kg dry	0.200	80	B11A113	01/08/11	01/13/11	EPA 6020	
Zinc	146	mg/kg dry	0.500	20	B11A113	01/08/11	01/12/11	EPA 6020	
52_23 : W11A060-10									
Chromium	40.0	mg/kg dry	0.500	20	B11A371	01/27/11	01/27/11	EPA 6020	
Copper	69.8	mg/kg dry	0.200	20	B11A371	01/27/11	01/27/11	EPA 6020	
Lead	101	mg/kg dry	0.100	20	B11A371	01/27/11	01/27/11	EPA 6020	
Nickel	25.6	mg/kg dry	0.200	20	B11A371	01/27/11	01/27/11	EPA 6020	
Zinc	164	mg/kg dry	0.500	20	B11A371	01/27/11	01/27/11	EPA 6020	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Polychlorinated Polychlorinated	Bipheny	/Is ((PCBs))

Polychlorinated Biphenyls	(PCBS)									
PCB Aroclors by GC-ECD										
52_15 : W11A060-01										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	21700	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%	6)				
Tetrachloro-m-xylene	18.7		24.2	78%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	27.7		24.2	115%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_16 : W11A060-02										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	11900	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%	6)				
Tetrachloro-m-xylene	17.3		21.0	82%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	17.5		21.0	83%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_17 : W11A060-03										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	10700	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%	6)				
Tetrachloro-m-xylene	14.9		18.4	81%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	15.1		18.4	82%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_18 : W11A060-04										
Aroclor 1016/1242	ND	ug/kg dry		10.0) 1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0		B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Client: Director's Office **Portland Harbor** Work Order: W11A060 Project Mgr: Linda Scheffler

Units Analyte Result MRL Dilution Batch Prepared Analyzed Method Qualifier

CB Aroclors by GC-ECD										
52_18 : W11A060-04										
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	606	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D:
Aroclor 1268	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	16.3		20.0	82%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	21.5		20.0	108%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_19 : W11A060-05										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D:
Aroclor 1260	1170	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D:
Aroclor 1262	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D:
Aroclor 1268	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	23.4		27.8	84%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	22.3		27.8	80%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_20 : W11A060-06										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1260	846	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Aroclor 1262	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D:
Aroclor 1268	ND	ug/kg dry		50.0	5	B11A124	01/10/11	01/11/11	EPA 8082	D
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	24.4		22.8	107%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	19.6		22.8	86%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_21 : W11A060-07										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	

100

100

10

10

Reported: 02/14/11 14:52

Aroclor 1254

Aroclor 1260

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

01/11/11

01/11/11

B11A124 01/10/11

B11A124 01/10/11

Renee Chauvin, Laboratory Coordinator QA/QC

ND

1940

ug/kg dry

ug/kg dry

D2

D2

EPA 8082

EPA 8082

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Pol	ych	Iorii	nated	ΙВι	phen	yls (PCBs)
					•			_

52_21: W11A060-07 Aroclor 1262 Aroclor 1268 Surrogate Tetrachloro-m-xylene Decachlorobiphenyl 52_22: W11A060-08	ND Result 20.8 26.6	ug/kg dry ug/kg dry	Expected 24.6 24.6	100 100 %Rec 84%		B11A124 B11A124	01/10/11 01/10/11	01/11/11 01/11/11	EPA 8082 EPA 8082	D2
Aroclor 1268 Surrogate Tetrachloro-m-xylene Decachlorobiphenyl	ND Result 20.8 26.6		24.6	100 %Rec 84%	10					
Surrogate Tetrachloro-m-xylene Decachlorobiphenyl	20.8 26.6 ND		24.6	%Rec 84%		B11A124	01/10/11	01/11/11	EDA 8082	D0
Tetrachloro-m-xylene Decachlorobiphenyl	20.8 26.6 ND		24.6	84%	l imits/%				LFA 0002	D2
Decachlorobiphenyl	26.6 ND				Lilling /)				
, ,	ND		24.6		62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
52_22 : W11A060-08				108%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	1240	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		100	10	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	14.7		20.5	72%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	14.6		20.5	71%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
DUP: W11A060-09										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A124	01/10/11	01/11/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1260	10500	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	100	B11A124	01/10/11	01/11/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%)				
Tetrachloro-m-xylene	13.1		18.4	71%	62.5-132	B11A124	01/10/11	01/11/11	EPA 8082	
Decachlorobiphenyl	12.7		18.4	69%	43.5-150	B11A124	01/10/11	01/11/11	EPA 8082	
52_23 : W11A060-10										
Aroclor 1016/1242	ND	ug/kg dry		10.0	1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1221	ND	ug/kg dry		20.0	1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1232	ND	ug/kg dry		10.0	1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1248	ND	ug/kg dry		10.0	1	B11A384	01/27/11	01/27/11	EPA 8082	
Aroclor 1254	ND	ug/kg dry		1000	1	B11A384	01/27/11	01/27/11	EPA 8082	D2
Aroclor 1260	7120	ug/kg dry		1000	100	B11A384	01/27/11	01/27/11	EPA 8082	D2
Aroclor 1262	ND	ug/kg dry		1000	1	B11A384	01/27/11	01/27/11	EPA 8082	D2
Aroclor 1268	ND	ug/kg dry		1000	1	B11A384	01/27/11	01/27/11	EPA 8082	D2
Surrogate	Result		Expected	%Rec	Limits(%)				

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Analyte Result Units MRL Dilution Batch Prepared Analyzed Method Qualifier

Polychlorinated Biphenyls (PCBs)

PCB Aroclors by GC-ECD

52_23: W11A060-10

Surrogate Result Expected %Rec Limits(%)

 Tetrachloro-m-xylene
 18.5
 22.1
 83%
 62.5-132
 B11A384
 01/27/11
 01/27/11
 EPA 8082

 Decachlorobiphenyl
 24.2
 22.1
 109%
 43.5-150
 B11A384
 01/27/11
 01/27/11
 EPA 8082

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Quality Control Report

General Chemistry - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Solids - Batch B11A115									
Duplicate (B11A115-DUP1)			Source: W11A060-01						
Total solids	82.2	% W/W	0.01		80.1		3 (20)	01/08/11 :01/09/11	
Total Solids - Batch B11A368									
Duplicate (B11A368-DUP1)			Source: W11A060-10						
Total solids	84.8	% W/W	0.01		85.3		0.6 (20)	01/26/11 :01/27/11	

Total Metals - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	(Limit)	Analyzed	Qualifier
Total Metals by ICPMS - Bat	ch B11A113								
Blank (B11A113-BLK1)									
Chromium	ND	mg/kg wet	0.500					01/08/11 :01/12/11	
Copper	ND	mg/kg wet	0.200					01/08/11 :01/12/11	
Lead	ND	mg/kg wet	0.100					01/08/11 :01/12/11	
Nickel	ND	mg/kg wet	0.200					01/08/11 :01/12/11	
Zinc	ND	mg/kg wet	0.500					01/08/11 :01/12/11	
Standard Reference Material (B11A113-SRM1))							
Chromium	129.0	mg/kg wet	0.500	124		104 (75-125)		01/08/11 :01/12/11	
Copper	69.68	mg/kg wet	0.200	66.7		104 (75-125)		01/08/11 :01/12/11	
Lead	221.4	mg/kg wet	0.100	223		99 (75-125)		01/08/11 :01/12/11	
Nickel	181.7	mg/kg wet	0.200	172		106 (75-125)		01/08/11 :01/12/11	
Zinc	397.9	mg/kg wet	0.500	349		114 (75-125)		01/08/11 :01/12/11	
Duplicate (B11A113-DUP1)		So	urce: W11A060-01						
Chromium	59.28	mg/kg dry	0.500		130.9		75 (20)	01/08/11 :01/12/11	M1, N
Copper	146.1	mg/kg dry	0.200		169.2		15 (20)	01/08/11 :01/12/11	
Lead	196.5	mg/kg dry	0.100		181.0		8 (20)	01/08/11 :01/12/11	
Nickel	34.11	mg/kg dry	0.200		49.25		36 (20)	01/08/11 :01/12/11	M1, N
Zinc	332.6	mg/kg dry	0.500		357.9		7 (20)	01/08/11 :01/12/11	
Matrix Spike (B11A113-MS1)		So	urce: W11A060-01						
Chromium	88.67	mg/kg dry	0.500	45.7	130.9	-92 (75-125)		01/08/11 :01/12/11	M4, N
Copper	169.9	mg/kg dry	0.200	76.1	169.2	0.9 (75-125)		01/08/11 :01/12/11	M4, N
Lead	239.1	mg/kg dry	0.100	76.1	181.0	76 (75-125)		01/08/11 :01/12/11	
Nickel	107.9	mg/kg dry	0.200	76.1	49.25	77 (75-125)		01/08/11 :01/12/11	
Zinc	395.1	mg/kg dry	0.500	76.1	357.9	49 (75-125)		01/08/11 :01/12/11	M9
Total Metals by ICPMS - Bate	ch B11A371								

Reported: 02/14/11 14:52

Blank (B11A371-BLK1)

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

Total Metals - QC

				Spiko	Source	%Rec	RPD	Prepared:	
Analyte	Result	Units	MRL	Spike Level	Result	%Rec (Limits)	(Limit)	Analyzed	Qualifie
Total Metals by ICPMS	6 - Batch B11A371								
Blank (B11A371-BLK1)									
Chromium	ND	mg/kg wet	0.500					01/27/11 :01/27/11	
Copper	0.212	mg/kg wet	0.200					01/27/11 :01/27/11	B2
Lead	ND	mg/kg wet	0.100					01/27/11 :01/27/11	
Nickel	ND	mg/kg wet	0.200					01/27/11 :01/27/11	
Zinc	ND	mg/kg wet	0.500					01/27/11 :01/27/11	
Standard Reference Ma	terial (B11A371-SRM1)								
Chromium	127.7	mg/kg wet	0.500	124		103 (75-125)		01/27/11 :01/27/11	
Copper	68.93	mg/kg wet	0.200	66.7		103 (75-125)		01/27/11 :01/27/11	
Lead	218.3	mg/kg wet	0.100	223		98 (75-125)		01/27/11 :01/27/11	
Nickel	174.2	mg/kg wet	0.200	172		101 (75-125)		01/27/11 :01/27/11	
Zinc	377.4	mg/kg wet	0.500	349		108 <i>(75-125)</i>		01/27/11 :01/27/11	
Duplicate (B11A371-DU	P2)	Sou	rce: W11A060-10						
Chromium	37.43	mg/kg dry	0.500		40.04		7 (20)	01/27/11 :01/27/11	
Copper	74.20	mg/kg dry	0.200		69.76		6 (20)	01/27/11 :01/27/11	
Lead	98.17	mg/kg dry	0.100		100.7		3 (20)	01/27/11 :01/27/11	
Nickel	25.43	mg/kg dry	0.200		25.61		0.7 (20)	01/27/11 :01/27/11	
Zinc	166.6	mg/kg dry	0.500		164.0		2 (20)	01/27/11 :01/27/11	
Matrix Spike (B11A371-I	MS1)	Sou	rce: W11A060-10						
Chromium	71.50	mg/kg dry	0.500	35.9	40.04	88 (75-125)		01/27/11 :01/27/11	
Copper	131.1	mg/kg dry	0.200	59.8	69.76	103 (75-125)		01/27/11 :01/27/11	
Lead	165.6	mg/kg dry	0.100	59.8	100.7	109 (75-125)		01/27/11 :01/27/11	
Nickel	80.73	mg/kg dry	0.200	59.8	25.61	92 (75-125)		01/27/11 :01/27/11	
Zinc	241.1	mg/kg dry	0.500	59.8	164.0	129 (75-125)		01/27/11 :01/27/11	M5, N

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: Portland Harbor Client: Director's Office
Work Order: W11A060 Project Mgr: Linda Scheffler

Polychlorinated Biphenyls (PCBs) - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
PCB Aroclors by GC-ECD - Ba	atch B11A124								
Blank (B11A124-BLK1)									
Aroclor 1016/1242	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1221	ND	ug/kg wet	20.0					01/10/11 :01/11/11	
Aroclor 1232	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1248	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1254	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1260	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1262	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Aroclor 1268	ND	ug/kg wet	10.0					01/10/11 :01/11/11	
Surrogate									
Tetrachloro-m-xylene	19.0		ug/kg wet	19.9		95		01/10/11 :01/11/11	
Decachlorobiphenyl	20.1		ug/kg wet	19.9		101		01/10/11 :01/11/11	
LCS (B11A124-BS1)									
Aroclor 1016/1242	101.9	ug/kg wet	10.0	100		102 (85.4-116.4		01/10/11 :01/11/11	
Aroclor 1260	94.60	ug/kg wet	10.0	100		95 (64.1-133.6)		01/10/11 :01/11/11	
Surrogate									
Tetrachloro-m-xylene	19.3		ug/kg wet	20.0		97 (62.5-132)		01/10/11 :01/11/11	
Decachlorobiphenyl	20.5		ug/kg wet	20.0		102 (43.5-150)		01/10/11 :01/11/11	
Matrix Spike (B11A124-MS1)			Source: W11A060-09						
Aroclor 1016/1242	86.71	ug/kg dry	10.0	94.7	ND	92 (55.2-135.4)		01/10/11 :01/11/11	N
Surrogate									
Tetrachloro-m-xylene	17.1		ug/kg dry	18.9		90 (62.5-132)		01/10/11 :01/11/11	
Decachlorobiphenyl	17.6		ug/kg dry	18.9		93 (43.5-150)		01/10/11 :01/11/11	
Matrix Spike Dup (B11A124-MS	D1)		Source: W11A060-09						
Aroclor 1016/1242	80.45	ug/kg dry	10.0	103	ND	78 (55.2-135.4)	7 (20)	01/10/11 :01/11/11	N
Surrogate									
Tetrachloro-m-xylene	17.4		ug/kg dry	20.6		85 (62.5-132)		01/10/11 :01/11/11	
Decachlorobiphenyl	18.8		ug/kg dry	20.6		92 (43.5-150)		01/10/11 :01/11/11	
PCB Aroclors by GC-ECD - Ba	atch B11A384								
Blank (B11A384-BLK1)									
Aroclor 1016/1242	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1221	ND	ug/kg wet	20.0					01/27/11 :01/27/11	
Aroclor 1232	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1248	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1254	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1260	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1262	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Aroclor 1268	ND	ug/kg wet	10.0					01/27/11 :01/27/11	
Surrogate									
Tetrachloro-m-xylene	18.7		ug/kg wet	20.0		94		01/27/11 :01/27/11	
Decachlorobiphenyl	17.8		ug/kg wet	20.0		89		01/27/11 :01/27/11	

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656

Project: **Portland Harbor** Client: Director's Office Work Order: W11A060 Project Mgr: Linda Scheffler

Polychlorinated Biphenyls (PCBs) - QC

Analyte	Result	Units	MRL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
PCB Aroclors by GC-ECD - Batch	B11A384	ļ.							
LCS (B11A384-BS1)									
Aroclor 1016/1242	95.74	ug/kg wet	10.0	100		96 (80-120)		01/27/11 :01/27/11	
Aroclor 1260	85.42	ug/kg wet	10.0	100		85 (64.1-133)		01/27/11 :01/27/11	
Surrogate									
Tetrachloro-m-xylene	17.7		ug/kg wet	20.0		88 (62.5-132)		01/27/11 :01/27/11	
Decachlorobiphenyl	17.2		ug/kg wet	20.0		86 (43.5-150)		01/27/11 :01/27/11	
Matrix Spike (B11A384-MS1)			Source: W11A060-10						
Aroclor 1016/1242	90.92	ug/kg dry	10.0	118	ND	77 (55.2-135.4)		01/27/11 :01/27/11	N
Surrogate									
Tetrachloro-m-xylene	17.5		ug/kg dry	23.6		74 (62.5-132)		01/27/11 :01/27/11	
Decachlorobiphenyl	25.7		ug/kg dry	23.6		109 (43.5-150)		01/27/11 :01/27/11	
Matrix Spike Dup (B11A384-MSD1)			Source: W11A060-10						
Aroclor 1016/1242	107.3	ug/kg dry	10.0	118	ND	91 (55.2-135.4)	17 (20)	01/27/11 :01/27/11	N
Surrogate									
Tetrachloro-m-xylene	19.9		ug/kg dry	23.5		84 (62.5-132)		01/27/11 :01/27/11	
Decachlorobiphenyl	18.9		ug/kg dry	23.5		80 (43.5-150)		01/27/11 :01/27/11	

Qualifiers

B2	Analyte was detected in the Method Blank, but at a concentration less than one tenth the amount in the sample.	
----	--	--

D2 The sample required dilution due to high levels of target analytes.

M1 Matrix duplicate precision measurement indicates non-homogenous sample matrix. The result should be considered an

estimate.

M4 Based on low matrix spike recovery, the sample result may be a low estimate due to matrix interference.

M5 Based on high matrix spike recovery, the sample result should be considered an estimate due to matrix effect and/or

non-homogeneous matrix.

Matrix spike recovery control limits are not applicable because the sample concentration is greater than 4 times the spike M9

amount.

Refer to case narrative. Ν

Definitions

DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

Reported: 02/14/11 14:52

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Portland 9405 SW Nimbus Ave. Beaverton, OR 97008 Tel: (503) 906-9200

TestAmerica Job ID: PUA0215

TestAmerica Sample Delivery Group: PUA0215

Client Project/Site: W11A060

Client Project Description: Portland Harbor

Revision: 1

For:

City of Portland Water Pollution Laboratory 6543 N. Burlington Ave. Portland, OR 97203

Attn: Jennifer Shackelford

Drull W. Sail

Authorized for release by:

2/14/2011 1:31 PM

Darrell Auvil Project Manager

darrell.auvil@testamericainc.com

Results relate only to the items tested and the sample(s) as received by the laboratory. The test results in this report meet all 2003 NELAC requirements for accredited parameters, exceptions are noted in this report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 14

Page 16 of 29

.0215

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	9
Certification Summary	11
Chain of Custody	12

4

5

9

4

Sample Summary

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060

TestAmerica Job ID: PUA0215

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
PUA0215-01	W11A060-01	Soil	01/06/11 14:00	01/07/11 18:01
PUA0215-02	W11A060-02	Soil	01/06/11 14:35	01/07/11 18:01
PUA0215-03	W11A060-03	Soil	01/06/11 13:30	01/07/11 18:01
PUA0215-04	W11A060-04	Soil	01/06/11 12:00	01/07/11 18:01
PUA0215-05	W11A060-05	Soil	01/06/11 12:30	01/07/11 18:01
PUA0215-06	W11A060-06	Soil	01/06/11 12:58	01/07/11 18:01
PUA0215-07	W11A060-07	Soil	01/06/11 15:18	01/07/11 18:01
PUA0215-08	W11A060-08	Soil	01/06/11 15:35	01/07/11 18:01
PUA0215-09	W11A060-09	Soil	01/06/11 00:00	01/07/11 18:01
PUA0215-10	W11A060-10	Soil	01/06/11 15:00	01/07/11 18:01

3

4

5

7

8

9

Case Narrative

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060 SDG: PUA0215

Job ID: PUA0215

Laboratory: TestAmerica Portland

Narrative

Amended report to reflect addition of sample #10 for TOC analysis.

TestAmerica Job ID: PUA0215

2

3

4

J

Q

Qualifier Definition/Glossary

Client: City of Portland Water Pollution Laboratory

TestAmerica Job ID: PUA0215 Project/Site: W11A060

SDG: PUA0215

Glossary

Glossary **Glossary Description**

Listed under the "D" column to designate that the result is reported on a dry weight basis.

Detection Summary

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060

Client Sample ID: W11A060-09

Client Sample ID: W11A060-10

Total Organic Carbon - Duplicates

Total Organic Carbon - Duplicates

TestAmerica Job ID: PUA0215

SDG: PUA0215

3

Client Sample ID: W11A060-01						La	b Sample	D: PUA0215-01
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	23000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-02						La	b Sample	D: PUA0215-02
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	13000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-03						La	b Sample	D: PUA0215-03
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	13000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-04						La	b Sample	D: PUA0215-04
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	34000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-05						La	b Sample	D: PUA0215-05
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	84000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-06						La	b Sample	D: PUA0215-06
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	45000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-07	,					La	b Sample	D: PUA0215-07
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	70000		100		mg/Kg	1	9060	total
Client Sample ID: W11A060-08)					La	b Sample	D: PUA0215-08
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Total Organic Carbon - Duplicates	20000		100	_	mg/Kg	1	9060	total

TestAmerica Portland

Lab Sample ID: PUA0215-09

Lab Sample ID: PUA0215-10

Prep Type

Prep Type

total

total

Dil Fac D Method

Dil Fac D Method

9060

9060

RL

100

RL

100

MDL Unit

MDL Unit

mg/Kg

mg/Kg

Result Qualifier

Result Qualifier

15000

Analytical Data

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060 SDG: PUA0215

TestAmerica Job ID: PUA0215

3

Client Sample ID: W11A060-01							Lab S	Sample ID: PUA	0215-01
Date Collected: 01/06/11 14:00								•	rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	23000		100		mg/Kg		01/18/11 17:15	01/18/11 17:15	1
Client Sample ID: W11A060-02							Lab S	Sample ID: PUA	0215-02
Date Collected: 01/06/11 14:35									rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	13000		100		mg/Kg		01/18/11 17:28	01/18/11 17:28	1
Client Sample ID: W11A060-03							Lab S	Sample ID: PUA	0215-03
Date Collected: 01/06/11 13:30									rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	13000		100		mg/Kg		01/18/11 17:41	01/18/11 17:41	1
Client Sample ID: W11A060-04							Lab S	Sample ID: PUA	0215-04
Date Collected: 01/06/11 12:00								Mat	rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	34000		100	_	mg/Kg		01/18/11 17:55	01/18/11 17:55	1
Client Sample ID: W11A060-05							Lab S	Sample ID: PUA	0215-05
Date Collected: 01/06/11 12:30								Mat	rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	84000		100		mg/Kg		01/18/11 18:30	01/18/11 18:30	1
Client Sample ID: W11A060-06							Lab S	Sample ID: PUA	0215-06
Date Collected: 01/06/11 12:58								Mat	rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	45000		100		mg/Kg		01/18/11 18:51	01/18/11 18:51	1
Client Sample ID: W11A060-07							Lab S	Sample ID: PUA	0215-07
Date Collected: 01/06/11 15:18								Mat	trix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	70000		100		mg/Kg		01/18/11 19:05	01/18/11 19:05	1
Client Sample ID: W11A060-08							Lab S	Sample ID: PUA	0215-08
Date Collected: 01/06/11 15:35								Mat	rix: Soil
Date Received: 01/07/11 18:01									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	20000		100		mg/Kg		01/18/11 19:18	01/18/11 19:18	1
Client Sample ID: W11A060-09							Lab S	Sample ID: PUA	0215-09
Date Collected: 01/06/11 00:00								Mat	rix: Soil
Date Received: 01/07/11 18:01									
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Page 7 of 14

Analytical Data

Client: City of Portland Water Pollution Laboratory

Date Received: 01/07/11 18:01

Project/Site: W11A060 SDG: PUA0215

Method: 9060 - Organic Carbon, Total (TOC)

Client Sample ID: W11A060-10 Lab Sample ID: PUA0215-10 Date Collected: 01/06/11 15:00

Matrix: Soil

TestAmerica Job ID: PUA0215

Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac **Total Organic Carbon - Duplicates** 25000 100 mg/Kg 02/03/11 14:01 02/03/11 14:01

3

Quality Control Data

Client: City of Portland Water Pollution Laboratory TestAmerica Job ID: PUA0215 Project/Site: W11A060 SDG: PUA0215

3

6

8

Method: 9060 - Organic Carbon, Total (TOC)

Lab Sample ID: 220-47194-6 Client Sample ID: 220-47194-6 **Matrix: Soil Prep Type: total Analysis Batch: 47194** Prep Batch: 47194 P Blank Blank

Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed Total Organic Carbon - Duplicates 100 ND mg/Kg 01/18/11 17:08 01/18/11 17:08

Lab Sample ID: 220-47194-5 Client Sample ID: 220-47194-5

Matrix: Soil Prep Type: total Prep Batch: 47194_P Analysis Batch: 47194

LCS LCS Spike % Rec. Added Result Qualifier Limits Analyte Unit % Rec Total Organic Carbon - Duplicates 4110 5240 mg/Kg 127 28 - 172

Client Sample ID: W11A060-08 Lab Sample ID: 145368D

Matrix: Soil Prep Type: total

Analysis Batch: 47194 Prep Batch: 47194 P % Rec. RPD Sample Sample Spike Matrix Spike Dup Matrix Spike Dup

Analyte Result Qualifier Added Result Qualifier Unit D % Rec Limits **RPD** Limit Total Organic Carbon - Duplicates 20000 106000 127000 100 75 - 125 2 mg/Kg 20

Lab Sample ID: 145368S Client Sample ID: W11A060-08

Matrix: Soil Prep Type: total Analysis Batch: 47194 Prep Batch: 47194_P

Sample Sample Spike Matrix Spike Matrix Spike % Rec. Analyte Result Qualifier Added Result Qualifier Unit % Rec Limits

Total Organic Carbon - Duplicates 20000 113000 129000 mg/Kg 97 75 - 125

Lab Sample ID: 145368X Client Sample ID: W11A060-08

Matrix: Soil Prep Type: total

Analysis Batch: 47194 Prep Batch: 47194_P Sample Sample **Duplicate Duplicate** RPD

Result Qualifier Result Qualifier Unit **RPD** Limit Analyte Total Organic Carbon - Duplicates 20000 21400 mg/Kg 20

Lab Sample ID: 220-47655-6 Client Sample ID: 220-47655-6

Matrix: Soil Prep Type: total Analysis Batch: 47655 Prep Batch: 47655_P

Blank Blank Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac 100 ND 02/03/11 13:22 Total Organic Carbon - Duplicates 02/03/11 13:22 mg/Kg

Lab Sample ID: 220-47655-5 Client Sample ID: 220-47655-5

Matrix: Soil Prep Type: total **Analysis Batch: 47655** Prep Batch: 47655 P

Spike LCS LCS % Rec. Added Result Qualifier Unit % Rec Limits

Analyte Total Organic Carbon - Duplicates 4110 4540 mg/Kg 111 28 - 172

Lab Sample ID: 1453610S Client Sample ID: W11A060-10 **Matrix: Soil Prep Type: total**

Analysis Batch: 47655 Prep Batch: 47655_P Spike % Rec. Sample Sample Matrix Spike Matrix Spike

Result Qualifier Added Result Qualifier Unit % Rec Limits Total Organic Carbon - Duplicates 25000 119000 149000 mg/Kg 104

Quality Control Data

Client: City of Portland Water Pollution Laboratory

Project/Site: W11A060 SDG: PUA0215

Method: 9060 - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: 1453610X

Matrix: Soil

Analysis Batch: 47655

Client Sample ID: W11A060-10

TestAmerica Job ID: PUA0215

Prep Type: total

Prep Batch: 47655_P RPD

Sample Sample **Duplicate Duplicate** Result Qualifier Result Qualifier Unit RPD Limit Total Organic Carbon - Duplicates 25000 24900 0.4 20 mg/Kg

3

Certification Summary

Client: City of Portland Water Pollution Laboratory

TestAmerica Connecticut

TestAmerica Connecticut

TestAmerica Connecticut

TestAmerica Connecticut

Project/Site: W11A060

State Program

State Program

NELAC

NELAC

Laboratory	Authority	Program	EPA Region	Certification ID	* Expiration Date
TestAmerica Portland		USDA		P330-07-XXXXXX	11/13/10
TestAmerica Portland	Alaska	Alaska UST	10	UST-012	12/26/10
TestAmerica Portland	Alaska	State Program	10	OR00040	04/21/11
TestAmerica Portland	California	State Program	9	2597	09/30/11
TestAmerica Portland	Oregon	NELAC	10	OR100021	01/09/12
TestAmerica Portland	Washington	State Program	10	C586	06/23/11
TestAmerica Connecticut		NRC		06-30139-01	02/28/15
TestAmerica Connecticut		USDA		S-70244	02/20/11
TestAmerica Connecticut	Connecticut	State Program	1	PH-0497	12/31/12

2

2

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Massachusetts

New Jersey

Rhode Island

New York

TestAmerica Job ID: PUA0215

M-CT023

CT410

10602

LAO00226

SDG: PUA0215

3

6

Ω

06/30/11

06/30/11

04/01/11

12/30/11

a

4.0

^{*} Any expired certifications in this list are currently pending renewal and are considered valid.

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W11A060

PUA0215

		DECENTAL AS	OBATORY:	·				
SENDING LABORATORY:	,	RECEIVING LAB	UKATURY:					
City of Portland Water Pollution	Control Lab	TestAmerica	TestAmerica					
6543 N. Burlington Ave		9405 SW Nimbi	9405 SW Nimbus Ave					
Portland, OR 97203		Beaverton, OR	97008	,				
Phone: 503-823-5600		Phone :(503) 90						
Fax: 503-823-5656		Fax: (503) 906-9						
Invoice To: Charles Lytle using	P.O.# 30001516		 ,	5.9°C				
WPCL Project Name			TURNAROUN					
Portland Harbor		X Standa	rd	ID NEQUEST				
, orthund riarbon								
		Rush _	day(s)					
Analysis	Due	Expires	Laboratory ID	Comments				
	•				 -			
Sample ID: W11A060-01	Solid	Sampled:01/06/11 14:00						
Out-TOC Solid	01/21/11 17:00	01/20/11 14:00						
Containers Supplied:	•							
G jar amber 4 oz (C)								
					· · · · · · · · · · · · · · · · · · ·			
Sample ID: W11A060-02	Solid	Sampled:01/06/11 14:35						
Out-TOC Solid	01/21/11 17:00	01/20/11 14:35						
Containers Supplied:	•							
G jar amber 4 oz (C)								
Sample ID: W11A060-03	Solid	Sampled:01/06/11 13:30						
Out-TOC Solid	01/21/11 17:00	01/20/11 13:30						
	01/21/11 17:00	0 1720711 10.00						
Containers Supplied;		-		*				
G jar amber 4 oz (C)			<u> </u>					
Sample ID: W11A060-04	Solid	Sampled:01/06/11 12:00						
Out-TOC Solid	01/21/11 17:00	01/20/11 12:00						
Containers Supplied:								
G jar amber 4 oz (C)				7.47.7				
0 1 10 1444 4000 05:	C-11-1	Sampled:01/06/11 12:30	.*					
Sample ID: W11A060-05	Solid	01/20/11 12:30	· · · · · · · · · · · · · · · · · · ·		<u> </u>			
Out-TOC Solid	01/21/11 17:00	01/20/11 12:30						
Containers Supplied:								
G jar amber 4 oz (C)								
r		• •		•				
				•				
				1				

Page 1 of 2

SUBCONTRACT ORDER

City of Portland Water Pollution Control Lab W11A060

PUA0215

				VI	0210
Analysis	Due	Expires	Laboratory ID	Comments	
					
Sample ID: W11A060-06	Solid	Sampled:01/06/11 12:58			
Out-TOC Solid	01/21/11 17:00	01/20/11 1 2:58			
Containers Supplied:					
G jar amber 4 oz (C)					
Sample ID: W11A060-07	Solid	Sampled:01/06/11 15:18	a ^m		
Out-TOC Solid	01/21/11 17:00	01/20/11 15:18			
Containers Supplied:					
G jar amber 4 oz (C)					<u> </u>
Sample ID: W11A060-08	Solid	Sampled:01/06/11 15:35			
Out-TOC Solid	01/21/11 17:00	01/20/11 15:35			
Containers Supplied:					
G jar amber 4 oz (C)	· · · · · · · · · · · · · · · · · · ·				
Sample ID: W11A060-09	Solid	Sampled:01/06/11 00:00	•		
Out-TOC Solid	01/21/11 17:00	01/20/11 00:00			
Containers Supplied:					
G jar amber 4 oz (C)		·			

Released By

1/ 1/ /

Received By

Date /

11 180/

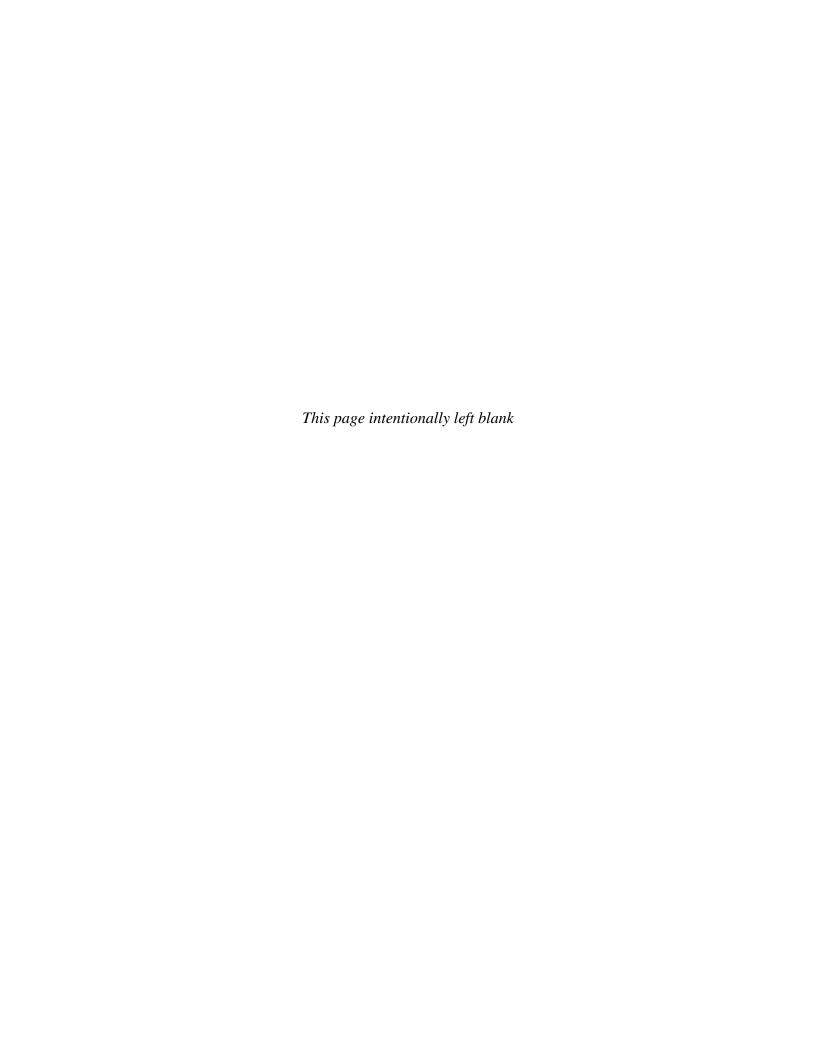
Released By

Date

Received By

Page 2 of 2

5



Portland Sample Control Checklist

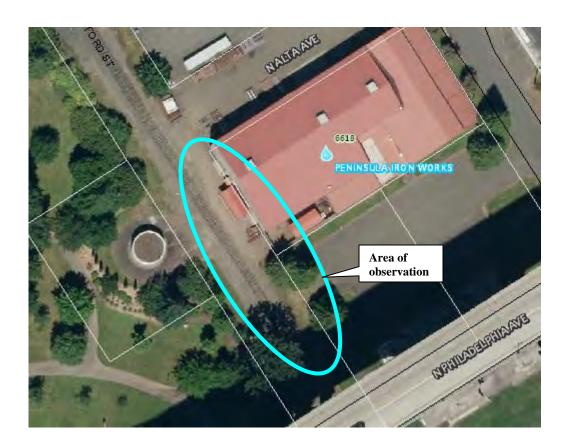
		k Ord nt Na						
		ect Na						
		Zone: DT/EST	CDT/CST MDT/MST PDT/PST AK OTHER					
	Unpacking Checks: Cooler (s): Temperature out of Range: Not enough or No Ice Ice Melted							
	rem		if #1 Digi #2 IR Gun W/in 4 Hrs of collection C (Plastic Glass) Ice Not Needed Raytek Other:					
~	Tee 11	sed• (ci	ircle one) GEL LOOSE BLUE OTHER: Initials M					
354 ·	N/A	Yes	No					
	14/24		1. If ESI client, were temp blanks received? If no, document on NOD.					
			Cooler Seals intact? (N/A if hand delivered) if no, document on NOD.					
	12. 3		3. Chain of Custody present? Along with "received by" & "relinquished by" signatures					
			with date & time? If no, document on NOD.					
			4. Bottles received intact? If no, document on NOD.					
			5. Sample is not multiphasic? If no, document on NOD.					
			6. Sampler name/signature documented on COC?					
			7. Proper Container and preservatives used? If no, document on NOD.					
			8. pH of all samples checked and meet requirements? If no, document on NOD.					
	Z		9. Cyanide samples checked for sulfides and meet requirements? If no, notify PM.					
	\mathbb{Z}		10. HF Dilution required?					
			 11. Sufficient volume provided for all analysis and requested MS/MSD? If no, document on NOD and consult PM before proceeding. 12. Did chain of custody agree with samples received? If no, document on NOD. 					
			13. Were VOA samples received without headspace?					
			14. Did samples require preservation with sodium thiosulfate?					
			☐ 15. If yes to #14, was the residual chlorine test negative? If no, document on NOD.					
			16. Are dissolved/field filtered metals bottles sediment-free? If no, document on NOD.					
			☐ 17. Are analyses with short holding times received in hold?					
			18. Were special log- in instructions read and followed?					
	Chec	cklist F	Reviewed: Log-in initials: Labeler initials:					

9405 SW Nimbus Ave, Beaverton OR 97008 tel 503,906,9200 fax 503,906,9210 www.testamericainc.com

APPENDIX D Industrial Source Control Memo

Water Pollution Control Laboratory

6543 N. Burlington Avenue, Bldg 217, Portland, Oregon 97203 • Dan Saltzman, Commissioner • Dean Marriott, Director


Industrial Source Control Memo

Date: March 16, 2012
To: Linda Scheffler
From: Loren Shelley

Subject: Wet Weather Field Observations on 1/19/12

Vicinity of Peninsula Iron Works – 6618 N Alta

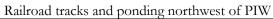
Industrial Stormwater staff conducted field observations during a heavy rain event on January 19, 2012 along the rail line adjacent to the Peninsula Iron Works (PIW) site. Photos from the site visit are included below for your review. As shown, large volumes of stormwater had accumulated around the southern corner of the PIW building and along the nearby rail line. Stormwater was flowing toward trenches that crossed the rail line in several locations. These trenches appeared to be manmade and conveyed stormwater to a landscaped area in Cathedral Park, where it appeared to be infiltrating into the soils and grassy area.

Photos show stormwater ponding near the PIW site and adjacent to the rail line. Stormwater entered what appeared to be manmade trenches, directing the flow across the rail line and into Cathedral Park.

Stormwater entering Cathedral Park landscape

Trenched water crossing rail line into Cathedral Park

Ponded water near PIW storage area


PIW activity areas at N Alta and N Bradford streets

Ponding near PIW scrap storage area

Looking south toward St Johns Bridge